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A. EXECUTIVE SUMMARY

1. Objectives:

The main objectives of this project have been as follows:

- to develop a physics background for scalable solid-state quantum computing,

- to determine fundamental limits on coherence in Josephson-effect qubits, and

- to demonstrate coherently interacting qubits and (possibly) quantum logic gates.

Our main approach was to work toward Josephson-junction flux qubits controlled using either external
video pulses (Stony Brook) and rf pulses (KU). The Stony Brook group also worked on the development
of special SFQ circuits for future advanced quantum computing circuits. The project also included a
substantial theoretical effort directed at both the development of new ideas for quantum computing and
providing support for the experimental work.

2. Major accomplishments:

(i) Qubit experiments at Stony Brook (Co-P.I: J. Lukensl

As with all groups using Josephson effect qubits, our results were severely limited by the presence of
unexpected 1/f flux noise, which was particularly severe in our large area qubit. The discovery of this
noise has forced us to change the focus of our work to an investigation of single qubit noise properties as
they affected coherence.

The main accomplishments and results of this effort are as follows:

" The design and construction or a sophisticated apparatus for the measure and control of flux
qubits that permitted high speed control and readout of the qubit at 5mK while reducing the effect
of the external environment to negligible levels.

" The development and refinement of technology for the fabrication of qubits and related circuitry
using a niobium trilayer process.

" Measurement of junction properties related to decoherence such as subgap leakage and 11f
critical current noise. The measured 1/f noise spectral density of junctions fabricated at Stony
Brook is about two orders of magnitude less than that commonly reported.

* The demonstration of coherent operation of a single qubit through the measurement of Rabi
oscillations and Ramsey fringes and the subsequent extraction of related decoherence times
associated with various noise processes.

The design and layout of our qubit along with the associated on-chip control and readout circuitry are
shown in Fig. 1. In addition to the qubit at the lower center of the figures, control coils for o,, which
controls the coupling between qubit states and 9x, which controls the level spacing of the qubit are shown.
The top parts of Fig. la and Fig. lb show the schematic and micrograph of the magnetometer used for
high speed readout of the state of the qubit. These dual controls allow us to operate the qubit in the flux
basis as originally planned or in what has come to be know as the phase basis using the two lowest
levels in one fluxoid well (Fig.2).

The results presented below use basis states in the same well, shown in Fig. 2, since the effect of flux
noise on these states is about 1 00x less than for two levels in different wells. The in-well level spacing is
about 20 GHz or 1K. The measured T1 for these level is 20 ns. Figure 3, showing resonant occupation of
11 > vs. level spacing, illustrates the various decoherence processes such as two level fluctuators (seen as
gaps in the occupation) and cavity resonances (bright horizontal line). Finally Fig. 4 shows Rabi
oscillations obtained for a bias away from any of the pathologies seen in Fig. 3. Here the Rabi frequency
is proportional the microwave amplitude as expected (inset) and the decay time is 16.6 ns. This is
consistent with the measure T1 above plus and additional decay at the Rabi frequency with TRb, = 25 ns.
These resonant data are not affected by the flux noise. However addition measurement of Ramsey
fringes, off resonant Rabi oscillations and resonant tunneling peaks between wells are. All give a low
frequency flux noise consistent with an rms detuning of a = 2.2 x 108s - 1. This is far too large for
successful operation of complex gates. So, further development of these qubits will require an
understanding and significant reduction of this noise.
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FIG. 1: a) Schematic and b) micrograph of rf SQUID qubit, readout magnetometer and flux control coils.
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(ii) Qubit experiments in U. Kansas (Co-P. I.: S. Han)

What follows is a list of our major accomplishments of this effort:

* For the first time we observed Rabi oscillation in a Josephson tunnel junction phase qubit. The
lower limit of decoherence time, obtained from best-fit of the data to the theoretical prediction of
an unstable system undergoing Rabi oscillations, is about 5 ts, which includes the effects of
both relaxation and dephasing.

* By measuring flux noise via inhomogeneous broadening of spectral linewidth and/or the width
and shape of macroscopic resonance tunneling peaks in superconducting flux qubits with
inductance ranging from less than 30 pH to greater than 1 nH, with different types of loop
configurations (e.g., magnetometer, 1 st order gradiometer, 2nd order gradiometer), and coupling
strength to external bias circuitry and/or environment we were the first to unambiguously show
that low frequency flux noise is the dominant mechanism of decoherence in RF SQUID qubits
and the source of the noise is definitely generated on-chip - from defects in materials
surrounding and/or as a part of the qubit.(e.g., tunnel barrier). Our result, based on
measurement from five flux qubits fabricated by Nb trilayer process, shows that the total flux
noise is proportional to inductance of the qubit (-0.9 m(Do/nH).

* In collaboration with a D-Wave Systems group we experimentally observed that at degeneracy
point an RF SQUID qubit has minimum tunneling rate (in contrast to the common belief that the
rate should be maximum at degeneracy point). This observation confirmed a theory on MRT
developed by Amin and Averin on macroscopic quantum tunneling. We also used it to quantify
LFFN in our flux qubits.

" We have carried out the measurement of T1 time between different fluxoid states of an RF
SQUID (and other qubit parameters important for the three-level operation mode, including the
rf-to-qubit coupling constant) using time-resolved measurements of the top level rf-excitation
from one of the bottom levels, followed by its inelastic relaxation into another lower state. This
low level of relaxation, T1 - 4 gis, is lower than the expected dephasing rate due to other
sources.

* We measured the bias and temperature dependence of T1 time between fluxoid states that have
clockwise and counterclockwise persistent current. The result clearly shows that at finite
temperature the simple two-level approximation breakdown and one must take into account
occupation probability of excited states.

* We have proposed a three-level flux qubits as the possible option for quantum computing. In this
option, switching between two flux states, localized near the corresponding wells of the qubit
potential, is carried out with two (rather than one) rf drives. One of the drives Rabi-transfers the
qubit state to the third, upper energy level (located above the potential barrier), while the second
drive competes the coherent transfer to another lower state. The main advantage of this
approach is that the lower, working energy levels (0 and 1) can be now hidden deeper inside
their potential wells, thus reducing the rate 1o of the parasitic incoherent transfer between the
states.

* We have made the first proposal to use superconducting qubits coupled to microwave cavity for
quantum information processing and to study fundamental physics such as the strong-coupling
limit of cQED. Samples have been designed and fabricated. Preliminary measurement was
carried out. The result is ve?y encouraging. For example, measured quality factor of coplanar
waveguide is greater than 10o.

* We have demonstrated macroscopic quantum tunneling in intrinsic Josephson junctions made
from Bi-2212 single crystal. Since Bi-2212 intrinsic junctions tunnel barrier conserves the lattice
structure and chemical composition of the crystal it has much lower defect density than artificially
engineered tunnel barrier. Therefore, it is expected to have much lower low frequency flux and
charge noise which has plagued further development of superconducting qubits for quantum
computation.



(iii) Theoretical work (Co-P.I.: D. Averin)

The main results obtained in this effort are as follows:

Design and theory of new devices:

- We have suggested and calculated characteristics of a "variable
C- C 2  electrostatic transformer (Fig. 5), a simple single-junction device that

allows to control the strength of coupling between charge qubits by
varying the quantum capacitance of a small Josephson junction. The

C,Ej ability to do this contradicted the commonly held view of impossibility to
vary the coupling of charge qubit set by their geometric capacitance.
After our work, quantum capacitance of Josephson junctions has found

Vg other applications, e.g., for measurements of charge qubits.

- We suggested the general notion of a quadratic quantum detector
which possesses non-trivial quantum-information properties, e.g., can

FIG. 5. The variableelectrostatic entangle qubits by measurement, and developed a simple error-transformera correction scheme for superconducting qubits based on such a

detector.

- We have developed the theory of quantum coherent oscillations in coupled qubits and their weak
decoherence. The theory facilitated experiment on coupled charge qubits.

0 Quantum measurements of qubits.

- We have developed the general theory of linear quantum measurements with mesoscopic detectors.
The main conclusion of the theory is the existence of general relation, similar to the Heisenberg
uncertainty principle, between the detector linear-response coefficients which determines the balance
between the detector back-action dephasing of the measured system and acquisition of the information
about the system. This relation shows how close the detector is to being quantum-limited.

- The linear measurement theory was extended beyond the linear regime for an important class of
mesoscopic detectors, scattering detectors. This extension shows that the appropriate measure of the
information acquisition rate is given by the Renyi entropy, not a more conventional Shannon entropy, and
establishes the condition of the quantum-limited operation of a point-contact detector, the most universal
detector for the quantum-dot qubits.

- We have suggested the scattering
qubit detector based on the ballistic motion of(a) L fluxons in Josephson transmission lines

generator . . . E,,C . .. reciever (Fig. 6). The detector should combine
short response time with quantum-limited
sensitivity produced by its ability to shield

(b) r(k) U(x) t(k) the qubit from the resistor noise in SFQ
k parts of the circuit necessary for

manipulation of individual fluxons.
x

FIG, 6. Fluxon scattering detector. Dynamics of qubit decoherence.
The decoherence properties of practical qubits

are dominated by the low-frequency noise which is not describable by the standard theory of weak
decoherence. We have developed the appropriate theory [9] of low-frequency decoherence by classical
noise. The theory predicts non-exponential decay of coherence, can be generalized to quantum noise,
and used in further studies of the low-frequency noise in flux-based qubits.



(iv) SFQ/qubit systems (D. Averin, V. Semenov)

The work is this direction was focused on the analysis of challenges faced by interfacing of
superconductor qubits with supporting superconductor circuits. These challenges may be separated into
two groups.

The first group of problems results from parasitic heating of qubits by energy dissipated in the
support circuits. This problem is exacerbated by a dramatic degradation of thermal conductivities
of most materials (especially dielectrics) at millikelvin temperatures, with thermal conductivity
proportional to 74 or 7". This complication is partly eased by a ballistic mechanism of heat
propagation is monocrystal dielectrics, such as silicon. We have developed several SFQ circuits
with dramatically minimized energy dissipation which have allowed us to experimentally confirm
the correctness of our understanding of the heat flow in superconductor integrated circuits
operating at millikelvin temperatures. Figure 7 shows a layout of one of such circuit (a JJ
comparator), and the measured width of its grey zone as a function of the sink temperature. The
plot shows that above 0.3 K the effective electron temperature of the comparator follows the sink
temperature, but cannot be reduced below 0.2 K.
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FIG, 7. Layout and equivalent cir,:uit of the raasured comparator. 0.1 T (K) 1

0 The second group of problem is caused by the direct back-action of the support electronics on
qubits. We have shown that these problem could substantially decrease the decoherence time if
the conventional, comparator-like SFQ readout circuits were used. We have suggested a so-
called ballistic readout that allows the back-action to be reduced to fundamental limits defined
solely by the quantum nature of the readout circuitry.

To summarize, we feel that though we could not achieve some project goals (e.g., demonstrate
operational quantum logic gates), our work was a major step forward the understanding the prospects
and problems of superconductivity-based devices and circuits for quantum information processing.
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