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Abstract

Synthetic Aperture Radar (SAR) is a form of radar that uses post-processed data

to simulate a larger aperture antenna and create a more focused, narrower beam. Each

pulse is echoed off the ground target and has its amplitude and phase recorded. This

processed data, known as phase history, can be used for a variety of applications. It

has become a very popular tool due to its ability to be collected from very far distances

in adverse weather conditions. Phase history can be used for terrain mapping, remote

sensing and automatic target recognition. On an average run, AFRL’s experimental

test platform collects 1.7 terabytes for a 20 km ground scene. On an average day the

platform collects over 272 terabytes.

With massive amounts of data being collected, the need for effective compression

techniques is growing. One of the most popular applications for remote sensing is

change detection, which compares two geo-registered images for changes in the scene.

While lossless compression is needed for signal compression, the same is not often

required for image compression. In almost every case the compression ratios are much

higher in lossy compression making them more appealing when bandwidth and storage

becomes an issue. This research analyzes different types of compression techniques

that are adapted for SAR imagery, and tests these techniques with three different

change detection algorithms. Many algorithms exist that allow large compression

ratios, however, the usefulness of the data is always the final concern. It is necessary

to identify compression methods that will not degrade the performance of change

detection analysis.
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THE EFFECTS OF SIGNAL

AND IMAGE COMPRESSION OF SAR DATA

ON CHANGE DETECTION ALGORITHMS

I. Introduction

1.1 Problem Statement

Synthetic Aperture Radar (SAR) is a valuable tool used both in the operational

field for remote sensing, as well as in the research field for experimental applications

such as oil slick monitoring and terrain mapping. Over the past decade, researchers

from various government based entities have been studying compression techniques to

decrease the size of the data due to its sheer volume. This problem is due to not only

storage of the information, but also the amount of bandwidth required to transfer

this information from an airborne or space based asset to a ground station. For the

most part, research has been conducted on lossless compression which maintains the

integrity of the data when it is uncompressed [7,22,25]. Lossy compression is usually

ignored because the phase history becomes unusable for processing if part of the

data is compromised. With the rapid advances in computer processing technology,

there has been a movement towards processing information onboard the collection

platform and disseminating to the ground station soon after. In the case that images

were created with phase history data on board the platform, lossy compression can

become a viable alternative. The Air Force Research Labs (AFRL) has looked into

the effects that compression of SAR images has had on human analysts with varying

results [20]. While some missions do require human analysts, a recent innovation

in the Measurement and Signal Intelligence (MASINT) community that does not is

known as change detection, which displays changes in the same area over variable

time intervals. Effectively this technology could one day allow the system to decide

if certain images are worth looking at for analysts. The intent of this research is to

1



analyze the effects of lossy compression on the ability to perform change detection

analysis. Lossy compression is more appealing due to the higher compression ratios

it can achieve when compared to lossless compression. Compressed data that can

still be used for change detection could reduce the bandwidth required by collection

systems dramatically. Scenes where there is no change detected could be filtered out

of the transmission queue and drastically improve the efficiency of the warfighter.

1.2 Goals

The goals of this research effort are:

1. To create threshold based change detection algorithms to adjust for various

environment types.

2. To create compression algorithms based on Singular Value Decomposition (SVD),

Joint Photographic Experts Group (JPEG) and Wavelet Transform standards

and adapt them for 8 bit real data, 16 bit complex data as well as the statistical

properties of SAR data.

3. Analyze and compare the compressed detection data against the original data

sets to find a suitable scheme that will decrease the bandwidth required for

transmission, but maintain the integrity of the change mask.

1.3 Scope

This research is limited to investigating the effects of compression on change

detection code based on statistical Gaussian correlation, likelihood ratio tests and

simple differencing coding. While compression using Wavelet transforms is extensive

this study is restricted to three thresholds of both Bi-orthogonal and Daubechie’s

wavelets. In addition four thresholds of hybrid SVD and a JPEG method adapted

with a Fast Fourier Transform (FFT) are examined. All data used in the study

is based off a synthetic phase history and includes predominantly forest and desert

2



environmental scenes. Unfortunately no urban environmental data was available for

analysis.

1.4 Overview

This thesis is organized into five chapters. Chapter II, the Background and

Literature Review, provides a thorough history of the development of SAR, change

detection, and both lossy and lossless compression methods. In addition several papers

and recent articles are discussed that show not only the work that has been done in

the past, but also the motivations for this research and the selections of each of

the compression and change detection algorithms. Chapter III outlines methodology

followed for each one of the compression algorithms. Detail as to how each one

is designed for SAR imagery is covered. Chapter IV details all of the results of

the simulations as well as observations and explanations for the outcomes for each

method. The results will not only be broken down by compression method, but also

by environment as past studies have shown that in SAR imagery, environment can

have an impact on compression and any analysis of compressed data [7]. Chapter

V provides the final conclusions of the research as well as recommendations for the

future work in SAR compression for specific applications.

3



II. Background and Literature Review

2.1 Synthetic Aperture Radar

Synthetic Aperture Radar is a increasingly popular remote sensing technology

in the MASINT community that fabricates a larger aperture antenna by taking ad-

vantage of a moving platform to create higher spatial resolution images. Compared

to regular aperture radar, SAR artificially increases the aperture using the same pulse

compression technique as used for range detection, which directly increases the az-

imuth resolution. Returned signals from the ground are processed to form the phase

history data which in turn are used to create SAR images. Images are formed by

taking a two dimensional Fourier transform of the phase history data. SAR data can

be represented as:

D(t, ~x) =

∫∫
eiw(t−2|~x−~z|/c)A(~z, ~x, ω) dω V (~z) d~z (2.1)

where ~x is the vector of flight, ~z is the projected path on the ground, c is the speed

of light, A is the amplitude of the signal, t is time and V represents the ground

reflectivity function [3]. Each pixel in a SAR image is the magnitude or amplitude of

the resulting transform, which suggests that brighter pixels are the result of stronger

frequencies in the phase history data.

Figure 2.1: Synthesis of a synthetic aperture. As the real
aperture D moves across the plane the post processing of the
data allows the beam width to expand from β to βs [30].

4



2.2 SAR Statistical Characteristics

There are three main statistical properties of SAR that will be exploited in this

research effort:

1. The temporal correlation of SAR phase history

2. The semi-redundant nature of SAR data

3. Each SAR image is based on the magnitude of the complex phase history

The semi-redundant nature of SAR phase history is due to the fact that plane

waves coming from the ground and hitting the aperture at different times are created

from pings from the same field area. This means that for the most part, the same

frequencies that occur in one area of the phase history will also occur in other sections

of the phase history.

In 2005 Witzgall and Goldstein [29] named this phenomena the “holographic

property” stating that “this property [holographic] comes about from the fact that

returning plane waves striking the synthetic aperture are generated from the same set

of scatters in the field. It implies that phase history statistics are largely stationary.”

This indicates that since the phase history is stationary, it could be represented with

one statistical model for each transformed row of data. Unlike regular images the

correlation is not by nearest neighboring pixel but in one dimensional row vectors,

which allows the modeling of each SAR image with several one dimensional linear

predictors. Another characteristic that can be exploited due to this property is that

entropy of each section is low. The repetition of the data allows the removal of

redundant phase history in the compression phase. This allows a small fraction of

the data to represent the whole. Once the image is formed the phase information is

no longer required, which allows for the discarding of the complex data. All three of

these properties will be used to tailor three standard compression techniques towards

a better SAR compression algorithm.
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Figure 2.2: Semi-redundant property of SAR. As the collec-
tion platform moves forward from time t1 to time t5, point A is
still sending return scatter to the platform [30].

2.3 Change Detection

For a compression research effort to be effective, a suitable benchmark has to

be selected. While SAR is a valuable tool, its usefulness is only as great as the ap-

plications it is used with. One of the most invaluable applications used today in

conjunction with SAR is change detection. There are two types of change detection,

incoherent change detection, which identifies change in the average backscatter in-

tensity, and coherent change detection which detects change in both the backscatter
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Figure 2.3: Series of steps required in the processing of two
SAR images undergoing change detection analysis [17].

intensity and the phase of the complex data. While coherent change detection has

the ability to detect very subtle changes, this study focuses on incoherent change

detection (hereafter simply change detection) since all the data used in the study is

synthetic and has no subtle sub-pixel changes. All compression techniques that are

adapted for this study are capable of both and can maintain the phase data if nec-

essary. The defaults for all the algorithms are set to keep only the amplitude of the

data while discarding the phase.

Change detection is employed for several applications such as troop movement,

heavy armor mobilization as well as the construction of Surface to Air Missile (SAM),

sites as seen in many of the SAR images used in this study. While there are many

applications of change detection, the basic algorithms used behind the technique are

very similar at their core. Since some of these algorithms work better than others

in various situations, three different types were selected from many to examine each
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scenario. Change in each one of the sets of images is represented in the form of a

binary change mask.

C(x) =





1 if change detected at pixel x

0 otherwise

The mask can be created from a number of factors such as movement of objects,

the arrival or departure of new objects, and the changing of an object’s overall shape.

2.3.1 Geometric and Intensity Tuning. When a collection platform flies at

different altitudes, or does not follow the exact same track on the second or any other

sequential pass, there are several variations in the imagery that are not true changes

in the scene. In order to account for these inconsistencies, geometric and intensity

adjustments must be made [18].

The most common remedy to geometric differences, which occurs usually when

a platform is collecting at different altitudes or look angles, is image registration,

which correctly aligns a series of images into the same globally positioned coordinates.

When registering images, a suitable spatial transformation must be selected in order

to prevent errors in registration that can create misleading change detection masks.

Research has shown that in order to have a good change detection mask produced

with less than ten percent error, algorithms must produce a one-fifth pixel registration

accuracy [4].

In SAR imagery the magnitude of the intensity of each pixel can vary for the

same scene. The majority of the factors for this are due to look angle and altitude.

False positives can occur in change detection if the difference in intensity is too great,

so adjustments must be made to account for these errors. These include:

1. Intensity Normalization - the pixel intensities of each image have the same mean

and variance
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2. Homographic Filtering - models each pixel intensity as the product of two com-

ponents; light source intensity and reflectance. With the aid of a high pass filter,

the reflectance part of the intensity can be used in the binary decision step for

the change detection mask.

3. Illumination Modeling - using the Lambertian Assumption [19] to account for

the difference in intensity between two images.

4. Linear Transformations of Intensity - the use of eigenvectors to transform an

image into a different amplitude space before performing the change detection

analysis.

In the case of SAR imagery, intensity normalization produced some of the best results

for the data used in this research and will be the only intensity adjustments used in

this study.

2.3.2 Simple Differencing. Once intensities of the backscatter for all images

in a change detection set have been normalized, the easiest way to detect change is

to take the difference between the base image, B(x) and the image in which we want

to see if any change is detected in, A(x) [21].

D(x) = A(x)−B(x) (2.2)

Once the difference has been calculated, change would be determined according to a

pre-set threshold τ :

C(x) =





1 |D(x)| > τ

0 |D(x)| < τ

Using this algorithm, the threshold is selected empirically, so it will rarely outperform

other algorithms. In addition, this type of change detection is susceptible to false

alarms due to noise and other variations in SAR imagery such as speckle, motion

blurring and corner reflectors.

9



2.3.3 Statistical Gaussian Hypothesis Testing. In the case of a statis-

tical change detection algorithm, a probability is based on two hypotheses. The

null hypothesis H0 in which no change has occurred and the “else condition,” and

H1 in which a significant change has happened [11]. H1 is determined based on

the calculation of each joint Probability Density Function (PDF), p(B(x), A(x)|H0)

and p(B(x), A(x)|H1). Often change occurs over several pixels so better results are

achieved when the change detection decision is based over a block of pixels instead of

each individual one. To construct the binary change mask:

C(x) =





p(F (x)|H0) < τ H1 event has occurred

p(F (x)|H0) > τ H0 event has occurred

where F (x) is a Gaussian random variable with zero mean and σ2 variance. While

σ2 is not known in the beginning it can easily be found by calculating the same PDF

on an area of the image that is known to be unchanged. Using the F (x) random

variable:

p(F (x)|H0) =
1√

2πσ2
e
−F2(x)

2σ2
0 (2.3)

This algorithm yields similar results when the Gaussian random variable is replaced

a Laplacian random variable [1].

2.3.4 Likelihood Ratio Test. Since the significant change hypothesis, H1,

varies when different image sets are analyzed and are not known a priori it is difficult

to model the data via parametric distributions. Similarly to the Gaussian model, if

both conditional PDFs can be calculated, a likelihood ratio can be determined:

R(x) =
p(D(x)|H1)

p(D(x)|H0)
(2.4)

and a threshold, τ determined to be:

τ =
P (H0)(Fp − Fn)

P (H1)(Fn − Fp)
(2.5)
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where Fp and Fn are the cost of a false positive and a false negative respectively, and

P (Hi) is the a priori probability that is determined empirically. From a Bayesian

perspective, this algorithm minimizes the error of both false positives and false neg-

atives and given the original two images, maximizes the a posteriori probability [18].

Similar to the statistical Gaussian methods, this technique works best if analyzed in

pixel blocks of empirically determined size instead of a pixel to pixel basis.

2.4 Compression

With 272 terabytes being collected each day on AFRL’s experimental platform,

storage and bandwidth for transmission of data soon becomes an issue. The need

for a way to compress the imagery in such a way that it is easier to store and faster

to send while maintaining the ability to perform adequate change detection analysis

is crucial. Several researchers have looked at both lossy and lossless compression as

ways of compressing SAR imagery. Most lossless compression research acts only on

pixel intensity values and disregards the phase component of the data. Since this

research bases their techniques on the real part of the complex data, they employ

short prediction filters that only take into account the adjacent pixel correlations and

therefore can only realize small compression ratios [28]. There are some instances

where data cannot be compressed with lossless compression due to the lack of statisti-

cal redundancy. For this reason, this study examines the work of lossless compression

but focuses the research on lossy compression as a means to drastically reduce the

size of the imagery. While certain applications require the entirety of the data to be

preserved, change detection can still perform accurate analysis with some data loss.

2.4.1 Compression Theory. Information theory lays stake to much of the

theory behind compressing data. The field was pioneered by Claude Shannon in

the 1940s and 1950s, but its true potential was only realized decades later. Most

compression algorithms rely on the probabilistic nature of the information content of
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the data being compressed. Shannon defined information content as:

h(x = ai) = log2

1

pi

(2.6)

where X is an ensemble of three variables, (x, Ax, Px). In this series, x represents a

random variable, Ax = {a1, a2, a3, ..., ai, ..., aI} represents all the possible values in

the data set and Px = {p1, p2, p3, ..., pi, ..., pI} are all the respective probabilities for

each value. Equation (2.6) accurately portrays the amount of information content for

the event x = ai. From this it is easy to derive entropy, or the average information

content of the ensemble:

H(X) =
I∑

i=1

pi log2

1

pi

(2.7)

Entropy is considered a vital piece of compression theory because it sets the maximum

limit of lossless compression.

With the theoretical bounds set, actual compression methods can be developed

and benchmarked against their potential best score. The lossy compression process

has three main components: transformation, quantization, and the encoding stages.

Transformation breaks down the data into a series of transform coefficients and ar-

ranges it in a way to easily spot repetitious data so as to more efficiently code the

input stream of data. Quantization takes the transformed coefficients and converts

them into a finite number of integer values. Finally the coding stage catalogues each

quantization level with its own unique symbol code.

Figure 2.4: Lossy compression components. Each stage rep-
resents that of a typical transform coding compression scheme
assuming a noiseless channel.
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2.4.2 Singular Value Decomposition. SVD is a popular tool in linear algebra

for manipulating matrices. In image processing any gray-scale image, or individual

layer of a multi-layer image can be viewed as an m × n matrix. In the case of most

color images each layer would be red, green and blue, however, in SAR every pixel is

a vector [14]:

~X =




HH

HV

V V




where H is horizontal, V is vertical, and each individual dimension is a complex

polarization return.

SVD theory states that if A ∈ Rm×n then there exists two orthogonal matrices

U and V with orders m and n respectively, as well as a diagonal matrix
∑

, such that:

UT AV =
∑

=


 Σ1 0

0 0


 (2.8)

A = U
∑

V T (2.9)

where
∑

1 represents the singular values σ1 ≥ σ2 ≥ σ3 ≥ σr ≥ 0 and r is the rank of

the original matrix A [23]. While images with high neighboring pixel correlation can

have several dependant columns, SAR has very little column dependance and often

has rank equal to the amount of columns in the data. Matrices U and V each have one

orthonormal basis and are known as the left and right singular vectors respectively.

U is m×m, V is n× n,
∑

(hereafter known as S) is m× n, and is of the form:

A =
(

~u1 . . . ~ur . . . ~um

)




σ1

. . .

σr

. . .

0







~vT
1

...

~vT
r

...

~vT
n




(2.10)
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With a known A, finding each one of these factorized matrices involves some basic

linear algebra:

AT A = (USV T )T (USV T ) = V ST UT USV T (2.11)

UT U = I is known since U is an orthogonal matrix which yields the result:

AT A = V S2V T (2.12)

By diagonalizing AT A, one can compute the eigenvectors, which are the columns of

V , and the eigenvalues, which are squares of the elements of S.

By factoring A into USV T , compression can be achieving by approximating the

original matrix with far fewer matrix entries. Using the rank of the matrix, we can

remove all dependant entries which are redundant entries when r < m or r < n.

A = σ1u1v
T
1 + σ2u2v

T
2 + ... + σrurv

T
r + 0 · ur+1v

T
r+1 + ... (2.13)

The original image A can be further compressed by dropping off more of the non-zero

singular values. Since these values will decrease in order, truncating the coefficients

of the linear representation at the end will have less of an effect on the overall image.

The effect the number of elements removed will have on the image information is

determined experimentally. The more terms we leave off, the better the compression

ratio achieved, however, more information is lost as well.

2.4.3 Transforms in Compression. Transforms are valuable tools in image

compression because they decrease statistical correlation in an image. In two di-

mensions, the spatial domain typically has a high amount of redundancy in imagery

because neighboring pixels typically share the same amplitude and phase if they all

represent one object. A transform allows each of these repeated correlations to be

coded only once.
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Another added benefit to transforms is their energy compaction property. En-

ergy compaction allows the transform to represent multiple redundant signal energies

in a fewer number of transform coefficients. In terms of lossy compression, the prob-

abilistic nature of the coding process would indicate that only the dominant coeffi-

cients would represent the image. An individual coefficient in the frequency domain

represents one value in the spatial domain. If there exists an image with only one

backscatter intensity value, then only one coefficient is needed in the frequency do-

main. Each of the transform coefficients contain a percentage of the energy of the

overall signal, and these fractions represent an energy percentage that has an indirect

relationship. In every case, the lower the value of the fraction, the better the energy

compaction is [26].

2.4.4 JPEG Compression. The JPEG compression standard describes a

general set of guidelines for encoding/decoding techniques, rather than a single algo-

rithm. JPEG was the first international digital compression standard for both color

and gray-scale images and was defined in four “operation modes” [9]:

1. sequential Discrete Cosine Transform (DCT) mode - the image is encoded from

left to right, top to bottom scan.

2. sequential lossless mode - the image is encoded with no degradation of data but

yields a lower compression score.

3. progressive DCT based mode - the image is encoded over several scans where

transmission time is not an issue and the image builds become better with each

pass.

4. hierarchical mode - the image is encoded at several different resolutions so that

lower resolution images may be previewed without having to download larger

versions from the beginning.
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Figure 2.5: Flow chart of the various stages required in JPEG
compression [24].

While there are several variations, the method described in this section is the baseline

algorithm while modifications and adaptations for SAR imagery will be discussed in

Chapter 3.

2.4.4.1 Transformation via the DCT. At the transform phase the

input image is broken up into 8×8 blocks which then enter the Forward DCT (FDCT):

F (m,n) =
1

4
C(m)C(n)

[ 7∑
x=0

7∑
y=0

f(x, y) · cos(2x + 1)mπ

16
cos

(2y + 1)nπ

16

]
(2.14)

where:

C(m), C(n) =





1√
2

if m,n=0

1 else

The JPEG specification allows 8-bit samples per component in DCT operations. Gray

scale images only have one component, however SAR and color images have three

components that require processing.

2.4.4.2 Quantization. The result of the FDCT is 64 DCT coefficients

quantized with a 64 element table. Each table tends to vary by application and usage

but is standard in the fact that it is an 8× 8 matrix of integer values ranging from 1

to 255. “Coefficients that have zero frequency in both dimensions are known as DC

coefficients, while all others are known as AC coefficients.” [24] The main purpose of

this step is to get rid of any information that won’t significantly degrade the image.
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In JPEG compression, it is the stage where most of the compression happens and

hence where most of the degradation occurs in image quality.

In this step of the compression process, quantization is performed by dividing

each individual DCT coefficient by the element in the quantization table with the

same indices.

2.4.4.3 Entropy encoding. Once the data has been pre-processed with

DC coding and and arranged in the standard zig-zag sequence, the entropy encoder

further compresses the image by taking advantage of statistical redundancies. For the

coding phase, Huffman coding is used. Huffman coding arranges all available inputs

into a table and forms codes by joining the two least probable inputs via addition of

their probabilities while tagging each (for this example) with a zero and a one. Each

stage of the Huffman coding tree reduces the sample size by one till there are no more

left. In the end, codewords are constructed by appending each tag in reverse order

until we reach the original value. As the probability of an input increases the length

of the codeword decreases. Huffman coding is lossless so the original values before

the entropy coding can always be recovered.

2.4.5 Wavelet Transform Based Compression. Wavelet theory has existed

since the early 1900s when Haar first discovered a set of wavelets that are now known

as Haar functions. However, this science was exclusive to mathematics until only

recent times, when it first was applied to signal and image processing. From physics

we know that a wave is energy or a disturbance traveling through a medium or vacuum.

The easiest examples of this are sound and light respectively. A wavelet is only a piece

of wave that is a localized oscillating function. The wavelet transform is given by:

f(t) =
∑

j,k

aj,k2
j/2Ψ(2jt− k) =

∑

j,k

aj,kΨj,k(t) (2.15)

where aj,k are the two dimensional coefficients formed in the transformation process.

Similar to the Fourier transform, the wavelet are forms of time-frequency representa-
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Figure 2.6: To prepare the 8× 8 blocks for entropy encoding
DC coding in a zig-zag sequence is performed. The quantized
DC coefficient of each of the 64 samples is encoded as the differ-
ence between the original DC coefficients that are adjacent to
each other. The now quantized coefficients are then re-ordered
in a zig-zag sequence so that frequency components are encoded
from lowest to highest [24].

tion. However, while the Fourier transform is good for modelling stationary signals

that have statistical redundancies, wavelets can model non-stationary signals that

have no pixel correlations.

There are two main classes of wavelets: time-scale wavelets and time-frequency

wavelets. In the case of two dimensions space would substitute for time. All time

scale wavelets are derived from a single “mother wavelet” by scaling and translating

the original function. Translation occurs over the time axis as the index k changes

and scaling occurs as the index j changes. These time-scale wavelets are then used

to roughly approximate the original signal or image at a large scale but increase

in precision at smaller scales. This is done by splitting the coefficients into detail

coefficients and course coefficients via a high pass and low pass filter respectively in

the sub-band coding block. In fact one of the main benefits of wavelet compression

techniques is the ability for small features in an image to be represented with few

coefficients. Economical compression can be achieved by encoding these coefficients.
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Figure 2.7: The breakdown of a signal into its high and low
frequency components. Assuming ideal conditions and no com-
pression is being done in the compression block, the two band
technique can output the original signal with zero degradation.

2.4.5.1 Sub-band coding. Sub-band coding splits the original signal

into two by filtering both the high and low frequency sub-bands and down-samples

each by two. This could be done multiple times splitting the signal into 4,8,... before

actually entering the multiplexer as long as there is a corresponding set of up-samplers

on the other side of the de-modulator to reconstruct the signal. In the absence of noise

and compression, the sub-band coding block can yield a perfect reconstruction. There

are, however, conditions that must be met by the high and low pass filters. Given

an input, x0(n) and x1(n), the linear high pass and low pass filters, h(n)n and l(n)n,

an output signal of the reconstructed signal (yn)n, such that after a Z-transform,

Y (z) = L(z)X0(z) + H(z)X1(z) [16] where:

X0(z) =
1

2

[
L1(z)X(z) + L1(−z)X(−z)

]
(2.16)

X1(z) =
1

2

[
H1(z)X(z) + H1(−z)X(−z)

]
(2.17)

substituting the equations:

Y (z) =
1

2

[
L2(z)L1(z) + H2(z)H1(z)

]
X(z) +

1

2

[
L2(z)L1(−z) + H2(z)H1(−z)

]
X(−z)

(2.18)

where X(z) is the original input signal and Hn and Ln are the series of high and low

pass filters respectively. According to sampling theory, aliasing can be removed if the
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high and low pass filters are defined as [15]:

L2(z) = H1(−z) (2.19)

H2(z) = L1(−z) (2.20)

where perfect reconstruction can occur with the following conditions:

∆(z) = Q(z)−Q(−z) = 2z−m (2.21)

where

Q(z) = L1(z)H1(−z) (2.22)

where Q(z) is known as the product filter and m is the delay due to the system

components. While this is the scenario with splitting the signal into two separate

high and low frequency sub-bands, a sub-band coding block with more filters changes

the conditions [10].

2.4.5.2 Thresholding and Entropy Encoding. Between the modulation

and de-modulation compression occurs on the two-dimensional signal. Similarly to

SVD, wavelet transforms have a series of coefficients that can be modified to be in a

series of decreasing order. Through a technique called thresholding, which is a form

of quantization, several of these coefficients that have a lower weight can be made to

be strings of zeros. By setting a tolerance below which all coefficients will be made

zero, wavelet coefficients with a low weighting can be removed from signal. Once

the threshold has been set, Huffman coding can be implemented to compress the

data further. The greater the threshold value, the fewer the data points that enter

the entropy encoder. These two steps can drastically increase the compression ratio,

however there is no algorithm for finding an optimum threshold. The value must be

set empirically.
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Figure 2.8: The original image before sub-band coding is per-
formed. This is an unprocessed image that is included in the
Matlab R© sample library [12].

2.4.5.3 Compression using the Wavelet Transform. While only the

Haar wavelet family was pointed out in this section and used in the example of the

two level transform, numerous families of wavelets exist and are used in signal and

image processing. For the purposes of this research, Bi-orthogonal and Daubechies

wavelets will be looked into and developed in Chapter 3.

2.5 SAR Compression Research

Numerous studies have been done on SAR compression methods all having a

new technique for compression whether it be lossless or lossy. Most benchmark these

algorithms with compression ratios and questionable measure scales for the fidelity of

an image [28]. See and Kuperman took several common compression techniques such

as multi-resolution encoding JPEG and vector quantization, and benchmarked the

compressed data against the originals by using human analysts. While better than

random ratings or scales for image quality, the random variable was still tested by a
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Figure 2.9: The same image after a two level discrete wavelet
transform is performed in the sub-band coding stage.

variety of people in which there is still too much variation in the results [20]. While

there is no need for scales of quality or problems of reliability in lossless compression,

the compression ratios are not high enough for today’s needs. In 1999 Ives used

multiple-pass gradient adaptive lattice filters to achieve lossless compression, but was

only able to achieve a maximum compression ratio 2.56:1 with 16 bit data and 2.19:1

with 8 bit data [7]. For the purposes of this research compression ratio is explicitly

defined as the ratio of the original size of the image to the compressed image size in

terms of bytes. This phenomena of low compression ratios is not isolated to SAR. In

2005 Wang et al. were only able to achieve lossless compression ratios of 3.5:1 with

hyper-spectral images. [25]. In order to properly gauge the effectiveness of compressed

SAR imagery, a non-variable benchmark with actual results must be implemented.
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III. Methodology

3.1 Introduction

In this chapter, an experimental method is explicitly laid out that will accom-

plish the goals of the research. The data for this research is created from a synthetic

phase history for the purposes of training personnel in the analysis of SAR images.

The entire data set consisted of specific areas that are modeled after the Siberian

forests and plains, however, there is no data for urban environments. Each of the

areas has a simulated flight path of a circle, so every scene had a full 360 degree view

with the phase history recorded and images formed in 30 degree increments. This

data collection is done over 13 non-uniform time intervals. From the large collection

of images, several are chosen and are compressed with specifically tuned algorithms

and analyzed with a series of benchmarks comparing it to the original data’s results.

3.2 Preparation of Data

For the purposes of this research, registered imagery is required where significant

change occurred. While there are 26 total collection areas labeled A-Z, some scenes

have very similar events. In most scenarios, remote SAM sites are being built or

mobilization of heavy armored vehicles is taking place. In some of the areas, no

significant change appears to happen at all. From the 26 various collection areas, 5

(D,F,Y and two in G) were selected due to the difference in environment as well as the

type and magnitude of the change that occurred in order to create multiple degrees of

variability for the experiment. In each one of the 5 areas, one look angle was chosen as

well as two successive time intervals that were to be compared. This brings the total

number of images analyzed in this to 10. With 11 levels of compression as well as the

original data, over 120 images were processed and analyzed for this experiment. From

the original data it can be noted that the intensity of each image is not the same.

Areas that represent the ground have different backscatter levels that are tuned via

normalization. The original data is listed by site:
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Figure 3.1: Scene D on time interval two.
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Figure 3.2: Scene D on time interval three.
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Figure 3.3: Scene F on time interval six.
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Figure 3.4: Scene F on time interval seven.
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Figure 3.5: Scene G on time interval two.
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Figure 3.6: Scene G on time interval three.
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Figure 3.7: Scene G on time interval five.
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Figure 3.8: Scene G on time interval six.
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Figure 3.9: Scene Y on time interval twelve.
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Figure 3.10: Scene Y on time interval thirteen.
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Scene D shows the movement of heavy armor across the Siberian plains (Figures

3.1 and 3.2). It has manmade vehicles that move across natural environment. Area

F has the building of a large rectangular pavement with vehicles already in place

(Figures 3.3 and 3.4). The vehicles offer a closer backscatter value to the original

image when compared to the paved section, so this scene was picked to help tune

the threshold values of the change detection algorithms. The first set of images from

area G, G2 and G3, shows movement of construction and demolition vehicles and an

area of forrest being cleared (Figures 3.5 and 3.6). This scene has a great amount of

entropy with the amount of foliage that is included. The second set of images in G, G5

and G6, uncovers a simple SAM deployment site under construction (Figures 3.7 and

3.8). There is a large difference in the backscatter intensity in the two images despite

it being the same area. It was chosen to perform intensity tuning to the detection

algorithms. The final scene Y, has 4 vehicles moving from the southern portion of the

image towards the north along the road (Figures 3.9 and 3.10). The last scene has

movement over a man-made surface and change in intensity. The combination of the

two made it an ideal candidate for analysis.

3.3 Compression Methods

This section outlines the compression methods used as well as any changes that

were made to adapt the algorithm to SAR data. Compression algorithms can be

sorted with eight differentiators [20]:

1. Attainable compression ratio

2. Attainable image quality

3. Conformability with SAR data

4. Channel error sensitivity

5. Computational complexity

6. Maturity of algorithm
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Figure 3.11: The bi-orthogonal 6/8 scaling and wavelet func-
tions for decomposition as well as their high and low pass filters.

7. Inter-operability

8. Progressive transmission capability

Of the eight differentiators, the top three were given the most importance when

choosing compression algorithms. While there are countless types of compression

models available and still more being researched in the current day, schemes involving

the Wavelet Transform (WT) and the DCT have shown promising results with SAR

data and will be focused on in this research.

3.3.1 Hybrid SVD. The basic SVD algorithm was first discussed in Sec-

tion 2.4.2. In this section, modifications to the basic algorithm are detailed. The

original m × n image B(x, y) is transformed via a discrete wavelet transform to de-

construct B = USV T using the 6/8 bi-orthogonal wavelet family. The image is then

decomposed using SVD into the three matrices and is compressed via the Set Parti-

tioning in Hierarchical Trees (SPIHT) algorithm [2].

SPIHT utilizes the redundancy in each of the sub-bands in the wavelet de-

composition to prioritize which bits of information content are the most important.

Quantization is uniform and is done only after the decomposition of the wavelet is

achieved. Each of the wavelet coefficients are ordered by the importance of each piece

of data based on a hierarchial tree structure. Since the data is ordered from most
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Figure 3.12: The bi-orthogonal 6/8 scaling and wavelet func-
tions for reconstruction as well as their high and low pass filters.

important to least, coefficients can be zeroed from the end to make the data achieve

higher compression ratios. In this experiment the first 25, 50, 75 and 100 out of a po-

tential 400 coefficients were retained and processed for each of the data scenes. Each

one is then benchmarked and compared using the three change detection algorithms

from Section 2.3. This method was chosen due to the fact that it exploited redun-

dancy in the sub-bands from wavelet decomposition rather than neighboring pixel

correlation. This technique allows even less symbols to be used in the coding process

since neighboring pixel correlation isn’t nearly as strong in SAR when compared to

standard linear shift invariant images.

3.3.2 JPEG. While the standard method of JPEG compression is used

for this research as described in Section 2.4.4, the need for the algorithm to handle

both 8-bit and 16-bit data is necessary. To handle this requirement, the FFT is

implemented as an option to the standard DCT. The FFT is slightly different in that

it uses both sine and cosine waves to model a signal whereas the DCT only uses the

latter. While most researchers only use the DCT for image compression because it only

has half of the cycle basis functions and is therefore better for smooth transitions in

backscatter across several pixels, SAR data doesn’t always follow this behavior. Each

coefficient, whether transformed via the FFT or DCT, was represented as F (x, y) and
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was compressed using:

I(x, y) = IRound

(F (x, y)

Q(x, y)

)
(3.1)

where the function IRound rounds off the inner value to the nearest integer and Q(x, y)

is the quantization table used for all ten images in this study is:

Q(x, y) =




16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99




The element-by-element division of each pixel in the original image with the corre-

sponding quantization matrix element outputs a step size that is normalized. The

purpose of this quantization is to represent the DCT or FFT coefficients with as few

bits as possible without significantly degrading the image. This section of the JPEG

process is where a majority of the compression occurs. Different quantization tables

will yield different compression ratios. After all the data is quantized, Huffman coding

was used in the encoding processed according to the JPEG specs.

3.3.3 Biorthogonal and Daubechies WT compression. When considering

compression using a wavelet transform in this research as described in Section 2.4.5,

two mother wavelets were chosen to be compared. The same bi-orthogonal wavelet

family was chosen that was used in the Hybrid-SVD compression to compare the

differences between the two. In addition, it also was chosen because it is one of

the suggested families of wavelets for the new JPEG-2000 file format that is being

proposed. The Daubechies 5 wavelet type was also selected because of the differences

in the high and low pass filters to give a unique look at what happens in compression
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Figure 3.13: Unlike the bi-orthogonal scaling and wavelet
functions there is only one for Daubehcie’s wavelets. The de-
construction and reconstruction high and low pass filters shown
are based on the same set of functions.

and change detection as a result of a change in the filtered signal. Each of the

wavelet types were examined using level two decomposition and had their coefficients

quantized and then weighted using an adaptive arithmetic coding process [13].

In the adaptive arithmetic coding process, coefficients are separated into several

groups that have adaptive probability models based on the decomposition of the

original image. Since a majority of wavelet coefficients are close to zero there are

several groups that are non-uniform and are focused around this value. Similar to

Huffman coding, arithmetic coding can significantly compress data by assigning fewer

bits to symbols that are more probable. The probability model for the symbols

changes as the data is being processed. Instead of using training data, the weighting

is determined based on the data seen thus far in the image. This allows any image to

be run through the data without the need for prior knowledge of the images.
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For the purposes of this research, block based quantization occurred using the

following matrix for all of the wavelet filters:

Q(x, y) =




8 7 8 8 34 34 34 34

7 7 8 8 34 34 34 34

8 8 12 12 34 34 34 34

8 8 12 12 34 34 34 34

34 34 34 34 55 55 55 55

34 34 34 34 55 55 55 55

34 34 34 34 55 55 55 55

34 34 34 34 55 55 55 55




This matrix could be scaled to achieve different bit rates, but the ultimate goal was to

apply wavelet transform based compression that used many of the standards currently

being researched for the JPEG-2000 compression standard. Wavelet transforms had

thresholds that can be assigned as described in Section 2.4.5 that allow us to zero out

certain coefficients before the quantization process. For each of the wavelet families

hard thresholds of 25, 50 and 75 were set in turn. If the value of the wavelet coefficient

falls below those values, it would automatically be assigned a zero weighting and not

affect the image. The goal is to remove as much information as possible without losing

too much detail in the image to perform the change detection analysis. A threshold

of 0 yields a perfect reconstruction of the original image if no quantization took place.

As the threshold increases, the fidelity and entropy of the image decreases [6]. While

thresholds could have gone higher, too much information is lost, resulting in an image

that is of no use.

3.4 Change Detection Analysis

Most of the change detection algorithms used in this study are threshold based.

Studies have shown that these detection algorithms are environmentally sensitive [8]

and can effectively create more false positives and negatives, distorting the results of
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the analysis. For this reason multiple change detection algorithms are used. While

some of them can obtain their own threshold values through statistical regression

analysis of the image, others had to be determined empirically. Since environment

can play a factor in creating false hits, for the purposes of this research, scenes with

multiple environmental factors such as man made roads, vehicles, natural forest and

plains, had two different algorithms working simultaneously with different threshold

values. In this experiment the statistical Gaussian method looks for coarse change,

such as vehicles and roads, with a lower than normal threshold. At the same time, the

likelihood ratio test looks for finer changes, such as natural environmental movements,

with a threshold set slightly higher than normal. The union of these two masks will

create a single change mask with less error.

While finding a finely tuned change detection method to work with SAR im-

agery and compressed data is important, it is not the main focus of the research.

There are several application specific algorithms in the remote sensing community

that outperform the ones that are in use for this research. These algorithms were

created to benchmark the compressed data to analyze how reliable the masks created

would be for operational requirements. While the threshold values were picked to

decrease the amount of error included in the binary change mask, the main goal is to

see how much error is induced by the compression algorithm, not the actual change

detection itself.

3.5 Relevant Data Retention

With the creation of change detection masks, we not only have a tool that can

be used to study what happens in a scene for military operations, we also have all the

relevant information for the removal of redundant information from any subsequent

images that follow the original. For example, if we look at a pair of images where

two vehicles move from one area to another, the change detection mask will label all

pixels where actual change has occurred in a scene. There is no need to keep any

information from the second image other than what has been detected as significant
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change from the first. Therefore, in this research effort, after compression has been

completed and change detection analysis performed, file sizes are further reduced

by percentages inversely proportional to the amount of change in the scene. For

collections of multiple images, each one must be referenced back to the first image,

not the one that proceeded it to decrease the amount of bandwidth required. In

principle each image could be created from the preceding image, however, this only

holds true if permanent change has taken place over the course of each successive

image. In order to account for the variability in change, one reference image must

be used. For the purposes of this research, this was only done to the backscatter

intensity. This, however, could easily be applied to phase history data as well, greatly

reducing the amount of data required to be stored and transmitted.

3.6 Conclusion

With all the compression schemes analyzed, the goal of the methodology pre-

sented in this chapter is to ultimately have a high probability of detection with a low

probability of a false positive. Even with potentially near perfect results, since all the

methods used here are lossy compression methods, some information is forsaken for

the sake of higher compression ratios. As a result, there will be some error induced

in each binary change mask. Unless lossless compression is implemented there is no

chance for a perfect reproduction of the original change mask. In the end, while the

benchmark serves as a indication as to whether acceptable methods of lossy com-

pression can be implemented, it ultimately depends on the application that the data

is going to be used for. This series of experiments is important because it lays the

foundation for benchmarks based on an automated computer based decision process

rather than human observers. If the results fall within the accepted limits of error for

any application it can drastically reduce the amount of man-hours spent on analyzing

imagery.
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IV. Results

This chapter outlines all the results of the entire research effort. Even though only

a small set of data was analyzed, for every two scenes analyzed for change, 34 addi-

tional data sets (11 compression levels for each original scene and a total of 12 change

detection masks) had to be created to process and analyze the data. Section 4.1 goes

through each area selected and gives a baseline change detection mask for which all

other data will be compared. Section 4.2 shows the results of each one of the compres-

sion methods as well as highlights any qualities that make each compression method

better or worse than the others. After compression occurs each one of the compressed

scenes are processed with the change detection algorithms and evaluated in Section

4.3. Finally, in Section 4.4, all the data is compared using several analytical tools

showing which compression methods were more suitable based on the area examined.

4.1 Original Data Masks

To provide a series of benchmarks, thresholds had to be assigned to the sta-

tistical Gaussian method as well as the likelihood ratio hypothesis tests that slightly

deviated from the normal threshold value to account for both coarse and fine changes

in the scene. For each of the data sets, the original data that would be used as the

standard for comparison is shown in Table 4.1. In this table, τSG and τRT are the

change detection thresholds for the Statistical Gaussian method and the Likelihood

Ratio Test respectively. For the purposes of clearly illustrating change and the effects

of post compression change detection, pixel blocks of 401 × 401 were selected and

processed in this experiment. The column in Table 4.1 titled “sub-image location”

gives the rows and columns of the pixels selected for processing. These are the areas

in the image where most of the change has occurred and therefore removes the data

that is not of concern. “Elapsed time” is the average processing time over six runs for

the 401×401 pixel blocks listed. The CD masks for the five selected scenes are shown

in Figures 4.1 to 4.5. The averaging processing time, t̄, for an entire 1024×1024 SAR

image is 294.13 seconds. This time includes the operation of both algorithms and the
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Table 4.1: Reference Data.

Set Images τSG τRT sub-image location elapsed time
D 2,3 0.511 0.526 400:800,1:401 45.80s
F 6,7 0.308 0.312 400:800,1:401 38.77s
G1 2,3 0.101 0.120 1:401,1:401 43.82s
G2 5,6 0.212 0.228 400:800,400:800 53.22s
Y 12,13 0.381 0.400 600:1000,1:401 40.34s
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Figure 4.1: The change in mask D is represented by the move-
ment of ground vehicles.

intersection of both masks into one. From analyzing the results of entering different

threshold values it is found that elements introduce increased entropy decreased the

computed threshold value of the change detection mask. This decreased value causes

more false positives to occur and serves to support our hypothesis that two algorithms

working at different threshold values are necessary.
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Figure 4.2: Mask F has a movement of vehicles, the creation
of a large tarmac area, and the removal of a few trees that
obstructed the area.
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Figure 4.3: The first mask in area G has the greatest en-
tropy of all the images due to the large amount of forest in the
scene. Most of the false hits can be attributed to noise in the
data as well as simulated movement of foliage. The increased
entropy, combined with the zero padding in the CD algorithms,
created a border effect showing change around the edges where
it shouldn’t occur.
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Figure 4.4: The second mask in G has the change registering
as the construction of a new SAM site. The small spot in the
top right is due to the movement of a vehicle. Here part of the
ring created in the second scene doesn’t register as change due
to errors caused by the intensity tuning of the second image.
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Figure 4.5: The mask produced from the change in Y accu-
rately detected the movement of vehicles along the road as well
as a number of trees that were removed from the scene.
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While these masks do not show what has originally moved from the first scene

and what is no longer in the second for the corresponding pixels and vice versa, this

can be easily added via an additional post-processing step. This, however, does not

affect this research effort and was therefore not included.

4.2 Compression Results

Due to the number of images processed in this research only one to two scenes

per method will be illustrated in this section. For additional data sets please see

Appendix A.

4.2.1 Error Metrics. When comparing the algorithms for effectiveness, two

additional Measures of Effectiveness (MOE) will be referred to on numerous occasion.

The first is Mean Squared Error (MSE), which is the average of the squared difference

between the original M ×N image, O(x, y), and the compressed image C(x, y).

MSE =
1

MN

M∑
x=1

N∑
y=1

[
O(x, y)− C(x, y)

]2
(4.1)

The lower the value the better since MSE is essentially summing up the error at every

pixel. This has an inverse relationship with the second metric, which is Peak Signal

to Noise Ratio (PSNR) which measures the ratio between the signal which in this is

O(x, y) and the noise which is the amount of error induced in the original image due

compression.

PSNR = 20 log10

( 255√
MSE

)
(4.2)

For the purposes of this research, MSE is always unitless and PSNR is measured in

decibels (dB).

4.2.2 SVD Analysis. The SVD algorithm when combined with a wavelet

transform, yields better results in terms of PSNR and MSE, than SVD alone. The

compression ratio was easily changed based on the number of coefficients that were

43



Scene G Time Interval 6
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Figure 4.6: Hybrid SVD with 5 coefficients.

assigned a zero weighting. In this study, the first 25, 50, 75 and 100 coefficients were

taken into account for the formation of the image to see how drastically the image

was affected. The compression ratios ranged from 9:1 with twenty five coefficients

all the way to 2:1 with 100 coefficients. As the number of coefficients increased the

amount of effect they had on the image decreased exponentially. To illustrate this

point additional data points of 5 and 10 coefficients were processed for area G.

As the number of coefficients representing the image went from 75 to 100, there

is not much difference visible to the naked eye, however, there are several variations at

the pixel level that will be detected with the change detection algorithms. For regular

SVD compression the PSNR of the images ranged from 28 dB at a 4:1 compression

ratio to 26 dB at 16:1. The Hybrid-SVD method decreased from 39 dB to 34 dB for

the same range of compression ratios.
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Scene G Time Interval 6
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Figure 4.7: Hybrid SVD with 10 coefficients.
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Scene G Time Interval 6
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Figure 4.8: Hybrid SVD with 25 coefficients.
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Figure 4.9: Hybrid SVD with 50 coefficients.
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Scene G Time Interval 6
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Figure 4.10: Hybrid SVD with 75 coefficients.
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Figure 4.11: Hybrid SVD with 100 coefficients.
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Figure 4.12: The original uncompressed image of scene Y on
time interval two.

4.2.3 JPEG Analysis. Of the three compression techniques, JPEG is the

only one that is currently included in the National Imagery Transmission Format

Standards (NITFS). For general (linear shift invariant) imagery it is an attractive

choice due to its low MSE and the resulting high PSNR. For this study, JPEG was

analyzed at compression ratios in 2n : 1 intervals from n = 0, 1..., 6. It was found

that due to the JPEG algorithm, specifically the processing of a non-linear shift

invariant image with a discrete cosine transform, that objects with intensities that

were extremely high or low in the image created a a “padding effect” around them

when compressed. This made the compressed images appear to have larger objects

when compared to the original image. As an example “SAR shadows” created from

the collection platform’s line of sight grew by 2-3 pixels in both the x and y directions.

This was the predominant effect in the tests with compression ratios greater than or

equal to 16:1. While this is the end result of the compression of the given data which

is simulated, it can be assumed that this effect will only be magnified in real SAR data

when there are additional noise variations that occur. While this phenomenon isn’t
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Figure 4.13: The same scene from Figure 4.12 after JPEG
compression. This image illustrates how padding doesn’t seem
readily apparent to the naked eye.

very noticeable to the human eye as seen in Figures 4.12 and 4.13, CD analysis will

be altered by this effect due to the extremely high number of false positives that show

up on the JPEG image when compared to the original. Over the range of compression

ratios 2:1 to 64:1, the PSNR declined the most of all the compression algorithms from

37.5 dB to close to 22 dB.

4.2.4 Wavelet Transforms Analysis. In order to analyze whether different

wavelets had a significant impact on the compression and change detection analysis,

both Daubechies and Bi-orthogonal wavelets were looked at. Since wavelets are cur-

rently being examined for the JPEG-2000 standard, the same de-construction and

quantization metrics were used as discussed in Section 3.3.3. The two level decom-

position separated each approximation into their horizontal, vertical and diagonal

information, which could be perfectly reconstructed if no compression took place af-

ter the decomposition.
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Figure 4.14: Using the Daubechies wavelet as a “mother”
wavelet, image F6 is broken down into two approximations so
that compression can take place.

Once the reconstruction has occurred the two dimensional signal is represented

as a series of wavelet coefficients and can be subjected to thresholding. A variety of

threshold markers were set to obtain PSNR and MSE values for compression ratios

ranging from 2:1 to 64:1, but for the purposes of analyzing the effect of the loss of data

only three discrete values will be examined until the Section 4.4 of this chapter. While

adding thresholds does cause the loss of data, there seems to be additional de-noising

that occurs as well. Entropy in the data that causes distortions in other types of com-

pressions does not occur as significantly in compression with WT algorithms. When a

WT de-correlates the image pixels, it bins all the information contained in the image

into the representative coefficients. Since white noise is uncorrelated, the transform

does nothing to it. In the transform domain, the relevant image information that we
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Figure 4.15: A second level deconstruction of image F6 using
bi-orthogonal wavelets.

consider important has a larger magnitude and can easily be separated from the noise

data in the image. From the image analysis over many threshold values, applying a

zero weight to the smaller wavelet coefficients will have a drastically greater affect

on the noise than the actual image information itself. This results in a reconstructed

image with some degradation but far less noise. This is first observed when com-

paring the change detection masks of an algorithm using wavelet based compression

to even the normal data and will be supported with examples in the next section.

With τ representing threshold, the following images represent both wavelet types at

τ = 25, 50, 75.
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Figure 4.16: Daubechies WT compression with τ = 25.
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Figure 4.17: Daubechies WT compression with τ = 50.
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Figure 4.18: Daubechies WT compression with τ = 75.
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Figure 4.19: Bi-orthogonal compression with τ = 25.
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Figure 4.20: Bi-orthogonal compression with τ = 50.
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Figure 4.21: Bi-orthogonal compression with τ = 75.
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4.3 Post Compression CD Masks

After the compression of all ten images were processed with all 11 compression

types and levels, change detection masks were created and compared to the original.

In this section change detection in data set G1 will be discussed because of the large

amount of entropy in the system as well as the interesting effects that JPEG and the

WT compression algorithms had on these two scenes.

In the hybrid SVD change masks, we have the de-noising factor that occurs as

a result of the WT. However, as more coefficients are added, more noise gets added

to the scene. The trade-off is that with more coefficients, there is less decomposition

of the original image. The same holds true for the Daubechies and Bi-orthogonal

wavelets. The only difference is the the magnitudes of information and noise that

are present in each image, which will affect what is considered significant change.

The JPEG change mask was quite different. As stated earlier, due to the amount of

pixel padding when compression took place, there is a large number of pixels where

change is detected that are clearly false positives. This is simply due to the way

the algorithm works since all compression methods used the same change detection

metrics outlined in Table 4.1. In most of the other scenes change was accurately

detected with far less noise. While the JPEG compression technique had change

detection in areas outside the expected areas in this scene its false positives in other

scenes is far less significant although very much present. For more change detection

masks from another scene selection please see Appendix A. For the JPEG algorithm,

the change mask was recorded at an 8:1 compression ratio where there was a marked

difference in the magnitude of padded pixels when compared to the 16:1 compression

ratio.
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Figure 4.22: Change Mask for hybrid SV D25.
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Figure 4.23: Change Mask for hybrid SV D50.
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Figure 4.24: Change Mask for hybrid SV D75.
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Figure 4.25: Change Mask for hybrid SV D100.
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Figure 4.26: Change Mask for Daubechies WT with τ = 25.
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Figure 4.27: Change Mask for Daubechies WT with τ = 50.
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Figure 4.28: Change Mask for Daubechies WT with τ = 75.
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Figure 4.29: Change Mask for bi-orthogonal WT with τ = 25.
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Figure 4.30: Change Mask for bi-orthogonal WT with τ = 50.
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Figure 4.31: Change Mask for bi-orthogonal WT with τ = 75.
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Figure 4.32: Change Mask for JPEG. While not present in
other change masks, the JPEG compression caused the CD al-
gorithm to recognize the parts of the road as significant change
even though nothing had happened in the area.
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4.4 Benchmarks

4.4.1 Compression Scores. Every one of the compression techniques was

computed at various levels to see how PSNR was affected in order to further ana-

lyze which technique could produce the best image with the best compression ratio.

Depending on the war-fighters’ basic needs (in terms of compression), the algorithms

with the best PSNR can be selected and used for change detection. For the purposes

of comparison, a simple SVD algorithm was included to see the differences between

it and the hybrid version. Both versions of the SVD algorithms were affected only

minutely after a certain level of coefficients were removed which is supported by work

done by Wang et al. [27]. One of the more surprising results is the rapid deterioration

of the JPEG algorithm. After the compression ratio approached 16:1 there was a

sharp drop-off making it fall below even standard SVD. It is for that reason that the

8:1 ratio was used in the study. After analysis of the data it was found that JPEG

had the sharp drop-off due to the padding effect it had on the uncorrelated imagery.
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Figure 4.33: Each of the 5 compression algorithms were an-
alyzed at 2n levels where n = 1, 2, ..., 6. to find out how they
compare to each other in terms of PSNR as the compression
ratio increased.
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Table 4.2: Compression Ratios by
Algorithm.

Compression Type Avg. Compression Ratio
Hybrid SVD25 8.33:1
Hybrid SVD50 4.21:1
Hybrid SVD75 2.53:1
Hybrid SVD100 2.13:1
Db25 5.26:1
Db50 15.76:1
Db75 26.7:1
Bior25 4.51:1
Bior50 13.91:1
Bior75 27.48:1
JPEG 8:1

Since the data was only referenced at certain thresholds and using certain quan-

tization matrices, only a few points on this graph were analyzed. Table 4.2 shows the

average compression ratios for all of the methods used in this study. Only an average

was shown because the compression ratio varied by image when computed to four

significant digits.

4.4.2 CD Compression Analysis. After all the masks are made, the final

metric of analysis for this research is to see how the change detection mask of the

compressed data compares to the mask of the original data. The best way to analyze

and compare this data is by using Receiving Operating Characteristic (ROC) plots.

Each graph plots the compression points with the probability of false positive as

the independent variable and the probability of detection as the dependant variable.

Each scene has its own plot so that analysis by environment can be made. The SVD

compression levels shown in each one of the ROC plots refer to the hybird algorithm.
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Figure 4.34: ROC of mask set D1. The best three compression
types are circled in red. In scene one Daubechie’s WT with
τ = 25, Bi-orthogonal WT with τ = 25 and SVD with 100
dominant elements are the best compression types.
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Figure 4.35: ROC of mask set F1. In scene two Daubechie’s
WT with τ = 25, Bi-orthogonal WT with τ = 25 and SVD with
100 dominant elements again are the best compression types..
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Figure 4.36: ROC of mask set G1. In scene three SVD with 75
and 100 dominant elements perform the best while Daubechie’s
WT with τ = 25, Bi-orthogonal WT with τ = 25 are close
behind.
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Figure 4.37: ROC of mask set G2. In scene four there is a
decision to be made on whether the probability of detection is
more important then a high or low probability of false positive.
If a lower probability of detection is acceptable, then JPEG
could be considered the best compression algorithm. Otherwise
the SVD algorithms with 75 and 100 dominant elements followed
by the Bi-orthogonal WT with τ = 25 are the best to use.
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Figure 4.38: ROC of mask set Y1. In scene five, JPEG is sur-
prisingly clearly the best algorithm to use while SVD algorithms
with 75 and 100 dominant elements performed almost as well.
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In scene D1 (Figure 4.34) both wavelet transforms, with a threshold of 25 per-

form the best with the hybrid-SV D100 algorithm performing almost as well . In every

scene these three compression methods are the best except for area Y1 (Figure 4.38),

in which JPEG can be considered an alternative based on which what level of false

positives is desired. In all other cases the JPEG algorithm performs well on the

probability of detection, however, the chance that the detection is a false positive is

also higher than all other algorithms. If one compression algorithm had to be chosen

for all scenarios, the hybrid-SV D100 offers the best all around performance. In some

cases the hybrid-SV D75 performed better than WT compression techniques. The fact

that each of these compression algorithms produced different results in different en-

vironments supports the hypothesis that environment does play a factor in choosing

a compression algorithm. Each environment does have a certain associated range of

entropy to it [7], which is the primary reason for the difference in performance.

4.4.3 Environmental Analysis. Analyzing the ROC curves may determine

which of the following compression methods is the optimal choice for each scene. It

is the goal of this study to base the decision for a compression algorithm on not only

the performance from the ROC plots, but also on the level of compression that can be

achieved. Table 4.3 lists each scene, its three best compression algorithms based on

the ROC plots and the compression ratios achieved by each type using the algorithms

outlined in Chapters 2 and 3. The compression ratios seem to fall in line with other

research studies using the same methods [5, 7, 20], however, the other studies never

bench-marked the methods to a certain application. While there is a baseline set

for which compression method would be used in each scenario, the amount of data

processed in this research effort is quite small. The need for further processing would

be necessary before being able to generalize one type of compression method to a type

of environment.

4.4.4 Data Retention Analysis. The need to transfer an entire set of im-

ages is not needed if change detection is performed on board the collection platform.
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While the first image in a series of geo-registered data would have to be kept in its en-

tirety, each subsequent image would only need the pixels in which significant change

was detected to be transferred across the communications link. Regardless of how

much change is detected in the scene this can reduce the amount of information being

sent. This analysis could allow the re-encoding of the image with a loss-less technique

allowing further compression of the images. Table 4.3 shows the fraction of informa-

tion that would need to be sent for the changed image in relation to the original for

the normal data as well as each of the compressions analyzed in this study. Each

one of these percentages are based on the 400 × 400 pixel array that were originally

measured and analyzed in this chapter. This post processing step would help reduce

the amount of data being sent by encoding every pixel mapping that doesn’t have

significant change detected with a zero. By adding all those zeros to the data, there

is significantly less entropy, less “leaves” (in terms of entropy encoding) and hence

less codewords assigned. From Table 4.4 the maximum amount of data that would be

required to be sent from the second image is only 51.05% which gives us a secondary

compression ratio of 1:1.9. On the other extreme in areas like D1 where the only

Table 4.3: Optimal Compression by Area.

Set Images Environment Compression Type Compression Ratio
D1 2,3 Desert Daubechies WT, τ = 25 5.28:1

Bi-orthogonal WT, τ = 25 4.53:1
SV D100 2.16:1

F1 6,7 Forest, SV D100 2.13:1
Plains, and Daubechies WT, τ = 25 5.25:1
Tarmac Bi-orthogonal WT, τ = 25 4.49:1

G1 2,3 Forest SV D100 2.09:1
SV D75 2.45:1
Daubechies WT, τ = 25 5.22:1

G2 5,6 Forest SV D100 2.12:1
and SV D75 2.45:1
Tarmac JPEG 8:1

Y1 12,13 Plains SV D100 2.15:1
JPEG 8:1
SV D75 2.47:1
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change was the movement of a few vehicles, the percent of pixels that had change

detected was as little as 0.69% which allows compression as high as 138.8:1. This

method only looks at the removal of redundant information in the SAR imagery, but

application of this technique to the phase history is also possible.

Table 4.4: Percent of Data Retention Required.

Compression Style Percent of Data with CD
D1 F1 G1 G2 Y1

Uncompressed 0.89 30.03 37.24 8.58 14.87
Bi-orthogonal WT, τ = 25 0.87 28.87 30.79 8.89 14.41
Bi-orthogonal WT, τ = 50 0.72 27.41 29.57 9.02 14.35
Bi-orthogonal WT, τ = 75 0.69 26.74 28.84 9.07 14.79
Daubechies WT, τ = 25 0.83 28.88 30.81 8.24 14.59
Daubechies WT, τ = 50 0.89 27.95 29.28 9.15 14.42
Daubechies WT, τ = 75 0.91 27.09 28.81 9.45 15.51
Hybrid SV D25 0.82 27.74 29.73 8.88 14.53
Hybrid SV D50 0.99 28.14 29.59 8.72 14.80
Hybrid SV D75 0.93 28.56 31.50 8.82 14.80
Hybrid SV D100 0.86 29.21 32.34 8.76 14.84
JPEG 1.00 30.30 51.05 8.34 14.69
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V. Conclusion

5.1 Benefits of this Research

Given the experimental results of this research effort, it is concluded that lossy

compression along with relevant data retention methods can be used to significantly

decrease the sizes of SAR imagery. In four of the five scenes hybrid SVD using wavelet

transforms has proven to be the best at performing change detection analysis with a

low probability of false information. In the one scene where it did not, it was only

behind two compression methods using Daubechies and bi-orthogonal wavelets which

had extremely low thresholds.

In addition it is found that using two different change detection algorithms set

at different threshold values acting in conjunction with each other will create a better

change detection mask. The change detection masks often yielded the best results

when a combination of the statistical Gaussian method was used with the likelihood

ratio test. Items that were man-made like roads and vehicles seemed to require a

much lower threshold value than environmental changes such as tree movement and

removal. However increasing the threshold factor of one had a direct correlation with

the amount of false hits that would occur. By allowing two different algorithms to

form a binary union to create one change detection mask, even the most minute

changes in each scene were detected with decreased error.

Environment played a huge factor in affecting how effective the algorithms were

once compression occurred. While the hybrid SVD performed significantly well across

the board, wavelet transform based compression seemed to do best in forest imagery

and scenes with increased entropy. JPEG algorithms performed well in areas of minute

change and low entropy in the image.

The ultimate goal of this research was to find empirical proof of compression

methods that could work with certain change detection algorithms so that one day,

this entire process could be automated to the point where a machine could determine

whether or not data was relevant to the war-fighter. With the abundance of data

created by remote sensing platforms, it is more and more necessary to be able to

72



process only the data that is important and this research has taken the first steps to

create a system that will automate this requirement. While the results are promising,

there are several more things that could be done to achieve this end goal.

5.2 Recommendations for Future Work

While working on this research, several limitations occurred as well as additional

insights made that are recommended for future efforts. These areas are:

1. Increase the size of the environmental data range by including urban landscapes.

2. Expand the relevant data retention methods to include not only the image

backscatter, but the corresponding phase history as well.

3. Move past synthetic phase history to real data, where speckle, motion blurring,

and other SAR artifacts that add additional noise to the image are considered

in compression algorithms and detection coding.

4. With real data acquired, apply the same theories with coherent change detec-

tion. Real data will have areas where backscatter have the same intensity values

but have unequal phases.

5. As technology pushes forward, so must the research with new compression

schemes and detection methods. Adaptation of more recent innovations in com-

pression such as the final specifications for JPEG-2000 and the continuation of

the pursuit of lossless methods that yield better compression ratios is needed.

6. Study the effects of compression of geo-registration. Since all the examined data

was synthetic and pre-registered, this was never an issue, but with real data it

could lead to potential problems.

73



Appendix A. Additional Compression and CD Mask Data

Since only one to two images were given as examples for each of the sections in Chapter

4, Appendix A will include images from Area F with all the compression techniques

applied. All compressed data here is presented in the range given by Table 4.1.

A.1 Compressed Data
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Figure A.1: The uncompressed image F6
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Figure A.2: The uncompressed image F7
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Figure A.3: Hybrid SV D25 F6
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Figure A.4: Hybrid SV D25 F7
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Figure A.5: Hybrid SV D50 F6
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Figure A.6: Hybrid SV D50 F7
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Figure A.7: Hybrid SV D75 F6
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Figure A.8: Hybrid SV D75 F7
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Figure A.9: Hybrid SV D100 F6
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Figure A.10: Hybrid SV D100 F7
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Figure A.11: Bi-orthogonal WT of F6 with τ = 25
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Figure A.12: Bi-orthogonal WT of F7 with τ = 25
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Figure A.13: Bi-orthogonal WT of F6 with τ = 50
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Figure A.14: Bi-orthogonal WT of F7 with τ = 50
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Figure A.15: Bi-orthogonal WT of F6 with τ = 75
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Figure A.16: Bi-orthogonal WT of F7 with τ = 75
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Figure A.17: Daubechies WT of F6 with τ = 25
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Figure A.18: Daubechies WT of F7 with τ = 25
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Figure A.19: Daubechies WT of F7 with τ = 50
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Figure A.20: Daubechies WT of F7 with τ = 50

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

Figure A.21: Daubechies WT of F6 with τ = 75
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Figure A.22: Daubechies WT of F7 with τ = 75
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Figure A.23: JPEG of F6
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Figure A.24: JPEG of F7

A.2 CD Masks for Area F
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Figure A.25: Uncompressed change mask for Area F
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Figure A.26: Hybrid SV D25 change mask for Area F
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Figure A.27: Hybrid SV D50 change mask for Area F
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Figure A.28: Hybrid SV D75 change mask for Area F
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Figure A.29: Hybrid SV D100 change mask for Area F
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Figure A.30: Bi-orthogonal WT change mask for Area F with
τ = 25
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Figure A.31: Bi-orthogonal WT change mask for Area F with
τ = 50
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Figure A.32: Bi-orthogonal WT change mask for Area F with
τ = 75
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Figure A.33: Daubechies WT change mask for Area F with
τ = 25
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Figure A.34: Daubechies WT change mask for Area F with
τ = 50
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Figure A.35: Daubechies WT change mask for Area F with
τ = 75
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Figure A.36: JPEG based change mask
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