Battle Management Language Transformations

Major Frederic Bernard
CDEF / DSRO
1 Place Joffre
75005 Paris
France
frederic.bernard@cdef.terre.defense.gouv.fr

Dr. J. Mark Pullen and Dr. Michael Hieb
Center of Excellence for C4I
George Mason University
4400 University Drive
Fairfax, VA 22030
USA
mpullen@gmu.edu / mhieb@gmu.edu

Lionel Khimeche
Délégation Générale pour l’Armement (DGA)
DGA/DET
18, rue du Docteur Zamenhof
Fort d’Issy les Moulineaux
92131 Issy les Moulineaux CEDEX
France
lionel.khimeche@dga.defense.gouv.fr

Michael W. Powers
US Army Engineer R&D Center
Topographic Engineering Center
7701 Telegraph Road
Alexandria, VA 22315
USA
michael.w.powers@erdc.usace.army.mil

Patrick de Champs
EADS
6 rue Dewoitine – BP14
78142 Velizy Villacoublay CEDEX
France
patrick.de-champs@eads.com

William P. Sudnikovich and Adam Ritchie
Atlantic Consulting Services, Inc.
167 Avenue at the Common
Shrewsbury, NJ 07702
USA
wsudnikovich@asinc-nj.com
aritchie@asinc-nj.com

OVERVIEW

A critically needed element of transformation is to enable interoperability of alliance and coalition Command and Control (C2) and Modelling and Simulation (M&S) systems. Battlefield Management Language (BML) is being developed as a common representation of military mission suitable for automated processing. Within NATO the task group MSG-048 “Coalition BML” is defining a BML using the Joint Command, Control and Consultation Information Exchange Data Model (JC3IEDM) as a lexicon. BML addresses the capability to initialize Simulations with Operational orders and taskings that has been recognized as a key future capability for both training and experimentation.

We describe a limited demonstration where both French and US C2 planning systems were used to prepare a Course of Action (COA) to conduct a coalition coordinated operation which supported approval of the new Technology Assessment Program MSG-048. BML is being explored in US Army, US Joint and Coalition Contexts. With MSG-048, continued research in many dimensions is continuing to broaden the BML concept.
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE
 01 SEP 2006

2. REPORT TYPE
 N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
 Battle Management Language Transformations

5a. CONTRACT NUMBER
 -

5b. GRANT NUMBER
 -

5c. PROGRAM ELEMENT NUMBER
 -

5d. PROJECT NUMBER
 -

5e. TASK NUMBER
 -

5f. WORK UNIT NUMBER
 -

6. AUTHOR(S)
 -

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 CDEF / DSRO 1 Place Joffre 75005 Paris France

8. PERFORMING ORGANIZATION REPORT NUMBER
 -

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 -

10. SPONSOR/MONITOR’S ACRONYM(S)
 -

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
 -

12. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
 See also ADM002053., The original document contains color images.

14. ABSTRACT
 -

15. SUBJECT TERMS
 -

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 unclassified
 b. ABSTRACT
 unclassified
 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT
 UU

18. NUMBER OF PAGES
 55

19a. NAME OF RESPONSIBLE PERSON
 -

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Better integration of reasoning within a Coalition C2 process can be facilitated by specific BMLs. An example is geoBML. Such reasoning capabilities are fundamental to enabling transformation through C2-Simulation interoperation and also to providing capabilities for future experimentation. We describe how geoBML will be implemented through extensions of C2IEDM, expanding and further transforming coalition capabilities.

1.0 INTRODUCTION

A Battle Management Language (BML) is defined as an unambiguous language intended to provide for (1) command and control of simulated and live forces conducting military operations and (2) situational awareness and a shared, common operational picture. In October of 2004 France and the US presented demonstrations to the North Atlantic Treaty Organization (NATO) M&S Working Group showing how Coalition (C-BML) and JC3IEDM can enable interoperation of command and control (C2) and simulation systems of multiple nations. As a result, an Exploratory Team (ET-016) was formed to investigate the feasibility of a C-BML. As a part of ET-016 it was decided that a limited demonstration of the exploratory team work would be developed to show that the concept of a C-BML was feasible. The limited demonstration was developed starting with components from earlier demonstrations in the US and had the objective to add a French C2 planning system that also had a simulation capability. It was agreed that the C2IEDM (with the extensions made to incorporate C-BML) would be used as the common data exchange model. In this paper we describe a limited demonstration where both French and US C2 planning systems were used to prepare a Course of Action (COA) to conduct a coalition coordinated operation which supported approval of the new Technology Assessment Program MSG-048 in October 2005.

With MSG-048, continued research in many dimensions is broadening the BML concept. Better integration of reasoning within a Coalition C2 process can be facilitated by specific BMLs. An example is geoBML, which will be implemented through extensions of C2IEDM and illustrated through operational vignettes leveraging the US Army’s Battlespace Terrain Reasoning and Awareness (BTRA) capabilities and thus will expand and further transform coalition capabilities developed in NATO MSG-048. Terrain and weather effects represent a fundamental, enabling piece of battlefield information supporting situation awareness and the decision-making processes for C2. These effects can both enhance or constrain force tactics and behaviours, platform performance (ground and air), system performance (e.g. sensors) and soldiers. The Army Technology Objective for BTRA has developed baseline capabilities to capture and computationally represent elements of key terrain positions. The Topographic Engineering Center is developing a specific BML to address terrain effects called geoBML.

Studies leading to BML have been ongoing in various academic/technical organizations since 2002, as reported in references [1–14]. This paper draws heavily on publications by its authors in other forums, particularly references [11] and [14], in order to present the work of MSG ET-016 to the larger NATO MSG community.

2.0 COALITION BML

Coalition BML (C-BML) is a project of the Simulation Interoperability Standards Organization (SISO). It is aimed at creating a standard representation of digitized command and control information such as orders and plans that will be understandable by military personnel, by simulated forces, and by future robotic forces. In addition, C-BML must provide for situational awareness and a shared, common operational picture through digitized reports and returns. As such, C-BML is particularly relevant for enabling mutual understanding in the network-centric environment being developed by the US and its military allies, where multinational distributed/integrated capabilities are essential.
C-BML is a way of capturing doctrine, not a way of standardizing doctrine. Its vocabulary must be well defined in the context of both C2 and simulation domains in order to generate unambiguously executable tasks at the end of the process. To achieve this, C-BML uses an extended version of the Joint Command, Control and Consultation Information Exchange Data Model (JC3IEDM), as described below. C-BML also must specify the underlying protocols for transferring this information. The US Extensible Battle Management Language (XBML) project described in [4] demonstrated that Web Services provide an effective way to do this.

2.1 JC3IEDM in BML

The JC3IEDM (formerly C2IEDM) is a robust representation with two decades of development history. It is maintained by the Multilateral Interoperability Programme (MIP), a voluntary and independent organization that represents more than two dozen countries and headquarters organizations, as described at http://www.mip-site.org/. MIP is concerned with deriving a common data architecture and data model for multi-national C2 interoperability.

The JC3IEDM is derived through consensus and has active configuration management. It includes common vocabulary related to all domains of military operations, such as maneuver, fire support, air defense, engineering, civil military operations, and anti-terror special operations, based on five standard battlefield entities: organization, materiel, features, facilities and persons. All data and relationships are well documented and publicly available. Because its design is based on the information exchange requirements for battlefield C2 systems, the JC3IEDM deals naturally with orders, missions, tasks, situational awareness data, etc., that underlie BML.

3.0 LIMITED DEMONSTRATION COMPONENTS AND ARCHITECTURE

The experiment undertaken by France and the US provided a limited demonstration of interoperation between C2 and simulation systems of the two nations. The US and French components described in this section provided the C2 and simulation capabilities. The systems were coupled via a BML Web Services component developed using the approach described in [2]. They were used to represent a BML Course of Action (COA), which was held in a relational database with a schema defined by a tagset derived from the C2IEDM. The experimental architecture is shown in Figure 1; the components are described in the remainder of this section.

![Figure 1: Limited demonstration architecture](image)
3.1 CAPES

The Combined Arms Planning and Execution monitoring System (CAPES) is a prototype US Army command and control planning system. Its purpose is to develop a COA and generate a corresponding military plan. CAPES creates military operation orders that are exchanged using an Extensible Markup Language (XML) document with a tagset that is unique to CAPES. An XML-encoded scenario file also is generated.

The BML interface to CAPES was implemented by parsing the CAPES scenario file and translating its contents into BML objects. These objects are passed via the Web Services Definition Language (WSDL) interface to the BML web service, where they are inserted into the C2IEDM database. Thus, CAPES provides the COA data as common data tables and elements for the US plan to be exchanged with the simulation systems and the French planning system. This is possible because BML adds the necessary context to remove ambiguity in the understanding of orders to be exchanged and coordinated.

3.2 JSAF

The Joint Semi-Automated Forces (JSAF) simulation used by the US for this experiment is a computer generated forces (CGF) system. It is maintained by the US Joint Forces Command and used by them for joint experimentation. It also is used by the US Navy for Fleet Battle Experiments and by the Air Force Research Lab in support of the Distributed Mission Training program. JSAF provides entity-level simulation of ground, air, and naval forces. It has been used to simulate up to 40,000 entities within a single distributed simulation. JSAF is descended from the Modular Semi-Automated Forces (ModSAF) simulation and was developed by the Defense Advanced Research Projects Agency as part of its Synthetic Theater of War program.

The XBML project [7,8] created a BML interface for JSAF via Web Services. This interface was used to load both the COA generated by CAPES and the COA generated by APLET (see below) into JSAF, where the entire coalition plan could be simulated.

3.3 APLET

The Aide a la Planification d’Engagement Tactique (APLET) is a French Ministry of Defense Research and Technology program which aims to analyze simulation concepts to facilitate and improve Course of Action Analysis performed at Brigade or Division Headquarters fitted with the French C2 System Système d'Information pour le Commandement des Forces (SICF). APLET also addresses technical issues of C2 – simulation interoperation [9,10]. APLET’s main objectives are:

- Automate the Military Decision-Making Process for Course of Action Analysis (COAA);
- Foresee capabilities and added value given by simulation in case of close integration with C4I systems and as an example with SICF;
- Explore and solve C4I-simulation inter-operability issues and propose recommendations to bridge the gap between those systems;
- Define the most suitable simulation granularity allowing COAA in a tight period;
- Propose mechanisms to automatically produce Operation Orders from a selected COA.

A major goal of APLET development was to create a demonstrator for Brigade COAA to highlight the usability and the effectiveness of selected technologies for C2 – simulation interoperation. This demonstrator was tested operationally during a Brigade exercise in November 2004. The overall program is intended to produce specifications for an operational system embedded into SICF. For the purpose of the NATO BML
limited demonstration, a BML interface was developed for APLET, taking the place of the SICF XML interface.

A simulation capability for COA Analysis is embedded in the APLET planning system. Figure 2 shows an overall view of the APLET system architecture:

- SICF-APLET interchange mechanisms based on SICF XML format;
- APLET system consisting of:
 - Operator workstation: for exchanges with SICF, COA definition, COA comparison and operations order drafting;
 - APLET XML database, implementing APLET’s data model;
 - APLET simulation, with “simulation initialization data” (COA) loaded from APLET XML database;
 - HLA connection used during simulation for cartographic display of simulated units.

![Figure 2: APLET architecture](image)

3.4 BML Database Represented in C2IEDM using Web Services

As part of the earlier US XBML project, BML was implemented in the C2IEDM, identifying which C2IEDM tables would be used to represent the “who, what, when, where, why” (5W) of the military operations order. To do this using C2IEDM required an association between activities and a plan, where each activity is represented by the associated tables for its 5W BML representation. The associations and relationships provide the context to the specific tasks and missions to eliminate any ambiguity. Representation in the 5W format and the C2IEDM contextual associations and relationships are the keys to removing ambiguity of terms to resolve the free text problem associated with traditional operations orders.

One of the major contributions of the XBML project was demonstrating the effectiveness of Web Services technology as a way to rapidly implement interoperability of C2 and simulation systems. The limited demonstration could have been achieved by simply sharing a C2IEDM database via Structured Query Language (SQL) exchanges of data. However, this approach would require all developers to have very detailed knowledge of the C2IEDM and its structure in order to properly form queries to retrieve even the
most basic pieces of information. Further, direct database access does not represent a practical path for multinational C2-simulation interoperation, because it requires adoption of a specific database system rather than an open communication standard. These problems were overcome by making the shared database accessible via Web Services so that distributed C2 and simulation systems can communicate in a platform and language independent manner using proven standards from various aspects of the World Wide Web. The basic approach used is described in [2].

Two Web Services were implemented, each using Web Service Description Language (WSDL) schema definition with communication over the Simple Object Access Protocol (SOAP) and the HyperText Transport Protocol (HTTP). Use of Web Services in the experiment allowed extremely rapid integration of disparate systems even though the components would not be tested directly with each other until shortly before the actual demonstration. The two services are:

- The BML Web Service, which provides a BML-oriented view of the C2IEDM. Its WSDL interface allows information retrieval structured as an operation order in 5W format. This provides a natural and understandable structure for military users, who are familiar with the five-paragraph operations order structure.
- C2IEDM-oriented Web Services for retrieval and insertion, which give access to the data as it appears in the C2IEDM without additional structuring. These services retain the detailed C2IEDM structure but increase ease of use by providing methods to allow the user to retrieve associated data without having to go directly through all of the intermediary tables. As an example, a single call allows retrieval of the current position of a unit, taking the place of four tables that contain the data elements needed to derive the same information.

4.0 DEMONSTRATION EXECUTION

4.1 Initial Scenario

An operational scenario was constructed to demonstrate a combined US and French force maneuvering against a common Opposing Force (OPFOR). Boundaries and Phase Lines were created to delineate the operational areas of interest for each of the coalition forces. The composition of forces using in developing the demonstration scenario were as follows:

- A US Mechanized Infantry Battalion comprised of 3 Mechanized Companies, 1 Armoured Squadron and 1 Recon Platoon.
- A French Armoured Battalion comprised of 3 Armoured Squadrons, 1 Mechanized Company and 1 Recon Platoon.
- The initial laydown of opposing forces were comprised of 2 Mechanized Companies and 1 Recon Platoon.

The laydown of initial conditions (boundary lines, phase lines and enemy positions) is shown on the display of the CAPES system Figure 3.
4.2 Execution of Scenario Using C-BML

In this section we step through the execution of the scenario within the demonstration environment. Screen shots from the systems used are shown collectively after the textual description. The following description of the information flow assumes that a coalition task force Brigade level operations order has been created and disseminated to the respective coalition Battalion level planners. Given that starting point, a high level overview of the steps conducted in the information flow of the demonstration is as follows.

1. Coalition HQ initiates a Context Overlay consisting of boundary lines, phase lines and initial enemy positions. This information is displayed on the CAPES system (Figure 3) and pushed from CAPES into the C2IEDM enhanced database using the BML web service interface.

2. APLET pulls the Context Overlay from the database using the BML web service interface and displays it as shown in Figure 4.

3. After review, the French Battalion planners request a change in boundary line position.

4. The boundary lines between coalition forces are edited on the CAPES system and pushed to the database to be updated as shown in Figure 5.

5. The French Battalion planners pull this information into the APLET system to display and validate as shown in Figure 6.

6. The US Battalion planners develop a course of action on the CAPES system and push the information into the C2IEDM enhanced data base using the BML web service as shown in Figure 7.
7. The French Battalion planners develop a course of action on the APLET system and push the information into the C2IEDM enhanced database using the BML web service as shown in Figure 8.

8. The French Battalion planners pull the combined force COA out of the database and load the APLET simulation capability as shown in Figure 9.

9. The US planners pull the combined force COA out of the database and load the JSAF simulation system.

10. JSAF is demonstrated as having automatically been initialized with all boundaries, phase lines, initial enemy positions, both US and French forces and locations, and also all planned tasks developed by each of the coalition planners ready to execute in the simulation to evaluate the COA.

Figure 4: Initial Conditions as displayed on APLET
Figure 5: Boundary line adjustment on CAPES

Figure 6: Boundary line update as displayed on APLET
Figure 7: US COA development on CAPES

Figure 8: French COA development on APLET
5.0 FUTURE WORK

Based on the plan that emerged from the Exploratory Team and the successful demonstration described above, NATO Modelling and Simulation Group Technical Activity 048 was approved in March 2006. It will build on the C-BML standard to conduct a series of C2-simulation interoperation experiments among the participating nations. In addition, the outlines of two new aspects for BML have begun to emerge: a formal BML grammar, and extension of BML to geospatial/environmental information (geoBML).

5.1 Tasking Grammar for C-BML

In [12] it is argued persuasively that in addition to a supporting vocabulary defined by the C2IEDM, a complete BML requires a formal grammar. For example, a basic rule for the BML Grammar is:

\[\text{OB} \rightarrow \text{Verb Tasker Taskee (Affected|Action) Where Start-When (End-When) Why Label (Mod)*} \]

Development of the BML grammar will need to proceed in parallel with definition of C2IEDM representations and extensions in order to provide a complete language.

5.2 geoBML

[13] defines a major new area of investigation, geoBML, which builds upon the BML work described above. A key goal of geoBML is to make available actionable geo-information products to the C2 processes in the same conceptual framework and BML. Currently, geospatial products are created using varying techniques and procedures resulting in fundamentally different representations and processes than are used in the C2 planning process for forces and equipment. As a result, the context for command and control processes lacks uniformity, so that results may not be consistent. Here again, an unambiguous representation is needed.
However, the currently available BML does not include an explicit geospatial, terrain, weather or other environmental data component.

To provide for effective communication among components participating in C2 and simulation processes, the activity described in [13] seeks to expand upon the BML concept to remedy this situation and thus enable the network-centric future sought by US and coalition military. As argued by Devlin [15], the effectiveness of any interaction is dependent on degree and quality of a shared context among the participants. This is an especially significant condition for geo-environmental information. Knowledge of terrain and weather is, in and of itself, a context applied in a multitude of military decisions regarding tactics and tasks. Thus, tight coupling of geo-environmental information with doctrine, missions and defines geoBML.

Mission planning is dependent upon terrain. However, terrain data is not often shared between different systems. But in order to have consistent analysis between systems, the critical effects of terrain should be represented in such a way that they can be exchanged as well. One approach to improving interoperability is to have all C2 and simulation systems use the same representation for their data and information. However, this has not worked in practice. Instead, interface services and layers have been devised to share data and information that needs to be exchanged.

Independent of their nation or the doctrine they employ, military commanders regularly utilize information, knowledge and understanding of terrain, atmosphere and weather impacts on military operations. Geo-environmental information provides a base context for military decision making. Additionally, geo-environmental information has a ubiquitous quality in many aspects of C2 decision making within both planning and execution phases of a mission. Consequently, this information represents a commodity that will be exchanged and employed widely in acquiring a shared, common awareness, a unity of action and a synchronization of effects.

Focus on information for decision-making is central to the approach being followed to develop geoBML. In the domain of C2 operations there are many specialty functions engaged in data processing, analysis or reasoning, and/or decision making (C2). Each specialty area has its own terms, references and processes codified in doctrine. For the purposes of this geoBML discussion and the central role of the C2IEDM in C2 interoperability, the geoBML focuses on the role of information for decision making. This information is tailored (abstracted) for individuals with a greater training and context in C2 and operations as opposed to data processing and lower level fact analysis. Further, the ability to incorporate information and knowledge facilitates predictive awareness within the context of the original mission planning phase while maintaining responsiveness to dynamic changes in battle execution. A necessary condition for the abstractions of geo-information and geo-knowledge products is that they be “dynamic” and “smart,” i.e., responsive to changing situation and mission as contained in other reports and messages defined under the MIP and JC3IEDM.

The complete set of information objects, evolved from accepted doctrine: 1) provide a meaningful structure for relationship to the JC3IEDM, 2) provide a complex set of interrelated use cases for evolving a language addressing both planning and execution and 3) provide a unified representational foundation capable of supporting cognitive and automated processes. These functions apply not only to the current C2-Simulation role, but also to support communication among C2 systems. Our work in C-BML indicates that this principle applies also to coalition C2 systems, where communication generally is stressed and the ability to simulate a plan to validate its effectiveness can enable more effective operations [5]. Expanding BML to incorporate geoBML only increases the validity of this principle in that the C2 planning process and its evaluation via simulation become much more effective where the effects of terrain can be incorporated with high accuracy. This is the promise and challenge inherent in transforming C-BML by incorporation of geoBML.
6.0 CONCLUSIONS

This paper has described a successful experiment in interoperation of command and control systems with simulation systems, conducted by the US and France in support of the work of a NATO Modelling and Simulation Working Group Exploratory Team. Using Web Services combined with the C2IEDM data model, the experiment very rapidly achieved interoperation among the systems of the two nations. The experience gained, and recent insights regarding the need for a BML grammar and a geoBML, provide strong support for the work of a NATO Technical Activity that was approved after success of the experiment. These techniques provide a promising path to distributed software interoperation involving a variety of simulation and other components.

BML has been explored in US Army, US Joint and Coalition Contexts. Under MSG-048, continued research in many dimensions is continuing to broaden the BML concept. Better integration of reasoning within a Coalition C2 process can be facilitated by specific BMLs. An example is geoBML. Such reasoning capabilities are fundamental to enabling transformation through C2-Simulation interoperation and also to providing capabilities for future experimentation.

7.0 REFERENCES

Battle Management Language Transformations

Major Frederic Bernard
CDEF / DSRO
Paris, France
frederic.bernard@cdef.terre.defense.gouv.fr

Lionel Khimeche
DGA/DET
Issy les Moulineaux, France
lionel.khimeche@dga.defense.gouv.fr

Patrick de Champs
EADS
Velizy Villacoublay, France
patrick.de-champs@eads.com

Dr. J. Mark Pullen
Dr. Michael Hieb
C4I Center, George Mason Univ
Fairfax, Virginia, USA
mhieb@gmu.edu
mpullen@gmu.edu

Michael W. Powers
Topographic Engineering Center
US Army, Ft. Belvoir, Virginia, USA
michael.w.powers@erdc.usace.army.mil

William P. Sudnikovich
Adam Ritchie
Atlantic Consulting Services, Inc.
Shrewsbury, New Jersey, USA
wsudnikovich@acsinc-nj.com
Presentation Overview

- Introduction to BML and C2IEDM
- NATO MSG ET-016
- ET-016 Limited Demonstration Overview
- Demonstration Walkthrough
- Lessons Learned
- Future Work
- Conclusions
BML and C2IEDM
Definition

BML is an *unambiguous* language used for command and control of forces and equipment conducting military operations.

BML is being developed as a standard representation of digitized C2 information for executable plans, orders, requests and reports

- for military units,
- for simulated forces, and
- for future robotic forces.
Semantic Consistency

Domain Language with Syntax and Semantics

Doctrine

Protocols

XML
Web Services/Grid Services

BML

Representation
Command & Control
Information Exchange
Data Model (C2IEDM)
BML Architecture Overview

C2 Domain Language(s)
- Ground BML
- Maritime BML
- Air BML
- geoBML
- Logistics BML
- Peacekeeping BML

Command and Control Systems

Modeling and Simulation Systems

JC3IEDM database
C2IEDM

The Command and Control Information Data Exchange Model (C2IEDM) provides a standard Command and Control Vocabulary.

C2IEDM implements the principles of object-oriented programming
- Generalization and Specialization
- Inheritance of common attributes

New information can be modeled by extending existing knowledge
C2IEDM/JC3IEDM standard

• The C2IEDM and its successor JC3IEDM form an international interoperability standard for C2.
• They have been developed, with great attention to detail, by the Multilateral Interoperability Programme (MIP) and are supported by NATO.
• A very important aspect is the built-in extensibility of these data models.
• Extensions may be referred back for standardization.
NATO MSG ET-016
I – Objectives

- Establish coherence between C2 and M&S type systems in order to provide automatic and rapid unambiguousinitialisation and control of one by the other
- Explore the emerging concept of “Battle Management Language” to link C2 systems and M&S in the NATO context

Doctrine: Processes and procedures that describe military operations (e.g. field manuals)

Representation: Structure to describe an executable task (e.g. C2IEMD and APP6-A)

Protocols: Rules to communicate BML representations (e.g. XML, Web services)
I – Scope

C-BML is an extension of current C2IEMD

MIP Activities
C2 Systems ↔ C2IEMD ↔ C2 Systems

MSG-048 Activities
C2 Systems ↔ C-BML ↔ M&S Systems

Future Activities
C2 Systems ↔ C-BML+ ↔ Robotics
NATO Operational Benefits

- Reduce or eliminate the overhead on workstation controllers
- Increase preciseness and conciseness in a network centric environment
- Reduce time and effort by only having to input tasks once into system since they are stored and are accessible through a common database
- Facilitate the use of Intelligent Agents in simulations
- Reduce time and effort to produce Operational Orders
- Improve Service, Joint, Combined, and Coalition interoperability

The requirement for improved C2-M&S interoperability has been recognized by NATO bodies for defence planning, training, exercises and support to operations. A NATO effort is necessary to define and standardize an improved C2-M&S interoperability framework and the Coalition BML specification will help fulfill this requirement.
National and NATO Involvement

Denmark
France (Lead)
Germany
The Netherlands
Norway
Spain
UK
USA (Co-Chair)
ET-016 Limited demonstration: Objectives

- Objectives
 - Demonstrate the feasibility of a C-BML/C2IEDM based interface standards using Web Services between national C2IS and M&S-type systems
 - Show limitations of current standards that must be addressed by MSG-048
 - Build experience to help structure the TA
ET-016 Limited Demonstration Overview
Demonstration Architecture

- CAPES COA Definition
- JSAF Simulation
- BML Web services
- C2IEDM+ Database
- APLET COA Definition Simulation

Push COA
Pull COA
BML Web Services and C2I EDM Database

- BML Web services provide generic network-enabled interface to the database
 - XML/SOAP transaction uses C2I EDM tagset
- Database is organized using C2I EDM schema
- Database built on MySQL open source software
- BML provides the context needed to remove ambiguity in orders and represent them in C2I EDM
CAPES

- Combined Arms Planning and Execution monitoring System (CAPES)
- Prototype US Army planning system
- Used to develop a course of action (COA) and generate a plan
- CAPES generates an XML-based scenario file
- US BML system parsed this and translated it to BML objects
- Interfaced to database as “push” element
APLET

- *Aide a la Planification d’Engagement Tactique (APLET)*
- French MoD Research & Technology program
- Intended to analyze simulation concepts for COA analysis for use with French C4I system *SICF*

Objectives

- Automate Military Decision-making Process for COA
- Predict capabilities and added value from simulation
- Explore and solve C4I-simulation interoperability issues
- Define most suitable simulation granularity for COA analysis
- Propose mechanisms to automate OpOrd production
- Interfaced to C2I EDM as both “push” and “pull”
JSASF

- Joint Semi-Automated Forces (JSAF)
- Used by US Joint Forces Command and others for experimentation
- Evolved from Defense Advanced Research Projects Agency (DARPA) Modular SAF (ModSAF)
- Augmented with BML Web service interface to read COA from C2IEMD database
APLET’s two roles

- APLET added a BML interface for limited demonstration
- It functioned as both COA planner and simulation
Web Services Implemented

- BML Web Service
 - Exchange of plans and orders information
 - 5Ws format – natural to military users
 - Updates C2I EDM database
- C2I EDM-oriented transaction Web Service
 - Access to C2I EDM database
 - Composes a group of C2I EDM table updates that achieve a specific function
 - Example: single transaction retrieval of the current position of a unit
 - Deals with four tables that contain the data elements needed to derive the same information
Demonstration Walkthrough
Scenario - Forces

- US Mechanized Infantry Battalion
 - 3 Mechanized Companies
 - 1 Armoured Squadron
 - 1 Recon Platoon
- French Armoured Battalion
 - 3 Armoured Squadrons
 - 1 Mechanized Company
 - 1 Recon Platoon
- Opposing forces
 - 2 Mechanized Companies
 - 1 Recon Platoon
Scenario - Actions (1)

1. Coalition Context Overlay is displayed on the CAPES system and pushed into the C2I EDM enhanced database.
2. APLET pulls the Context Overlay.
3. French Battalion planners request a change in boundary line position.
4. Boundary lines between coalition forces edited on the CAPES system and pushed to the database.
5. French Battalion planners pull revised plan into APLET to display and validate.
6. US Battalion planners develop a course of action on the CAPES system and push the information into data base.
7. French Battalion planners develop a course of action on APLET and push the information into database.

8. French Battalion planners pull combined force COA from database to load APLET simulation.

9. US planners combined force COA out of the database to load the JSAF simulation.

10. JSAF is initialized automatically with all boundaries, phase lines, initial enemy positions, both US and French forces and locations, and also all planned tasks developed by each of the coalition planners ready to execute in the simulation to evaluate the COA.
Simulation Results

• Forces simulated:
 • US Mechanized Infantry Battalion
 ■ 3 Mech companies
 ■ 1 Armor squadron
 ■ 1 Recon platoon
 • French Armored Battalion
 ■ 3 Armor squadron
 ■ 1 Mech company
 ■ 1 Recon platoon
 • Opposing forces
 ■ 2 Mech companies
 ■ 1 Recon platoon
• Results: see following slides
Initial Conditions (CAPES view)
Initial Conditions (APLET view)
Boundary Lines Adjustment on CAPES
Boundary Line Update (APLET view)
US COA Development On CAPES
French COA Development On APLET
Combined Plan (APLET view)
Lessons Learned - Operational

• Data types need to be agreed up and exchanged in advance
 • Dynamically generated instances must be aligned
 • Object characteristics must be agreed
• C2IEDM is subject to interpretation
 • Must use a consistent interpretation
• National doctrines differ
 • Must understand partners’ doctrines to collaborate
Lessons Learned - Technology

• Simulations need to have objects that can be used to represent partners’ equipment
 • A generic set might be best
• Web Services provide a fast, powerful way to develop distributed software
 • Open standards are a key enabler
 • Internet-based testing could further simplify
 ■ Testing for Limited Demonstration could not be undertaken until shortly before the event when the team was all in one place
 ■ But it succeeded despite this
Future Work: BML Grammar

• A complete BML requires a formal grammar
• Example construct:
 \[OB \rightarrow \text{Verb Tasker Taskee (Affected|Action) Where Start-When (End-When) Why Label (Mod)}^* \]
• Exploration of grammar requirements is ongoing
 • See Schade & Hieb, SIW Fall 06 [12]
• Further extensions to C2IEMDM are likely to prove necessary
Future Work: geoBML

• The geoBML project is defining a standardized language to represent geospatial aspects of command and control
 • Described in Hieb et al, ICCRTS’06 [13]
• Goal is to make actionable geo-information products available in the BML framework
 • Complex geographic components will be created and stored in a Geographic Information System (GIS) rather than using the C2IEDM
• geoBML will provide a uniform context for C2
 • Must be unambiguous as in all BML
geoBML Focus

• Geo-environmental information is ubiquitous across all parts of the C2 system
• This information is essential for decision-making
 • geoBML abstracts essential information rather than providing detailed
• Provides:
 • Provide a meaningful structure relating to JC3IEDM
 • Interrelated use cases to evolve BML grammar
 • Unified representational foundation for cognitive and automated processes
geoBML with Service Oriented Architectures

- The SOA approach (using Web services) adopted by BML will require extension for geoBML
 - Chosen because it supports composability and rapid development
 - But it has serious issues with trustworthiness and efficiency as expressed by Birman
 * (IEEE Computer, Feb 2006)
 - In particular, data-intensive information flows are expensive to support given the high overhead in Web services
Conclusions

- The ET-016 recommendations were approved
 - MSG-048 Technical Activity kickoff May 2006
- The Limited Demonstration gave us great encouragement that MSG-048 will show productive ways for NATO to use C-BML
- It also taught lessons about development methodology
 - BML provides an effective way to communicate commander’s intent, unambiguously
 - Web Services provide a powerful approach to distributed software development
 - C2IEMD provides an essential common representation
 - But none of these removes the need for detailed coordination of national object characteristics and doctrine
- BML tasking grammar and geospatial BML hold high promise for the future