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1.0 OUTLINE 

• Introduction – Experiment/Testing in Flight and on Ground 

• Requirements for Ground Test Simulation in Hypersonic/Hypervelocity Flows 

• Mach Number/Reynolds Number Simulation and Aerothermal Tests for Shuttle 

• Numerical Codes/Physical Models Evaluation Studies 

• Velocity/Density Simulation and Evaluation of Vehicle Performance 

• Velocity/Altitude Simulation and Scramjet Engine Testing 

• Conclusions 

2.0 INTRODUCTION – EXPERIMENT/TESTING IN FLIGHT AND ON THE 
GROUND 

Vehicle and Systems Evaluation

• Vehicle Performance
– Vehicle Stability
– Control System Effectiveness
– TPS Performance

• Ablation/Recession
• Transpiration Active Cooling 

Systems
• Component Testing

– Seekerhead coolant system
– IR detector
– DAC Thrusters
– Shroud and stores separation

• Ram/Scramjet Testing
– Vehicle stability and control (power 

off and on)
– Thrust performance
– Starting and inlet performance 
– Performance of thermal protection 

and thermal balance systems

Flight Test Experiments

– Measurements of Real Gas Effects
• Catalytic heating effects, flowfield 

radiation, electronic plasma,  flap 
forces and heating, viscous/inviscid 
interaction, boundary layer transition

– Transitional Flows
• Boundary layer tripping with  

roughness and blowing
• Transitional flow over compression 

surfaces
– Turbulent Interacting Flows

• Turbulence models for separated 
shock wave/turbulent boundary layer 
interaction

• Turbulence/flow chemistry plus 
combustion interaction 

• Transpiration Cooling and ablation
– Ram/Scramjet Technology
– Ignition, mixing, shock interaction and 

combustion
– Starting and inlet performance  

Figure 1:  Flight Tests and Flight Experiments 

In general there are two types of flight tests. As illustrated in Figure 1, the first type is to evaluate 
vehicle performance and systems, and the second type of flight tests is to perform experiments to 
evaluate key phenomena, the results of which would be employed to validate prediction techniques 
and improve models of physical phenomena employed in the numerical codes. Vehicle stability and 
control are of major concern in the vehicle flight tests, as well as TPS performance, and the 
performance of control thrusters and other guidance components. In tests of Ram or Scramjets, 
evaluating vehicle thrust is of primary importance followed by the performance of thermal protection 
systems. The major areas of interest in flight tests experiments are real gas effects, boundary layer 
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transition, viscous interaction phenomena in laminar and turbulent flows, and ignition, mixing, shock 
interaction and combustion phenomena for airbreathing systems.  

• Real gas effects on laminar interacting flows
– Computational methods to describe flows between rarified and continuum flow regimes 
– Models of real gas chemistry for velocities above 10,000 ft/s
– Models of flow/surface interaction in hypervelocity flows
– Surface catalysis effects 

• Shear layer and boundary layer transitional flows
– Modeling tripping mechanisms associated with surface roughness, blowing, vibration and 

freestream disturbances 
– Real gas effects
– Shock interaction and pressure gradient effects

• Turbulent interacting flows 
– Developing turbulence models for separated regions of shock wave/turbulent boundary layer 

interaction
– Modeling turbulence/flow chemistry/combustion interactions
– Transpiration cooling and ablation 

• Mixing and Combustion
– 3D mixing of fuel injector systems
– Ignition and ignition delay aerothermodynamics
– Mixing and combustion including shock interaction phenomena

 
Figure 2:  Key Areas where Experimental Research is Required to Generate Accurate Design 
Techniques 

In hypersonic flows, there are a number of key areas where the physical models in numerical 
prediction techniques must be improved and evaluated, as indicated in Figure 2. For laminar flows in 
the presence of real gas chemistry, the models of chemical nonequilibrium phenomena and radiation 
effects at velocities above 15,000 ft/s must be validated particularly in the area of 
vibration/dissociation coupling. The prediction of boundary layer and shear layer transition remains a 
major problem and experiment is required to evaluate real gas effects on these phenomena. The 
aerothermal loads developed during shock wave/turbulent boundary layer interaction cannot be 
predicted with any accuracy in hypersonic flows and when combined with combustion effects and 
active cooling, prediction of these flows becomes very difficult and the modeling employed in the 
prediction schemes require serious evaluation. For the design of ram and scramjet engines modeling of 
the 3D mixing phenomena associated with fuel injection systems, ignition and combustion of the fuel 
and the effects of shock interaction phenomena on engine performance remains to be investigated in 
experimental studies. 

Good to excellentGood to poorAccuracy of nonintrusive 
diagnostics 

Good to excellentGood to poorAccuracy of surface measurements 
(heat transfer, pressure, skin 
friction, etc.)

ExcellentGood to poor – for spin stabilized 
flight

Vehicle dynamics (coning and roll 
rate)

ExcellentPoor to goodModel attitude ( )

Excellent – below Mach 8 
Good to excellent – Mach 8 to 12
Good – Mach 12 to 24

Good – horizontal trajectory
Good to poor – diving trajectory

Knowledge of test conditions

Good to excellentNoneRepeatability

Good to excellentPoor – on first two flights
Good – on subsequent flights

Probability of successful experiment

Ground Test ExperimentsFlight Test Experiments Knowledge of Boundary 
Condition

 
Figure 3:  Factors Influencing Accuracy of Flight and Ground Test Experiments 

Flight test experiments are significantly more risky and the results are in general less accurate than the 
equivalent studies in ground test facilities (see Figure 3). Apart from the poor chances of obtaining 
good data in the first few flights, all the instrumentation is lost. Accurately defining the test 
environment is generally poor. A major reason for performing flight test experiments is to obtain an 
environment that is “clean” in respect to the turbulence level in the freestream and any effects of 
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nonequilibrium flow chemistry. In general, the scale of the vehicle employed in the flight test 
experiments can be replicated in today’s large scale ground test facilities. The major drawback in 
flight test experiment is launch and vehicle cost and the total loss of all instrumentation. 

3.0 REQUIREMENTS FOR GROUND TEST SIMULATION IN 
HYPERSONIC/HYPERVELOCITY FLOWS 

Figure 4 illustrates that the requirements for ground test simulation in hypersonic/hypersonic flows 
generally vary with the object of the study. In a number of cases, the vehicle stability and aerothermal 
loads can be evaluated in a low enthalpy facility by simulating the Mach number and Reynolds 
number of the flow coupled with the wall to total temperature ratio. Also, studies of stores and stage 
separation may be conducted in low enthalpy flows. However, investigating real gas effects and 
evaluating airbreathing propulsion systems must be conducted under fully duplicated flight conditions 
with full-scale test articles. Materials and heat sink testing of the ablative components of hypersonic 
vehicles have traditionally been tested in arc jet facilities whose flows in general are not suitable for 
aerothermal/nonequilibrium flow studies. 
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Figure 4:  Ground Test Simulation of Hypersonic Flight 

The requirements for simulation of viscous interaction and real gas phenomena in hypersonic flows 
are best shown in terms of a velocity/altitude chart similar to that presented in Figure 5. As illustrated 
in this figure, real gas and nonequilibrium flow phenomena are present in flows above 6,000 ft/s and 
can significantly influence the performance of existing and developing hypersonic vehicles. The 
pressure and temperature requirements to generate such flows are shown in Figure 6 for hypersonic 
facilities where the flow is expanded from stagnation conditions in the reservoir of the tunnel. For 
velocities of above 12,000 ft/s the pressure and temperature requirements are such that it is impossible 
to contain such a stagnation environment longer than 100th of a second without significant damage to 
the reservoir region of the facility. Above 15,000 ft/s, not only is it extremely difficult to develop the 
temperatures and pressures required to directly simulate the flight environment, the properties of the 
gas in the reservoir and the gas expanded to freestream conditions are not well known and for most 
testing constitute a significant departure from the gas encountered by a flight vehicle traveling at these 
velocities. 
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Figure 5:  Velocity/Altitude Trajectory of Hypersonic Airbreathing and Re-entry Vehicles 

 

 

Figure 6:  Reservoir Pressure and Temperature Requirements for Hypersonic Facilities 
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Figure 7:  Temperatures Generated in Hypervelocity Flows 

Again, as illustrated in Figure 7, the temperatures generated in hypervelocity flows can have a 
significant effect on scramjet performance and the performance of control and guidance systems for 
interceptors travelling at velocities above 8,000 ft/s. 
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Figure 8:  Hypervelocity Ground Test Facilities for Real Gas Studies  

Figure 8 shows a compilation of the performance of high-enthalpy facilities capable of studying the 
aerothermal and nonequilibrium flow characteristics of hypersonic vehicles. The majority of the 
facilities in this plot are reflected shock tunnels whose driver sections employed either electrically 
heated hydrogen or helium (LENS I and II), piston heated helium (HIEST, HEG), or a combustible gas 
(HyPulse) to drive the incident shock. The two expansion tunnels (LENS X, HyPulse SET) employ 
heated hydrogen and combustion in the driver sections of the tunnel. The F4 Hot Shot tunnel employs 
an electrical discharge to heat the test gas and the resultant fluid can be contaminated in such a way 
that studying vibrational and chemical nonequilibrium effects in these flows is difficult. Generally the 
short duration of the flow generated in shock tubes is such that it is not possible to successfully study 
complex flow phenomena involving shock waves, combustion and wake flows. 

 

Mach No./Reynolds No. Simulation Numerical/Modeling Evaluation

 

Density/Velocity Simulation Velocity/Altitude/Vehicle Size Duplication
 

Figure 9:  Simulation Requirements to Evaluate the Performance of Numerical Code/Models 
and Hypersonic Airbreathing and Re-entry Systems 

The use of wind tunnels to generate information with which to evaluate vehicle performance to 
improve and validate prediction methods for hypersonic vehicle design can be divided into four 
classes of simulation as illustrated in Figure 9. Most aerothermal testing that has been performed in 
support of the design of vehicles like the space shuttle has basically employed Mach number/Reynolds 
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number simulation, testing without duplicating the total temperature of the flow but in some cases 
matching the wall-to-freestream stagnation temperature ratio. In these tests, the important 
measurements are pressure and heat transfer distributions, and the major phenomenon which must be 
replicated is the position of transition on the vehicle thereby ensuring heating levels can be related to 
those encountered in flight in terms of the appropriate Stanton number and Reynolds number of the 
flow. Of course, experiments to evaluate the performance of various numerical prediction schemes and 
the modeling employed in them can be performed in many ways as long as the key mechanisms of 
interest are correctly handled in the selection of test conditions. There are some tests for which the 
requirement to match altitude can be loosened to obtain density/velocity simulation. However, again 
for aerothermal tests, the position of transition on the body must be replicated to accurately obtain the 
heating loads. Also, in studies of the performance of seekerheads similar to those shown in Figure 9, it 
is important to replicate the turbulent characteristics of the turbulent boundary/shear layer flow over 
the window. To accurately evaluate the performance of scramjet-engine powered hypersonic 
interceptors, it is of key importance to duplicate not only the velocity/altitude conditions but also the 
size of the vehicle in order to obtain accurate aerothermal loads and vehicle thrust performance. 

4.0 MACH NUMBER/REYNOLDS NUMBER SIMULATION AND 
AEROTHERMAL TESTS FOR SHUTTLE 

As discussed above, the majority of tests conducted to evaluate the performance of hypersonic 
vehicles or to investigate and evaluate prediction methods have employed Mach Number/Reynolds 
number simulations. Compilations of the Mach Number/Reynolds Number capabilities of large-scale 
American and European hypersonic ground test facilities are shown in Figure 10. Also shown on this 
figure is a line drawn at a Reynolds number of 7 million which typically represents the requirement to 
obtain turbulent flows on models whose dimensions are two foot or larger. Clearly, in the high Mach 
number regime, there are few tunnels that are capable of generating fully turbulent flows without 
tripping, and tripping laminar boundary layers at Mach 8 is also difficult because of the large 
hysteresis effects in these flows. 

 

Figure 10:  Mach Number/Reynolds Number Capabilities of American and European 
Hypersonic Ground Test Facilities 

Many of the studies to evaluate the aerothermal performance of NASA and DoD vehicles have been 
performed to match not only the Mach number/Reynolds number of the flow but to also match the 
boundary layer to model length characteristics by matching the ratio of the wall temperature to the 
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recovery temperature. This is particularly important in the scale of viscous/inviscid interaction regions 
over control surfaces and in regions of shock impingement that are to be accurately scaled (see 
Figure 11). 

 

Figure 11:  Mach Number/Reynolds Number, Twall/T0 Simulation for Aerothermal Studies on 
Hypersonic Re-entry Vehicles 

In many ground test facilities selecting the model size and placing it accurately in the core flow is 
achieved most efficiently by computations to describe the flow characteristics around the model and in 
the test section as illustrated in Figure 12. This is of key importance where large models are required 
and the model can be positioned upstream of the nozzle exit in exploiting the uniform flow regions 
both upstream and downstream of the exit plane. 
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Figure 12:  Computer Simulation of Nozzle Flows in Support of Ground Test Program 

Also in the design of experimental studies, advanced computer solutions of the flow over the body are 
employed to select the stagnation temperature of the flow, test conditions and the positions of the 
instrumentation as illustrated in Figure 13. Each set of flow calibrations conducted with the survey 
rake similar to that shown in Figure 14 is matched with a computer solution of the entire flowfield 
initiated in the reservoir region of the facility. Comparisons between measured and predicted flowfield 
characteristics are illustrated in Figure 14. For low density flows, where viscous/inviscid interaction is 
of key importance, matching the rarefaction parameter is one way of simulating these flows. A 
compilation of the European capabilities to match rarefaction parameters is shown in Figure 15.  
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Figure 13:  Numerical DPLR Simulations to Support the Test Condition Selection and 
Instrumentation Placement 
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Figure 14:  Flowfield Calibration in LENS II Test Facility 

 

Figure 15:  Rarefaction (M/√Re) and Density x Length (ρL) Parameters for Re-entry 
Simulation 
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These parameters are important in evaluating the high altitude aerothermal characteristics of vehicles 
like the X37 and X38 as illustrated in Figure 16 where the capabilities of the LENS facility is 
compared with the X37 trajectories plotted in terms of the rarefaction parameter and Mach number of 
the flow. 

 

Figure 16:  Viscous Interaction Parameters for X37 Vehicle 

5.0 GROUND TEST FACILITIES TO EXAMINE REAL GAS EFFECTS IN 
HYPERVELOCITY FLOWS MAJOR HEADING HERE 

To examine real gas effects in ground test facilities it is necessary to duplicate the velocity at the 
altitude of interest or, assuming that the chemistry is controlled primarily by binary scaling, replicate 
the binary scaling parameter ρL. For code validation studies, one can relax some requirements by 
duplicating the velocity and density of the freestream. However, for investigating flight vehicle 
performance of, for example, scramjets, it is necessary to duplicate the viscous environment, the 
nonequilibrium of the freestream, and the combustion process which requires full-scale test articles 
run at duplicated velocity/altitude conditions. A compilation of the ground test facilities capable of 
studying real gas effects are shown in Figure 17 in terms of the capabilities to generate duplicated 
velocity/altitude conditions. For small facilities where full-scale vehicles cannot be employed,  

 

 
 

Figure 17  Hypervelocity Ground Test Facilities for Real Gas Studies 
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6.0 VELOCITY DENSITY SIMULATION FOR THE EVALUATION OF 
HYPERSONIC VEHICLE PERFORMANCE 

For flows where real gas effects and combustion can have a significant effect on hypersonic vehicle 
performance it is necessary to duplicate the total enthalpy, density and pressure to obtain meaningful 
results. Examples of such flows are shown schematically in Figure 35 for flows associated with lateral 
thrusters employed in hypersonic interceptors, the flow over a seekerhead where an infrared sensor is 
employed to detect an oncoming missile, and in the scramjet engine where both real gas and 
combustion effects are of major importance.  Because of the relatively small size (~12 ft) of the kill 
vehicle of a hypersonic interceptor it is possible to test a full-scale vehicle at fully duplicated 
conditions in a large hypersonic test facility.  
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Figure 35:  Flows where Total Enthalpy, Density and Pressure must be Duplicated – Real 
Gas Effects 

Examples of two interceptor kill vehicles, the Army’s AIT interceptor and the Navy’s Standard 
Missile BLK IVA interceptor, are shown in Figure 36 together with a schematic of the IR 
instrumentation employed to examine the shock layer radiation to the seekerhead. 
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Figure 36:  Aerothermal and Aero-optical and Radiation Studies of Full-Scale Interceptor 
Seekerheads/Kill Vehicle 
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Aerothermal and aero-optical studies were conducted with a full-scale replica of the Navy’s Standard 
Missile BLK IVA under Mach 4 conditions to evaluate the effectiveness of the dome cooling system 
and determine the aero-optical performance of the seekerhead situated in the dome as shown in 
Figure 37. The aerothermal studies were conducted with the Standard Missile heated to flight 
temperatures using electrical heating techniques in both the missile body and dome as illustrated in 
Figures 38 and 39. The dome temperatures varied from room temperature to the recovery temperature 
of the flow in order to determine the heat transfer coefficient and the recovery temperature distribution 
for a range of vehicle attitudes and coolant heating rates. 

 

Figure 37:  Aerothermal Studies with the Full-Scale Navy Standard Missile BLK IVA 

 

Figure 38:  Aerothermal Testing with the Standard Missile BLK IVA Heated to Flight 
Temperatures  

Missile installed in LENS II

Dome Heater 
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Figure 39:  Standard Missile Heated Electrically to Flight Temperatures 
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The dome was highly instrumented with high-temperature heat transfer gages as illustrated in 
Figure 40. The distribution of heat transfer measured with this instrumentation around the dome is also 
illustrated in this figure. Figure 41 illustrates the method of analysis and typical recovery temperature 
and heat transfer coefficient distribution which were obtained in these studies. 
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Figure 40:  Measurements of Heat Transfer, Recovery Temperature and Heat Transfer 
Coefficient with a Heated Standard Missile Dome 
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Figure 41:  Analysis of Heat Transfer Measurements to Obtain Recovery Temperature and 
Heat Transfer Coefficient 
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Most windows on seekerheads of interceptors to be flown at hypersonic velocities employ active 
cooling and this active cooling system can cause significant aero-optic distortions potentially limiting 
the performance of the seekerhead. Typically helium is employed as a coolant gas both to match the 
freestream velocity and because of its low reflective index to minimize the optical distortions. 
Figure 42 illustrates why it is important to match the total enthalpy/velocity and density to replicate 
the mixing flow over the windows and hence the aero-optic distortions. If tests are conducted in a low 
enthalpy facility, both the coolant effectiveness and the aero-optic distortion cannot be evaluated with 
any accuracy whatsoever. 
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Figure 42:  Total Enthalpy and Density must be Duplicated to Replicate Mixing and Aero-
Optic Distortion Effects 

Figure 43 shows a number of seekerhead window configurations tested at full scale at fully duplicated 
flight conditions in the LENS I tunnel at CUBRC. All of these configurations employ active window 
film cooling, although in the Lockheed seekerhead the coolant is contained within the seekerhead 
window. Obtaining accurate aero-optical data to evaluate image distortion and boresight shift through 
the film cooled window is an extremely difficult task. To obtain measurements of boresight shift 
within an accuracy of 10 microradians requires an aero-optic evaluation suite which is integrated with 
the tunnel (see Figure 44) so that the optical bench system is understood during the operating time of 
the wind tunnel. 
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Figure 43:  Aerothermal and Aero-optical Studies with Full-Scale Seekerheads at Duplicated 
Flight Conditions 

Aerothermal and Propulsion Ground Testing That Can Be Conducted 
to Increase Chances for Successful Hypervelocity Flight Experiments 

RTO-EN-AVT-130 1 - 13 

 

 



 

Wind Tunnel Internally And Vibrationally Isolated From
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Evaluation System.
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Aerodynamic Loads During Tunnel Operation.
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Figure 44:  Wind Tunnel and Aero-Optic Suite:  A Totally Integrated Key Design Feature 

Examples of measurements obtained to evaluate optical distortion, boresight error shift, and boresight 
error slope are shown in Figure 45. 
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Figure 45:  Aero-Optic Studies with High-Speed Interceptor at Angle of Attack for Low Look 
Angles 

In these studies we measured the aero-optic distortion associated with the external flow over the 
window; however, we also obtained measurements of the distortion through the window itself as it is 
heated by imposing an impulsive heat load as illustrated in Figure 46.   
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Figure 46:  Measurements of Aero-Optic Distortion associated with Changes of the 
Refractive Index of the Heated Dome 

These programs were conducted to evaluate seekerhead configurations designed to be operated in the 
atmosphere; however testing can also be conducted to evaluate seekerhead performance in low density 
flows associated with exo-interceptors similar to the LEAP configuration shown in Figure 47. 

 

Figure 47:  Low Density Studies of the LEAP Seekerhead 

These studies were principally oriented toward measuring the heating loads on the seekerhead and 
validating the DSMC prediction techniques employed in their design. Typical full and subscale models 
of this configuration are shown in Figure 48. 

Quarter-Scale 
Rake Model

Quarter-Scale Model

Full-Scale Model

 

Figure 48:  Design, Construction and Instrumentation of Seekerhead Models 
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6.1 Studies of Jet Interaction Phenomena Associated with Divert Thruster 
Performance 
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Figure 49:  Aerothermal and Radiation Studies of Divert Thruster Performance with 
Duplicated Vehicle and Solid Propellant Rocket Motor 

Divert thrusters provide the major control system for an endo-interceptor kill vehicle; however, the 
rocket motors which are employed in the divert thruster can generate significant interaction 
phenomena which can have major effects on the jet interaction forces and the flowfield ahead of the 
thruster and over the seekerhead window as illustrated in Figures 49 and 50. Also shown in Figure 49 
are the IR measurement systems employed to determine the shock layer radiation and provide images 
of the burning shear layer and shock interaction phenomena which occur over the vehicle. 
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• Gross flow unsteadiness associated with interaction induced separated regions in high altitude flows

• Influence of entrainment of thruster gases in jet induced separated flows on the scale and unsteadiness 
of interaction regions

• Aero-optics/radiation associated with burning unsteady jet interaction region

• Aero-acoustic effects associated with the pressure fluctuations induced by unsteady interaction

• Unsteady aerodynamic loads during divert jet firing

 

Figure 50:  Key Flow Phenomena and Critical Issues for Flight and Ground Testing of Divert 
Thrusters 
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Figure 51:  AIT Kill Vehicle Densely Instrumented with Heat Transfer and Pressure Gages 

In order to obtain accurate information of the mean and fluctuating flowfield over such configurations, 
detailed time resolved pressure and heat transfer measurements must be made. Figure 51 shows the 
densely instrumented full-scale model of the AIT interceptor and measurements from these 
instruments are presented in Figure 52 for reacting and non-reacting interaction regions conducted by 
employing air and nitrogen, respectively, as the freestream gas. 
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Figure 52:  Measurements of the Heat Transfer and Pressure in the Jet Interaction over the 
AIT Kill Vehicle 

Direct measurements of the forces generated by the divert thruster were also made using a high 
frequency force balance system similar to that shown in Figure 53. Also high-speed high-frequency 
acoustic instrumentation was employed to determine the loads transmitted to the seekerhead through 
the kill vehicle which resulted from the major unsteadiness of the flows ahead and behind the thruster 
as illustrated in Figures 54, 55 and 56. Computations of the unsteady nature of these flows were 
attempted using time-resolved Navier-Stokes prediction techniques (Figure 57). As mentioned earlier, 
radiation measurements were obtained both through the seekerhead window and from cameras situated 
outside the tunnels to evaluate the radiation characteristics of the flows over the seekerhead 
(Figure 58). 
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Figure 53:  Force Measurements of Jet Interaction Effects at Duplicated Flight Conditions 
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Figure 54:  Schlieren Photographs of Jet Interaction 
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Figure 55:  Large Unsteady Pressure Loads Creating Acoustic Problems with Infrared Seeker 
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Figure 56:  Unsteady Pressure Loads ahead of Divert Thruster 

 

Perrell, E., and Dash, S.M., "Transient Simulation and Preliminary Data Comparisons for Interceptor Missile Divert Jet 
Interactions," presented at 2000 JANNAF EPTS & SPIRITS User Group Joint Meeting, Nellis Air Force Base,Las Vegas, NV, May 
15-19, 2000.

 

Figure 57:  Navier-Stokes Computations depicting the Unsteady Nature of the Interaction 
Region around the Divert Thruster 

Seekerhead window 
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separated region induced 
by jet interaction
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Figure 58:  Infrared Radiation from Flow over Seeker Window and from Divert Thruster 
Flowfield 
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7.0 VELOCITY/ALTITUDE SIMULATION AND SCRAMJET ENGINE 
TESTING 

To accurately evaluate the performance of scramjets the size typical of interceptors or prototypes such 
as the X43 and ARRMD, it is necessary to duplicate the flight environment and employ a full-scale 
test article. Only in this way can the complex flow in the inlet and isolator as well as the combustion 
process be accurately simulated. The large-scale vitiated air and shock tunnel test facilities currently 
available can accommodate full-scale vehicles. As illustrated in Figure 59, the X43, ARRMD and 
HyCause flight vehicles are shown positioned in the LENS II tunnel for testing at velocities from 
6,000 to 11,000 ft/s.   

HyCauseX-43 ARRMD  

Figure 59:  Velocity/Altitude Duplication for Full-Scale Scramjet-Powered Testing of Flight 
Vehicles 

Figure 60 shows the key fluid dynamic, aerothermal and combustion phenomena which are 
encountered in a scramjet-propelled vehicle. In addition to real gas effects, these flows are influenced 
by boundary layer transition, shock boundary layer interaction, and mixing and combustion basically 
combining all of the phenomena which are difficult to predict in numerical codes.  
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Figure 60:  Key Aerothermal and Combustion Problems Associated with Scramjet 
Propulsion 
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Figure 61 shows the performance of large-scale ground test facilities which can be employed in the 
development of scramjet engines. Most scramjet testing is performed in intermittent or short duration 
test facilities. For the intermittent facilities, the hot gas is generated either by a combustion process or 
through electrically heating a pebble bed storage vessel. Because of energy requirements these 
facilities are limited in pressure and temperature performance at Mach numbers below 7. Flow 
vitiation also presents a problem in evaluating the contribution of combustion products on the ignition 
and combustion of the fuel inside the engine. Short-duration facilities, those with test times between 3 
ms and 100 ms, have been employed to obtain clean air measurements from Mach 6 to 12 and have the 
additional advantage that high pressure can be generated allowing testing for dynamic pressures up to 
3,000 psf. Although pulse facilities (test times <1 ms) have been employed to investigate combustion 
in a small scale engine, serious questions remain as to the effect of the short duration on the 
measurements in the combustor. 
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Figure 61:  Capabilities of Large-Scale Scramjet Ground Testing Facilities 

Figure 62 shows a number of full-scale scramjet engines which have been tested in the LENS facility 
with full-scale vehicle and engine components. Most of these tests have been conducted in the LENS I 
facility at Mach numbers from 6 to 12, although a series of tests were accomplished with the HyCause 
and HyFly missile at Mach numbers between 3.5 and 6. Figure 62 shows photographs of these engines 
in these two tunnels. 

NASP Semi-Direct Engine Configuration Army Research Engine HyTech Configuration

HyFly ConfigurationHyCause EngineInward-Turning Engine Inlet  

Figure 62:  Scramjet Engines Tested in LENS Facility 
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Figure 63 shows the capabilities of the LENS tunnels to perform scramjet testing from Mach 3.5 to 
Mach 18. LENS X has not been used for scramjet testing. However, it has the capability to be 
employed in freejet and semi-freejet testing at Mach 15 and 20, respectively, as illustrated in 
Figure 64.  
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Figure 63:  LENS Propulsion Facilities to Investigate Ramjet/Scramjet Performance from 
Mach 3.5 to Mach 18 
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Figure 64:  LENS Capabilities for Full-Scale Ground Tests 
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Figure 65 shows the velocity/altitude performance of large propulsion facilities in the U.S. including 
AEDC, which is employs a nitrogen test gas but can be used in inlet studies. Also shown in this figure 
are the range of test points at which scramjet testing has been conducted in the LENS I and II test 
facilities. These studies have covered vehicles from the NASP combuster to the current Army research 
engine 

AEDC APTU
NASA Langley 8” HTT

NASA GLEN HTF (Plum Brook)

AEDC Tunnel C AEDC Tunnel 9

AEDC H2 ARC

HyFly HyCause  

Figure 65:  Velocity/Altitude Performance of LENS Tunnels and Other Large Propulsion Test 
Facilities 

These engine configurations are shown in Figure 66. During the NASP program, semi-direct testing 
was performed at Mach 12 with the NASP combuster (see Figure 67). Similar tests were repeated in 
the LENS I facility. During this same period, an extensive set of code validation measurements were 
done to examine key aerothermal phenomena such as shock/shock interaction, transition on inlets, film 
and transpiration cooling, and flow relaminarization in the nozzle with the models shown in Figure 68. 

•NASP Semi-Direct Engine Configuration

•X-43 Mach 10 Keel Line 6 and 8

• AFOSR Mach 7 Hydrocarbon Engine

• HyFly Configuration Test

•HyCause Mach 10 ITEC Engine
 

Figure 66:  Full-Scale Engine Ground Test Evaluation of Contemporary Ram/Scramjet 
Designs at Fully Duplicated Flight Conditions 

 

Figure 67:  NASP Studies at Calspan 
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Figure 68:  Studies of Fundamental Flow Phenomena for CFD Prediction/validation for NASP 

Detailed heat transfer and pressure measurements were made in the NASP engine shown in Figure 69 
for a range of Mach numbers from 8 to 12. 

 

Figure 69:  NASP Scramjet Engine tested in LENS I 

Typical time histories of heat transfer and pressure instrumentation in the combuster are shown in 
Figure 70. Measurements were typically made over a 2 ms test window in the 8 ms flow length 

 

 

 

Figure 70:  Typical Time Histories of Heat Transfer and Pressure for the Mach 12 Combustor 
Tests 
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Figure 71:  Testing of Full-Scale X-43 Flow paths [KL6 & 8] at Duplicated Flight Conditions 

Tests were conducted with two full-scale flowpaths for the X43 engine for a range of dynamic 
pressures at the Mach 10 flight condition. Figure 71 shows the X43 configuration and the research 
engine in which the measurements were made. 

P0 T0 M∞ ρ∞ P∞ Q∞ T∞

Averages (psia) (°R) (slugs/ft·s) (psia) (psia) (°R)
Q=750 6358.90 6982.70 10.09 1.490E-05 7.440E-02 5.17 417.19

Q=1000 9226.92 7042.02 10.10 2.036E-05 9.936E-02 7.09 407.96
Q=1350 12306.17 7179.38 10.08 2.652E-05 1.327E-01 9.44 417.99

Q=750
M∞ Q∞  (psf) P∞ (psia) ρ∞ (slugs/ft·s) V∞ (ft/s) T∞ (°R) Alt (kft)

X-43 10.00 750.00 7.442E-02 1.453E-05 10161.91 429.69 117.44
LENS 10.09 744.48 7.440E-02 1.490E-05 9996.51 417.19 117.44
% Diff 0.90 0.74 0.03 2.55 1.63 2.91 0.00

Q=1000
M∞ Q∞  (psf) P∞ (psia) ρ∞ (slugs/ft·s) V∞ (ft/s) T∞ (°R) Alt (kft)

X-43 10.00 1000.00 9.919E-02 1.983E-05 10042.81 419.69 110.86
LENS 10.10 1020.93 9.936E-02 2.036E-05 10014.86 407.96 110.82
% Diff 0.98 2.09 0.17 2.66 0.28 2.80 0.04

Q=1350
M∞ Q∞  (psf) P∞ (psia) ρ∞ (slugs/ft·s) V∞ (ft/s) T∞ (°R) Alt (kft)

X-43 10.00 1350.00 1.340E-01 2.735E-05 9936.25 410.83 104.15
LENS 10.08 1359.61 1.327E-01 2.652E-05 10125.17 417.99 104.35
% Diff 0.82 0.71 0.99 3.02 1.90 1.74 0.19

 

Figure 72:  Comparison between X-43 Flight Conditions and LENS I Test Conditions 

Figure 72 demonstrates the test conditions at which measurements were made and demonstrates the 
close simulation of the flight test conditions. 
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No Trips

q=1,350 psf
Trips

 

Figure 73:  Effect of trips on Flow Pattern and Heating Over Inlet 

During this test series, detailed studies were made of the flow over the inlet ramp with a range of trip 
configurations employing both Schlieren (Figure 73) and holography (Figure 80) to visualize and 
quantify the flowfield. 

Inlet Ramp
Without Trips

Infinite Fringe Holography

Inlet Ramp
With Trips

Pulsed Holography

 

Figure 74:  Flow Visualization with Infinite Fringe and Pulsed Holography 

Detailed heat transfer and pressure measurements were made over the inlet and closed cowl 
configuration for a range of test conditions and model temperatures to examine boundary layer trip 
effectiveness and closed door heating (see Figures 74 and 75). 

•15 Runs Completed to Obtain 
Acreage Heating and Pressure Data 
on the X-43 Closed Cowl 
Configuration

•Heating and Pressure Data 
Obtained On Closed Cowl, Exposed 
Inlet Sidewalls, and Forebody

•Obtained Forebody Acreage Data 
to Access Tripping

 

Figure 75:  X-43 Closed Cowl Heating Investigation in LENS I 
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The Army generic engine was also employed in studies for AFOSR of a Mach 6 scramjet engine using 
both hydrogen and hydrocarbon fuels. Figure 76 shows the engine installed in the LENS I tunnel for 
these tests. An installation drawing of the model in the tunnel showing the heated Ludweig tube supply 
system is shown in Figure 77. 

g

 

Figure 76:  Model Configuration used for AFOSR Studies 

 

Figure 77:  Heated Ludweig Tube Supply System for Scramjet Fuel 

This engine was highly instrumented with piezoelectric pressure and thin-film heat transfer gages as 
shown in Figure 78. 

 

Figure 78:  Instrumentation Layout on Generic Scramjet Engine 

 

Aerothermal and Propulsion Ground Testing That Can Be Conducted 
to Increase Chances for Successful Hypervelocity Flight Experiments 

RTO-EN-AVT-130 1 - 27 

 

 



 

Typical sets of heat transfer measurements obtained for tare conditions and with hydrogen and 
hydrocarbon fuels are shown in Figure 79. Under both conditions we employed hydrogen/oxygen 
torch igniters situated in a cavity flameholder to initiate burning through the engine. 
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Figure 79:  AFOSR Studies of Mach 7 Hydrocarbon Engine 

Detailed aerothermal studies were conducted to develop the trip configurations for the HyFly vehicle 
and measure the interference and acreage heating over the complete vehicle. Figure 80 shows the full-
scale HyFly configuration installed in the LENS I tunnel, the positions of the heat transfer 
instrumentation and typical measurements made downstream of the trip on the inlet, shock interaction 
heating levels between the intakes, and gap heating measurements under the fins. 
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Figure 80:  Full-Scale HyFly Aerothermal Studies in LENS II at Mach 6 Duplicated Flight 
Condition 

Some of the most recent studies conducted in the LENS tunnels were to develop the HyCause “inward 
turning” engine for DARPA to be employed in flight tests conducted in the Australian HyShot series. 
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The basic vehicle configuration and a full-scale ground test model which was tested in LENS I and II 
are shown in Figure 81. 

INWARD TURNING SCRAMJET POWERED MACH 10  VEHICLE CONCEPT

FULL-SCALE GROUND TEST VEHICLE TESTED IN LENS I AND II AT DUPLICATED FLIGHT CONDITIONS

 

Figure 81:  Full-Scale Studies of “Inward Turning” Engine 

A significant effort was expended in the design and optimization of the inlet and the position and size 
of the trips to ensure that a turbulent flow entered the isolator. Pressure contours developed in the 
numerical simulations are shown in Figure 82. The trip configurations employed in the inlet are shown 
in Figure 83 together with the installation diagram for the HyCause engine in the LENS I facility. 

PRESSURE (PSIA)

NUMERICAL SIMULATION OF PRESSURE DISTRIBUTION INSIDE “INWARD TURNING” INLET CONFIGURATION

FULL-SCALE INLET 
CONFIGURATION TO BE  TESTED IN 
THE LENS FACILITY UNDER FULLY 
DUPLICATED FLIGHT CONDITIONS

 

Figure 82:  Experimental and Numerical Evaluation of “Inward Turning” Inlet Configurations 

Geometry of Inlet Trips

11 Feet

 

Figure 83:  ITEC Installed in LENS I Tunnel 
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The HyCause model was highly instrumented with over 400 pressure and heat transfer gages as 
illustrated in Figure 84. 
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Figure 84:  Engine Instrumentation 

We also employed nonintrusive IR and laser diagnostics as well as pitot and total temperature probes 
to evaluate the flow through the engine as illustrated in Figure 85. 

• Flowfield surveys using pitot and total 
temperature probes 

• Infrared measurements to provide 
information on the existence position and 
extent of the region of combustion in the 
engine

• Laser Diode technique to measure the 
distribution of combustion products

 

Figure 85:  Flowfield Surveys at Exit of Combustor Made using Survey Rakes, Nonintrusive 
Infrared and Laser Diode Techniques 

Typical intrusive and nonintrusive measurements made in these studies are shown in Figure 86 
together with calculations made with Navier-Stokes prediction techniques. 

PREDICTION MEASUREMENTS

 

Figure 86:  Survey Rake and Nonintrusive Infrared Measurements to Evaluate Combustor 
Performance 
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Figure 87:  Schematic Diagram of Laser Diode System for Water Vapor and Temperature 
Measurements in Scramjet Engines 

A schematic of the laser diode system employed to measure water vapor and temperature at the back 
of the engine and the hardware associated with the tomography system are shown in Figures 87 and 
88. We are continuing to develop these systems and the results of these measurements are of key 
importance in optimizing the fuel injection systems and engine geometry. 

H2O Concentration Measurement 

MEASUREMENT PREDICTION

 

Figure 88:  Water Vapor Measurements at End of HyCause Combustor with Laser Diode 
Tomography System 
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7.1 Studies to Develop Starting Mechanisms for Highly Contracted Inlet Systems 
In order to start the HyCause engine, which was designed to have a significant internal contraction 
ratio, it is necessary to initiate the flow with a starting door open.  The inlet modified to incorporate a 
starting door is shown in Figure 89.  In these studies conducted in the LENS II facility with the full 
size scramjet engine, we also employed an isolator door (Figure 89) to ensure a stagnated flow through 
the engine during the initial part of the test series. Once flow was established over the engine, the 
isolator door was opened and then the bypass door was closed allowing the engine to successfully start 
as illustrated in Figures 89, 90 and 91.  

ITEC Inlet @ M=7
BYPASS DOOR ISOLATOR DOOR

Started with 
Bypass Door 
Open

Started with 
Bypass Door 
Shut

Unstarted
Inlet

Pressure in Front of Isolator Door

Pressure Behind Isolator Door

 

Figure 89:  Test Time Requirements for Mode Switching and Scramjet Starting Studies (Ttest 
= 70 ms) 

Bypass Door Open, Isolator Door Closed Bypass Door Open, Isolator Door Open

Powered Flight Configuration

 

Figure 90:  Engine Start Test Sequence 

q = 250 lbf / ft²
Combustor SV Cycled (Closed to Open) 
Integrated Bypass Door Cycled (Open to Closed)

Isolator Door Closed,
Bypass Door Open

Isolator Door Open,
Bypass Door Open

Isolator Door Open,
Bypass Door Closed

Isolator Door Open,
Bypass Door Closing

 

Figure 91:  Flowfield and Pressure Distribution during Engine Start Process:  Result: Bypass 
Door Enables Inlet/Engine to Start at High Altitude 
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8.0 STUDIES OF SHROUD, STORES AND STAGE SEPARATION 

Many hypersonic missiles employ a shroud to cover the seekerhead or inlets of the vehicle during 
launch which is dispensed higher in the atmosphere. Ensuring that the dispensed shroud does not 
subsequently hit and damage the vehicle or influence the trajectory is of major concern to the designer. 
Also the trajectory of stores as they are dispensed from a hypersonic vehicle is of major concern for 
the same reason. Tests to evaluate the dynamic response of the shroud as it separates from the vehicle 
body can be conducted in wind tunnels. However, in high Mach number flow, the energy levels of the 
flying components can be extremely large.  

 

Figure 92:  Tunnel Tests of Full-Scale Shroud Separation Model Prior to Flight Test Program 

One way of minimizing the potential energy of the flying object is to stop the flow immediately as the 
shroud or munition is dispensed and this is done by a high speed valve. This is accomplished in the 
LENS II facility using a high speed valve which is timed to close when the shroud or other flying 
object has dispensed successfully. Figure 92 shows the tests which were conducted in the LENS II 
facility in which a full-scale two-part shroud was separated from the nosetip at duplicated flight 
conditions.  
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Figure 93:  Shroud Separation Tests Demonstrating Large Unsteady Transient Loads 
Generated by Shock Interaction 

Measurements were obtained with onboard cameras (shown in Figure 92) and with side mounted 
cameras which obtained the photographs in Figure 93. In addition to concerns on the trajectory of the 
shroud, the aero loads on the window beneath the shroud generated as the shock from the shroud 
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swept across the window were of major concern. As shown in Figure 93, pressure enhancement factors 
of over 30 were generated during this process.  

 

Figure 94:  Comparison with Numerical Prediction 

Figure 94 shows comparisons between the predictions a code employing unsteady Navier-Stokes 
equations and the tunnel results. Numerical predictions suffered from problems associated with 
accurately describing the shock/boundary layer interaction phenomena on the vehicle window and thus 
did not accurately reflect the experimental results.  

 
 

Figure 95:  Diagram of Penetrator Weapon Systems deployed with the Rapid Retractable 
Support System (RRSS) in LENS II 

Another major area for which ground tests can be employed to evaluate and validate vehicle design 
before it is committed to flight is in the area of stores and stage separation. Again employing fast-
acting valve systems to stop the tunnel flow abruptly once the separation is achieved, a release system 
must be developed which can deploy the flying article without introducing extraneous motion. 
Figure 95 shows the launch system employed in the LENS II facility in studies to examine the 
separation of a two-stage launch system.  
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Here, the retractable support arm is activated in 4 ms just after flow is fully established over the two-
stage vehicle. The vehicle is then free to “fly” and in this particular test, a launch vehicle is drag 
separated from the penetrator as illustrated in the high speed sequence of images taken during the 
LENS II test program (Figure 96). 

 
Figure 96:  Sequence of High Speed Images taken during Penetrator/Booster Separation 

 
Figure 97:  Quarter-Scale Scramjet Powered Vehicle Configuration for Launch with Rocket 
Booster 

We are planning to employ this system to investigate the separation of a scramjet interceptor vehicle 
from the rocket system which boosts it to cruise velocity (as illustrated in Figure 97). A schematic 
representation of this process is shown in Figure 98. 

 
Figure 98:  Studies of Stage Separation for Boost-to-Cruise Scramjet Powered Interceptor 
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9.0 MAJOR CONCLUSIONS 

 
• Ground tests at fully duplicated or well simulated flight conditions are essential to minimize 

the risks associated with flight test programs from the perspective of overall vehicle 
performance and detailed measurements to investigate flow phenomena associated with real 
gas effects, boundary layer transition, turbulence and shock interaction phenomena and 
mixing and combustion 

• Both flight test and ground test planning and evaluation should be totally integrated and 
supported by detailed numerical computations employing DSMC, Navier-Stokes and 
empirical prediction methods 

• Hypersonic ground test facilities are available to perform full-scale testing at fully duplicated 
flight conditions of vehicles up to 3 to 6 meters in length. 

• Flight test programs should be conducted in concert with and not at the expense of improving 
our ground test facilities and measurements techniques 
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