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I. INTRODUCTION

One problem, of two under consideration, is to assess the performance of a radar bonb

director (RBD) by estimating its Circular Error Probable (CEP) given in units of length.1

based on measurements of miss distances from the target at (0, 0) in actual bomb drops

that fall under an uncorrelated bivariate normal distribution (UBND) with zero means and

unknown variances. Confidence intervals (CIs) for the true CEP (CEPT), will be needed,

where the CEPT, by definition, is the radius, RT, of the circle centered at (0, 0), which

contains 50%, PCEP = 0.50, of the distribution. The computer program, CONFREG,

discussed in Section VI, allows arbitrary PCEP values in (0, 1).

In the second problem, it is assumed a radar contractor is to be awarded a bonus if the

computed CEP is below an agreed nominal value (RTn, for example by 10%), and is to be

penalized if over the RTn by a like percentage. Thus, it is important to know the level of

confidence, under these circumstances, that can be placed on the CEP, R, computed from

experimental data as an estimate of the RT.

In May 1971, Dr. M. P. Jarnagin of the Naval Weapons Laboratory at Dahlgren, Virginia,

issued an informal memorandum [1] in which he described statistical procedures for address-

ing these problems. Because of limited computing facilities, his analysis used approximations

throughout and, consequently, the work was limited in scope. Our objective is to replace

the approximations with precise calculations and to generalize the results to some extent.

In many parts of this report, excerpts are taken directly from his memorandum.

Other studies addressing the first problem have been carried out in [2] and [3]. Again,

their analyses are based on approximations without error bounds rather than on precise

calculations.

A set of hypothetical individual bomb drops is shown in Figure 1.

50O

40

3 0 ( T a r g e ) - > 2 ' 0 1

-30 . 0

-40.

i-50 -40O -30_ -20 -10 0 1 .0 2 .0 3 .0 4 0 5 .0

Figure 1. Typical Bombing Pattern, n = 22

1 In this report, the unit of length will be meters.
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Let ii (enote the total number of boil) drops. The target is a lpoint target at (0, 0). t he
origin of coordinates. The flight path of the aircraft dropping each bon) is along the x-axis.

The Y-axis passes through the target, is perpendicular to the x-axis. and is positive above lhe

x-axis. The x and v coordinates of the impact point of a given boinh drop are the com1ponents

of the miss distance in range and deflection, respectively, in the usual terninology.
In Figure 1, n = 22, Bonlb No. 21 hits at point P21 with coordinates (in meters) x =

8.668. Y = 23.298.' The estimated CEP, or more briefly R., is the radius of the circle that

contains 50% of the impact, points. An indicated CEP in Figure 1 is R = 26.5. For such
finite samples, R is not uniquely defined, but for a theoretical bivariate normal distribution.

RT is a precisely defined unique number.
The assumption s Ismade that the x-coordinates of the bomb drops, {xi}= x1 , x 2,. Xn,

constitute a random sample from a normal distribution with mean zero and wit,h unknown
standard deviation a,. Similarly, it is assumed that the y-coordinates of the bomb drops,

{yi }= Yl, Y2" , Yn, form a random sample from a normal distribution, independent of the

distribution of the x, s, with mean zero and unknown standard deviation cY. Thus, the

impact points (xi, yi) are assumed to be from a UBND. The results in an actual test may not

indicate zero means. That would imply a bias in the performance of the R1BD that would
penalize the contractor. Subsequently, we allow for nonzero means, which extends the model
in [1].

The CEPT(= BT) is a function of the standard deviations ax and ay. We compute an
estimate R for RT on the basis of the experimentally determined estimates sx and sy, for 7,,

and os, where
Z/ 1 xif= Sy-- yi2/f, f = ii. (Assume = 0, . 0), (1)

Va lX?-/f 8y y = __0))ff,n

Ei=l ( - Z) /fYi Sy, f - mm f 1, R 2 0, 7 f 0, (2)

and where f denotes the number of degrees of freedom in the data. The means in (2) are
given by n n

= xi/n, )7 -yi/n. (3)
i=l i=l

The pertinent function connecting the CEP and the estimated standard deviations taken

from (1) is the Generalized Circular Error Function (GCE), V(K, c), where K = R/sx, c =
Sy/Sx, 3 [4] - [6]. If the estimated standard deviations are taken from (2), then the applicable

function is the Elliptic Coverage Function (ELP), P(R,, H, K, s,,, sy). Both functions will be
discussed in the next section. 4

2 For clarity, numerical results will be included with the general subject matter.
3 Note, in general, s 5 sy.
4 The arguments K in V(K, c) and P(R, H, K, s., sy) have different meanings.

2
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II. V(K, c) AND P(R, H, K., s,,, sy) PROBABILITY FUNCTIONS

The GCE, also known as the elliptical normal function, defines a probability function

V(R/u, v/u). GCE gives the probability of a shot falling in a circle of the xy-plane, of radius

R and centered at the origin, under a UBND with mean zero and standard deviations ii, v.

This probability is given by

V(R, u, v) = 2 Ruv I (4)]I dy d (Y)
2[( ) R ]}dydx,2 u v

where u = a,, v = oy. Transforming to polar coordinates, with x = r cos 0, y = r sin 0 yields

V(R, u, v)- 2=uv ]] exp{-l( cos 2 (rsin I)2rdOdr (5)

Using elementary trigonometric identities
V( ,u c) 1 R/u 7r

V(R, u, c) = - exp[-r2(B- Acos 0)] r d9dr, (6)
7rC dO 0

with
1- c 2  1 + c2

2c 2  B = 2c2  (7)

where, without loss of generality, v < u,

c=v/u, 0<c<l. (8)

Using the fact that

I0(x) - 7 exp(x cos 0) dO, (9)
7r

where Io(x) denotes the modified Bessel function of the first kind and zero order [7, p. 375],

one obtains from (6) and (9)

= 1 rR/u .Br 2  Ar 2 . (0
V(R/u, c)= -I/ exp(---B-) Io(-- -) rdr. (10)

cJ 0  2 2

Now letting
K R/u, w = r2/2, (11)

(10) reduces to

V(K, c) K2/2 exp(-B w) Io(Aw) dw. (12)

The significance of the V(K, c) function in the present context is brought out in Figure 2.

3
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Y

Target .

0 

X

0

Figure 2. An Elliptical Distribution With Zero Means

Suppose that x and y, the rectangular coordinates of the impact points of a series of

weapons, are distributed, each with zero mean, and with standard deviations ax and uy with

Y<orx. The ellipse in Figure 2 has these standard deviations for its semi-axes lengths but

has no further significance. Now consider a circle of radius R = Ka,x meters, K being a

dimensionless ratio. What fraction of the weapons of this distribution hits in the interior of

this circle? Or equivalently, as noted earlier, what is the probability that a single weapon

from the distribution hits inside the circle? The required probability is give by the function

V(K. c) of (10) or (12), where K can take all values from zero to infinity and 0 < c < 1. If

c > 1, then (Tx and (T are interchanged with no lose of generality.

The problem considered here is of an inverse character. Estimates s,, and sy, for a, and

(7y, are obtained from bomb drops as noted in (1). Then K is obtained from a subroutine

INVGCE, [8], and hence R(= Ksx), such that V = 0.50 and c = sy/s,,. The resulting value

of R, the radius of the circle, which contains 50% of the distribution, is the computed CEP.

Quick estimates for K can be found from the tables included in [4], [5]., and [8].

The analysis in [1] is extended here to include nonzero means (R # 0. V $ 0). For this

purpose, ELP is needed. ELP specifies a probability function P(R, H, K, u, v)., [6] and [9],

where u = O,, v = ory, that gives the probability of a shot falling, under a UBND with inean

zero and standard deviations u, v, in a circle, T, with radius R and centered at (H, K) of the

xy-plane. This probability is given by

P (R, H, K, ui, v) 1R,jKVR--H2exp (-)2 + ( (2 y (IX. (13)
JH-R 12 L_Hi

4
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Introducing dimensionless variables, let x = (v u) s and y = (v/2 v) t, then (13) becomes

1(,h ,uv pIh+r k(/v)r-(-)

P(r, h, k, u/v)= -j r exp(-s 2) ,I__ exp(-t 2) dt ds (14)
71 Jh-r J (u/v) Vr

2 -(s-h)
2

with r = R/(/2u), 1 = H/(v/2u), andk = K/(V2v). Finally, (14) can be written as

P(r, h, k, u/v) 1 f - jh-r Fl(s) ds, (15)

where

Fl(s) = exp(-s 2 ) aerf [k, (u/v) /r2 - (s - h) 2 ], (16)

and aerf(a, b) 2 j exp(-z 2) dz. (17)and erfa, b =X/Ir a-b

Equation (15) is used for computational purposes as described in [9], but using simple

linear transformations in (13) it is easy to show that ELP can also be interpreted as a

probability function P(R, H, K, u, v), which gives the probability of a shot falling under a

UBND with mean (H, K) and standard deviations u, v, in a circle of radius R centered at

the origin of the xy-plane. It is in this context when reference is made to ELP.

The problem considered here, as above for the GCE case, is of an inverse character.

Estimates sx and sy, for a, and ay, are obtained from bomb drops as noted in (2). Then R is

obtained from the subroutine INVELP, [10], with P = 0.50, u = sx, and v = sy. The resulting

value of R, the radius of the circle in meters, which contains 50% of the distribution, is the

computed CEP for the case of nonzero means. Quick estimates for R can be found from the

tables included in [9] and [10].'

III. COMPUTATION OF THE ESTIMATED CEP

The data determined from actual bomb drops and used as inputs for computing an esti-

mate of the CEPT are the quantities sx and sy, the estimates of the true, but unknown, stan-

dard deviations ax and ay. If n is the number of bombs dropped, and if (xi, yl), "". , (x,, yu)

are the coordinates of the n observed impact points (see Figure 1), it is assumed that the

xi's and the yi's constitute samples from independent normal distributions with means zero

or nonzero and standard deviations ax and ay.

No attempt is made to estimate any correlation coefficient that may be indicated in the

data, although such an inclusion would present no difficulty. Also, although sx and sy give

unbiased estimates for ox2 and 02' the estimates for ax and ay given by (1) and (2) are not

unbiased; nevertheless, they are invariably used.

Using (1) and (2), we obtain from the data given below (see Figure 1) values for the CEP

by using the subroutines INVGCE and INVELP.
5 The roles of r and R are interchanged in [101 from their use herein.

5



NSWCDD/TB -07/13

The made-up data was obtained from a subroutine that generated norniallY (list rilit ed

random numbers with zero mean and (T× = 35 and then run again with (7- 15. Th' lat a

generated is shown in Tahle 1 and graphically in Figure 1.

Table 1. Normally Dist ribut ed Data oF Figure 1. n = 22

i xi  Yi i Xi Yi

1 34.281 6.5922 12 -5.7568 23.368

2 -25.493 -5.5825 13 22.839 -16.041

3 -15.329 -31.638 14 -3.3694 -5.9377

4 14.245 4.8120 15 34.301 -5.1021

5 -45.153 .9773 16 3.1264 -7.5556

6 -9.2964 7.4277 17 28.403 .8495

7 47.826 4.5984 18 -14.379 3.2486

8 22.682 -2.8901 19 -48.324 .7353
9 33.730 -16.422 20 -41.711 -19.780

10 -19.193 10.269 21 8.6679 23.298
11 -30.543 -11.832 22 14.292 -18.365

Table 2 contains the quantities required to obtain the listed CEPs using the data from

Table 1. The first two columns use (1) with subroutine INVGCE; the last two colmns use

(2) with subroutine INVELP, where

C=SY/sx, V=P=0.50, H=2, K=y. (18)

Table 2. CEPs Based on Table 1 Data

=0 Y=0 R=0.26571 y-=-2.4986

sx =27.592 sy = 13.322 sx 28.240 sy = 13.393

c = .48281 CEP=23.717 c 0.47427 CEP=24.269

V = P = PCEP = 0.50 throughout; but, as mentioned earlier, the subroutine CONFREG

of Section VI allows any value in (0, 1) for V or P.
The next section contains an analysis to find CIs for the CEPT.

IV. CONFIDENCE INTERVALS

In this section, we describe three types of confidence regions: conventional (CCI). mini-

muin (MCI), and symmetric (SCI) for the true parameter point (Ox, (7y) in half of the quarter

plane of the ax-ay plane (0 < ay/ox < 1).' Using these results, the three CIs (CCI, MCI,
and SCI) are established for the true value of the CEP (denoted earlier by CEPT or RT,

where an estimate is denoted by CEP or R). Hence, our objective is to get meaningful CIs
6 1t is assumed ry_ awithout loss of generality.

6
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for the CEPT. The approach to achieving this objective is by analyzing the confidence that

can be placed in the estimates s,, and sy, which are quantities deduced directly from the raw

experimental data. This Jarnagin idea forms the basis for all results that follow.

Also, the results in actual tests may not appear to be compatible with zero means. but we

follow the discussion in [1] and proceed first assuming zero means, which makes the analysis

easier to follow. Nevertheless, most of the arguments used also apply to the case of nonzero

means except for obvious deviations such as using (2) instead of (1) and using the inverse of

ELP, INVELP, instead of the inverse of GCE, INVGCE.

Let a confidence level a = 1 - v/P-C, where confidence regions are determined with an

assigned probability, PC; say for illustrative purposes, PC = (1 - a)2 (= 0.90). Then a CI

for o, with probability PC = (1- a) (= 0.9486833) is obtained by finding appropriate inte-

gration limits for the integral of the chi-square density function, the required distribution for

the variate (n s2/02) [11, pp. 276-286], where the integral is evaluated at a/2 (= 0.02565835)

and (1 - a/2) (= 0.97434165). Mathematically, we have

X (-/2), f) = C(0, 2 f)- C(O, 2 f), (19)

where C(-y, 6, f) denotes the chi-square distribution function with f degrees of freedom,

namely 1 [ e6 - z/ 2 zf/ 2 - 1 dz, 0 < , < 6 < 0 . (20)
C(-y, 3, f) - 2 f/2 F(f/2) 1 e

ThenX2 and X1 _/2), depending on both a and f, are determined by solving the inverse

problems

C(0,a/ 2, f) = c/2 (= 0.02565836), C(0,yXl 0 /2), f) = (1- a/2) (= 0.97434165) (21)

and by using the subroutine DGINV,' [6]. For the numerical examples, using (21), one

obtains

Xa/2 = 11.028377, X(I-a/ 2) =36.677187, using (1) with f = n = 22, (22)2232
Xa/ 2 = 10.327293, X(I-a/ 2) = 35.377041, using (2) with f = n - 1 = 21. (23)

Introducing the notation

CLx = s, .f/X(l-/2), CHx = s,, Nf/X. 2 , CLy = s,Vf/X(i-a/ 2), CHy sy f/ ,12 , (24)

with (22), (23), the CCIs for ax are established, [11, p. 276],

21.3698 = CLx < ax < CHx = 38.9711, use (1) with f = n = 22, (25)

21.7579 = CLx < ox < CHx = 40.2703, use (2) with f= n - 1 = 21. (26)
7 DGINV finds x of the incomplete gamma function, P(a,x), [7, p.260], [12], [13], given P and a, where

C(O, X2 , f) = P(a,x) ' fx e - t ta- dt, x = X2 /2, a = f/2.

7
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Similarly, CIs are obtained for T, using relations in (24). so that.

10.3176 = CLY < a_ < CHy = 18.8157, use (1) with f n = 22. (27)

10.3190 = CLy < (T_ < CHy = 19.0988, use (2) with f = n - 1 = 21. (28)

We note that a PC of 0.9 may be fairly high; a lower level would result in snmaller CIs for

o-, and (T.

It is assumed throughout that the a's for the o,, and axy CIs are equal. For the inore general

situation, they would not be required to be the same. In that case, subroutine CONFREG

and a few supporting routines would require a number of changes. but the clanges would be

straightforward.
In the earlier discussion, the CCI with an assigned probability of PC was defined by

OC f) C) = (1- PC)/2 C(0, -V(1-Q,/2) f) = (1 + PC)/2. (29)
C( ,_,/2), 0/,X 2, f) = (I - VPQ/2. (9

The CIs in this case for t,, and cTy are given by (25) and (27) or (26) and (28).

Referring to Figure 3, the vertical stripped region, where (25) holds and (Tv extends from

zero to infinity, indicates the (1 - ) confidence region for ax. The horizontal stripped region.

where (27) holds and ax extends from zero to infinity, indicates the (1 - () confidence region

of oay. The intersection of the two regions generates a rectangle, shown in the figure as the

crosshatched area, with the lower left-hand corner having the coordinates (CLx, CLy) and

the upper right-hand corner with coordinates (CHx, CHy).

35 U

30

25

20

15

5

0- -
0 5 10 15 20 25 30 35 40 45'

Figure 3. 90% Confidence Region For (a,,, a.y)

This intersection specifies the PC (= 90%) conventional confidence region for the point

(or Ox,y) based, in general, on the data of which Table 1 is an example. This follows because

it is assumed that the x and y coordinates of the bomb drops each arise from i7?dcpcndent

normal distributions with unknown standard deviations, a,,, ay, respectively. Hence, the

product of the specified probabilities (1 - a) * (1 - a) (= 0.9486833 * 0.9486833 = 0.90) = PC.

8
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The rectangular reion for the zero means case is shown in Fifure 4.

45 y

40 R =33.5

35

R = 23.7230----- Y

25- X

/

20- R 18.3

15 . -..

0 5 10 15 20 25 30 35 40 45 .

Figure 4. 90% Confidence Region: uses (1), n = 22

Similar arguments result in a (90%) rectangular confidence region for a,x and ay,, using

(26) and (28), the nonzero means case.

Noting that X '2and X(I _/ 2 ) are not unique for a given a, they can be varied to obtain,

from the subroutine CONFMS, two other Cls, namely MVCI (a minimized CI) and SCI (a

symmetrized CI). It is understood that f/ 2 andN/f/X (l a/2) are the same for the ax,C
and the corresponding ay,-CI. F or MCI, the quantity

CHx - CLx ( see (24)) (30)

is minimized, which means CHy - CLy is also minimized. In the case of SCI,8 the quantity

CH + Cx 21 = I/ V/f + Vf /x >0 ) 2 1, (31)

is minimized, which implies

CH +Y CL 21 = jVf/xal2 + Vf/X,1, 2) -21 (32)

is also minimized. It should be noted, however, that, for any specific data set, symmetrization

is not possible for some zi, if Vf /xy/ 2  2, where C(0, X 2 ~ f) = d/2.9

The results for ax, and ay CIs, using the data from Tables 1 and 2, as well as results from

the discussion above, are summarized below in Table 3.

8Note that with (25), the CCI is far from symmetrical; CLx is 23% below sx, whereas CHx is 41% above s,(.
9 5ince ~ ---- aqattb /7K<vf/x!,,, 2 is needed in the next section, CONFREG requires b < 2 for symmetrization.

9
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Introducing notation similar to (24), but referring to MCI and SCI with correspon(dilg

al)t)ropriate values for \ 2/2 and J_,/9)

0 \;1 - /2)
T\Jx. Lx ~ ~< 0 /)'MHx. SHx s, f/7 9

MLx. SLy = s,V/f/ 1(-1/2), MHv. SHy =s f /2

Table 3. Listing of CCI, MCI, and SCI Using Data From Table 1

K= 0 x = 0.2657 y = () y = -2.4986

s,=27.5922 sx=28.2402 s,=13.3219 sy=13.3934

CLx 21.3698* 21.7579* CLy 10.3176* 10.3190*

CHx 38.9711* 40.2703* CHy 18.8157* 19.0988*

MLx 20.5596 20.8941 MLy 9.9264 9.9094

MHx 37.6151 38.8057 MHy 18.1610 18.4042

SLx 18.3814 18.5228 SLy 8.8748 8.7847

SHx 36.8031 37.9576 SHy 17.7689 18.0020

Table 3 from the 3rd through the 8th rows and the corresponding six columns can be

looked at as a 6x6 matrix with elements a(i,j), where. for exalle. a(1,1) - CLx. Hence,

a(1,2) lists the left endpoint of CCI for the R = 0 case; the right endpoint, is a(2,2),

thus CCI = (21.3698, 38.9711). The MCI for the V = -2.4986 case is, from the ta-

ble, (a(3,6), a(4,6)) = (9.9094, 18.4042). Asterisked quantities were given previously in

(25) - (28).

We are now in a position, following [1], to determine the CIs for the CEPT. Starting

with the zero means case as specified by (25) and (27), consider the ax - (y quarter plane

(cry > 0, ax > 0) shown in Figure4, and note that nonintersecting curves of constant R,

which are concave towards the origin, can be drawn.") These constant R-curves, which are

not circular segments, are symmetric about the 45 degree line, c = 1, but we need to consider

only half of the quarter-plane with ay/ax. < 1.

Then a straight line L emanating from the origin satisfies the equation ay = M Ux, M

a constant. For the point ox = sx, a,y = sy, we have 0 < M = c = sy/s, < 1. Again.

see footnote 10 below: R-curves are definitely not segments of circles. Typical curves are

shown in Figure 4. They are increasing in R as they move away from the origin. Consider

a line L, then since V = 1/2 and c is fixed, it follows K is also constant on L. Therefore, as

ox increases, moving along L, R must also increase on L to retain K constant on L.

l°These constant R-curves, used only for illustration, can be obtained, referring to the ax - ay plane, Ws follows: For a fix(x

value of R, determine a value of K = Kl(= R/cr,j) from V(K 1 ,0) = 1/2 = erf(Ki/V2-), 15, 8, and 
7 (p.29

7 )]. This determines

the a1 such that for a given smaller a. = Orx2, which fixes a K = K 2 , a value of c2 is found by solving the inverse problem

V(K 2 ,c 2 ) = 1/2 that, in turn, determines a.,2 thus this is another (rx2, Ory2) point of the constant R-curve in the or, -cry plane.

10
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Note that the point (s", S,) is oil the middle R-curve of Figure 4, with R, = CEP, inter-

sected by the line with slope c = sy/s = 0.483. In addition, the R.-curve containing the

point (CLx, CLy), which is also on L, (CLy/CLx = sy/s,) has an R-value, CLR, given by

solving K = CEP/s, = 23.717/27.5922 = CLR/CLx. Thus, CLR=18.3685, where CLx is

taken from Table3. Similarly, considering the R-curve passing through (CHx, CHy) on L,

with K = CEP/sx = CHR/CHx, and solving for CHR, one obtains CHR=33.4997. Thus,

we take as the CCI for CEPT, CCR =- (CLR, CHR) = (18.3685, 33.4997). The MCR,

and SCR for R are obtained in the same way and defined by MCR - (MLR, MHR) and

SCR - (SLR, SHR). The results are summarized in the first and second columns of Table 4.

In the nonzero means case, using (26) and (28), H and K are held fixed throughout.

The distribution density function is lower and flatter on each L line as ax and ay increase

with ay/orx constant; therefore R must increase. Also, R/sx is not constant along an L

line since the normalized variables h, k vary along L, and consequently, R/sx also varies

since P = 0.5; see (14). Therefore CLR(CHR) must be obtained using the subroutine

INVELP, with arguments P = 1/2, H = R, K = y, a, = CLx(CHx), and ay = CLy(CHy).

Hence the CCR - (CLR, CHR) for the nonzero means case is (18.7754, 34.5007), where,

from Table3, CLx=21.7579, CLy=10.3190, CHx=40.2703, and CHy=19.0988. Note the

MCR - (MLR, MHR) for the CEPT in this nonzero case is not precisely minimized, nor

is SCR = (SLR, SHR) precisely symmetrized. The overall numerical results are listed in

Table 4.

Table 4. Listing of CCI, MCI, and SCI for CEPT

Using Data From Tables 1 and 3

CIIMeans-- R=0, y=O R- 0, y-#O

CLR 18.3685 18.7754

CHR 33.4977 34.5007

MLR 17.6720 18.0454

MHR 32.3322 33.2535

SLR 15.7998 16.0451

SHR 31.6342 32.5316

Recalling the second objective (see page 1, 2nd paragraph) of establishing whether the

design contractor of the RBD is to be rewarded or penalized, two other confidence regions

are introduced. They form the discussion in the next section with the idea of sequencing

bomb drops. We follow the reasoning in [1].

11
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V. CONFIDENCE INTERVALS BY SEQUENTIAL TESTING

Let us assume we are dealing with the zero means case: (25) and (27). Begin by assigning

RTn, an agreed nominal value for the CEP, and a fixed-decimal FP. Then assume that

if the CEP < (1 - FP)RTn = RN. within the assigned confidence level, the contractor is

rewarded (COR) and if CEP > (I +FP)RTn = RP, the contractor is penalized (COP). With

a numerical example. suppose FP = 0.10, RTn = 40: then from Table 2, CEP = 23.717 < 36:

can we conclude the contractor should be rewarded? The answer is "Yes" because, from

Table 4, 36 is to the right of the interval (18.3685, 33.4977), equivalently greater than CHR,

which in 90(X of similar test cases will contain the CEPT and will be less than 36. Instead.

suppose the RTn = 16. Since the CEP = 23.717 is greater, we try to judge if the contractor

should be penalized. Namely, is 16 * 1.1 = 17.6 < CLR(= 18.3685)? The answer is again
"yes" in the numerical example, since in 90% of repeated like tests the CEPT woulh exceed

17.6. In either case, if the answer was negative due to a different choice of RTn, then more

testing would be indicated (MOT).

Before considering the procedure of more testing, it is important to arrive at a conclusion

with a minimum of testing. Hence we ask in the COR case if we can lower CHIR: i.e., ease

the requirement for a decision. Therefore, using DGINV, we ask for the value of k\2 such
t h a t C X 'C O 2 4that, oc, f) = 1- a = 0.9486833, C(0, , f) = 0.0513167, (34)

so that

20r2x>X2 = the CI forax" 0< (x <_ bs,, cyr>0, b f > 1. (35)

S/ay> =X2 theCI for:ay 0< (y <_ b sy , x >0, b- -/ > 1. (36)

The intersection of the two infinite CIs is shown as the hatched region in Figure 5.

Note then, as in Section IV, the (1 - a)2 CI for the CEPT is given by solving for CHR

K = CEP/sx = CHR/(bsx) CHR = bCEP, (37)
where, in general,

CHR < CHR (see Section IV for CHR). (38)

In the case where (2) holds, INVELP with standard deviations b s, and b sy is used to find

CHR. For the same reasons given in the previous section in the discussion of the nonzero

means case, (37) cannot be used (See the paragraph before Table4.).

We ask in the COP case if we can raise CLR; i.e., ease the requirement for a decision.

Therefore, using DGINV, we ask for the value of X(2-,) such that

C(0, X(-), f) = 1 - a = 0.9486833, (39)so that,

fSx/a × _ ,_) = the CIfor a,, 0<as,x<ox, ay > 0, a Vf/ l_ ) 1. (40)

S/O < )(21--) = the CI for (Ty• 0 < a sy < cryo, owx> 0, a Vf/X(_ 1. (41)

12
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The intersection of the two infinite CIs is shown as the hatched region in Figure 6.

Note then. as in Section IV, the (1 - a)2 CI for the CEPT is given by solving for CLP

K = CEP/sx = CLR/(asx) =* CLR = aCEP., (42)

where, i1 general, CLR < CLR (see Section IV for CLR). (43)

In the case where (2) is used instead of (1), INVELP with standard deviations as, and

a sy is used to find CLR. Equation (42) cannot be used for the same reasons given in the

previous section; (see the paragraph before Table 4.)

(A)

C R 

~0

b x R O y

' E =(b s , b s Y)

(B) 
x

Figure 5. With Confidence (1 - a) 2, 0 < RT < bR

413

Y

(A)

a R< F" (a s, a Sy)

d R)

(B)

Figure 6. With Confidence (1 _ a) 2, a R < ITT < oo

13



NSWCDD/TIR-07/13

Table 5 ContainsCLI And CHB : It Supplenients Table 4.

Table 5. Listing of CLI > CLI. CHR. < CHR

Using Data Fron Tables 1 and 4
CI IMeans-- X= 0. V =0 R-#0, v 0

CLI 19.1306 19.5547
CHR 31.5975 32.5010

Perhaps the most efficient strategy in what has been discussed so far, to evaluate whether

COR, COP. or MOT holds, is to determine CLR, or CHR. at each new set of se(ulential

bombing tests. Given RTn, FP, n0. An, and Jinax, where nO denotes the initial number of

bomb drops, An is the increment number of bomb drops added at each test after the initial

nO drops, and Jinax denotes the assigned number of Ans, incremental boiib dtrops to be

nade, after which all testing stops.

Using the data from Tables 1 and 2, with (1), CEP = 23.717 and with (2). CEP = 24.269,

assign the following:

nO = 10. An = 4. Jmax = 3. (44)

Tests., as described in Section 4 and this section, are conducted for each ii, where

n = nO +jAn, j = 0, 1, . . , Jnax. (45)

The results are given in Table 6 of page 15. CIs (an be identified from the table accordingly:

1. Conventional (1 - a) 2 (= .90) CI for the CEPT: (L(1), H(1)) = (CLI. CHR)
2. Miniium (1 - a) 2 (= .90) CI for the CEPT: (L(2), H(2)) = (MLR. MHR)

3. Symmetric (1 - a) 2 (= .90) CI for the CEPT: (L(3), H(3)) = (SLR, SHR)

4. Maximum CLR (1 - ") 2 (= .90) CI for the CEPT: (L(4), H(4)) = (CLB,, oC)
5. Minimum CHR (1 -oa) 2 (= .90) CI for the CEPT: (L(5), H(5))= (0, CHR)

For example, for the zero means case, for the symmetric CI at n = 18, one o)tains from
the table (13.7266. 30.6586) with a CEP = 22.1926; the minimum CHR CI is (0. 30.6462).
For the nonzero means case, one obtains for the symmetric CI at n = 18, (14.0863, 31.6683)
with a CEP = 22.8205; the minimum CHR = CI is (0, 31.6598).

If RTn = 16.5 and FP = 0.10, then COP holds for the zero means case, since
18.15 < CLR = 19.1306 < CEP at ii = 22. In the nonzero means case, COP also holds

since 18.15 < CLR = 18.8265 < CEP for n = 10. On the other hand, let RTn = 34.2 and

FP = 0.1, then COR holds in the zero means case, since CHR = 30.6462 < 30.78 for n = 18,

but in the nonzero means cases MOT holds, since for n= 10, 14, 18, 22, CH > 30.78.
In the unlikely event that RP - CEPT or RN ; CEPT, it may require a very large value

of n to conclude whether COP or COR holds.

14
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Table 6. Listing of CIs for CEPT Using Data From Previous Tables

L(1)=CLR, L(2)=MLR, L(3)=SLR, L(4)=CLR. L(5)=0

H(1)=CHR, H(2)=MHR,, H(3)=SHR, H(4)=oo, H(5)=CHB

j, n, mI L(m) H(m) I CEP j, n, m L(m) H(m) CEP
Ry s,, SY R y Sx SY

0.0 0.0 29.4891 12.4880 3.8299 -2.1856 30.8210 12.9603

0, 10, 1 16.9769 42.4081 24.2501 0,10, 1 17.7882 46.1287 25.5357

0, 10, 2 15.6089 39.3400 24.2501 0, 10, 2 16.2745 42.4788 25.5357

0, 10, 3 10.0136 38.4866 24.2501 0, 10, 3 9.8215 41.5872 25.5357

0, 10, 4 17.9640 cc 24.2501 0, 10, 4 18.8265 c 25.5357

0, 10, 5 0.0 38.4866 24.2501 0, 10, 5 0.0 41.5872 25.5357
R y Sx sy R y Sx SY

0.0 0.0 26.9855 13.4646 1.5335 -2.3071 27.9590 13.7662

1, 14, 1 17.2129 36.9126 23.4708 1,14, 1 17.7751 38.9652 24.3463

1, 14, 2 16.2033 34.9524 23.4708 1, 14, 2 16.6815 36.7593 24.3463

1, 14, 3 12.7839 34.1578 23.4708 1, 14, 3 12.8455 35.9331 24.3463

1, 14, 4 18.0811 cc 23.4708 2,18, 4 18.6803 C 24.3463

1, 14, 5 0.0 34.1564 23.4708 1, 14, 5 0.0 35.9326 24.3463
ySx sy y Sx SY

0.0 0.0 26.2413 12.0934 4.0512 -2.2699 26.6783 12.2229

2, 18, 1 16.7947 32.7412 22.1926 2, 18, 1 17.3269 33.8762 22.8205

2, 18, 2 16.0203 31.3648 22.1926 2, 18,2 16.5234 32.3927 22.8205

2, 18, 3 13.7266 30.6586 22.1926 2, 18,3 14.0863 31.6683 22.8205
2, 18, 4 175552 C 22.1926 2, 18, 4 18.0945 00 22.8205

2, 18, 5 0.0 30.6462 22.1926 2, 18, 5 0.0 31.6598 22.8205

ySx sy x y Sx SY

0.0 0.0 27.5922 13.3219 0.2657 -2.4986 28.2403 13.3934

3, 22, 1 18.3685 33.4977 23.7170 3, 22, 1 18.7754 34.5007 24.2689

3, 22, 2 17.6720 32.3322 23.7170 3, 22, 2 18.0454 33.2535 24.2689

3, 22, 3 15.7998 31.6342 23.7170 3, 22, 3 16.0451 325316 24.2689

3, 22, 4 19.1306 C 23.7170 3, 22, 4 19.5547 c 24.2689

3, 22, 5 0.0 31.5975 23.7170 3, 22, 5 0.0 32.5010 24.2689

The next section describes the Fortran 95 computer program that outputs the results of

Table 6 as well as whether MOT or COP or COR holds given RN, RP.
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VI. FORTRAN PROGRAMS FOR CEP AND CONFIDENCE INTERVALS

The total software package is made up of 69 double-precision Fortran 95 subprograns.

Each of their call lircs is listed in Appendix B. The first 14 were developed by the aitlior: the

remaining 55 are supporting routines from the NSWC Library of Mathematics Subroutines.

[6]. Of the first 14, we shall discuss the first 5: the remaining 9 are supporting routines. The

software is stored in a file named NNEEV4.FOR._

The Program routine, MEANSTDV, is actually not necessary and( can be deleted. It is a

test routine for the software that uses, as input, a file JDATA. If the user wishes, the software

could be run with a read-in input, of 0.5 or 0.9, and 2 when requested, and directing the

results by WEEV4 > f8; then making a DOS file "compare," FC f8 JDATATEST. The files

should be duplicates except for the last line, which calls on the Lahey subroutines DATE

and TIME. The required JDATA on the first line would list the two integers 1 and 22. on the

2nd line store xl, y. and the following 21 lines would contain the remaining miss distances

of Table 1, xi, yj, (i = 2, 22).
The 2nd listed routine,

CONFREG(N,X,Y,PCEP, PC,ISV,RN,RP,XYM,SXY,RCEP, RLH,DEC),
is the main routine for WEEV4, and it is the only one a user needs to call. Its call line

specifies the necessary input and output. The first, ten variables are required input,: the last

three are output.

INPUT
N Number of bomb drops.

X N-elenient array containing the x-coordinate miss distances.

Y N-elenent array containing the y-coordinate miss distances.
PCEP Probability measure for the CEPT. Usually taken as 0.50.

PC Assigned confidence level for CIs. Taken as 0.9 in the examples.

ISV If 0(> 0), then do zero(nonzero) means case.

RN Value (1 - FP) RTn. In computer numerical example FP = 0.125. RTn 16 2/3,

RN = 14.583333. If RN < 0, the contractor evaluation is skipped.

RP Value (1 + FP) RTn. In computer example RP = 18.75.

XYM Two-element array containing means R and y.

SXY Two-element array containing standard deviations sx and sy.

16
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OUTPUT

RCEP Estimated CEP. If ISV = 0 uses INVGCE, else uses INVELP.

RLH Eight-element array with the following elements (See Table 6):

RLH(1) - CLR, Left endpoint of the conventional CI for CEPT.

RLH(2) - CHR, Right endpoint of the conventional CI for CEPT.

RLH(3) - MLR, Left endpoint of the minimum CI for CEPT.

RLH(4) - MHR, Right endpoint of the minimum CI for CEPT.

RLH(5) - SLR, Left endpoint of the symmetric CI for CEPT.

RLH(6) - SHR, Right endpoint of the symmetric CI for CEPT.

If CHR > 2, then SLR and SHR set to -1.

RLH(7) - CLR, Maximum CLR, left endpoint of a CI for CEPT.

RLH(8) - CHR, Minimum CHR, right endpoint of a CI for CEPT.

DEC A 3-character variable specifying contractor performance:

COR, COP, MOT; if input RN < 0, ignore DEC.

The next three routines are called by CONFREG. MNSTD is used to compute R, y, and

sx, Sy. CONFMS is used to find the three CIs: namely, CCR, MCR, and SCR. EVAL is used

to determine if the contractor is to be rewarded, COR; if the contractor is to be penalized,

COP; or if more testing is needed, MOT.

17



NSWCDD/TR-07/13

VII. REFERENCES

1. Jarnagin. I. P., Computation, of the CEP and CIs in Bombing Tsts. Naval Weapons

Laboratory. Dahligren, VA. May 1971. Informal Memorandum

2. Taub, A. E. and Thomas, M. A., CIs for CEP Whre Errors an 1 Elliptical Normal.

NSWC TB 83-205. November 1983, Naval Surface Weapons Center. Dahligren, VA.

3. Thomas, M. A. and Taub. A. E., Weapon Accuracy Assessment for Elliptical Norilal

Miss Distances, NSWC/DL TR-3777, January 1978, Naval Surface Weapons Center,

Dahlgren, VA.

4. Weingarten, H. and DiDonato., A. R., "A Table of Generalized Circular Error," Mathc-

matics of Computation, Vol. 15, No. 74, April 1961, 169-173.

5. DiDonato. A. R. and Jarnagin, M. P., A Method for Computing the Generalized Circular

Error Function and the Circular Coverage Function, NWL Report, No. 1768, January

1962, Naval Weapons Laboratory, Dahlgren, VA.

6. Morris, A. H., NSWC Library of Mathematics Subroutines, NSWCDD/TR-92/425. Jan-

uary 1993., Naval Surface Warfare Center, Dahlgren Division, Dahligren, VA.

7. Abramowitz, M. and Stegun, I., (Editors), Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series 55, June 1955.

8. DiDonato, A. R., An Inverse of the Generalized Circular Error Function, NSWCDD/TR-

04/43, June 2004. Naval Surface Warfare Center, Dahlgren. VA.

9. DiDonato, A. R. and Jarnagin, M. P., Integration of the General Bivariate Gaussian Dis-

tribution over an Offset Ellipse, NWL Report No. 1710, August 1960, Naval Weapons

Laboratory, Dahlgren, VA.

10. DiDonato, A. R., An Inverse of the Elliptic Coverage Function, NSWCDD/TR-05/90,

April 2005, Naval Surface Warfare Center, Dahlgren, VA.

11. Hald, A., Statistical Theory with Engineering Applications, John Wiley & Sons, Inc., 1952.

12. DiDonato, A. R. and Morris, A. H., "Computation of the Incomplete Gamma Function

Ratios and Their Inverse," ACM Trans. Math Software, Vol. 12, 1986, 377-393.

13. DiDonato, A. R. and Hagemnan, R. K., Computation of the Percentage Points of the

Chi-Square Distribution, NSWCDDL TR-3569, 1977, Naval Surface Weapons Center,

Dahlgren, VA.

18



NSWCDD/TR-07/ 13

APPENDIX A

GLOSSARY

A-1



NSWVCDD/TR -07/13

BLANK PAGE

A-2



NSWCDD/TR-07/13

APPENDIX A

GLOSSARY

The first number listed with each item, refers to the page where it is first introduced.

C(-y, 6, f) - Integral of the Chi-square distribution density from -Y to 6, 7

CHR - The minimum value CHR can take for a given a, 12

CLR - The maximum value CLR can take for a given a, 13

CEPT - True CEP, 1, 6

c - Confidence level, 7, 9

An - Increment number of bomb drops added at each test after the first, 14

(1 - a) - (1 - a) = -/PC, 7

CCI - Conventional confidence interval, 6

CCR - Conventional confidence interval for CEPT, 11

CEP - Estimated circular error probable, 1

CHR - R, Right endpoint of the CCI, CCR, for CEPT, 11

CHx - Right endpoint of the CCI for a,. See (24), 7

CHy - Right endpoint of the CCI for ay. See (24), 7

CI - Confidence interval(s), 1, 8

CLR - R, Left endpoint of the CCI, CCR, for CEPT, 11

CLx - Left endpoint of the CCI for ax. See (24), 7

CLy - Left endpoint of the CCI for ay. See (24), 7

COP - Contractor is penalized, 12

COR - Contractor is rewarded, 12

ELP - Elliptic Coverage Function, 2

ELP - ELP subroutine to compute ELP, 5

f - number of degrees of freedom, 2

FP - A fixed decimal associated with RTn, 11

GCE - GCE subroutine to evaluate GCE, 3

GCE - Generalized Circular Error Function, 2

INVELP - Subroutine to compute R of P(R, H, K, s,, sy), 5

INVGCE - Subroutine to compute K of V(K,c), 4

Jmax - Maximum number of Ans, 14

K - Dimensionless radius of GCE. K = R/u, 3

K - y-coordinate of the mean of the Elliptic Coverage Function, 5
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MCI - Minimized confideice interval. 6.9

MCR - Minimum confidence interval for CEPT. 11

MHR, - R, Right endpoint of the MCI. MCII, for CEPT, 11

MHx - Right endpoint of the MCI for a,. See (33). 10

MHv - Right endpoint of the MCI for (7,. See (33), 10

MLR - R, Left endpoint of the MCI, MCR, for CEPT, 11

MLx - Left endpoint of the MCI for a. See (33), 10

MLy - Left endpoint of the MCI for cry. See (33), 10

MOT - More testing required, 12

nO - Initial number of bomb drops. 14

PC - Assigned probability for the confidence interval of the CEPT. 7

PCEP - Percentage/100 of the UBND contained in the target circle. 1

P(R, H. K, s, sy) - Elliptic Coverage Function, 2

R - Estimated CEP (computed), 1

R - Used interchangeably with the estimated CEP, 2

RBD - Radar bomb director, 1

RN - =(1-FP)RTn, 12

RP - =(I+FP)RTn, 12

RT - True CEP=CEPT, 1

RTn - A pre specified nominal value for the CEP, 1

SCI - Symmetrical confidence interval, 6,9

SCR - Symmetrical confidence interval for CEPT, 11

SHR - R, Right endpoint of the SCI., SCR, for CEPT, 11

SHx - Right endpoint of the SCI for a,. See (33), 10

SHy - Right endpoint of the SCI for uy. See (33), 10

SLR - R, Left endpoint of the SCI, SCR, for CEPT, 11

SLx - Left endpoint of the SCI for ax. See (33), 10

SLy - Left endpoint of the SCI for ay. See (33), 10

UBND - Uncorrelated Bivariate Normal Distribution, 1

V(K, c) - Generalized Circular Error Function, 2
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APPENDIX B

LIST OF FOPRRAN 95 SUBPROGRAMS

1 PROGRAM MEANSTDV

2 SUBROUTINE CONFREG(N,X,Y,PCEP,PC,ISV,RN,RP,XYM,SXY,RCEP,RLH,DEC)

3 SUBROUTINE MNSTD(N,X,XM,VX2,SX2)

4 SUBROUTINE CONFMS(N,P,RL0,RHO,RL1,RH1,RL2,RH2)

5 SUBROUTINE EVAL(N,RN,RP,CHR)

6 DOUBLE PRECISION FUNCTION FD(X) !FOR MINIMUM CONF INTERVALS,

USED IN FMIN IN CONFMS

7 DOUBLE PRECISION FUNCTION FA(X) !FOR SYMMETRIC CONF INTERVALS,

USED IN FMIN IN CONFMS

8 SUBROUTINE INVGCE(P,C,R,IJ,IERR)

9 SUBROUTINE INVELP(PP,H1,K].,S1,S2,R,P,I)

10 DOUBLE PRECISION FUNCTION F2(X) !NEEDED FOR DZERO OF INVELP

11 SUBROUTINE DQ(R,PX,II)

12 DOUBLE PRECISION FUNCTION Fl(X) !FUNCTION FOR DQXGS ROUTINE

13 SUBROUTINE GRUB(R) !INITIAL ESTIMATE FOR R FROM GRUBBS' APPROX

14 SUBROUTINE PSQR(A,P,X,I) !IST APPROX, X, USES GRUBBS' ESTIMATE

15 INTEGER FUNCTION IPMPAR (I)

16 DOUBLE PRECISION FUNCTION DPMPAR (I)

17 DOUBLE PRECISION FUNCTION DEPSLN (L)

18 DOUBLE PRECISION FUNCTION DXPARG (L)

19 DOUBLE PRECISION FUNCTION DSIN1 (X)

20 DOUBLE PRECISION FUNCTION REXP (X)

21 DOUBLE PRECISION FUNCTION DREXP (X)

22 DOUBLE PRECISION FUNCTION ALNREL(A)

23 DOUBLE PRECISION FUNCTION DLNREL (A)

24 DOUBLE PRECISION FUNCTION RLOG(X)

25 DOUBLE PRECISION FUNCTION DRLOG (X)

26 DOUBLE PRECISION FUNCTION ERF (X)

27 DOUBLE PRECISION FUNCTION ERFC1 (IND, X)

28 DOUBLE PRECISION FUNCTION DERF (X)

29 DOUBLE PRECISION FUNCTION DERFC (X)

30 DOUBLE PRECISION FUNCTION DERFC1 (IND, X)

31 DOUBLE PRECISION FUNCTION DERFCO (X)

32 DOUBLE PRECISION FUNCTION ERFI (P, Q)
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33 DOUBLE PRECISION FUNCTION DERFI (P. Q)

34 DOUBLE PRECISION FUNCTION DAERF (X, H)

35 SUBROUTINE PNI (P. Q. D. W. IERR)

36 SUBROUTINE DPNI (P. Q. D. W, IERR)

37 DOUBLE PRECISION FUNCTION GAMMA(A)

38 DOUBLE PRECISION FUNCTION GLOG(X)

39 DOUBLE PRECISION FUNCTION GAMI(A)

40 DOUBLE PRECISION FUNCTION GAMLN (A)

41 DOUBLE PRECISION FUNCTION GAMLN1 (A)

42 DOUBLE PRECISION FUNCTION DGAMMA(A)

43 DOUBLE PRECISION FUNCTION DPDEL(X)

44 DOUBLE PRECISION FUNCTION DGAM1 (X)

45 DOUBLE PRECISION FUNCTION DGAMLN (A)

46 DOUBLE PRECISION FUNCTION DGMLN1 (X)

47 SUBROUTINE GRATIO (A, X, ANS, QANS, IND)

48 DOUBLE PRECISION FUNCTION RCOMP (A, X)

49 DOUBLE PRECISION FUNCTION DRCOMP (A, X)

50 SUBROUTINE GAMINV (A, X, XO, P, Q, IERR)

51 SUBROUTINE DGRAT (A., X, ANS, QANS, IERR)

52 SUBROUTINE DGR29 (A, Y, L, Z, RTA, ANS, QANS)

53 SUBROUTINE DGR17 (A, Y, L, Z, RTA, ANS, QANS)

54 SUBROUTINE DGINV (A, X, P, Q, IERR)

55 SUBROUTINE BESI(X, ALPHA, KODE, N, Y, NZ)

56 SUBROUTINE ASIK(X,FNU,KODE,FLGIK,RA,ARG,IN,TOL,Y)

57 SUBROUTINE CIRCV (R, D, J, P, IERR)

58 SUBROUTINE ERFCO (IND. X, E, Y)

59 DOUBLE PRECISION FUNCTION ERFCR (X)

60 DOUBLE PRECISION FUNCTION DZERO (F, AX, BX, AERR, RERR)

61 SUBROUTINE FMIN(F, AO, BO, X, W, AERR, RERR, ERROR, IND)

62 SUBROUTINE DQPSRT(LIMIT,LAST,MAXERR,ERMAX,ELIST.IORD,NRMAX)

63 SUBROUTINE DQELG (N, EPSTAB, RESULT, ABSERR, RES3LA, NRES,

EPMACH, OFLOW)

64 SUBROUTINE DQXGS (F,A,B,EPSABS.EPSREL,RESULT,ABSERR,IER,

LIMIT,LENIW,LENW,LAST,IWORK,WORK)

65 SUBROUTINE DQXGSE(F,A,B,EPSABS,EPSREL,LIMIT,RESULT,ABSERR,

IER,ALIST,BLIST,RLIST,ELIST,IO0RD,LAST,VALP, VALN,LP, LN)
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66 SUBROUTINE DQXCPY (A, B, L)

67 SUBROUTINE DQXLQM (F,A,B,RESULT,ABSERR,RESABS.,RESASC.VR,VS,LR.LS.

KEY,EPMACII,UFLOW,OFLOW)

68 SUBROUTINE DQXRUL (F,XL,XU,Y,YA,YM,KE,K1,FV1.FV2,LI,L2)

69 SUBROUTINE DQXRRD (F,Z,LZ,XL,XU,R,S,LR,LS)
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