Coxiella burnetii: Host and bacterial responses to infection

David M. Waag

Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA

Received 25 April 2007; received in revised form 23 July 2007; accepted 2 August 2007
Available online 20 August 2007

Abstract

Designation as a Category B biothreat agent has propelled *Coxiella burnetii* from a relatively obscure, underappreciated, “niche” microorganism on the periphery of bacteriology, to one of possibly great consequence if actually used in acts of bioterrorism. Advances in the study of this microorganism proceeded slowly, primarily because of the difficulty in studying this obligate intracellular pathogen that must be manipulated under biosafety level-3 conditions. The dogged determination of past and current *C. burnetii* researchers and the application of modern immunological and molecular techniques have more clearly defined the host and bacterial response to infection. This review is intended to provide a basic introduction to *C. burnetii* and Q fever, while emphasizing immunomodulatory properties, both positive and negative, of Q fever vaccines and *C. burnetii* infections.

Published by Elsevier Ltd.

Keywords: Q fever; Vaccine; Coxiella; Immune response; Infection; Immunomodulation

1. Introduction

1.1. History

Q fever was first observed in Australia in 1933 as a disease affecting slaughterhouse workers [1]. Symptoms of this previously uncharacterized disease were fever, headache, and malaise. Given the uncertain etiology, the disease was given the name Q fever (for query). However, the infectious agent could not be isolated. At about the same time, ticks were being collected in Montana USA for investigations into Rocky Mountain spotted fever. Allowing the ticks to feed on guinea pigs resulted in a febrile response [2] and their inflammatory cells contained rickettsia-like microorganisms [3]. Therefore, in the US, an infectious microorganism was discovered, but the disease that it caused was unknown. However, in Australia a new disease was identified, but with an unknown etiology.

In a remarkable mix of serendipity and science, the Q fever agent and the Montana isolate were demonstrated to be identical since guinea pigs that were previously challenged...
Designation as a Category B biothreat agent has propelled Coxiella burnetii from a relatively obscure, underappreciated, niche microorganism on the periphery of bacteriology, to one of possibly great consequence if actually used in acts of bioterrorism. Advances in the study of this microorganism proceeded slowly, primarily because of the difficulty in studying this obligate intracellular pathogen that must be manipulated under biosafety level-3 conditions. The dogged determination of past and current C. burnetii researchers and the application of modern immunological and molecular techniques have more clearly defined the host and bacterial response to infection. This review is intended to provide a basic introduction to C. burnetii and Q fever, while emphasizing immunomodulatory properties, both positive and negative, of Q fever vaccines and C. burnetii infections.
with the Montana tick isolate were resistant to challenge with the Q fever isolate. Furthermore, serum from a patient previously infected with the Montana isolate was able to neutralize the infectivity of the Q fever agent [4]. Although initially named *Rickettsia diaporica* [5] and *Rickettsia burnetii* [6], the microorganism was given the name *Coxiella burnetii* in 1948 [7].

1.2. Life cycle

C. burnetii is an unusual microorganism, replicating only within the phagolysosomal vacuoles of host cells, primarily macrophages. During natural infections, the organism grows to high numbers in placental tissues of goats, sheep, and possibly cows [8,9]. In the laboratory, *C. burnetii* is routinely cultured in chicken embryo yolk sacs, in cell cultures, and can be recovered in large numbers from spleens of experimentally infected mice and guinea pigs [10].

The infectious particles, referred to as small cell variants (SCV), are responsible for the ability to survive extreme environmental conditions of desiccation, heat, sonication, and pressure [11,12]. In the host, the infecting SCV develop into large cell variants (LCV) that are metabolically active. The SCV and LCV are antigenically different [13]. Transition between SCV and LCV is accompanied by changes in the expression of surface proteins and does not involve classical phase variation, which refers to lipopolysaccharide (LPS) structure. Infectious particles have been referred to as “endospore-like”, but this nomenclature is misleading because they are not structurally similar to *Bacillus* spores.

Like other Gram-negative microorganisms, *C. burnetii* possesses a LPS that is important in virulence and responsible for the antigenic phase variation, analogous to the smooth-rough LPS variation seen in enteric Gram-negative microorganisms [14,15]. Bacterial isolates from eukaryotic hosts have a phase I (smooth) LPS, which can protect the microorganism from microbicidal activities of the host. As isolates are passed in yolk sacs or other immune-incompetent hosts, the phase I LPS character of the bacterial population gradually changes, within approximately 20 yolk sac passages, to the phase II (rough) form that has chromosomal deletions in genes responsible for LPS O-side-chain biosynthesis [16,17]. Phase I microorganisms are virulent, while phase II microorganisms are avirulent in immune-competent hosts. Entry of phase II *C. burnetii* into host cells is via the phagolysosomal pathway and the CR3 receptor, whereas phase I cells bind monocytes via the leukocyte response integrin (α6β3) and integrin-associated protein and are poorly internalized [18,19]. LPS is involved in the uptake of virulent, but not avirulent variants of *C. burnetii*, by a toll-like receptor (TLR) 4-dependent mechanism [20]. (However, TLR4 does not seem to be involved in activating macrophages to be microbicidal [20].) In addition to LPS, suggested virulence determinants include acid phosphatase, com1 protein, catalase, superoxide dismutase, and macrophage infectivity potentiator [21,22]. A type IV secretion system might also facilitate intracellular growth [23]. One strategy the microorganism uses to survive in the hostile environment of the phagolysosome might involve the production of oxygen scavengers [21]. An iron/manganese superoxide dismutase has been demonstrated and genetic sequencing has also revealed coding for a copper-zinc superoxide dismutase [24].

2. Pathogenicity/disease

Q fever is most commonly acquired by breathing infectious aerosols or dust contaminated with birth fluids of domestic ruminants [25]. The infectious dose for humans is estimated to be 10 microorganisms or fewer [26]. Of the variety of species that can be infected by *C. burnetii*, symptomatic disease seems to be most severe in humans. However, infection of ruminants is associated with abortion and decreased milk production [27,28]. Seropositivity to *C. burnetii* has also been associated with adverse human pregnancy outcomes, including neonatal death [29,30]. Q fever occurs worldwide and the rates of seropositivity vary. Fourteen percent of human sera tested positive in Nova Scotia, Canada [31]. The pathogenesis of human infection is ill defined. Based on studies with animal models, after initial infection at the site of entry (usually the lungs), the microorganism is engulfed by resident macrophages and transported systemically, causing histopathological changes in the lungs, liver, and spleen [32]. After uptake by host cells, the acidic conditions within the phagolysosome allow the bacteria to grow [33]. Eventually, proliferation within the phagolysosome leads to rupture of the host cell and infection of a new population of host cells. In animal models, the spleen and liver and other tissues of the reticuloendothelial system appear to be most heavily infected, as is likely the case in human infection [34].

Although the majority of human *C. burnetii* infections are asymptomatic, overt cases of acute Q fever result in mild to moderate illness [35]. The incubation period can vary from a few days to several weeks and the severity of infection varies in direct proportion to the infectious dose in normal individuals [36,37]. There are no characteristic symptoms of Q fever, but fever, severe headache, and chills tend to be prevalent. Fever usually peaks at 40°C and lasts for approximately 13 days [38]. Fatigue and sweats also frequently occur [39]. Pneumonia is a common clinical presentation [40]. Cough, nausea, vomiting, myalgia, arthralgia, chest pain, hepatitis, and occasionally, splenomegaly, osteomyelitis, and meningencephalitis are symptoms that are also associated with acute Q fever [39,41]. Fatalities in cases of acute Q fever are rare, with fewer than 1% of cases resulting in death [1]. Children develop symptomatic disease less frequently than adults [42].

Although acute Q fever is a self-limited systemic illness, some patients develop a chronic debilitating disease. The risk of developing chronic Q fever after a case of acute Q fever ranges to 9% [43]. While chronic Q fever occurs
less frequently, it is more pathogenic than acute Q fever. Chronic Q fever can arise years after the initial presentation of acute disease. Patients with prior coronary disease or patients immunocompromised because of disease, such as AIDS, or therapy, such as immunosuppressive cancer therapy or anti-rejection therapy after organ transplant, are more at risk for developing chronic Q fever [44,45]. Endocarditis, primarily of the aortic and mitral valves [46], is the most common manifestation of chronic Q fever. Approximately 90% of Q fever endocarditis patients have pre-existing valvular heart disease [47]. Of acute Q fever patients with cardiac valve abnormalities, as many as one-third develop endocarditis [48].

Approximately 10% of people recovering from acute Q fever have fatigue lasting for longer than 6 months [49]. The cause of this syndrome, called Q fever fatigue syndrome, is thought to be high levels of cytokines, including interleukin (IL)-10, stimulated by persisting C. burnetii antigens [50]. Predisposing genetic factors resulting in immune hypersensitivity [51] that leads to higher levels of C. burnetii genomes in bone marrow and increased shedding into the peripheral blood are also thought to make patients more susceptible to developing Q fever endocarditis and chronic fatigue syndrome. For example, patients harboring the HLA DRB1*11 allele were more likely to develop Q fever fatigue syndrome. However, patients with chronic Q fever endocarditis were more likely to have differences in the IL-10 promoter microsatellites R and G and to have the TNF-alpha receptor II 196R polymorphism.

Whether C. burnetii strains associated with acute Q fever are genetically different from strains causing chronic disease is controversial. An immunodominant 28-kDa protein was found to be associated with strains causing acute Q fever, but not chronic disease [52]. In addition, allelic differences of several strains associated with chronic Q fever were not found associated with strains causing acute disease [53]. Therefore, it seems likely that the disease course in humans is related to the strain of the infecting microorganism. An unresolved question is whether humans ever completely clear the microorganism after infection. Coxiella DNA was found in the bone marrow of 88% of patients tested who had primary Q fever 12 years previously [49]. Chronic Q fever could result from sequestration of C. burnetii in the bone marrow with subsequent seeding of other tissues, such as the endocardium. Control of infection is mediated by monocytoids and macrophages that are activated by gamma interferon, resulting in the production of reactive nitrogen and oxygen intermediates, and leading to intracellular killing of the pathogen [54–56]. Although antibodies might facilitate bacterial entry into host cells and accelerate the development of immunity, passive transfer of antibodies, before or after challenge, did not control infection [57,58]. Other evidence that antibodies are not a primary mechanism of resistance against C. burnetii involves mice unable to express CD28, a molecule found on NK cells and activated T cells. Although these mice produced less IL-10 and fewer antibodies to C. burnetii than normal mice, they were more resistant to infection, having a lower burden of C. burnetii in spleens and livers after infection. However, their ability to produce granulomas and inflammatory cytokines was unimpaired [59]. These data also imply that by inducing IL-10, C. burnetii inhibits Th1 immune responses and the ability of the host to control infection.

The patient’s antibody response to C. burnetii infection, together with nonspecific clinical signs and a history of possible exposure, can be used as evidence of recent infection and lead to therapeutic intervention. Levels of antibody responses directed against killed phase I and phase II cellular diagnostic antigens provide serological evidence that can support a clinical diagnosis of acute Q fever [60,61]. Determining relative titers of antibodies to phase I and phase II C. burnetii can also help distinguish acute from chronic Q fever [62]. Anti-phase II titers exceed the anti-phase I titers in sera from acute Q fever patients. However, in chronic Q fever patients, the anti-phase I titers exceed the titers directed against phase II C. burnetii. Patients with chronic Q fever endocarditis can also have high levels of serum IgA [60,62]. Although the duration of specific antibody titers against C. burnetii is over 5 years [63], without specific antigen stimulation antibody titers will eventually decline to negative levels even though the individual is immune. Immune individuals who are vaccinated run the risk of developing adverse reactions at the vaccination site.

Doxycycline is the treatment of choice for human acute Q fever [35]. Clarithromycin may also be a therapeutic option [64]. However, for treating chronic Q fever and especially endocarditis, drug combinations are needed and one of the most effective treatments is doxycycline plus hydroxychloroquine [65]. The substitution of ofloxacin for chloroquine might also be effective [35].

3. Modulation of immune responses

C. burnetii uses evasion and suppression of host immune responses to survive the hostile environment of the phagolysosome. As C. burnetii is susceptible to killing by active oxygen and nitrogen intermediates produced by host cells in response to infection [54], one survival strategy is to avoid host cell activation, allowing C. burnetii to persist. Phase I C. burnetii does not activate human dendritic cells [66], as determined by IL-12p70 production or p38 mitogen-activated protein kinase phosphorylation [67]. Similarly, phase I C. burnetii LPS does not activate host macrophage antimicrobial responses via TLR4 [68]. Phase I LPS may mask TLR ligands from innate immune recognition, resulting in a lack of surveillance by dendritic cells and persistence of this microorganism [66]. In addition, lipoproteins and lipopeptides from phase I microorganisms do not activate macrophages by stimulating TLR2 [68], although TLR2 might play a role in cytokine production and granuloma formation after infection [69]. Therefore, by avoiding recognition by TLR, Coxiella can minimize detection by the host.
Particularly notable in cases of chronic Q fever, C. burnetii can also ensure its intracellular survival by suppressing host immune responses, allowing persistence of the microorganism. Peripheral blood cells from patients with chronic Q fever endocarditis did not proliferate when exposed in vitro to C. burnetii antigens [70], suggesting that the immune response of those patients was inadequate to eradicate the microorganism. This suppressive mechanism could involve the production of prostaglandin E2 and high levels of tumor necrosis factor, with consequently deleterious effects on the host’s immune responses [18,71]. Patients with chronic Q fever also exhibited increased IL-10 secretion [72,73], leading to suppressed Th1-mediated cellular immunity.

Active suppression of host immune responses has been most thoroughly documented in the mouse Q fever model. The intraperitoneal injection of mice with 100 μg of killed phase I whole cell vaccine or viable microorganisms suppressed the lymphoproliferative responses of spleen cells to mitogens (concanavalin A, phytohemagglutinin, and pokeweed mitogen) [74]. Incorporation of radioabeled thymidine was also suppressed when spleen cells from these animals were exposed to C. burnetii antigens in culture. Spleen cells from vaccinated mice were not simply unresponsive to stimulation by homologous antigens, they incorporated significantly less thymidine than cells cultured in the absence of antigen (i.e., stimulation index <1.0). Cultured spleen cells from naïve mice proliferated in response to C. burnetii antigens. Therefore, the observed antigen-specific suppression after phase I antigen priming was not simply a failure to respond to antigen in vitro, but an event requiring prior sensitization by phase I C. burnetii. Suppression was not due to decreased viability of spleen cells or alteration of cellular kinetics in response to mitogens or antigen.

The components of phase I whole cells that caused immunosuppression were given the term “immunosuppressive complex (ISC)” [75]. Investigations into the nature of that complex revealed that the ISC could be inactivated and partitioned by chloroform-methanol (CM) (4:1) extraction. The suppressive components in either the residue, (CMR) or extract (CME) did not induce ISC activity in the host when given separately. LPS resides in the CMR after extrac- or extract (CME) did not induce ISC activity in the host when given separately. LPS resides in the CMR after extrac-

tion [72,73], leading to suppressed Th1-mediated cellular immunity.

The duration of protection was over 5 years. However, this vaccine cannot be administered without prior determination of immunity and exclusion of those testing positive. A similar product, while not licensed, is administered as an Investigational New Drug in the US and is used to vac- cinate at-risk persons at the US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD. Many countries do not have an approved vaccine for Q fever. The remarkable efficacy of Q-Vax (a vaccine manufactured using the phase I Henzerling strain originally isolated in Italy) in Australian trials suggested that there is cross-protection between C. burnetii variants. Furthermore, that lymphoproliferative responses of individuals vaccinated with Q-Vax were

4. Vaccines against Q fever

An efficacious Q fever vaccine was developed and available for human vaccination only a few years after discovery of the etiologic agent. This preparation was rather crude, consisting of formalin-killed and ether-extracted C. burnetii containing 10% yolk sac, but it was effective in protecting human volunteers from disease after aerosol challenge [81]. In those early studies, the antigenic nature of the vaccine was not known. More recent vaccines were prepared from phase I microorganisms, as those preparations were 100–300 times more potent than phase II vaccines [82]. Improved purifi-
cation methods were eventually developed to exclude egg proteins and lipids. Vaccine efficacy of these more highly purified preparations was also demonstrated in human volunteers [83]. However, although efficacious, the use of this and other early phase I cellular vaccines was occasionally accom-
panied by adverse reactions at the vaccination site, including induration or the formation of sterile abscesses or granulo-
mas [84]. People with a history of Q fever or those previously vaccinated were at risk for developing these adverse re-
actions [84]. Approximately 3% of persons vaccinated for the ninth and tenth time developed severe persistent reactions [85]. Screening for prior immunity with a skin test that pre-
vented immune individuals from being vaccinated resulted in a dramatic decrease in the incidence of adverse re-
actions after vaccination [86]. Currently, skin testing is used to assess the potential for developing adverse vaccination reactions, although some laboratories also measure the level of specific antibodies against C. burnetii [87]. Cellular C. burnetii vaccines currently in use are safe and efficacious if the recipients are not immune to prior C. burnetii infection.

The most thoroughly tested Q fever vaccine in use today is “Q-Vax.” This formalin-killed, phase I cellular vaccine is produced and licensed for use in Australia [87]. In Aus-

tralian studies, this vaccine was 100% effective in preventing clinical Q fever in occupationally at-risk individuals [87]. The duration of protection was over 5 years. However, this vaccine cannot be administered without prior determination of immunity and exclusion of those testing positive. A similar product, while not licensed, is administered as an investigational New Drug in the US and is used to vac-
cinate at-risk persons at the US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD. Many countries do not have an approved vaccine for Q fever. The remarkable efficacy of Q-Vax (a vaccine manufactured using the phase I Henzerling strain originally isolated in Italy) in Australian trials suggested that there is cross-protection between C. burnetii variants. Furthermore, that lymphoproliferative responses of individuals vaccinated with Q-Vax were
other vaccine candidates have been tested. A fusion protein, consisting of C. burnetii outer membrane protein I (P1) and heat-shock protein B (HspB) demonstrated some protective efficacy [96]. however, a mixture of eight recombinant C. burnetii proteins that were expressed in E. coli from potential virulence genes (Omp, Pmm, HspB, Fbp, Orf 410, Crc, CbMip, and MucZ) were found to be antigenic (except Pmm) but not protective when BALB/c mice were challenged intraperitoneally with the phase I Nine Mile strain [97]. Vaccination with single recombinant C. burnetii proteins (Rcom, rP1, rCbMip, or rP28) also was not protective [98].

the ultimate goal of current vaccine efforts is to develop an efficacious vaccine that can be safely administered to individuals at risk of infection, does not require screening for prior immunity, and can be licensed. Cellular Q fever vaccines probably would not be licensable in the U.S. due to safety concerns. A licensed Q fever vaccine would benefit those occupationally at risk for Q fever, those residing in areas endemic for Q fever, and soldiers or civilians who may be exposed as the result of a bioterrorism or biowarfare attack. Important questions remaining to be decided include (1) how does the microorganism’s ability to persist in the host, cause adverse outcomes in pregnancy, and modulate host immune responses impact vaccination strategy; and (2) since epidemiological surveys suggest that approximately one-seventh of the population tested have been exposed to C. burnetii, who should be vaccinated?

5. Perspective

few microorganisms are as fascinating as this obligate intracellular pathogen that requires the inhospitable (for most bacteria) eukaryotic phagolysosome for growth. Immunomodulatory capabilities range from immunosuppression seen in chronic Q fever patients to nonspecific stimulation after injection of vaccine that is able to regress tumors and allow mice to nonspecifically resist infection. C. burnetii is also a significant biological warfare agent and during the Cold War was weaponized by the Soviets and US [99]. Classification as a Category B bioterror agent, due to the agent’s high infectivity at low aerosol exposure doses, great stability of the infectious particles, and significant disease morbidity, has stimulated investigations into improved Q fever vaccines, diagnostics, and therapy and highlighted the need for greater understanding of host–pathogen interactions. The pace of research into improved Q fever vaccines that can be administered without assessment of prior immunity needs to be accelerated. While the efficacy of cellular Q fever vaccines is exceptional, these vaccines are not widely available and probably will not be licensed (in the U.S.). Promising subcellular or recombinant Q fever vaccines are proving to be elusive. However, a vaccine cocktail of appropriate recombinant and/or purified subcellular components administered with an appropriate adjuvant or targeted to the appropriate site could be the key to an efficacious, safe Q fever vaccine. Finally, the interplay between the positive and negative immunomodulatory capabilities of this microorganism needs to be better understood.

Acknowledgments

Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the U.S. Army. This effort was funded by Defense Threat Reduction Agency project number 5.10023_05_RD_B. The manuscript is dedicated to the memory of pioneering scientists Dr. Louis Mallavia, Dr. Richard Ormsbee, Dr. Robert Humphres, and Dr. George Scott, and offered in grateful appreciation to those who spent careers unraveling some of the mysteries of this fascinating microorganism – Dr. Herb Thompson, Dr. Barry Marmion, Dr. Jim Williams, Mr. Mort Peacock, and Mr. Scott Stewart.
References

DAMROW TA, Williams JC, WEA MD. SUPPRESSION OF IN VITRO LYMPHOCYTE PROLIFERATION IN C57BL/10 ScN mice vaccinated with phase I COXIELLA BURNETII. INFECT IMMUN 1985;47(1):149-56.

CLARK IA. Resistance to Babesia spp. and Plasmodium sp. in mice pretreated with an extract of COXIELLA BURNETII. INFECT IMMUN 1979;24(2):319-25.

