
 

 
NAVAL 

POSTGRADUATE 
SCHOOL 

 
MONTEREY, CALIFORNIA 

 

 
 

THESIS 
 

Approved for public release; distribution is unlimited 
 

DISCRETE-EVENT SIMULATION WITH AGENTS FOR 
MODELING OF DYNAMIC ASYMMETRIC THREATS IN 

MARITIME SECURITY 
 

by 
 

Chee Wan Ng 
 

December 2007 
 

 Thesis Advisor:   Arnold H. Buss 
 Co-Advisor: John Hiles 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i 

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection 
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction 
Project (0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
December 2007 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE  Discrete-Event Simulation with Agents for 
Modeling of Dynamic Asymmetric Threats in Maritime Security 
6. AUTHOR(S)  Chee Wan, Ng 

5. FUNDING NUMBERS 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the 
official policy or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 
 

13. ABSTRACT (maximum 200 words)  
Maritime security has become an important security focus area, due to the impact that piracy and terrorism 

have on the global economy. There are many studies on detecting and engaging asymmetric threats in ports and 
waterways. However, the threats are typically modeled too simply, with predefined or random paths and fixed 
responses. There is a need to model representing dynamic, asymmetric threat behaviors so that future threat-response 
models will be a more realistic evaluation against a dynamically adaptive foe. 

Discrete-event simulation (DES) was used to simulate a typical port-security, local, waterside-threat response 
model and to test the adaptive response of asymmetric threats in reaction to port-security procedures, while a multi-
agent system (MAS) was used to provide the complex adaptive behaviors for our threats. Cover and dynamic 
pathfinding were used with the sensor framework in Simkit to enhance the spatial interactivity of the agents. 

This study found that MAS asymmetric threats demonstrate greater flexibility of behaviors and show potential 
for adaptability. These dynamic asymmetric threats will enable simulation of a wider variety of maritime-threat 
scenarios, and play an important part in improving the plans for future maritime force and infrastructure configurations. 

 
 
 
 

 

15. NUMBER OF 
PAGES  

99 

14. SUBJECT TERMS Discrete-Event Simulation, Multi-agent System, Asymmetric Threat, 
Piracy, Terrorism, Maritime Security, Port Security 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 
Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18 



 ii 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii 

Approved for public release; distribution is unlimited 
 
 

DISCRETE-EVENT SIMULATION WITH AGENTS FOR MODELING OF 
DYNAMIC ASYMMETRIC THREATS IN MARITIME SECURITY 

 
Chee Wan Ng 

Civilian, Defence Science and Technology Agency, Singapore 
M.Sc. (Elect. Eng.), National University of Singapore, 1999 

 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN MODELING, VIRTUAL ENVIRONMENTS, AND 
SIMULATION (MOVES) 

 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
December 2007 

 
 
 

Author:  Chee Wan Ng 
 
 
 

Approved by:  Arnold H. Buss 
Thesis Advisor 

 
 
 

John Hiles 
Co-Advisor 

 
 
 

Rudy Darken 
Chairman, Department of MOVES 
 



 iv 

THIS PAGE INTENTIONALLY LEFT BLANK 



 v 

ABSTRACT 

Maritime security has become an important security focus area, due to the 

impact that piracy and terrorism have on the global economy. There are many 

studies on detecting and engaging asymmetric threats in ports and waterways. 

However, the threats are typically modeled too simply, with predefined or random 

paths and fixed responses. There is a need to model representing dynamic, 

asymmetric threat behaviors so that future threat-response models will be a more 

realistic evaluation against a dynamically adaptive foe. 

Discrete-event simulation (DES) was used to simulate a typical port-

security, local, waterside-threat response model and to test the adaptive 

response of asymmetric threats in reaction to port-security procedures, while a 

multi-agent system (MAS) was used to provide the complex adaptive behaviors 

for our threats. Cover and dynamic pathfinding were used with the sensor 

framework in Simkit to enhance the spatial interactivity of the agents. 

This study found that MAS asymmetric threats demonstrate greater 

flexibility of behaviors and show potential for adaptability. These dynamic 

asymmetric threats will enable simulation of a wider variety of maritime-threat 

scenarios, and play an important part in improving the plans for future maritime 

force and infrastructure configurations. 
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I. INTRODUCTION 

A. INTERNATIONAL MARITIME SECURITY 

In this age of global trade, millions of dollars in goods and supplies are 

being shipped across the world at any moment. Any disruption in this global 

supply chain will affect the economies of many countries. All countries in this 

global economy have a vested interest in ensuring the protection of maritime 

activities. [1] [2] 

Corresponding to the increase in trade, there is an increase in human 

activity in port areas to support the increase in shipping. With the growing 

affluence of nations, there is also an increase in leisure cruising and marina use. 

From the perspective of the would-be terrorist, these popular activities offer an 

attractive political target for achieving the objective of instilling fear into the daily 

lives of a target nation’s people. [9] 

International maritime security is essential to protect and secure these 

commercial shipping and human recreational activities in port areas and 

international waters. 

B. MARITIME ASYMMETRIC THREATS 

Asymmetric threats are thriving in the maritime environment. While lacking 

in big guns and the latest expensive modern technology for a major battle, these 

threats make use of simple equipment easily accessible in the open market, in 

conjunction with operational tactics designed to exploit the weaknesses of more 

advanced and expensive technologies. The operational tactics of the asymmetric 

threat are employed against established navies and other formal security 

establishments by terrorists, insurgent groups, and pirates. Several specific 

threats will now be described. 
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The number-one threat in most American minds is Al-Qaeda. The United 

States’ Department of Defense defines Al-Qaeda as “A radical Sunni Muslim 

umbrella organization established to recruit young Muslims into the Afghani 

mujahideen and is aimed to establish Islamist states throughout the world, 

overthrow ‘un-Islamic regimes’, expel U.S. soldiers and Western influence from 

the Gulf, and capture Jerusalem as a Muslim city” [9]. Using small suicide crafts, 

Al-Qaeda attacked the USS Cole, a destroyer-class ship, in the Yemeni port of 

Aden on October 12, 2000 [15] [16] [17] and the French tanker Limburg in the 

Gulf of Aden on October 6, 2002 [18] [19].  

Another example of a deadly threat is the Liberation Tigers of Tamil Eelam 

(LTTE), a rebel group that has been fighting for an independent Tamil homeland 

in the north of Sri Lanka since 1976. The naval wing of the LTTE, the Sea Tigers, 

demonstrate the highest level of naval organization, tactics, technology, and 

power of any insurgent group to date, and has destroyed numerous boats, even 

a warship in the Sri Lankan navy (SLN) [13]. 

The Abu Sayyaf group (ASG) is an example of the several militant Islamist 

separatist groups fighting for an independent Islamic state in western Mindanao 

and the Sulu Archipelago, with the stated goal of creating a pan-Islamic 

superstate across southeast Asia [9]. The ASG sank the Philippine Super Ferry 

14 off Manila on February 26, 2004 [13]. 

While not part of any terrorist organization, pirate groups target 

commercial and civilian ships for robbing of cash, belongings, and navigational 

equipment, hijacking of cargoes and vessels, and kidnapping for ransom. 

Sometimes the crew is killed. [14] [12] 

C. TACTICS OF MARITIME ASYMMETRIC THREATS 

Maritime asymmetric threats employ a combination of tactics, such as fast 

speed, innocent speed, legal cover, camouflage, deception, and reducing radar 

detection signature. This study focus is on navigational tactics. It is assumed that 
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once a threat gets close to its target, it will carry out its mission successfully. The 

navigational tactics of the maritime asymmetric threats are categorized as 

follows. 

1. Outrunning 

The Sea Tigers’s fast-attack craft can chase at 40 to 45 knots, but must 

cut speed to 20 knots to fire weapons accurately [13]. 

Pirate groups in Southeast Asia have also demonstrated an ability to 

capture nonmilitary ships and escape and evade capture during the course of 

operations [13]. 

2. Maintaining Innocent Speed 

Al Qaeda used deception to get close to the USS Cole: a small boat, 

mixing with the harbor’s refueling crafts, was likely to have moved slowly without 

giving away its intent until the last moment, when it headed directly towards the 

Cole [16]. 

3. Following a Ship 

On October 23, 2000, five Sea Tigers suicide crafts followed a regular 

cargo vessel into Trincomalee harbor; two were destroyed, two escaped, and 

one reached an SLN-operated ferry, the A541. The A541 was crippled and forty 

SLN sailors injured. The successful suicide craft was aided in its final approach 

by diversionary mortar and rocket fire from a land-based LTTE unit [13]. 

4. Hiding between Ships 

On January 7, 2006, a Sea Tigers suicide craft hid inside a cluster of 

fishing vessels in Trincomalee harbor during the night and waited for an SLN 

patrol boat to pass before emerging and ramming it. Fifteen SLN sailors were 

killed [13]. 
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5. Swarming 

On May 1, 2006, the Sea Tigers mounted a swarm attack just outside the 

breakwater of Trincomalee harbor, using five attack crafts to open fire on a single 

SLN Dvora patrol boat. One Sea Tigers craft was sunk, while the Dvora was 

damaged and ten SLN sailors killed. Due to command-and-control limitations, 

each group of Sea Tigers attack crafts consists of two to three crafts, but they 

can operate up to 80km apart and use speed to concentrate their forces when 

necessary [13]. 

D. APPROACH 

As part of a team performing an earlier study on “Port Security 2012” [1], a 

simulation of port-security measures was jointly developed against small-boat 

threats. The main focus was on modeling and simulation the performance of port-

security measures, including radars, thermal-vision sensors, sonars, patrol crafts, 

helicopters, unmanned surface vehicles etc. The small-boat threats were 

assigned routes randomly chosen from a table of fixed routes of attack. While 

sufficient for a broad study on the relative effectiveness of various port-security 

measures, improved fidelity in the simulation of battlefield entities was deemed 

necessary for deeper exploration of the operational tactics applicable in the 

engagement environment. 

Further study reveals that the emphasis of such extended efforts [4] [5] [6] 

[7] is typically on security measures, while simplifying the capability, and 

especially the adaptability, of asymmetric threats. Real-world incidents have 

proven different—asymmetric threats are highly agile, able to adapt their tactics 

quickly to changes in the defense infrastructure, and on the strength of such 

capability, likely to exploit any known or hitherto-unknown weakness of a defense 

infrastructure [8]. There is a need to simulate the adaptability of asymmetric 

threats, to better explore the operational tactics applicable in the engagement 

environment, and to reveal operational weaknesses that can emerge in the 

aftermath of changes to the defense infrastructure. 
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Multi-agent systems (MASs) in simulations are known for their ability to 

adapt to and explore their environment. It is hypothesized that a MAS simulation 

will provide a mechanism for simulating the adaptability of asymmetric threats 

and, in so doing, reveal operational tactics applicable in the engagement 

environment. 

Discrete-event simulation (DES) provides the foundation for this port-

security simulation. It allows for true time–space simulation and is free from the 

time truncation encountered in time-period based simulations. This is especially 

important for military simulations, in which time and spatial dimensions play 

essential roles. DES is also an event-driven simulation: loosely coupled events 

perform actions, trigger other events, and drive the simulation. Its methodology 

corresponds closely to the human concept of events and actions and allows for 

natural encoding of the human-defined rules and behaviors in a scenario.  DES 

and agent-based technology are a natural fit, because of DES’s encoding and 

application of agent rules and behaviors. 

There is a need to explore how an asymmetric threat exploits weaknesses 

in changes made to a defense infrastructure. Discrete-event simulation can 

provide a foundation for simulating defense infrastructures, while agent-based 

simulation of the threats helps explore their possible range of actions. 

It is noted that this study is only a small part of the multifaceted effort 

towards combating terrorism, which includes technological, informational, 

economical, social, and psychological approaches.  

E. OBJECTIVE AND SCOPE OF THIS STUDY 

The present objective is to identify and evaluate the adaptability of MAS 

DES asymmetric threats in defeating maritime-security procedures.  

This study asks the following questions: 

1) How can adaptable MAS asymmetric threats be encoded into DES 
models of maritime security? 

2) Does the MAS DES model demonstrate increased adaptability? 
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3) Can adaptable MAS DES models of asymmetric threats increase 
the success rate at defeating maritime-security procedures, 
compared to non-adaptable DES model of asymmetric threats? 

F. RELATED WORK 

At the Naval Postgraduate School, master’s students are exploring agent-

based technologies in maritime security and other environments. Terence Tan is 

studying the application of conceptual-blending theory to agents, for naval 

tactical-plan generation in littoral-water operation [20], and Ryan Tan is studying 

the application of agents to modeling of human behavior, in diverse areas such 

as logistic behaviors in riverine operations and social attendance [21]. 
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II. THEORY BACKGROUND 

A. INTRODUCTION 

This chapter provides background on the DES methodology used to 

model a port-security environment, a description of MAS methodologies used in 

this study, and background on the integration of DES and MAS. The concept of 

adaptability in a simulation, and how it can be verified and validated, is also 

discussed. 

B. DES FOR PORT SECURITY 

1. DES 

Law describes DES as “modeling of a system as it evolves over time by a 

representation in which the state variables change instantaneously at separate 

points in time” [22]. These points in time are the instants at which an event 

occurs, and nothing happens in the time between them. Law says that DES can 

be implemented using next-event time advancement or fixed-increment time 

advancement, and that next-event time advancement is the approach used by all 

major simulation software. This is because fixed-increment advancement has 

well known problems of time truncation, introducing errors that affect the 

accuracy of simulation output and the ability to decide which events come first 

when simultaneous events occur. It also suffers inherently from wasted time 

increments doing nothing. 

Next-event time advancement turns the simulation clock to the time when 

the next event occurs, and in this way, applies a continuous time dimension. It 

must be noted that there are scenarios in which fixed time increments do not 

suffer from inaccuracy, incorrectness and inefficiency, but only where events 

occur at fixed times—which rarely applies in dynamic scenarios such as military 

simulations.  
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In addition to truncation of time, truncation of space can also be 

undesirable in simulations involving the spatial dimension. Depending on the 

fidelity of the scenario, its inputs, and desired results, it would be inaccurate and 

incorrect to truncate spatial values beyond the required resolution. Because the 

spatial dimension plays an important role in military simulations, truncation 

should be avoided where possible, while weighing other factors such as 

performance and resource constraints.  

DES can be described using event graphs. An event graph consists of 

event nodes and scheduling edges. The edges may be scheduled only if a 

condition is satisfied. The next event may be scheduled immediately or only after 

a specified time. The figure below shows event nodes A and B, one scheduling 

edge from A to B, one condition, i, and a scheduling time, t. [23] 

 

Figure 1 Fundamental Simulation Graph Construct. Whenever event A occurs, 
if condition i is true after A’s state transition, event B is scheduled to 
occur t time units later (From [23]) 

An event node can also cancel another previously scheduled event. This 

canceling edge is shown in the following figure as a dotted line. 

 

Figure 2 A Canceling Edge (From [23]) 
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An event node can pass attributes on edges to an event node taking in a 

parameter. As shown in the figure below, the attribute k is passed with the 

canceling edge to event node B(j). Attribute k is passed in as parameter j [24]. 

 

Figure 3 A Canceling Edge with An Attribute Passed to Event Node B (From 
[24]) 

As seen in the following figure, the changes of the state variables can also 

be depicted below the event node. 

 

Figure 4 Simulation Graph for Poisson Process (From [23]) 

Event-graph models have been shown capable of modeling any system 

that can be implemented on a computer. Thus, they can represent existing 

complex systems as well as future complex systems that might be implemented 

in other fashions. [25] 

In the context of this paper, DES is defined as using next-event time 

advance and a continuous spatial dimension and described using event graphs. 

In the real world of limited time and budgets, it is important to be able to 

know and manage the effort and resources required for a proposed simulation 

study using discrete-event simulation. Methods to measure the complexity of 

event-graph models have been introduced, including vertex count, edge-to-vertex 

ratio, cyclomatic number (number of control paths), size of event lists, and 
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combinations of these methods [26]. These can help scope, prioritize and bring 

focus to a simulation project and ensure that it is successfully executed within 

budget.  

It may be difficult to eliminate complexity completely, but complexity can 

be reduced in discrete-event simulation without reducing functionality, by 

simplifying the event graphs through various methods, including application of 

hierarchical event graphs [27], loosely coupled, component-based modeling with 

design patterns [28], and listener event-graph objects (LEGOs) [29]. 

2. Simkit 

First published in 2001 [30], Simkit is a free and open-source discrete-

event-simulation Java library made available under the GNU lesser general-

public license (LGPL) [31]. This allows Simkit to be used in proprietary programs, 

as opposed to the GNU general-public license (GPL), which requires the 

program to be offered free [33]. This proprietary accommodation is important to 

the commercial and military sectors. Simkit is used for teaching discrete-event 

simulation at the Naval Postgraduate School (NPS) and as the foundation library 

for Viskit, Diskit, and Gridkit, which are visual modeling, distributed interactive 

simulation (DIS), and cluster-project initiatives for discrete-event simulation at 

NPS. NPS researchers have used Simkit to create discrete-event simulations for 

army, air, navy, maritime, and other scenarios. 

Simkit implements discrete-event simulation with LEGOs, using loosely 

coupled, component-based modeling with design patterns such as listener, 

mediator, referee, and factory [34]. Present work by Koh refines the modeling 

approaches in Simkit using design patterns [32]. 

Simkit implements events, scheduling edges, a future event-list scheduler, 

cancellation of events, and parameter passing on scheduling edges to enable 

discrete-event simulation. Simkit also implements random variates, including 
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Bernoulli, binomial, exponential, geometric, normal, Poisson, uniform, Weibull 

and many others, for the application of probability distribution in the models. [30] 

Simkit uses two listener patterns, “SimEventListener” and 

“PropertyChangeListener”, to enable loosely coupled, component-based 

modeling [30]. “SimEventListener” allows for dividing a large event graph into 

components and enables loose coupling between them. 

“PropertyChangeListener” allows for the decoupling of statistics-data collection 

from events, which also simplifies the programming of event logic.  

While Simkit can be used for general programming of any type of DES 

model, it also provides a framework for simple movement and detection in 

discrete-event simulation [35]. A referee is used to compute when and where a 

target is detected by a sensor, based on the target’s movement and the sensor’s 

specifications. This schedules an event to the mediator, which decides the 

conditions under which the sensor will be notified that a target is detected. These 

sensor and movement functionalities are important for the simulation of models 

with a spatial dimension, and these basic capabilities in Simkit are a useful 

foundation for simulating the many sensors and movement platforms found in 

military command and control. This is an area where Simkit excels in comparison 

with commercially available, general-purpose DES products such as Arena [36] 

and Extend [37], etc. 

3. A* Pathfinding in Simkit 

A* search allows for efficient finding of the optimal path from a starting 

point to a destination over a graph map [38] [39]. There are many variants of the 

A* search and they are commonly used in game engines in which intelligent bots 

have to navigate their way around a map. Intelligent pathfinding is important in 

this project because it makes it possible to simulate the dynamic movement of 

small-boat threats as they respond to inputs from their environment. A* search is 

also used to enable patrol crafts to chase the small boat threats without colliding 

into the land mass. 
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Sullivan implemented an A* search in Diskit to allow pathfinding between 

the centers of rectangular zones [7]. To enhance continuity of space and allow 

dynamic movements, a higher resolution A* pathfinding map that completely 

covers the sea mass was generated to utilize the generic A* search in 

Simkit\Diskit created by Professor Arnold H. Buss. 

4. Relevant Work 

In addition to creating models for army, airforce and navy, Simkit has been 

used at NPS to create maritime scenarios. Childs’s thesis explored the creation 

of a waterfront force-protection simulation using Simkit [4]. Sullivan’s thesis 

demonstrated the application of real-world graphical and physical models to the 

waterside-security simulation using Simkit, Diskit, Viskit and Savage Studio [7]. 

The “Port Security Strategy 2012” project by the Systems Engineering and 

Analysis Cohort 11 of NPS’s Meyer Institute of Systems Engineering simulated 

multiple port-security measures, using Simkit to compare their performance in 

identifying small-boat threats. Entities simulated in the port security environment 

include a patrol helicopter, patrol crafts, radar sensors, small-boat threats, big 

ships, and small boats [1]. 

In this thesis, the DES model in “Port Security Strategy 2012” is extended 

to simulate the engagement of patrol crafts and a patrol helicopter with small-

boat threats, while interacting with the other entities in the environment. 

C. AGENTS FOR PORT SECURITY 

In their description of a taxonomy for agents, Franklin and Graessaer 

defined an autonomous agent as “a system situated within and a part of an 

environment that senses that environment and acts on it, over time, in pursuit of 

its own agenda and so as to effect what it senses in the future”. Autonomous 

agents can be characterized by the following properties: reactive, sensing and 

acting; autonomous, goal-oriented, proactive and purposeful; temporally 

continuous; communicative and socially able; able to learn and adapt; mobile; 
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and flexible in their actions and character. [43] In this study, it is hypothesized 

that agents can improve the adaptability of small-boat threats as they navigate to 

and attack a high-value zone in a port security environment. This hypothesis will 

be validated if the agents representing the small-boat threats do demonstrate a 

greater variety of navigation in attacking the high-value zone in the port-security 

environment. 

1. Multi-Agent System (MAS) 

A MAS can consist of many subagents constituting a single agent or a 

society of agents [43]. 

In a multiple-subagent system, each subagent can represent a different 

task component of a single agent, and each component is able to sense and 

react to the environment [43]. For example, a patrol craft can have one agent for 

sensing and reacting to other agents, another agent for scanning high-value 

zones, and another for performing intercepts. 

In a society of agents, multiple agents can interact and optionally 

communicate with each other [43]. For example, an agent representing a patrol 

craft can search an area for small-boat threats and broadcast detections to the 

command center. An agent representing the command center can receive 

broadcasts from multiple patrol agents and coordinate their interception of a 

small-boat threat. The agent representing the threat can maneuver to avoid 

interception while still pursuing its goal of reaching a high-value zone. 

The following diagram shows a model of an agent in a MAS. The agent 

has a mental model, an input suite taking a sensing stream from the 

environment, and an output suite taking actions that affect the environment [44].  
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Figure 5 Model of an Agent in a MAS (From [44]) 

Each agent has a set of goals, conditions, methods, and rules, as shown 

in the figure below [44]. The goals identify the agent’s objectives. The conditions 

chose which subsequent decision to carry out. The methods process the sensing 

stream into the input suite to update the weights in the mental model of the 

agent, and this affects its subsequent decision. Rules consist of rule conditions 

and actions. Rule conditions specify whether actions can be legally performed in 

an environment. 

Input 
suite 

Output 
suite 

Sensing 
stream 

Agenti Mental 
Model 

Actions 

Environment 
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Figure 6 Goals, Conditions, Methods, Rules in a MAS (From [44]) 

An MAS can be designed and implemented using the following basic 

steps [44]: 

1.  Define the MAS Model. 

A MAS can be constructed from the following model: 

MAS (multiple agent systems) = { E (Environment), A (Agents), O 

(Objects), Ops (Operations), Laws } 

i.  E (Environment) 

First, the environment the agents interact with is defined. This includes 

characteristics that provide sensory input for agents as well as characteristics 

affected by agents’ actions. 

ii.  A (Agents) 

Next, agents’ specifications are described; this can include personality, 

activity preferences, and other attributes that will influence the agent decision 

making and action.  

G1  M1 

Condition (Traffic light - go / nogo) 
Method 

G2  M2 

Gn  Mn 

…. 
 

R1 … Rn 

R1 … Rn 

R1 … Rn 

Rules 
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iii.  O (Objects) 

Objects are the other entities in the environment that agents interact with. 

The object attributes that affect the agents’ sensory input and that are affected by 

agent actions are described. In this thesis, only agents with adaptable behavior 

are characterized as “agents” and afforded in-depth elaboration, while other 

sensing and acting entities are categorized and described as “objects.” 

iv. Ops (Operations) 

Operations are actions that can be carried out by agents and objects. The 

sequences of cause and effects are described. 

v.  Laws 

Laws are the boundary conditions that limit the agents’ scope of operation. 

Laws can include physical space, resource, and operational limitations. 

2.  Define the Experiment 

The experiment consists of the null hypothesis, the alternate hypothesis, 

and the measures to be collected for statistical analysis. The alternate hypothesis 

describes the objective of the experiment. The null hypothesis describes an 

opposite or different assumption that when refuted with statistical data can be 

used to prove the original hypothesis. [45]  

2. Relevant Work 

Harney’s thesis is an early work describing an implementation of agent-

based entities in a port-security scenario with X3D graphics [5]. Harney 

described entities that are able to move, change speed and direction, avoid 

collision, intercept, attack, and defend. Sullivan extended Harney’s work to 

design and implement agent entities in the port using DES with Simkit [7]. Oliver 

Tan’s thesis explored the use of a multi-agent system with cognitive blending for 

tracking the intentions of surface contacts in ports and waterways. Simkit was  
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used as the foundation for the discrete-event simulation of the port entities and 

the connector-based multi-agent simulation library (CMAS) was used for the 

agent implementation [6].  

These efforts focused on port security against a non-adaptive agent for 

the small-boat threat. In this thesis, enhancing the adaptability of the small-boat 

threat is a logical step in the evaluation of port-security measures. 

D. ADAPTABILITY IN BEHAVIOR 

Hu demonstrated context-dependent adaptability in crowd-control 

behavior using multi-agents in a crowd-control simulation framework [46]. The 

agents make different decisions for choosing their behaviors depending on 

behavioral context. Switching to a different context (S) in the top behavioral-

context layer modulates behavior choices in the lower behavior layer, as shown 

in the figure below. To make a behavior choice, Hu considers each behavior 

choice (b) in turn, taking the current sensory-input excitation of that choice and 

inhibiting it with the previous activation level of the other behavior choices. 

Inhibition relationships are predefined between the behaviors in the behavior 

layer, and there is a different set of inhibition relationships for behavioral context. 

Modulation achieves the behavioral-context switch by switching to the 

corresponding set of inhibition relationships. 

 

Figure 7 The Two-Layer Behavior Selection Architecture (From [46]). 
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This thesis applies similar concepts by using 

i)  a two-layer personality-action (behavioral context-behavior) 
concept, 

ii) a switch to the corresponding action set for the personality, and 

iii)  modulation to modify the probability of an action based on the 
happiness of the previous same-action choice. The probability of 
other actions in the set are reduced proportionally. The happiness 
of the previous action choice depends on how happy the last 
chosen personality is with the results. This is computed from the 
last personality choice and current sensory inputs. 

 

Figure 8 The Two-Layer Action Selection Architecture (After [46]). 

E. DESIGN AND EXPERIMENTAL APPROACH 

The adaptable MAS small-boat-threat behavior is designed using the MAS 

model and built upon the DES framework. The standard small-boat threat 

behavior uses the same DES framework and is constructed based on a flowchart 

of potential small-boat-threat tactical choices. In the next chapter, the design of 

the DES and MAS for the simulation is enlarged upon. 
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The experiment design is elaborated in Chapter IV and defines the null 

hypothesis that the MAS small-boat threat does not demonstrate adaptability, the 

alternate hypothesis that the MAS agent demonstrates adaptability, and the 

measurements for adaptability. The results are then collected and analyzed. 
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III. DESIGN OF THE MAS-DES PORT SECURITY 

A. DES DESIGN 

The DES design for the port-security simulation has four key categories: 

setup, movement, sensors, and engagement. These are described in the 

following sections. 

1.  Setup 

The following diagram shows the setup-event graph depicting the 

connections between the arrival, creator, and manager components. 

 
Figure 9 Setup-Event Graph 
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The creator components listen to the corresponding arrival components 

and creates the corresponding entities when the Arrival events are heard. The 

manager components listen to the creator components and register the entities 

for sensing and displaying when the Arrival events are heard. The creator 

components also listen to the Leave events of the mover managers and 

schedules the Leave event for the attached sensor and mover entities. The 

manager components will hear this Leave event and unregister the entities. 

2.  Movement 

The following diagram shows the movement-event graph depicting the 

connections between the mover, mover manager, and engagement components. 

 
Figure 10 Movement-Event Graph 
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The mover-manager component directs the mover component to move to 

the next waypoint and listen to the mover component’s EndMove event to know 

when the mover has arrived. The mover-manager components also listen to the 

movement-command events from the corresponding engagement components. 

For example, the small-boat-threat mover manager listens to the Attack, Hide, 

Evade, Escape and Surrender events from the small-boat-threat-engagement 

component. Similarly, the blue-entity-patrol mover manager (BEPMM) listens to 

the Intercept and StopIntercept event from the blue-entity-engagement 

component. The neutral-craft mover manager does not listen to any engagement 

component and simply directs its mover to go along the specified path. 

The BEPMM extends the PatrolMoverManager and provides intercept 

behavior in addition to patrol behavior. When intercept is activated, the BEPMM 

stops patrolling behavior and runs intercept behavior. When intercept is called 

off, the BEPMM resumes patrol behavior. 

The small-boat-threat mover manager (SBTMM) extends the 

PathMoverManager and uses the path-movement behavior to provide attack, 

following, evasion, escape, and surrender behavior. When the small-boat threat 

has reached the destination for attack or escape, or when it has surrendered, it 

will schedule the Leave event to initiate removing the threat from the simulation. 

3.  Sensor 

The following diagram shows the blue-entity flowchart for small-boat-threat 

detection and engagement procedures. As can be seen, the detection process 

follows the detect→classify→recognize→identify cycle. The detected entity is 

also immediately tracked to monitor its speed and entrance into high-value 

zones. 
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Figure 11 Blue-Entity Flowchart for Small-Boat-Threat Detection and 
Engagement 

The following diagram shows the blue-entity sensor-event graph depicting 

the connections between the sensor manager, the sensor referees, the sensor 

mediator, the blue-entities sensors, the movers, and the blue-entity command 

center. In the setup-event graph, the sensor manager listens to the Arrival and 

Leave events and notifies the referees to register and unregister the specified 

entities. The sensor manager also registers the mediators in the Mediator 

framework for all combinations of sensors and movers in the simulation. 

The referees listen to the movementState properties of the registered 

sensors and movers and computes the time delay for subsequent EnterRange 

and ExitRange events. When the mediator hears the EnterRange or ExitRange 

events, it checks whether the sensed entity is hidden by another entity, and 

schedules the Detection and Undetection events in the detecting sensor if not. 
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Figure 12 Blue-Entity Sensor Event Graph 

The blue-entity sensor implements the detect→classify→ 

recognize→identify cycle. In addition, it tracks the velocity change of the target 

and whether it has entered a high-value zone. It does so by listening to the 

velocity property change of the target and by listening to EnterHighValueZone 

and ExitHighValueZone events of the high-value zone. The high-value zone is a 

stationary sensor and informs listening entities when a target enters its sensing 

radius. 

The blue-entity intercept zone is a mobile sensor that attaches itself to the 

same mover platform as the blue-entity sensor. The blue-entity sensor listens to 

the blue-entity intercept zone to know when a target has entered its intercept 
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radius, which is different from its sensor radius. Finally, the blue-entity sensor 

sends SendBroadcast events to the listening blue-entity command center to 

inform it of these detections, and the command center will assign target 

interception to whichever blue entity can get there fastest. 

The following diagram shows the small-boat-threat flowchart for blue-entity 

threat detection and engagement procedures. Like the blue entity, the small-boat 

threat also follows the detect→classify→recognize→identify cycle, but is able to 

identify the patrol on completion of the recognized phase. The small-boat threat 

is also able to track the speed of the target to identify the blue entity. 

 

Figure 13 Small-Boat Threat Flowchart for Blue-Entity Detection and 
Engagement 

The following diagram shows the small-boat-threat sensor-event graph 

depicting the connections between the sensor referees, the sensor mediator, the 

small-boat-threat sensor, the movers, and the port-cover sensor. 



 27 

 

Figure 14 Small-Boat-Threat Sensor-Event Graph 

The following diagram shows the flowchart for the integrated sensor and 

cover-detection process. Each detectable entity can enter into four states: 

i)  within sensor range and cover range, 

ii)  within sensor range and outside cover range, 

iii)  outside sensor range and within cover range, and 

iv)  outside sensor range and cover range. 

In the first state, the entity is visible to the sensor, while the in the other 

three states, the entity is hidden. 
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Figure 15 Flowchart for the Integrated Sensor and Cover-Detection Process 

The following diagram shows a simplified view of the cover mediator 

working jointly with the normal sensor and cover sensor to decide whether to 

inform the sensor that it has detected an entity. Refer to Appendix B:  Code 

Snippets for sample implementation code. 

 

Figure 16 Simplified View of Cover Design with Cover Mediator and Cover 
Referee 

When the mediator hears the EnterRange event, it checks whether the 

event is to signal one entity covering the other; it does this by checking whether 
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the sensor is a cover sensor, and if so, checks their relative radar cross section 

to decide which entity provides the cover. If both have the same relative radar 

cross section, the current sensor is chosen to provide the cover. When the 

mediator hears the ExitRange event for a cover sensor, it checks and removes 

any cover that is provided between the entities. 

The following is a sample scenario of cover provided by an entity with a 

larger relative radar cross section. 

 

Figure 17 Providing Cover with Relative Radar Cross Sections 

The small-boat-threat sensor sends Broadcast events of these detections 

to its engagement component, and this provides the necessary sensory input to 

the engagement component. 
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4.  Engagement 

As shown in Figure 11, the blue entity will continue to move towards the 

small-boat threat to apply nonlethal or lethal force until the threat is neutralized. 

As shown in Figure 13, the threat will surrender when the blue entity applies 

force, whether lethal or nonlethal. Otherwise, the threat will run the standard or 

MAS behavior to choose between attacking, hiding, evading, and escaping. 

The following diagram shows the engagement-event graph depicting the 

connections between the mover-manager, engagement, intercept-zone, and 

command-center components. 

 

Figure 18 Engagement-Event Graph 
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The patrol-engagement component listens to command broadcasts from 

the blue-entity command center to intercept or stop intercept of a target. It 

notifies its mover-manager component to carry out these actions. When the 

target has entered its intercept zone, the patrol-engagement component hears 

the EnterInterceptRange event and takes non-lethal or lethal action on the target. 

The small-boat threat engagement component hears these Non-lethal and Lethal 

events and immediately schedules the Surrender event. The patrol-engagement 

component listens for the small-boat threat’s actions and informs the command 

center whether the small-boat threat is neutralized or active. 

The small-boat-threat-engagement component listens for sensor 

broadcast events from its sensor component and runs the standard or MAS 

behavior to select and schedule the appropriate action event, including Attack, 

Hide, Evade or Escape. This is picked up by the listening mover-manager 

component, which carries out the corresponding movements. 

B. MAS DESIGN 

The small-boat threat MAS model is defined as 

Small-boat threat MAS Model =  

{ 

E (Port of Oakland),  

A (Small-boat threats),  

O (Patrol crafts and helicopters, radar, big ships, small boats, high-value 

zones),  

Ops (Sensing, navigation, small-boat threat activities, blue-entity activities, 

results of activities), 

Laws (Two-dimensional world, sensor laws, movement laws, activities 

laws) 

}. 
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The following diagram shows an overview of the small-boat threat MAS 

model. 

 

Figure 19 Overview of Small-Boat Threat MAS 

The follow sections describe the environment, agents, objects, operations 

and laws of the small-boat threat MAS model in more detail. 

1. Environment 

a. Port of Oakland 

The Port of Oakland environment in “Port Security 2012” [1] was 

used as the starting point for this thesis. The sea area in the Port of Oakland 

defines the sea entities’ area of movement. A pathfinding map covering this area 

is required for mobile agents, especially the patrol helicopter, patrol crafts, and 

small-boat threats. As “Port Security 2012” uses only fixed paths, there is a need 

to generate this pathfinding map in this thesis. 
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Figure 20 Oakland Satellite-Imagery Map from Google Map 

b. Automated Generation of Pathfinding Map of Port of 
Oakland 

An automatic map-generation process for creating an A* 

pathfinding map was designed and implemented in this project. This A* 

pathfinding map defines sea locations that vessels can navigate to and enables 

the A* search to find the path. Manually defining this pathfinding map would be 

tedious; instead, automatic map generation computes the map from shoreline 

data downloaded from the National Oceanic and Atmospheric Administration 

(NOAA) public website [38]. The result is an eight-connected grid map of the Port 

of Oakland. Snapshots of the process are shown in the figures below. 
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Figure 21 NOAA Oakland Shoreline Vector Map 

 
Figure 22 Grid Cell Map Generated from Shoreline Vector Map (Shown with 

Shoreline Vector Map) 
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Figure 23 Eight-Connected Graph Generated from Grid Cell Map (Shown with 

Grid Cell Map and Shoreline Vector Map) 

A grid-cell map representation as described by Tozour [41] is first 

generated from the Oakland shoreline vector map. An eight-connected graph is 

then generated from the grid-cell map. The eight-connected graph is chosen over 

the four-connected graph because it improves A* performance with the more 

direct route available to the destination. The automated search space 

representation consists of the following key steps: 

1)  Separation of land and sea mass through creation of land mass 
polygons using NOAA shoreline vector map. 

2)  Map scaling and positioning of Port of Oakland satellite raster map 
and shoreline vector maps using simple map processing. 

3)  Computation of grid map through land-mass check of shoreline 
vector map. Land mass is defined as obstacle grid cells in the grid 
map. 

4)  Computation of network graph through creation of nodes and edges 
based on non-obstacle grid cells in the grid map. 
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c. Dynamic Movement of Sea Entities in the Port of 
Oakland 

Sea entities are able to move dynamically and without collision into 

the land mass in the Port of Oakland by using the following algorithm:  

(1) Finding Nearest Waypoints to Starting and Ending 

Points.  The nearest grid cells in the pathfinding map to the starting and ending 

points are first located. An algorithm is designed and implemented to take the 

input points to search the current grid cells and neighboring grid cells for non-

obstacle grid cells. This finds the non-obstacle starting and ending grid cells that 

is required for the A* pathfinding search to be able to find a valid path. This is 

shown in the diagram below. The algorithm searches the current grid cell, 

followed by the nearest left, right, bottom or top grid cells, followed by the 

diagonal grid cells, and then, finally, clockwise from the bottom cell. 

 

 

 (a) (b) 

Figure 24 Finding Nearest Waypoint to Starting and Ending Points: (a) Grid cell 
search order for nearest waypoint; (b) Path to nearest waypoint 
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(2) Finding a Near-Optimal Path with A* Pathfinding 

Algorithm.  The A* pathfinding algorithm in Simkit\Diskit is applied to the 

generated pathfinding map and tested in this thesis. This computes a path 

through the centers of the non-obstacle grid cells in the pathfinding map. 

(3) Connection of Starting and Ending Points.  The 

starting and ending points are appended to the ends of the A* path, to complete 

the path from the starting point, through the pathfinding map, and to the ending 

point. 

(4) Path Smoothing.  The resulting path consists of a 

large number of points, many of them unnecessary in the Port of Oakland 

scenario, which consists of large sea masses. Path smoothing is performed as a 

post-processing step to remove unnecessary points. A straightforward path 

smoothing described by Pinter is implemented and modified [42]. Pinter’s 

algorithm checks whether intermediate waypoints can be removed without having 

the path crossing the blocked grid cell. This is shown in the diagram below. The 

black polygon represents the shoreline obstacle and the light gray squares are 

the corresponding blocked grid cells. Note that Pinter’s algorithm reduces the 

number of waypoints returned by the A* pathfinding algorithm while avoiding the 

blocked grid cells. 

 
 (a) (b) (c) 

Figure 25 Pinter’s Path Smoothing: (a) Typical A* path with many waypoints; 
(b) Check for smoothing against blocked grid cells (gray); (c) Final 
path with intermediate waypoints removed 
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The pseudo-code for Pinter’s algorithm is shown below. 

checkPoint = starting point of path 

currentPoint = next point in path 

while (currentPoint→next != NULL) 

if CanSmoothSegment(checkPoint, currentPoint→next) 

// Remove intermediate points to 

// make a straight path between those points: 

temp = currentPoint 

currentPoint = currentPoint→next 

delete temp from the path 

else 

checkPoint = currentPoint 

currentPoint = currentPoint→next 

In this thesis, the “CanSmoothSegment” function is modified 

from Pinter’s algorithm to consider the finer-resolution shoreline obstacle. This is 

shown in the diagram below. This precise algorithm reduces the number of 

waypoints returned by the A* pathfinding algorithm while avoiding the shoreline, 

but the computation takes a long time, because the checks for each line segment 

against the shoreline polygon are computer-intensive. 
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 (a) (b) (c) 

Figure 26 Precise Smoothing: (a) Typical A* path with many waypoints; (b) 
Checks for smoothing against shoreline (black); (c) Final path with 
intermediate waypoints removed 

A basic obstacle-checking algorithm is chosen over a more precise 

one for better performance in the path-smoothing algorithm. This basic obstacle-

checking algorithm inspects shoreline intersections with segment bounds, 

allowing smoothing against the shoreline while maintaining acceptable 

performance. 

 

 (a) (b) (c) 

Figure 27 Basic Smoothing: (a) Checks of segment bounds against shoreline; 
(b) Bounds of non-intersecting segments; (c) Final path with 
intermediate waypoints removed 
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2. Agents 

a. Small-Boat Threat Attributes 

The small-boat threat has four navigation modes, or actions, that 

the small-boat threat can take in response to sensory inputs: attack, hide, evade, 

and escape. Two small-boat threats start their attack during the first attack wave, 

and two others start during the second wave, five minutes later. The threat 

travels at full speed during the attack and can reduce speed for hiding and 

following its cover target. The small-boat threat is assigned a relatively low radar 

cross section, as this is identified as a potential detection-reducing tactic. 

Table 1 Small-Boat Threat Attributes 

    Navigation 

Sensing 
Range 
(km) 

Engagement 
Range (km) 

Movement 
(knots) 

Radar 
Cross 
Section 
(relative 
units) 

Red 
Entities 

4 
Small-
boat 
threats 

●Initial - 2 small-
boat threats start 
attack in first wave, 
2 small boats start 
attack in second 
wave 5 minutes later 
●Attack - move at 
maximum speed to 
attack target with 
dynamic pathfinding 
●Hide - move at 
maximum speed to 
nearest cover and 
follow cover 
movement and 
speed with dynamic 
pathfinding 
●Evade - move at 
maximum speed in 
general opposite 
direction from 
approaching blue 
entity with dynamic 
pathfinding 
●Escape - move at 
maximum speed to 
starting location with 
dynamic pathfinding 

1 Nil 
●45 (max) 
●0 to 45 
(varies) 

1 
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b. Small-Boat Threat Personality 

Four personalities are potentially in play: the suicidal, tactical, 

deceptive, and balanced. The personalities accept sensory inputs to the 

personality layer to compute the happiness of the last decision and predict the 

happiness of the next. These happiness values are used to modulate the action 

weights and switch to the personality action weights for the next decision, as 

shown in the diagram below. 

 

Figure 28 Personality and Action Selection 

The sensory inputs to the personality layer are distance to the 

attack target, nearest blue entity, and nearest cover. Happiness is a function of 

the changes in these distances and their corresponding personality motivation 

weights. Happiness is computed as follows: 

Happiness =  

(+ve normalized reduction in distance to attack target) * motivation 

for attack +  

(+ve normalized increase in distance to nearest blue entity) * 

motivation for tactical +  
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(+ve normalized reduction in distance to nearest cover) * motivation 

for deception. 

Normalization of the distances uses the maximum distance for each 

case, for example, the maximum distance to the target is from the starting 

location, and the maximum distance to the nearest blue entity and nearest cover 

is the maximum sensor range of the small-boat threat. 

The following table lists the small-boat threat personality matrix. 

The values remain fixed throughout the simulation. 

Table 2 Small-Boat Threat Personality Matrix 

Personality 

Motivation 
for Attack 
(reduce 
distance 
to attack 
target) 

Motivation 
for 

Tactical 
(increase 
distance 

from 
nearest 
blue) 

Motivation 
for 

Deception 
(reduce 
distance 

to nearest 
cover) 

Suicide 1.0 0.0 0.0 
Tactical 0.0 1.0 0.0 
Deceptive 0.0 0.0 1.0 
Balanced 0.3 0.3 0.3 

 

The following table lists the initial small-boat-threat action matrix. 

The weights in the action matrix are modified by the last happiness result. A 

positive happiness for an action increases its weightage and increases the 

probability that this action will be selected in subsequent decisions. 

Table 3 Initial Small-Boat Threat Action Matrix 

Personality 

Attack 
Action 

Weights 

Hide 
Action 

Weights 

Evade 
Action 

Weights 

Escape 
Action 

Weights 
Suicide 0.25 0.25 0.25 0.25 
Tactical 0.25 0.25 0.25 0.25 
Deceptive 0.25 0.25 0.25 0.25 
Balanced 0.25 0.25 0.25 0.25 
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The action matrix is updated using the following steps: 

i)  Half the value of the last happiness is added to the last chosen 
action of the last chosen personality. 

ii)  The remaining half of the happiness is divided equally between the 
remaining actions of this last chosen personality. 

iii)  The action weights of this last chosen personality are normalized so 
that they sum to one. 

The pseudo-code for updating the action matrix is as follows: 

Action[last personality][last action] = (Action[last personality][last 

action] + 0.5 * happiness) / (1.0 + happiness) 

Action[last personality][other actions] = (Action[last personality][last 

action] + 0.5 * happiness / 3) / (1.0 + happiness) 

There is no update for Action[other personalities][any action]. 

The action distribution for choosing the next action are computed 

thus: 

Action Distribution { attack, hide, evade, escape } =  

{ 

< Action[next chosen personality][attack], 

< Action[next chosen personality][attack] + Action[next chosen 

personality][hide], 

< Action[next chosen personality][attack] + Action[next chosen 

personality][hide] + Action[next chosen personality][evade], 

< 1.0 

} 

The next action is chosen by selecting the action where the 

random-variate value falls under the action-weight distribution. This is subject to 

the rule conditions affected by the sensory inputs. Refer to Appendix B:  Code 

Snippets, for implementation code. 
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c. Small-Boat Threat Goals, Conditions, Methods, Rules 

The sensory inputs to the action layer are attack-target position, 

nearby blue-entity position and velocity, and nearby cover position and velocity. 

These inputs determine whether an action can be carried out, and how it is 

carried out physically in the Port of Oakland environment. The following table lists 

the small-boat threat goals, conditions, methods, and rules. 

Table 4 Small-Boat Threat Goals, Conditions, Methods, and Rules 

Goals Conditions Methods Rules 
      Conditions Actions 
Attack 
Target - 
Avoid 
Being 
Intercepted 

if (blue entity 
not within 
range),  
cannot 
choose 

evade or 
escape 

Find Cover 

1. Choose next 
personality 
based on 
greatest 
happiness for 
current 
situation 
(environment 
input) 
2. Randomly 
chose action 
using chosen 
personality's 
action weight 
distribution 

1. Compute happiness for last chosen 
personality 
- Happiness = (+ve normalized 
reduction in distance to attack target) * 
motivation for attack + 
(+ve normalized increase in distance to 
nearest blue entity) * motivation for 
tactical + (+ve normalized reduction in 
distance to nearest cover) * motivation 
for deception 
- normalization based on maximum 
distance from start location to target, or 
maximum sensor range 
2. Update and normalize last chosen 
action weight for last chosen personality 
based on happiness 
- Add half happiness to last chosen 
action weight of last chosen personality 
- Distribute remaining happiness to 
other action weights of last chosen 
personality 
- Normalize action weights of 
personality 

if (cover not 
within 

range), 
cannot 
choose 
cover 

Attack 
or 

Hide or 
Evade 

or 
Escape 

To decide which action is carried out, the personality with the most 

happiness is chosen first. The action weights for decision making are switched to 

this personality’s action set. A random variate is generated to select the action in 

this action set. If the action selected by the random variate does not satisfy the 

rule conditions, the next action is chosen and its rule-conditions are checked. 

This continues until a valid action is found. If no valid action is found, the default 

action is chosen. This default action is attack. 

A sample decision scenario is presented below. 
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In the initial condition,  

i)  normalizing distance to attack target = distance from starting point 
to attack target = assuming 100km, 

ii)  normalizing distance to nearby blue entity = maximum sensor range 
= 1km, 

iii)  normalizing distance to nearby cover = maximum sensor range = 
1km, 

Assuming that in the current decision event, 

i)  reduction in distance from attack target is 10km, 

ii) increase in distance to nearest blue-entity location is 0.05km, 

iii)  reduction in distance to nearest cover is 0.01km, 

iv)  last chosen personality is suicide, and 

v)  last chosen action is attack, 

vi)  last updated action weights values for suicide personality are [0.26, 
0.249, 0.246, 0.245]. 

Happiness for suicide personality = ($10km / 100km) * 1.0 + 

(0.05km / 1km) * 0.0 + (0.01km / 1km) * 0.0 = 0.1 

Happiness for tactical personality = ($10km / 100km) * 0.0 + 

(0.05km / 1km) * 1.0 + (0.01km / 1km) * 0.0 = 0.05  

Happiness for deceptive personality = ($10km / 100km) * 0.0 + 

(0.05km / 1km) * 0.0 + (0.01km / 1km) * 1.0 = 0.01 

Happiness for balanced personality = ($10km / 100km) * 0.3 + 

(0.05km / 1km) * 0.3 + (0.01km / 1km) * 0.3 = 0.03 + 0.015 + 0.003 = 0.0453 

Thus, happiness for last personality (suicide) is 0.1. Chosen 

personality is also suicide as it has the largest happiness value. 

The action matrix is updated as follows: 

Action[suicide][attack] = (0.26 + 0.5 * 0.1) / (1 + 0.1) ~= 0.282 

Action[suicide][hide] = (0.249 + 0.5 * 0.1 / 3) / (1 + 0.1) ~= 0.242 

Action[suicide][evade] = (0.246 + 0.5 * 0.1 / 3) / (1 + 0.1) ~=0.239 
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Action[suicide][escape] = (0.245 + 0.5 * 0.1 / 3) / (1 + 0.1) ~= 0.298 

The other values in the action matrix are unchanged. 

This gives the following action distribution for the next chosen 

personality (suicide): Action Distribution { <0.282, < (0.282 + 0.242), < (0.282 + 

0.242 + 0.239), <1.0} = Action Distribution { <0.282, <0.524, <0.763, <1.0 } 

Assuming the random variate for the action choice generates a 

value of 0.123, this corresponds to choosing the attack action for the next 

behavior. Alternatively, assuming the random variate for the action choice 

generates a value of 0.345, this corresponds to choosing the hide action for the 

next behavior. This invokes the rule condition, which checks whether there is 

cover nearby. If there is cover nearby, hiding is chosen. Otherwise, the next 

action (evade) is considered and this also invokes the rule condition that there 

must be a blue entity nearby to evade. It there is a blue entity nearby, evasion is 

chosen. If not, the next action (escape) is considered and again, this invokes the 

rule condition that there must be a blue entity nearby to evade. It there is blue 

entity nearby, escape is chosen. If not, the default action (attack) is chosen. 

d. Small-Boat Threat MAS Behavior 

The following flowchart shows how the small-boat threat MAS 

behavior performs a personality and action selection, after which the selected 

action is carried out, subject to constraints of whether a blue entity or cover is 

nearby. 
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Figure 29 Small-Boat Threat: MAS Behavior Flowchart 

e. Small-Boat Threat Standard Behavior 

The same environment, objects, operations and laws are used by 

the small-boat threat standard behavior, and only the behavior is different from 

the threat MAS behavior. The flowchart below is the design for the standard 

behavior of the small-boat threat and is implemented using DES. It uses a few 

more rules, such as whether it is chased, can hit the target first, or can outrun the 

target, and the decision choice is made using this fixed sequence of rules. 
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Figure 30 Small-Boat Threat: Standard Behavior Flowchart 

3. Objects 

The blue entities consist of one patrol helicopter, four patrol crafts, one 

stationary radar, and three high-value zones. The neutral crafts comprise a few 

big ships and many small boats. The neutral crafts move on fixed randomly 

selected paths around the Port of Oakland. The patrol helicopter and crafts also 

move on fixed patrol paths, and in addition, they are able to intercept the small-

boat threats by using dynamic pathfinding to find new paths. All the blue entities 

are able to sense both neutral crafts and threats. The neutral crafts do not have 

sensing capabilities. The patrol helicopter and crafts also have a sensor to detect 

whether the threats have entered the intercept range. Big ships have a very large 
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relative radar cross section compared to small boats. The small boats, in turn, 

have a larger relative radar cross section than the small-boat threats. The 

following table lists the objects attributes. 

Table 5 Objects Attributes 

    Navigation 

Sensing 
Range 
(km) 

Intercept 
Range 
(km) 

Movement 
(knots) 

Radar 
Cross 
Section 
(relative 
units) 

Blue 
Entities 

1 Patrol 
Helicopter 

●Fixed patrol route 
●Interception with dynamic 
pathfinding  2 0.1 150 Nil 

  
4 Patrol 
Crafts  

●Different fixed patrol 
route for each craft 
●Interception with dynamic 
pathfinding  1 0.1 

●10 
(patrol) 
●45 (max) Nil 

  

1 
Stationary 
Radar  Fixed location 2.4 Nil Nil Nil 

  

3 High 
Value 
Zones  Fixed location  0.5 Nil Nil Nil 

Neutral 
Crafts  

Few Big 
Ships  

Randomly chosen from 
fixed routes  Nil Nil 5 1000 

  

Many 
Small 
Boats  

Randomly chosen from 
fixed routes  Nil Nil 20 5 

4. Operations 

The operations in the small-boat threat MAS model consist of sensing, 

navigation, small-boat-threat activities, blue-entities activities, and results of 

activities. 

a. Sensing 

Blue entities and small-boat threats identify a known threat through 

the detection→classified→recognised→identified cycle. Each phase in the cycle 

takes three minutes. The blue entities have a 20% chance of detecting arms and 

marking the target as a known threat in the recognised phase. Identification of 

the small-boat threats is assured when the identified phase is completed. The 
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threats identify the blue entities earlier and this occurs on completion of the 

recognized phase. The cycle is terminated when the target exits the sensing 

range. The cycle is restarted when the target re-enters the sensing range. 

A blue entity can only sense whether a neutral craft or small-boat 

threat enters or exits a high-value zone if the entity is within the blue-entity’s 

sensing radius. A blue entity can only sense whether a small-boat threat has 

entered the blue entity’s intercept zone if it has been commanded to intercept the 

target. 

Blue entities and small-boat threats start tracking the velocity of an 

unknown threat when it is first detected. If the velocity exceeds the legal limit, the 

target is marked as a known threat. Note that when the patrol craft is cruising 

during its patrol round, its velocity is within the legal limit and is not immediately 

marked as a threat because of this. 

Neutral crafts, such as big ships and small boats, and small-boat 

threats are deemed to be within cover when they are less than 5m apart. In 

cover, the craft with the largest radar cross section is detected while the other 

crafts are lost. If crafts have the same radar cross section, the first cover 

detecting the other entity is chosen to be detected while the others are hidden. 

b. Navigation 

The movement of all entities uses uniform linear velocity without 

acceleration, and this is subject to the maximum speed specified for the entity. 

Navigation within the Port of Oakland’s generated-pathfinding map 

results in navigation to any point within the sea mass, and there is no movement 

onto land. 

To reduce complexity in implementation, the patrol helicopter also 

uses the same navigation map for its dynamic pathfinding. Thus, for interception, 

the patrol helicopter will move over the sea mass only, skirting any coasts that 

may obtrude. 
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c. Small-Boat-Threat Activities 

(1) Attacking.  Small-boat threats start with attack activity 

and move at maximum speed to hit their targets. 

(2) Hiding.  The small-boat threats’ hiding means finding, 

moving to, and following the nearest cover with a large relative radar cross 

section. 

(3) Evasion.  Evasion can only result from the near 

proximity of a blue entity, and results in the small-boat threat’s moving generally 

opposite the direction of the blue entity, at maximum speed. 

(4) Escape.  Escape can only result from the near 

proximity of a blue entity, and results in the small-boat threat’s returning to its 

starting location at top speed. 

d. Blue-Entity Activities 

(1) Intercept and Stop Intercept.  Blue entities broadcast 

significant detections to the blue-entity command center. The command center 

identifies the blue entity that can engage the target quickest and commands it to 

intercept. 

The blue-entity command center has a priority list of 

unassigned targets, from known-threats detection to unknown threats in high-

value zones, to known threats in high-value zones (which have highest priority). 

The blue entity broadcasts the surrender of small-boat 

threats to the command center. The command center calls off the intercept, and 

the blue entity resumes patrol. 

When the blue entity loses sight of a threat, it broadcasts to 

inform the command center. If no blue entity can see the threat, the command 

center calls off any intercepting blue entity. 
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(2) Non-Lethal or Lethal.  A blue entity applies non-lethal 

or lethal action on a small-boat threat immediately, once it is within intercept 

range. 

e. Results of Activities 

(1) Surrender.  The small-boat threat immediately 

surrenders upon non-lethal or lethal action by helicopter or patrol craft. 

(2) Successful Attack.  The small-boat threat’s attack is 

deemed successful when it reaches its attack target. 

(3) Successful Escape.  The small-boat threat’s escape is 

deemed successful when it returns to its starting location. 

(4) Leaving the Simulation.  Neutral crafts leave the 

simulation on arriving at their destinations and small-boat threats leave the 

simulation upon a successful attack, escape, or surrender. This prevents false 

detections of neutral crafts and nonexistent small-boat threats. 

Blue entities do not leave the scenario; they continue to 

monitor and patrol the port. 

5. Laws 

a. Two-Dimensional World 

Both sensing and navigation are performed in a two-dimensional 

world. 

b. Sensor Laws 

Both blue entities and small-boat threats can sense multiple targets 

simultaneously. 
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The legal speed limit in port waters is 30 knots, and any entity 

traveling faster, such as the small-boat threat, is marked by tracking sensors as a 

threat. 

c. Movement Laws 

Entities will not collide with the land mass; however, multiple 

entities are allowed to be at the same location in the sea area, as they are 

assumed likely to reposition themselves to avoid collisions. 

d. Activities Laws 

A blue entity can intercept only one small-boat threat at a time and 

is meanwhile unavailable for other assignments. The assignment of the attack 

target of the small-boat threats is fixed and does not change during the 

simulation. 
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IV. EXPERIMENT, RESULTS AND ANALYSIS 

A. EXPERIMENT 

1.  Hypothesis and Measurements 

The null hypothesis is that there is no statistically significant change in the 

adaptability of the MAS compared to the standard behavior. 

The alternate hypothesis is that applying a two-layer, personality-action 

MAS to small-boat threats increases their adaptability, as compared to a 

standard implementation. 

The parametric t-Test with unequal variances, and the non-parametric 

Wilcoxon/Kruskal-Wallis (Rank Sums) test was applied, with two-tail probability, 

using JMP 7 software. As the measurements are dependent, significance 

remains indicated by an Alpha of 0.05. 

Adaptability was measured in the following ways: 

i)  increase in complexity of operations 

This measure was collected from the sub-measures of 

a.  increase in length of operation time 

Null Hypothesis NH1_1: There is no significant change in 

operation time. 

Operation TimeStandard = Operation TimeMAS 

Alternate Hypothesis AH1_1: There is significant change in 

operation time. 

b.  increase in number of operations. 

Null Hypothesis NH1_2: There is no significant change in 

number of operations. 
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Number of OperationsStandard = Number of OperationsMAS 

Alternate Hypothesis AH1_2: There is significant change in 

number of operations. 

ii)  increase in flexibility of operations 

This measure corresponds to an increase in the distribution of actions. 

This measure was collected from the sub-measures of 

a.  Attack Activity Count 

Null Hypothesis NH2_1: There is no significant change in the 

attack activity count. 

Attack Activity CountStandard = Attack Activity CountMAS 

Alternate Hypothesis AH2_1: There is significant change in 

the attack activity count. 

b.  Hide Activity Count 

Null Hypothesis NH2_2: There is no significant change in the 

hide activity count. 

Hide Activity CountStandard = Hide Activity CountMAS 

Alternate Hypothesis AH2_2: There is significant change in 

the hide activity count. 

c.  Evade Activity Count 

Null Hypothesis NH2_3: There is no significant change in the 

evade activity count. 

Evade Activity CountStandard = Evade Activity CountMAS 

Alternate Hypothesis AH2_3: There is significant change in 

the evade activity count. 

d.  Escape Activity Count 
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Null Hypothesis NH2_4: There is no significant change in the 

escape activity count. 

Escape Activity CountStandard = Escape Activity CountMAS 

Alternate Hypothesis AH2_4: There is significant change in 

the escape activity count. 

iii)  increase in success of operations 

This measure corresponds to an increase in successful attacks by the 

small-boat threats. 

Null Hypothesis NH3: There is no significant change in the attack success 

count.  

Attack Success CountStandard = Attack Success CountMAS 

Alternate Hypothesis AH3: There is significant change in the attack 

success count. 

2.  Experimental Setup 

The following screenshot shows the simulation application used for this 

experiment. 
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Figure 31 Screen Capture of Simulation Application 

The simulation was executed with thirty runs using standard behavior. The 

simulation was then executed with thirty runs using MAS behavior. 

The following data was collected for each run: 

i)  operation time 

The time from first arrival to completion of attack by four small-boat 

threats. 

ii)  number of activities per simulation run 

The total number of activities executed by the four threats per simulation 

run. 

iii)  attack-activity count 

The total number of attack activities executed by the four threats per 

simulation run. 
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iv)  hide-activity count 

The total number of hides executed by the four small-boat threats per 

simulation run. 

v)  evade-activity count 

The total number of evade activities executed by the four small-boat 

threats per simulation run. 

vi)  escape-activity count 

The total number of escape activities executed by the four small-boat 

threats per simulation run. 

vii)  attack-success count 

The total number of successful attacks by the four small-boat threats per 

simulation run. 

The following picture shows a screen snapshot of the measurement data 

output by the simulation application. 

 

Figure 32 Screen Snapshot of Measurement Data Output by Simulation 
Application 
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The following picture shows a screen snapshot of the MAS data output by 

the simulation application. Note that the some of the action weights are modified 

during the course of the simulation. 

 

Figure 33 Screen Snapshot of MAS Data Output by Simulation Application 

B. RESULTS 

The following statistical results are compiled from the collected 

measurements. Refer to Appendix A:  Results of Measurements and Statistical 

Results for details. 

Table 6 Summary of Statistical Results 

    
Operation 

Time 

Total 
Activity 
Count 

Attack 
Activity 
Count 

Hide 
Activity 
Count 

Evade 
Activity 
Count 

Escape 
Activity 
Count 

Attack 
Success 

Count 
Std Mean 12.93434 16.96667 14.5 0.133333 2.333333 0 2.166667
  Standard Deviation 2.479213 7.289498 6.112452 0.571346 2.264164 0 0.791478
MAS Mean 13.04888 17.53333 8.066667 0.566667 5.5 3.4 2.466667
  Standard Deviation 2.348321 8.985557 2.899861 1.406471 4.040741 2.823546 0.937102
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Operation 

Time 

Total 
Activity 
Count 

Attack 
Activity 
Count 

Hide 
Activity 
Count 

Evade 
Activity 
Count 

Escape 
Activity 
Count 

Attack 
Success 

Count 

  
Change in Mean 
from Std to MAS 0.11 0.57 -6.43 0.43 3.17 3.40 0.30 

  

t Test with 
Unequal 
Variances, Prob > 
|t|: 0.8549 0.7895 <0.0001 0.1262 0.0005<0.0001 0.1857

  

Wilcoxon / 
Kruskal-Wallis 
Test (Rank 
Sums), Prob > |Z| 0.8882 0.7839 <0.0001 0.1268 0.0003<0.0001 0.2444

C. ANALYSIS 

1. Assessment of Complexity of Operations 

The null hypotheses NH1_1 “There is no significant change in operation 

time” and NH1_2 “There is no significant change in number of operations” failed 

to be rejected. Thus, there is no statistical significance that MAS behavior 

increased operation time and total activity count. 

2. Assessment of Flexibility of Operations 

The null hypotheses NH2_1 “There is no significant change in the attack 

activity count”, NH2_3 “There is no significant change in the evade activity count” 

and NH2_4 “There is no significant change in the escape activity count” are 

rejected. The null hypothesis NH2_2 “There is no significant change in the hide 

activity count” failed to be rejected. 

As the figures are related and there is a greater distribution of activity to 

evade and escape activities, it is concluded that there is statistical significance 

that MAS behavior increased utility of a variety of operations. 
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3. Assessment of Success of Operations 

The null hypothesis NH2_1 “There is no significant change in the attack 

success count” failed to be rejected. There is no statistical significance that MAS 

behavior increased success of operations. 

4. Observed Artifacts 

There are zero cases of successful escapes, although there are recorded 

attempts of escape activity made by the threats. 

5. Assessment of Whether MAS Behavior Improved Adaptability 
of Small-Boat Threats 

There is statistical significance that the implemented MAS behavior 

increased the flexibility of operations, but there is no statistical significance that 

the implemented MAS behavior increased the complexity of the operations and 

the success of operations. 

Reviewing the summary of results reveals that there are increases in the 

mean for the measurements for the complexity of operation and the success of 

operations. These increases are relatively small for both measurements for 

complexity of operations, but larger for success of operations. In the latter case, 

there is a favorable chance that the implemented MAS behavior improved the 

complexity of operations and especially the success of operations. 

It can thus be concluded that MAS behavior demonstrates improvement of 

the operational flexibility and shows potential for improving the adaptability of the 

small-boat threats. 
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V. CONCLUSIONS, RECOMMENDATIONS AND FUTURE 
WORK 

A. CONCLUSIONS 

Discrete-event simulation with Simkit facilitated the creation of 

autonomous and interactive sensing agents in a maritime time–space 

environment. Dynamic pathfinding improved the flexibility of dynamic asymmetric 

threats and maritime assets in finding their way to their targets. With the 

implementation of MAS behavior, asymmetric threats demonstrate greater 

flexibility of behaviors, show slight improvement in success and complexity of 

operations, and evince potential for improving adaptability. In maritime security, 

dynamic asymmetric threats will enable the simulation of a wider variety of 

maritime threat scenarios and play an important part in improving plans for 

maritime force and infrastructure configurations. 

B. RECOMMENDATIONS 

MAS behaviors can be used to enhance hard-coded behaviors in 

simulations by assigning them with personalities, decisions, and action choices. 

While still conforming to the rules and boundaries of the environment, these MAS 

behaviors enable the agents to interact with the environment in a dynamic and 

flexible manner. The agents have more free play to explore the environment with 

flexible behaviors, and the variety of potential situations in the simulation will 

increase, expanding simulation exploration into previously uncharted waters and 

increasing their value. 

MAS behaviors enable agents to switch personality contexts according to 

situation, allowing them to choose appropriate actions. With adaptability, agents 

may adjust to changing situations, allowing them more maneuverability,  

 

 



 64 

survivability, and success in achieving operational goals. Dynamic asymmetric 

threats will pose a more potent threat in simulations and facilitate wider 

explorations of force- and defense-infrastructure configurations. 

C. FUTURE WORK 

Potential future work includes: 

i)  Study interactions and refine maritime scenarios with stakeholders 
to identify potential tactics and improvements in maritime-defense 
infrastructure, 

ii)  Explore application of the genetic algorithm to the natural evolution 
of personality genes, to improve chances of successful attack, 

iii)  Explore the application of cognitive blending to blend inputs and 
improve decision making, 

iv)  Explore application of MAS behavior to blue entities and the 
affected changes in interaction between the agents, 

v)  Explore changes in interaction of the agents with human-controlled 
agents, and 

vi)  Explore integration with Terence Tan’s intelligent blue entities [20] 
to study the interactions between red and blue intelligent agents. 
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APPENDIX A:  RESULTS OF MEASUREMENTS AND 
STATISTICAL RESULTS 

The following table shows the results of the thirty runs for standard 

behavior. 

 

Table 7 Results of Thirty Runs for Standard Behavior 

 S\N
Operation 

Time 

Attack 
Success 
Count 

Attack 
Activity 
Count 

Hide 
Activity 
Count 

Evade 
Activity 
Count 

Escape 
Activity 
Count 

Total 
Activity 
Count 

 110.270799 2 11 3 2 0 16 
 210.716136 1 21 0 1 0 22 
 313.630137 3 17 0 2 0 19 
 411.662902 3 19 0 1 0 20 
 517.001678 2 13 0 5 0 18 
 610.302817 3 20 0 0 0 20 
 710.129052 2 28 0 9 0 37 
 814.785756 3 9 0 5 0 14 
 9 12.17068 2 23 0 9 0 32 
 1010.503485 1 9 0 2 0 11 
 1111.793807 3 4 0 2 0 6 
 1210.503485 2 21 0 4 0 25 
 1316.793807 1 9 0 2 0 11 
 1410.503485 1 9 0 2 0 11 
 1514.785756 2 18 0 2 0 20 
 1614.785756 3 6 0 0 0 6 
 1710.916609 0 17 1 2 0 20 
 1814.785756 3 14 0 4 0 18 
 19 12.17068 3 19 0 1 0 20 
 2010.143368 2 5 0 1 0 6 
 2114.006749 2 9 0 2 0 11 
 2214.785756 2 19 0 1 0 20 
 23 8.50604 2 18 0 2 0 20 
 2414.228626 3 4 0 0 0 4 
 2514.256365 2 15 0 3 0 18 
 2616.793807 3 10 0 2 0 12 
 2715.588526 2 18 0 1 0 19 
 2810.654575 2 18 0 0 0 18 
 2917.001678 3 13 0 0 0 13 
 3013.852014 2 19 0 3 0 22 
Sum   388.03008 65 435 4 70 0 509 
Mean   12.934336 2.1666667 14.5 0.1333333 2.3333333 0 16.9667 
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 S\N
Operation 

Time 

Attack 
Success 
Count 

Attack 
Activity 
Count 

Hide 
Activity 
Count 

Evade 
Activity 
Count 

Escape 
Activity 
Count 

Total 
Activity 
Count 

Standard Deviation   2.4792126 0.7914776 6.112452 0.5713465 2.2641636 0 7.2895 
95% Confidence Interval   0.8871585 0.2832214 2.1872727 0.2044499 0.8102056 0 0 
Variance   6.1464952 0.6264368 37.362069 0.3264368 5.1264368 0 53.1368 

 

The following table shows the results of the thirty runs for MAS behavior. 

 

Table 8 Results of Thirty Runs for MAS Behavior 

 S\N 
Operation 

Time 

Attack 
Success 

Count 

Attack 
Activity 
Count 

Hide 
Activity 
Count 

Evade 
Activity 
Count 

Escape 
Activity 
Count 

Total 
Activity 
Count 

 111.141019 3 4 0 1 2 7
 29.8760498 2 5 1 6 1 13
 313.852014 3 10 0 13 2 25
 410.129052 4 6 0 4 4 14
 515.635929 3 5 0 1 0 6
 610.302817 3 11 1 6 3 21
 710.129052 2 11 3 16 8 38
 89.8760498 3 7 0 5 2 14
 914.234592 2 5 0 5 1 11
 1014.785756 1 8 4 2 3 17
 1113.394504 1 8 0 9 7 24
 12 12.17068 2 15 0 13 7 35
 1310.729634 1 5 0 3 1 9
 1411.141019 2 8 0 1 0 9
 1514.006749 4 8 0 9 4 21
 1614.006749 4 8 6 5 5 24
 1715.778072 2 10 0 8 3 21
 1816.625066 3 7 0 3 1 11
 1912.135078 3 9 0 9 9 27
 2010.143368 4 7 0 4 3 14
 219.8760498 3 4 0 1 1 6
 2213.080629 1 8 0 2 2 12
 2316.793807 2 7 0 2 1 10
 2416.625066 3 5 0 1 1 7
 2513.852014 3 6 0 5 3 14
 26 12.17068 3 15 0 12 11 38
 2715.588183 1 12 0 4 6 22
 2816.625066 2 7 0 6 1 14
 2912.754994 2 11 0 6 4 21
 3014.006749 2 10 2 3 6 21
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 S\N 
Operation 

Time 

Attack 
Success 

Count 

Attack 
Activity 
Count 

Hide 
Activity 
Count 

Evade 
Activity 
Count 

Escape 
Activity 
Count 

Total 
Activity 
Count 

Sum   391.46648 74 242 17 165 102 526 
Mean   13.048883 2.4666667 8.0666667 0.5666667 5.5 3.4 17.5333 
Standard Deviation   2.3483209 0.9371024 2.8998613 1.4064711 4.0407408 2.8235463 8.98556 
95% Confidence Interval   0.8403204 0.3353316 1.037683 0.50329 1.445934 1.0103745 0 
Variance   5.5146109 0.8781609 8.4091954 1.9781609 16.327586 7.9724138 80.7402 

 

The follow pictures show the screen snapshots of the distribution, t-Test, 

and Wilcoxon/Kruskal-Wallis (Rank Sums) test of the operation time 

measurement. 

  

Figure 34 Distribution, t-Test, and Wilcoxon/Kruskal-Wallis (Rank Sums) Test of 
Operation Time 
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The following pictures show the screen snapshots of the distribution, t-

Test, and Wilcoxon/Kruskal-Wallis (Rank Sums) test of the total activity-count 

measurement. 

  

Figure 35 Distribution, t-Test, and Wilcoxon/Kruskal-Wallis (Rank Sums) Test of 
Total Activity Count 

The follow pictures show the screen snapshots of the distribution, t-Test, 

and Wilcoxon/Kruskal-Wallis (Rank Sums) test of the attack-activity-count 

measurement. 

  

Figure 36 Distribution, t-Test, and Wilcoxon/Kruskal-Wallis (Rank Sums) Test of 
Attack-Activity Count 
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The follow pictures show the screen snapshots of the distribution, t-Test, 

and Wilcoxon/Kruskal-Wallis (Rank Sums) test of the hide-activity-count 

measurement. 

  

Figure 37 Distribution, t-Test, and Wilcoxon/Kruskal-Wallis (Rank Sums) Test of 
Hide-Activity Count 

The follow pictures show the screen snapshots of the distribution, t-Test, 

and Wilcoxon/Kruskal-Wallis (Rank Sums) test of the evade-activity-count 

measurement. 

  

Figure 38 Distribution, t-Test, and Wilcoxon/Kruskal-Wallis (Rank Sums) Test of 
Evade-Activity Count 
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The follow pictures show the screen snapshots of the distribution, t-Test, 

and Wilcoxon/Kruskal-Wallis (Rank Sums) test of the escape-activity-count 

measurement. 

  

Figure 39 Distribution, t-Test, and Wilcoxon/Kruskal-Wallis (Rank Sums) Test of 
Escape-Activity Count 

The follow pictures show the screen snapshots of the distribution, t-Test, 

and Wilcoxon/Kruskal-Wallis (Rank Sums) test of the successful-attack-count 

measurement. 

  

Figure 40 Distribution, t-Test, and Wilcoxon/Kruskal-Wallis (Rank Sums) Test of 
Successful-Attack Count 
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APPENDIX B:  CODE SNIPPETS 

//======================================================= 
// Snippets from PortCookieCutterMediator.java 
//======================================================= 
    /** 
     * Mediates between sensor and cover to enforce cover scenarios 
     * Use PortContact instead of Contact to enable access to source of contact 
     */ 
    public void doEnterRange(Sensor sensor, Mover target) { 
        if (this == SensorTargetMediatorFactory.getInstance().getMediatorFor( 
                sensor.getClass(), target.getClass())) { 
            if (sensor instanceof PortCoverSensor) { 
                Mover mover = sensor.getMover(); 
                if ((mover instanceof RadarCrossSection) && (target instanceof RadarCrossSection)) { 
                    double sensorRadarCrossSection = ((RadarCrossSection)mover).getRadarCrossSection(); 
                    double targetRadarCrossSection = ((RadarCrossSection)target).getRadarCrossSection(); 
                    if ((targetRadarCrossSection < sensorRadarCrossSection) || 
                        ((Math.abs(targetRadarCrossSection - sensorRadarCrossSection)  
                        < Double.MIN_VALUE) && !isCoveredBy(mover, target))) { 
                        // set covered target 
                        coveredTargets.add(target); 
                        covers.put(target, mover); 
                        notifySensorsTargetUndetected(target); 
                    } 
                } 
            } else { 
                if (!isCoveredTarget(target)) { 
                    Contact contact = contacts.get(target); 
                    if (contact == null) { 
                        contact = new PortContact(target); 
                        contacts.put(target, contact); 
                    } 
                    sensor.waitDelay(“Detection”, 0.0, contact); 
                } 
            } 
        } 
    } 
 
    /** 
     * Mediates between sensor and cover to enforce cover scenarios 
     * Create PortContact to ensure that a non-null contact is passed to event 
     */ 
    public void doExitRange(Sensor sensor, Mover target) { 
        if (this == SensorTargetMediatorFactory.getMediator( 
                sensor.getClass(), target.getClass())) { 
            if (sensor instanceof PortCoverSensor) { 
                Mover mover = sensor.getMover(); 
                if ((mover instanceof RadarCrossSection) && (target instanceof RadarCrossSection)) { 
                    double sensorRadarCrossSection = ((RadarCrossSection)mover).getRadarCrossSection(); 
                    double targetRadarCrossSection = ((RadarCrossSection)target).getRadarCrossSection(); 
                    if ((targetRadarCrossSection < sensorRadarCrossSection) || 
                        ((Math.abs(targetRadarCrossSection - sensorRadarCrossSection)  
                        < Double.MIN_VALUE) && isCoveredBy(target, mover))) { 
                        // uncover target 
                        coveredTargets.remove(target); 
                        // remove cover 
                        covers.remove(target); 
                        notifySensorsTargetDetected(target); 
                    } 
                } 
            } else { 
                if (!isCoveredTarget(target)) { 
                    Contact contact = contacts.get(target); 
                    if (contact == null) { 
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                        contact = new PortContact(target); 
                        contacts.put(target, contact); 
                    } 
                    sensor.waitDelay(“Undetection”, 0.0, contact); 
                } 
            } 
        } 
    } 
//======================================================= 
// End Snippets from PortCookieCutterMediator.java 
//======================================================= 

 
 

//======================================================= 
// Snippets from SmallBoatThreat.java 
//======================================================= 

    /** 
     * respond to broadcasts of threat detected 
     */ 
    public void doBroadcast(BroadcastMessage message) { 
        if (this.isLeave) { 
            return; 
        } 
             
        // if successful, stop activities 
        if ((message.getBroadcastMessageType().compareTo(BroadcastMessageType.SUCCESSFUL_ATTACK) == 0) || 
            (message.getBroadcastMessageType().compareTo(BroadcastMessageType.SUCCESSFUL_ESCAPE) == 0)) { 
            // set leaving to true 
            this.isLeave = true; 
            // stop activities 
            stopActivities(); 
            return; 
        } 
         
        // if caught, surrender 
        if (isCaught(message)) { 
            surrender((SimEntity)message.getParameters()[0]); 
            return; 
        } 
         
        // prevent deadlock in repeated activities 
        if (this.checkRepeatAction()) { 
            return; 
        } 
         
        // run behaviors 
        if (RunOaklandPort.getUseMAS()) { 
            runMASBehavior(message); 
        } else { 
            runStandardBehavior(message); 
        } 
    } 
 
    /** 
     * MAS behavior 
     */ 
    protected void runMASBehavior(BroadcastMessage message) { 
        BroadcastMessage decision = checkMASDecision(message); 
        if (decision.getBroadcastMessageType().equals(BroadcastMessageType.SURRENDER)) { 
            surrender((SimEntity)decision.getParameters()[0]); 
        } else if (decision.getBroadcastMessageType().equals(BroadcastMessageType.ATTACK)) { 
            attack(); 
        } else if (decision.getBroadcastMessageType().equals(BroadcastMessageType.HIDE)) { 
            hide((SimEntity)decision.getParameters()[0]); 
        } else if (decision.getBroadcastMessageType().equals(BroadcastMessageType.EVADE)) { 
            evade((SimEntity)decision.getParameters()[0]); 
        } else if (decision.getBroadcastMessageType().equals(BroadcastMessageType.ESCAPE)) { 
            escape((SimEntity)decision.getParameters()[0]); 
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        } 
    } 
 
    /** 
     * Standard behavior 
     */ 
    protected void runStandardBehavior(BroadcastMessage message) { 
        if (isChased()) { 
            SimEntity coverEntity = null; 
            if (canHitTargetFirst(message)) { 
                attack(); 
            } else if ((coverEntity = findNearestCover(message)) != null) { 
                hide(coverEntity); 
            } else if (canOutrun(message)) { 
                evade((SimEntity)message.getParameters()[0]); 
            } else { 
                escape((SimEntity)message.getParameters()[0]); 
            } 
        } else { 
            attack(); 
        } 
    } 
 
    // number of personality types 
    private int masNumberOfPersonalityTypes = 4; 
     
    // number of action types 
    private int masNumberOfActionTypes = 4; 
 
    // 0 = suicide personality 
    // 1 = tactical personality 
    // 2 = deceptive personality 
    // 3 = balanced personality 
    // {motivation for attack=reduce distance to attack target, 
    // motivation for tactical=increase distance from nearest blue entity, 
    // motivation for deception=reduce distance to nearest cover} 
    private double[][] masPersonality = new double[][] { 
        {1.0, 0.0, 0.0}, // suicide 
        {0.0, 1.0, 0.0}, // tactical 
        {0.0, 0.0, 1.0}, // deceptive 
        {0.3, 0.3, 0.3} // balanced 
    }; 
     
    // {attack, hide, evade, escape} 
    private double[][] masActionWeights = new double[][] { 
        {0.25, 0.25, 0.25, 0.25}, // suicide 
        {0.25, 0.25, 0.25, 0.25}, // tactical 
        {0.25, 0.25, 0.25, 0.25}, // deceptive 
        {0.25, 0.25, 0.25, 0.25} // balanced 
    }; 
     
    // history of happiness 
    private List<Double> masDecisionHistoryHappiness = new ArrayList<Double>(); 
     
    // history of decisions 
    private List<BroadcastMessage> masDecisionHistory = new ArrayList<BroadcastMessage>(); 
     
    // history of decision times 
    private List<Double> masDecisionHistoryTimes = new ArrayList<Double>(); 
     
    // history of personalities 
    private List<Integer> masDecisionHistoryPersonality = new ArrayList<Integer>(); 
         
    // history of distance to attack target 
    private List<Double> masDecisionHistoryDistanceToAttackTarget = new ArrayList<Double>(); 
 
    // history of distance to nearest blue entity 
    private List<Double> masDecisionHistoryDistanceToNearestBlueEntity = new ArrayList<Double>(); 



 74 

 
    // history of distance to nearest cover 
    private List<Double> masDecisionHistoryDistanceToNearestCover = new ArrayList<Double>(); 
 
    /** 
     * Decisions can be to attack, hide, evade or escape. 
     * Decisions are encoded and returned as a broadcast message. 
     * Inputs to MAS include: 
     * Goals are  
     * i) attack target, ii) avoid being intercepted, iii) find cover 
     * Methods are 
     * i) Fixed personality weights, ii) Changing personality+action probabilities 
     * Happiness is based on 
     * i) proximity to attack target, ii) distance away from blue entity,  
     * iii) distance away from cover 
     * Actions are  
     * i) attack, ii) hide, iii) evade, iv) escape 
     * Conditions are  
     * i) whether cover is nearby ii) whether blue entity is nearby 
     * Personalities are  
     * i) suicide (favors reducing proxmity to attack target), 
     * ii) tactical (favors increasing distance away from blue entity) 
     * iii) deceptive (facors reducing distance to cover) 
     * iv) balanced (balance) 
     */ 
    public BroadcastMessage checkMASDecision(BroadcastMessage message) { 
         
        // get current decision time 
        double currentDecisionTime = Schedule.getSimTime(); 
         
        // get distance to attack target 
        Point2D location = this.getMover().getLocation(); 
        double distanceToAttackTarget =  
                location.distance(this.attackTarget.getLocation()); 
 
        // get distance to nearest blue entity 
        double distanceToNearestBlueEntity = this.maxRange; 
        BlueEntity nearestBlueEntity = null; 
        for (Entry<SimEntity, Boolean> entry : contacts.entrySet()) { 
            if (entry.getValue().booleanValue()) { // if known threat 
                if (entry.getKey() instanceof BlueEntity) { 
                    BlueEntity blueEntity = (BlueEntity)entry.getKey(); 
                    double newDistance = location.distance(blueEntity.getLocation()); 
                    if (newDistance < distanceToNearestBlueEntity) { 
                        distanceToNearestBlueEntity = newDistance; 
                        nearestBlueEntity = blueEntity; 
                    } 
                } 
            } 
        } 
 
        // get distance to nearest cover 
        double distanceToNearestCover = this.maxRange; 
        Map<Moveable, Double> nearestEntities =  
                port.findNearestEntities(getMover(), this.maxRange); 
        Moveable nearestEntity = null; 
        for (Entry<Moveable, Double> entry : nearestEntities.entrySet()) { 
            Moveable moveable = entry.getKey(); 
            if (moveable == this) { // avoid choosing itself 
                continue; 
            } 
            double newDistance =  location.distance(moveable.getLocation()); 
            if (newDistance < distanceToNearestCover) { 
                distanceToNearestCover = newDistance; 
                nearestEntity = moveable; 
            } 
        } 
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        // get last decision 
        BroadcastMessage lastDecision = null; 
        if (!this.getMasDecisionHistory().isEmpty()) { 
            lastDecision = getMasDecisionHistory().get(getMasDecisionHistory().size() - 1); 
        } 
         
        // get last decision time 
        double lastDecisionTime = currentDecisionTime; 
        if (!this.getMasDecisionHistoryTimes().isEmpty()) { 
            lastDecisionTime =  
                    getMasDecisionHistoryTimes().get( 
                    getMasDecisionHistoryTimes().size() - 1).doubleValue(); 
        } 
         
        // get last distance to attack target 
        double lastDistanceToAttackTarget = Double.MAX_VALUE; 
        if (!this.getMasDecisionHistoryDistanceToAttackTarget().isEmpty()) { 
            lastDistanceToAttackTarget =  
                    getMasDecisionHistoryDistanceToAttackTarget().get( 
                    getMasDecisionHistoryDistanceToAttackTarget().size() - 1).doubleValue(); 
        } 
         
        // get last distance to nearest blue entity 
        double lastDistanceToNearestBlueEntity = Double.MAX_VALUE; 
        if (!this.getMasDecisionHistoryDistanceToNearestBlueEntity().isEmpty()) { 
            lastDistanceToNearestBlueEntity =  
                    getMasDecisionHistoryDistanceToNearestBlueEntity().get( 
                    getMasDecisionHistoryDistanceToNearestBlueEntity().size() - 1).doubleValue(); 
        } 
         
        // get last distance to nearest cover 
        double lastDistanceToNearestCover = Double.MAX_VALUE; 
        if (!this.getMasDecisionHistoryDistanceToNearestCover().isEmpty()) { 
            lastDistanceToNearestCover =  
                    getMasDecisionHistoryDistanceToNearestCover().get( 
                    getMasDecisionHistoryDistanceToNearestCover().size() - 1).doubleValue(); 
        } 
         
        // get last personality 
        int lastPersonalityType = 0; 
        if (!this.getMasDecisionHistoryPersonality().isEmpty()) { 
            lastPersonalityType =  
                    getMasDecisionHistoryPersonality().get( 
                    getMasDecisionHistoryPersonality().size() - 1).intValue(); 
        } 
         
        // get last last decision happiness 
        double lastLastDecisionHappiness = 0.0; 
        if (!this.getMasDecisionHistoryHappiness().isEmpty()) { 
            lastLastDecisionHappiness =  
                    getMasDecisionHistoryHappiness().get( 
                    getMasDecisionHistoryHappiness().size() - 1).doubleValue(); 
        } 
         
        // compute last decision happiness 
        double maxAttackDistance = startingLocation.distance(attackTarget.getLocation()); 
        double normChangeInAttackDistance =  
                ((lastDistanceToAttackTarget == Double.MAX_VALUE) ? 0 :  
                    (lastDistanceToAttackTarget - distanceToAttackTarget)) / maxAttackDistance; 
        double normChangeInDistanceToNearestBlueEntity =  
                ((lastDistanceToNearestBlueEntity == Double.MAX_VALUE) ? 0 :  
                    (distanceToNearestBlueEntity - lastDistanceToNearestBlueEntity)) / this.maxRange; 
        double normChangeInDistanceToNearestCover =  
                ((lastDistanceToNearestCover == Double.MAX_VALUE) ? 0 :  
                    (lastDistanceToNearestCover - distanceToNearestCover)) / this.maxRange; 
        double lastDecisionHappiness =  
                (normChangeInAttackDistance * getMasPersonality()[lastPersonalityType][0] + 
                normChangeInDistanceToNearestBlueEntity * getMasPersonality()[lastPersonalityType][1] + 
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                normChangeInDistanceToNearestCover * getMasPersonality()[lastPersonalityType][2]) / 3; 
         
        // update history for happiness 
        if (lastDecision != null) { // if a decision has been made previously 
            // update the decision happiness 
            this.getMasDecisionHistoryHappiness().add(new Double(lastDecisionHappiness)); 
 
            // update the action weights 
            int lastActionType = this.getActionType(lastDecision.getBroadcastMessageType()); 
            for (int i = 0; i < this.getMasNumberOfActionTypes(); i++) { 
                if (i == lastActionType) { 
                    // give half of the happiness to the last action type, and normalize 
                    this.getMasActionWeights()[lastPersonalityType][i] =  
                            (this.getMasActionWeights()[lastPersonalityType][i] + 
                            (0.5 * lastDecisionHappiness)) / (1.0 + lastDecisionHappiness); 
                } else { 
                    // distribute the remaining happiness among the rest of the action types, and normalize 
                    this.getMasActionWeights()[lastPersonalityType][i] =  
                            (this.getMasActionWeights()[lastPersonalityType][i] + 
                            (0.5 * lastDecisionHappiness / (this.getMasNumberOfActionTypes() - 1))) 
                            / (1.0 + lastDecisionHappiness); 
                } 
            } 
        } 
 
        // choose next personality that is likely to give highest happiness 
        int personality = 0; 
        double decisionHappiness =  
                normChangeInAttackDistance * getMasPersonality()[0][0] + 
                normChangeInDistanceToNearestBlueEntity * getMasPersonality()[0][1] + 
                normChangeInDistanceToNearestCover * getMasPersonality()[0][2]; 
        for (int i = 1; i < getMasNumberOfPersonalityTypes(); i++) { 
            double newDecisionHappiness =  
                normChangeInAttackDistance * getMasPersonality()[i][0] + 
                normChangeInDistanceToNearestBlueEntity * getMasPersonality()[i][1] + 
                normChangeInDistanceToNearestCover * getMasPersonality()[i][2]; 
            if (newDecisionHappiness > decisionHappiness) { 
                decisionHappiness = newDecisionHappiness; 
                personality = i; 
            } 
        } 
         
        // choose next action that is likely to give highest happiness 
        double randomValue = Math.random(); 
        double cumulativeProbability = 0.0; 
        int actionType = 0; 
        SimEntity coverEntity = null; 
        for (int i = 0; i < this.getMasNumberOfActionTypes(); i++) { 
            cumulativeProbability += this.getMasActionWeights()[personality][i]; 
            if (randomValue < cumulativeProbability) { 
                if (i == 1) { // check condition if cover nearby 
                    if (nearestEntity != null) { 
                        double nearestDistance = Double.MAX_VALUE; 
                        for (Entry<Moveable, Double> entry : nearestEntities.entrySet()) { 
                            Moveable moveable = entry.getKey(); 
                            if (moveable == this) { // avoid choosing itself 
                                continue; 
                            } 
                            // if cover moving in direction of attack target and nearest 
                            double newDistance =  location.distance(moveable.getLocation()); 
                            if (Math2D2.isHeadingTowardsTarget(moveable.getLocation(), moveable.getVelocity(), 
                                    attackTarget.getLocation(), attackTarget.getVelocity(), Math.PI / 4) && 
                                    (newDistance < nearestDistance) && (moveable instanceof SimEntity)) { 
                                // choose cover 
                                nearestDistance = newDistance; 
                                coverEntity = (SimEntity)moveable; 
                            } 
                        } 
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                        if (coverEntity != null) { 
                            actionType = i; 
                            break; 
                        } 
                    } 
                } else if ((i == 2) || (i == 3)) { // check condition if blue entity nearby 
                    if (nearestBlueEntity != null) { 
                        actionType = i; 
                        break; 
                    } 
                } else { 
                    actionType = i; 
                    break; 
                } 
            } 
        } 
         
        // create decision 
        BroadcastMessage decision = null; 
        switch (actionType) { 
            case 0: // attack 
            default: 
                decision = new BroadcastMessage(this, null, BroadcastMessageType.ATTACK, attackTarget); 
                break; 
            case 1: // hide 
                decision = new BroadcastMessage(this, null, BroadcastMessageType.HIDE, coverEntity); 
                break; 
            case 2: // evade 
                decision = new BroadcastMessage(this, null, BroadcastMessageType.EVADE, nearestBlueEntity); 
                break; 
            case 3: // escape 
                decision = new BroadcastMessage(this, null, BroadcastMessageType.ESCAPE, nearestBlueEntity); 
                break; 
        } 
         
        // update history for decision 
        getMasDecisionHistory().add(decision); 
         
        // update history for decision time 
        getMasDecisionHistoryTimes().add(new Double(currentDecisionTime)); 
         
        // update history for personality 
        this.getMasDecisionHistoryPersonality().add(new Integer(personality)); 
 
        // update history for distance to attack target 
        this.getMasDecisionHistoryDistanceToAttackTarget().add(new Double(distanceToAttackTarget)); 
     
        // update history for distance to nearest blue entity 
        this.getMasDecisionHistoryDistanceToNearestBlueEntity().add(new Double(distanceToNearestBlueEntity)); 
         
        // update history for distance to nearest cover 
        this.getMasDecisionHistoryDistanceToNearestCover().add(new Double(distanceToNearestCover)); 
                 
        return decision; 
    }     

//======================================================= 
// End Snippets from SmallBoatThreat.java 
//======================================================= 
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