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ABSTRACT

A congested strait providing entry to a port contains
many benign non-hostile vessels. Some of the vessels are
large ships (LSs) carrying dangerous cargo. Others are
small Dboats (SBs) , undistinguished in type, but not
behavior. Two maritime security threats (Reds) are a
hijacked LS carrying dangerous cargo, and/or a SB manned by
terrorists attempting to cause damage to other vessels or
to the port. The Red SB can either conduct a direct attack
upon entering the strait, or a sneak attack by hiding among
other neutral SBs. The defense force consists of shore-
based sensors, unmanned aerial vehicles (UAVs), unmanned
surface vehicles (USVs), and patrol craft (PC). The shore-
based radar and the UAVs initially classify unidentified
vessels as suspicious or not suspicious. Vessels classified
as suspicious must be inspected intensively by a USV or PC;
PC inspection often requires boarding, a time consuming
process that may frequently result in no incriminating
findings.

Analytical models are introduced to analyze
requirements for numbers and capabilities of surveillance
assets and to assess the effectiveness of concepts of
operations (CONOPS) for defense forces to achieve a desired
probability of detecting and intercepting the threat. The
models incorporate both differential equations and
probabilistic arguments. The model results indicate that if
the UAVs generate many false positives then the USVs and
PCs have a high (and often futile) workload, which
decreases the probability of detecting a threat. Further,
USVs and PCs should give a high priority to inspecting
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suspicious SBs rather than identifying unsuspicious SBs in
order to achieve a higher ©probability of detecting a

threat.
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EXECUTIVE SUMMARY

A littoral state 1s concerned with the maritime
security of the main sea routes in a narrow strait that her
ports and economy depend on. Besides high traffic density
on the sea routes, the strait is also congested with many
small boats (SBs). Potential maritime security threats come
from both large ships (LSs) and SBs plying the straits. In
order to enforce maritime security in the strait, the
littoral state requires additional surveillance assets on
top of the existing system of coastal surveillance radars
that is used for vessel traffic control. The littoral state
would like to know a cost-effective mix of sensor platforms
to ensure adequate surveillance coverage of the congested
strait. The Order of Battle (ORBAT) mix that will be
considered comprises Unmanned  Aerial Vehicles (UAV) ,
Unmanned Surface Vehicles (USV) and manned patrol crafts

(PCs) .

Two types of maritime terrorism threats are
identified, namely LS threats and SB threats. Based on
these threats, two concepts of operations (CONOPS) are
considered to address each of them separately. The first
maritime threat concerns the use of LSs carrying highly
dangerous cargo (D-vessels) to inflict extensive damages to
port facilities or other ships. The CONOPS against this
threat 1s to use Dboarding teams from PCs to conduct
boarding and inspection of D-vessels 1in order to detect a
LS that has been hijacked by terrorists (Red vessel). The
second maritime threat concerns wuse of ©SBs to inflict

damage on infrastructure or other vessels. The CONOPS
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against this second threat (Red boat) uses coastal radars,
UAVs, USVs and PCs. The coastal radars detect suspicious
activity (unusual course and speed). The UAV is used to
rapidly identify unsuspicious SBs, while USVs and PCs are
used to inspect suspicious SBs detected by the coastal
radar and the UAVs, and desirably to detect the Red boat.
Two possible scenarios for the SB threat are considered,
one 1s a direct attack by single Red boat (scenario A) and
the other is a sneak attack where the one Red boat attempts
to hide among other neutral SBs for some time before attack

(scenario B).

Analytic models of the scenarios are presented here
incorporate both differential equations and probabilistic
components. The differential equations are solved

numerically using MATLAB.

In the LS model, the Red vessel 1s detected when at
least one PC is available for inspection and the latter
chooses (at random) the Red vessel from all un-inspected D-
vessels. Based on an arrival rate of 20 D-vessels per day,
it 1is showed that 1in order to have a probability of
detecting the Red vessel greater than 0.9, an ORBAT of at
least six PCs 1is required to be deployed. An additional PC
will be required for every increment of four to five more
vessels to arrive per day. Comparison between the
deterministic fluid model and a generalized birth-death
stochastic model indicates that both provide similar

results.

In scenario A for the SB model, a Red boat is detected
when at least one USV (or PC) 1is available when the Red SB

starts i1its attack, and chooses to inspect the suspicious

XX



Red boat from among other suspicious SBs. In scenario B, a
Red boat can either be detected while it is hiding among
other SBs, or when i1t commences attack. Once the Red boat
commences attack in scenario B, the situation is modeled as
scenario A with a shorter reaction time for the USV (or
PC). The results are based on an arrival rate of 12 SBs per
hour and an average of 48 unidentified SBs in the strait at
any time. To achieve a probability of detection of the Red
boat of at 1least 0.9 in good wvisibility conditions, the
recommended ORBAT mix of six USVs and three PCs without any
UAV is recommended, at an estimated cost of USS$5.7 million
per year for a period of 10 years. A mixed USV and PC ORBAT
is recommended for a more robust surveillance force in
terms of deterrence and exercising ground Jjudgment. USVs
are useful in situations when it is not necessary to risk
human lives. If a UAV 1is included, the recommended mix is
one UAV, two PCs and six USVs, at an estimated cost of
USS$6.7 million per year for a period of 10 years. In poor
visibility conditions, the probability of detection drops

by about 30%.

The analysis of the SB model results also provides
insight into the effectiveness of possible modus operandi
for the surveillance platforms. The UAV contribution is
only positive when it highly accurately in classifies
neutral (White) SBs. When the UAV mistakenly classifies a
non-suspicious SB as suspicious, a USV or PC must do
further inspections on the SB. Thus, UAVs can undesirably
increase the workload for the USVs and PCs, and result in
small improvements in the probability of detection in SB
threat scenario A. The UAV ability to quickly identify SBs

is more useful in SB threat scenario B as the Red boat is

XxX1



hiding among other SBs. In this model there is no advantage
to having the UAV follow suspicious SBs, especially 1f the
perceived threat is SB threat scenario A. Conversely, the
USV should give highest priority to inspecting suspicious
SBs rather than identifying unsuspicious SBs in order to

achieve the highest probability of detecting the Red SB.
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I. INTRODUCTION

A. BACKGROUND

A littoral state (also referred as Blue state) 1is
concerned about the maritime security of the main strait
that its ports, and economy, depend on. This strait is also
an international strait as 1t 1s an essential connection
between two major international shipping lanes. Therefore,
the shipping traffic in the strait consists of ships that
are calling at the littoral state’s ports and ships that
are transiting through it to get from one major shipping
lane to the other. As a high wvolume of shipping traffic
uses the strait daily, the littoral state is concerned that
the strait 1is wvulnerable to the threat of maritime
terrorism, and aims to enhance maritime security 1in its
strait. As part of the littoral state’s strategy to enhance
maritime security, it has decided to improve its
surveillance coverage. Enhancements 1in surveillance of the
strait are efforts to increase the probability of detection
of any potential threats to security, and serve as a

deterrent.

The homeland security department (HSD) of the littoral
state has decided that it needs a suite of different sensor
platforms to supplement 1its existing system of coastal
surveillance radars. The suite of sensor platforms will
consist of manned surface vessels or patrol craft (PC),
unmanned surface vessels (usv), and unmanned aerial

vehicles (UAV). The homeland security department wants to



determine a cost-effective mix of platforms to ensure the

desired surveillance coverage of the congested strait.

The goal of this thesis is to assist the HSD in their
decision making for achieving the best mix of sensor
platforms. Specifically, this thesis presents a concept of
operations (CONOPS) Dbased on current perceived maritime
terrorism threats. Analytical models are then developed and
used to determine the best platform mix. It is likely that
opponent (Red) reaction will require the platform mix to

change, adaptively.

B. THESIS OBJECTIVE

The objective of this thesis is to determine the force
structure of an Order of Battle (ORBAT) consisting of PCs,
USVs, and UAVs, 1in order to achieve given levels of
surveillance coverage of a congested strait for the purpose
of enforcing maritime security. This will be achieved using
a set of analytical models that are robust, low-resolution
tools for force-structuring surveillance in the context of

a congested strait.

1 According to JP 1-02 (2007) Department of Defense Dictionary of
Military Terms, an order of Dbattle (ORBAT) is defined as the
identification, strength, command structure, and disposition of the
personnel, units, and equipment of any military force.

2



C. RESEARCH QUESTIONS

1. Characteristics of Operational Environment

An abstract geographical area i1s the setting for this
analysis. The strait is bounded on two sides by landmasses
belonging to the littoral states. The main sea routes in
the strait are defined by a traffic separation scheme
(TSS), which is a two-lane traffic way running east-west.
The main points of entry and exit are at the terminals of
the TSS and along the strait leading to the ports of the
littoral state. Cross-strait traffic exists along several

locations along the strait.

Large
|::> Small boats

<
—>

Figure 1. Pictorial representation of the abstract strait
of the littoral state.



The notional strait has a set of key characteristics

that pose challenges to surveillance.

Geographical Challenges:

There are many small islands scattered along the
coast, which may cause blind spots and clutter to

radar and visual surveillance.

There are multiple crossing points throughout the
length of the strait that are used mainly by
local traffic, such as pleasure and fishing
crafts and ferries. These also add clutter and

distraction to radar and visual surveillance.

Environmental Challenges:

The high traffic density in the strait poses a
high demand on the resources required for
surveillance. The typical traffic density for a
major international shipping strait 1is about 500
ships transiting per day for vessels above 75

gross ton.

The presence of numerous small vessels and boats
present possible concealment for illicit
activities. The density can be about 100 small

vessels in the strait continuously.

There are many unaccounted vessels in the strait.
These are the vessels that are not equipped with
automatic identification systems (AIS) and are
not required to report their movements. Most of

these vessels are SBs involved in private leisure



activities or fishing. However, some can Dbe
involved in 1llicit activities that Blue (B)

wishes to prevent.

2. Threats of Maritime Terrorism

After the 9/11 terrorist attacks in the U.S., there
has been, and continues to be, a heightened international
awareness of the threat of terrorism in transportation,
including that in the maritime domain. Maritime terrorism
threats generally fall into two categories: those carried
out by small boats (SBs) and those carried out with larger
ships. The use of SBs in guerilla-style attacks and suicide
attacks targeted at wvessels in transit, at pier-side or
anchorage, belongs to the first category. Examples of such
attacks in recent years are the attacks on the USS Cole in
Aden (2000) and on the French tanker MV Limburg off the
coast of Yemen (2004). In these attacks the terrorists used

SBs laden with explosives as their mode of delivery.

The second category concerns the use of LSs,
particularly those carrying highly dangerous cargoes, to
inflict extensive damage. Terrorists can hijack a ship
carrying dangerous cargoes such as liquefied natural gas
(LNG) and/or hazardous chemicals and use it as a floating
bomb to blow up in the port. The hijacked ship can also be
used to import weapons of mass destruction (WMD). Although
there is a low probability of such a scenario, the possible
fallout and other consequences from even one such
occurrence 1is enough reason for states with high dependency

on maritime trades to act in a precautionary manner.
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The littoral (Blue) state is concerned with these two
categories of threats. They will be modeled and analyze in

this study.

3. Surveillance Capabilities

The underlying problem faced by the littoral state in
the surveillance of its operational environment 1is that
each of the approximately 500 to 600 vessels plying the
strait everyday could potentially be a threat. Hence, a
comprehensive surveillance system 1is necessary to provide
the required level of situational awareness to pick out the

threat amongst the legitimate traffic.

The littoral state has an existing system of coastal
surveillance radars (CSRs) and electro-optic/infrared
(EO/IR) systems ©positioned along the coastline. These
systems, together with Vessel Traffic Management
Information System (VTMIS) and the Automatic Identification
System (AIS)i enables the littoral state’s maritime
authority to know the location and identification’ of most
of the wvessels in the strait. The effectiveness of the
current suite of radars and modes of detection are limited

in the strait’s highly cluttered and congested environment.

2  International Maritime Organization (IMO) (2007) regulations
require ships of certain tonnage and class to be fitted with the AIS.
The AIS is capable of providing information about the ship to other

ships and to coastal authorities automatically. It provides
information - including the ship's identity, type, position, course,
speed, navigational status, destination and other safety-related
information.

3 Name, registration, country of origin, owners, general physical
description, etc.



First, the CSRs are generally used for long-range,
wide-area detection and tracking of large wvessels. In the
highly cluttered environment of a congested strait, the
CSRs can be overloaded and sometimes give false echoes. The
radar clutter and shadows can mask legitimate targets.
Second, the CSRs’ detection range of small vessels, such as
a speedboat, 1s typically very short. Moreover, the CSRs
are positioned on only one side of the strait, so that the
detection of small vessels at the far side of the strait is
degraded, a situation that may be known and exploited by
opponents. The land-based EO/IR systems also have a shallow
angle of view when looking at vessels far away, which means
that these systems cannot see behind large objects such as

LSs and islands.

In addition to the surveillance sensors, the maritime
authority also uses the AIS to automatically detect vessels
fitted with the AIS. The AIS automatically identifies and
provides authorities with information on the positions of
the wvessels in the strait. This allows the maritime
authority to have an improved situational picture of the
strait. Also, by cross-referencing the vessels’ identities
against its database, the Blue’s maritime authority can get
more information, such as whether the vessel is scheduled
to call in to its port. However, there are still many
vessels that do not have AIS, such as non-compliant vessels
and smaller vessels that do not come under IMO regulations
due to their small gross tonnage. It is possible for the
local maritime authority to enforce AIS for smaller vessels
(not required under IMO regulations), but such a measure is
limited to vessels registered in that state. Furthermore,

even if a vessel’s identification is known, it is possible
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that Blue cannot positively ascertain that the vessel poses
no harm. For such situations, it may be necessary to
further investigate those vessels through individual
inspections. These inspections <can include a detailed
close-up look by a standoff platform like a UAV or USV. The
inspections can also be physical inspections conducted by

boarding parties.

In order to close the surveillance gaps that are not
covered by the AIS and the current land-based systems of
CSRs and EO/IR sensors, the littoral state has not, but one
day might decide to acquire, new surveillance assets. The
ideal surveillance system for this congested strait should
not only be multi-spectral, which includes radar, optical
and infrared sensing, but should also consist of mobile
sensor platforms to overcome the short detection ranges for

small vessels and blind zones.

In this analysis, the three types of surveillance
platforms that are considered by the 1littoral state to
enhance its land surveillance capabilities are UAVs, USVs
and/or PCs. The unmanned platforms are controlled from a
command and control (C2) center situated on the mainland.
Line-of-sight communications between the C2 center and the
unmanned platforms are maintained throughout the strait via
a network of transmitters and relay stations located along
the coast. The C2 center will coordinate all surveillance
efforts by the manned and unmanned platforms in order to
achieve the most effective coverage. All three types of
surveillance platforms will be equipped with short-range
surface radar and EO/IR systems. The radars complement the

CSRs 1in providing coverage in blind zones or in a high-



clutter environment where short-range radar generally has
better resolution. Through the use of high-resolution EO/IR
systems on the surveillance platforms, the C2 center can
conduct detailed and close-up visual inspections on
vessels. Under reduced visibility conditions, the mobile
sensors can move closer to the targets, something land-
based systems cannot do. Finally, in order to generate a
coherent situational picture, fusion of all information
collected by both land-based and mobile sensors will Dbe
necessary. Data fusion of a surveillance system with
multiple sensors 1is complex and 1is subjected to error and
delay, but there are also proposed solutions to address

them (Efe, Yilmaz, & Dura Donmez, 2005).

In terms of speed and maneuverability, the UAV 1is
typically three to four times faster than the USV or PC
(about 100-120kts compared with 30-40kts). Having greater
speed, the UAV will spend less time transiting from one
target to another. As an airborne platform, it can quickly
conduct an all-around inspection of 1its target and allow
the C2 center to see Dbehind 1large obstacles that may
conceal SB threats. Downward-looking air-borne sensors also
have fewer Dblind zones. As a result, the UAV can
expeditiously survey a large area and reduce the risk of
overlooking small targets. The EO/IR sensors on the UAV
give a plain view of the exposed decks of a vessel that may
not be possible for upward- or level-looking sensors on a
surface platform. This non-invasive inspection capability,
to some extent, allows authorities to ascertain normality
of the onboard activities of the vessel. This type of
information is useful in assessing the classification of

targets. VTOL UAVs, such as the Northrop-Grumman’ s



Firescout (RQ-8B) [see Figure 2(a)] and DARPA’s Al60
HummingBird, have the added advantage of having the
capability to hover. A hovering VTOL UAV will require less
airspace, both horizontally and vertically, when it has to

focus continuously on a target.

PROTECTOR

Figure 2. Examples of unmanned platforms. (a) The
Firescout UAV with EO/IR camera. (Picture taken from
Northrop Grumman website.) (b) The Protector USV with

radar, EO/IR camera, and small caliber weapon.
(Picture taken from Rafael website).
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The USV will be a small and remotely controlled
surface vessel, like the Rafael Protector [see Figure
2(b)]. Although the radar on the USV has a short detection
range, 1t can still be used to cover CSRs’ radar blind
spots or shadow zones, especially for the detection of
small vessels. Besides a sensor payload of radars and EO/IR
cameras, the USV can also be equipped with searchlights and
public address systems, and 1t can be armed with small
caliber weapons. One key advantage that the USV has over
the manned platform is that crew safety is guaranteed when
operating unmanned surveillance assets. The USV may not be
as fast or maneuverable as the UAV, but it can go up close
to a SB to observe the activities onboard, and if
necessary, the C2 center can give instructions through its
public address system. The public address system can be
used to interrogate suspicious small vessels and instruct
them to carry out specific actions, such as proceeding out
of the strait. By doing so, it may coax them to reveal

their true intentions.

The manned platform is in the form of a small PC and
it has an organic boarding team. It has similar
surveillance capabilities as the USV, except that its
boarding team can carry out physical inspections onboard a
vessel. In certain circumstances, boarding and inspecting a
vessel 1is necessary to ascertain the legitimacy of the

crew, such as detecting a hijacked vessel.
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D. SCOPE OF THE THESIS

The following is the scope of this thesis:

First, the two key types of maritime terrorism
threats, LSs and SBs, will be examined individually. For
each of them, a CONOPS will be developed with the purpose
of detecting the threat among the other neutral shipping in
the environment of a congested strait. The CONOPS will

specifically involve using a mix of UAV, USV, and PC.

Second, analytical mathematical models are developed
to model the CONOPS and used to estimate the required
platform mix to achieve a probability at least 0.9 for the
detection of a threat. The models will Dbe solved

numerically using MATLAB.

Third, the computed results from the models will be
analyzed to develop insights that aid decision-making on
the force structuring of a cost-effective ORBAT mix of

sensor platforms.

E. THESIS FLOW

Chapter II presents the CONOPS for the surveillance of
the strait against the two specific threats considered in
this thesis. Based on the CONOPS, analytical models will be

developed and presented.

Chapter III covers model exploration and sensitivity

analysis discussion of the models.

4 The codes for solving the models are written by the author.
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Chapter IV presents the results from the quantitative

evaluation of the mathematical models.

Chapter V consists of a summary of the work done as
well as the conclusions developed from this thesis and

recommendations for further work.
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II. DESCRIPTION OF MODELS

A simple CONOPS for two types of maritime terrorism
(Red) threats will be addressed and developed in this
chapter. The threats can be <classified as large-sized
shipping threats, and small boat (SB) threats; of course
not all 1large or small vessels are threats, but many
searches by Blues (Bs) are distracted by benign traffic.
Speedy and accurate identification by B 1is a valuable
asset. For the purpose of this thesis, a large ship (LS) is
defined as a vessel above 300 gross tons (GT) that carries
the IMO-mandated AIS. A SB 1is defined as a vessel that is
below 300 GT and hence does not come under IMO regulations

to carry AIS.

The concern in large-sized shipping threats is that a
LS that carries hazardous cargo could be hijacked by, or
fall under the control of terrorists and used as a floating
bomb. Dangerous cargo refers to inflammable and explosive
cargo that could be used as fuel for a bomb. The objective
of the LS threat would be to ignite the explosive cargo in
port or at the dangerous cargo terminals (Bateman 2006).
The concern in the SBs threat 1is the wuse of SBs 1in
guerilla-style or suicide attacks. These SBs could attempt
to disguise themselves to blend into the local small vessel
traffic, for example pretending to be local fishing boats.
The objective of the SB threat is to deliver and detonate
an explosive payload to a high-value target berthed in the

harbor or transiting the strait.

Generally there are fundamental differences 1in the
behaviors of LSs and SBs 1in the strait. Large merchant

15



ships are required to transit in designated shipping lanes
according to the local maritime zrules for navigation
safety. They typically want to get to their destinations
expeditiously to meet commercial deadlines. They are also
required to transmit signal via IMO-mandated AIS to
identify themselves. Hence, LSs typically enter the strait
and proceed in the most direct and allowable route to their
destinations (either the port or to the exit of the strait
at the other end) 1in a predictable manner. LSs can be
easily tracked by their AIS reports. Therefore, if a LS
were to Dbehave suspiciously by not conforming to the
traffic rules, it would be easily picked out from the other
shipping. If a LS threat were to conform to the behavior of
the general shipping patterns, the only way that its
possible ill intent can be discovered is by boarding for

inspection.

The SBs do not have such predictable behaviors. Their
movements in the strait are not as well regulated and they
do not typically follow well-defined shipping lanes. Some
of them, such as fishing boats, loiter in an area within
the strait for a certain period of time when engaging in
their activities. Though the SBs are not required under IMO
regulations to be equipped with AIS, the 1local maritime
authority could mandate that those registered in their
state carry similar identification systems. SBs registered
in other states using this international strait may ignore

this requirement.

As a result of the differences between the LS and SB
threats, they will be considered separately and different
CONOPS will be developed for each of these threats.

16



A. CONOPS FOR LS THREATS

1. Strait Traffic Management

For navigational safety, all LSs entering the strait
conform to a standard reporting procedure. They report to
the littoral state Vessel Traffic Service (VTS) authorities

when entering and leaving the straits.

When a vessel reports in, the Vessel Traffic
Information System (VTIS) starts tracking the vessel, and
its passage will be monitored continuously until it leaves
the strait. An advantage of reporting in 1s that the
vessels will Dbe provided with traffic and navigational
information to assist them in navigating safely through the

strait.

The VTIS gets information on the traffic condition
from the coastal radars, the AIS reports and the vessels’
reports. The system of coastal radars provides complete
radar coverage of the entire strait, including information
on a vessel’s location, course and speed, but it does not
provide information on a vessel’s identity. The AIS
complements the coastal radars by automatically providing a
vessel’s identity and position. The AIS transmits the
vessel’s position, heading and speed at 10-second
intervals. The information on vessel identity is
transmitted every six minutes, according to U.S. Coast

Guard Navigation Center (2007).
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2. Threat Scenario

The threat scenario that is examined in this thesis is
common amongst many coastal states especially after the
9/11 terrorist attacks in the U.S. The main concern is that
terrorists will attempt to use vessels carrying dangerous
cargoes as weapons to cause harm to the wvulnerable human
population or to wvaluable properties. In this scenario,
terrorists hijack a vessel carrying dangerous cargoes and
attempt to blow it up in the harbor or to ram it into a
berthed or anchored vessel, such as a cruise liner or navy

warship.

The types of vessels that are likely to cause damage
akin to the devastation of 9/11 in such a scenario are
those that carry dangerous cargoes such as liquefied
natural gas (LNG) and chemicals. Henceforth, vessels
carrying dangerous cargoes will be known as D-vessels.

However, not all will be boarded by Reds.

It 1is assumed that, if successfully boarded, a D-
vessel 1is covertly hijacked outside the strait. It is
further assumed that only the crew of the D-vessel knows
that the vessel has been hijacked. The hijacked D-vessel
attempts to «continue its ©passage into the strait and
ultimately into the port. The hijackers will attempt to
avoid detection by complying with all required VTS
protocols until they reach a suitable position to execute

their plan of attack.
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3. CONOPS for Detection of Hijacked D-Vessels

It 1is extremely difficult to detect a hijacked D-
vessel (called Red vessel henceforth) with merely standoff
surveillance by UAV and radar, transiting under the false
pretence of being a legitimate merchant. The UAV, radars,
and AIS can provide information on identity and position,
but would never be able to reveal the true intent of the
hijackers. As a result, the detection of such vessels
requires verification of the intent of D-vessels, which is
only possible with onboard inspection of all D-vessels and
their crews. Hence in this scenario, the boarding parties
on the PCs are the primary assets for the detection of Red
vessels. The UAVs and USVs are secondary assets Dbecause
they are unable to conduct onboard inspections but they can
be used for first level visual surveillance to complement
the AIS. In the case where the VTIS is not receiving any
information from the AIS of a particular vessel, the UAVs

or USVs can be used to seek out its identity.

All D-vessels transiting through the strait, including
those that are not calling at the (B) port, <can Dbe
potential targets of the hijackers. However, there are a
large number of them and boarding to inspect all of them
would be impractical and cause delays to the traffic flow
in the strait. The littoral state (B) decides that only D-
vessels that are scheduled to call at the port will be
considered for Dboarding and inspection. The risk of
terrorists using one of the other D-vessels, which are
transiting the strait but not calling at the port, will
have to be mitigated by other measures and will not be

considered 1in this thesis. One such measure could be
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deterrence through the random escorting of the pass-through

D-vessels.

A D-vessel calling at the port will enter the strait
from either the east or west end of the strait. As long as
a PC is available, a D-vessel can be boarded at any point
from the entrance of the strait to the entrance of the
port. A Dboarded D-vessel continues to proceed toward the
entrance of the port but is only allowed to pass through
the entrance of the port when the inspection is completed
and the D-vessel has been certified “safe”. A “safe” D-
vessel 1is one that has not been hijacked. Upon completion
of an inspection, the boarding party will go back to the
PC, and the PC will proceed to the next available D-vessel
that has not been inspected. If the inspection is not been
completed by the time the D-vessel reaches the entrance of
the port, the D-vessel will be held in a holding area (near
the entrance of the port) until the inspection is completed

by other personnel.

B. LS MODEL DETECTION OF HIJACKED D-VESSELS BY PCs

In the formulation of the analytical model, several
assumptions about the D-vessels are made. All D-vessels
that call at the port are assumed to be the hijackers’
potential target will have to be boarded and inspected. Any
D-vessel that is identified as the Red vessel is assumed to
be apprehended by a response force, and the terrorist act
thereby averted. Due to the time taken for post-detection
response actions, such as sending special forces to storm

the hijacked ship, the hijacked D-vessel must be detected
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at the time when it first enters the strait. Post-detection

response actions will not be modeled in this study.

1. Formulation

The model will be formulated in two parts. In the
first part, the movements of D-vessels in the strait and
the process of PCs conducting boarding and inspection on
the D-vessels are modeled as a deterministic “fluid” model.
A representation of the sequence of events in the CONOPS
against LS threat is displayed in Figure 3. The objective
of this deterministic fluid model is to reveal the long run
mean number of D-vessels that are not inspected by PCs and
the long run mean number of PCs that are engaged in the
boarding and inspection process. These measures will be the
inputs to the second part of the model that will determine

the probability of detection of a single Red vessel.

The portion of the strait from one end of the strait
to the entrance of the port, called domain S, will be
divided along the direction of transit into equally sized
sub-regions, Sﬂie{L 2, m,n}. A D-vessel enters the strait by
entering into the sub-region, §,, and moves towards the port
by moving from S, to §, until §,. From §,, the D-vessel will
proceed into port (see Figure 4). The mean time D-vessels
spend in each sub-region is assumed to be the same for all

sub-regions.

21



| D-ship |
| armval An Infinite Buffer,
, M-server Queueing System
Arrival Rate Ol Setup  # Avail. with Setup Times
R,,ate servers And Reneging
Infinite | unverified * /
Buffer D-ships - +
Queue D(t) Y(M B(t)) Service  # Busy
Rate servers
D-ships being /
Reneging A inspected by PCs
Rate B(t) UB(t)
P 1 [ i
| unverified | { D-ship !
| D-ship |  Is verified |
| reaches port | | (neutralized) |
e ___ I \ |

Figure 3. A schematic flow diagram of the sequence of
events for a LS model (From Gaver, Jacobs, Chng and
Alderson 2007)
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Figure 4. Schematic diagram of the domain § and the movement
of the D-vessels through the sub-regions.

The boarding and inspection process by the PCs will be
divided into a series of m service time periods. Each
service time period is assumed to have the same length.

Upon completion of an inspection, the PC will choose the
22



next D-vessel to be inspected at random. Each un-inspected

D-vessel is equally likely to be chosen for inspection.

2. State Variables

Let

[%O) = Number of D-vessels in sub-region i that have
not been inspected at time ¢, where i=1, ..., n;

BjO) = Number of PCs that are busy with j periods of

service time remaining at time ¢, wherej=1, ..., m.
3. Parameters
Let
M = Number of PCs active in the region (strait);
n = Number of sub-regions in the strait;
m = Number of service time periods in a boarding and

inspection process; the first service period for a PC is

labeled the m"™; the final service period for a PC is

labeled 1.

1
z = Mean time a D-vessel spends in each sub-region and

is available for inspection (before it reaches the adjacent

sub-region) ;
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— = Mean time in each service time period during which

u

boarding teams from a PC board and inspect a D-vessel;

1
— = Mean time for one 1idle® PC to travel to a D-
14
vessel; and
o = Arrival rate of D-vessels to the region.
4. Equations for Part I Time-Dependent “Fluid”
Formulation

For each sub-region, a differential equation is used
to represent the rate of change of the mean number of un-

inspected D-vessels.

+
dp, (t) m
—L=0a— AD|(t) —y|M-Y,B(t)| Dt (2.1)
dt ! J !
— ]=1 —_
Mean Mean
number of Number of m}mber of
D-vessels idle PCs uninspected
to leave D-Vesse;ls in
sub-region 1 sub-region 1

uninspected )
Mean number of inspected

D-vessels in region 1 during (dt

5 An idle PC is one that is currently not engaged in the process of
boarding and inspection.
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db,(t) m
=AD,_,(t)= AD,(t) —y| M=3.B,(t)| D) Vi=2,..,n
Mean Mean Mean
number of number of Mean number of number of
D-vessels D-vessels idle PCs D-vessels in
entering leaving sub-region i

sub-region /  sub-region i
uninspected  uninspected

where x"=xif x>0 and x"=0if x<0.
For each PC service time period, a differential

equation 1s used to represent the rate of change in the

mean number of busy PCs.

s, (1) S 3
Lolll e p, i) o\ 0-38,0)| S 000 2.
Mean number of
PCs completing Mean number
service of free PCs approaching
period m an uninspected D-vessel
ds () ,
;t - _qu(t) + ,uBJ.H(t) Viji=1,..,m-1 (2.4)

Mean number of ~ Mean number of
PCs completing ~ PCs completing
service service

period j period j+1

where x"=xif x>0 and x" =0if x<0.

Equations (2.1) to (2.4) are subject to boundary

conditions so that the following conditions are true:

OSiBj(t)SM and D,(t)20, Vi=1l..n.
j=1
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Equations (2.1) to (2.4) are solved numerically using
implementation of the Euler method in MATLAB to determine
the limits of D,(t) and Bxﬂ when t—>o . These limits are the

long run expected number of un-inspected D-vessels in ™"

sub-region and the long run expected number of PCs that are
engaged in the ™ service period, respectively. They are
then used in the equations in Part II for the computation

of the probability of detection.

5. Equations for Part II Probability of Detection
When Inspection Process is in Steady State

This part of the model determines the probability that
a single Red vessel (R), 1is boarded and inspected by a PC
before the R enters the port.

D-vessels scheduled to call in at the port arrive at
the strait at anytime throughout the day and there is no
“time-of-day” effect. When R enters the strait, the number
of un-inspected D-vessels in the strait, D, is assumed to

n
have a Poisson distribution with a mean of l)=lhn§5[%0).

S|
The number of PCs that are Dbusy boarding and
inspecting a D-vessel when R arrives 1is assumed to have a

Binomial distribution with the number of trials equal to

f—>00 .

m
the number of PCs, M, and the mean leimZBj(t); an
j=1

M —
M

=77

estimate of the probability a PC is idle is p= An

idle PC chooses the next ship to be inspected from among
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the D un-inspected ships or the R at random; each ship is

equally likely to be chosen. Let K be the event in which R
is inspected. It is assumed that R will only be inspected
if at least one PC is idle at R’s arrival time and one of

the 1idle PCs chooses to inspect R. If the number of idle

PCs exceeds D when R arrives, then R will be inspected. The
probability of the event, K, is
M r—1 ~k oo
M), M=—r _DD k—(@r—-1)
p)=3( Mo 1-]"| TP B e S er DAL
r=1\"" k=0 k=r
Probability at least one Probability Probability R is
PC isidle there are fewer chosen for inspection
than » D-vessels (sampling without
| uninspected replacement)

_ v (M), M-r 5D r
el 3| )
=1-[1-p]"
M M _ r—1 _751{
(M) -2 02
r=1 k=0 :
MiMmY , M-r 1 . 5D
+Z p [l—p] r—= 1—2 F
r=I\" k=0
(2.5)
6. Measure of Effectiveness (MOE)
The MOE for the LS model 1s the probability of

detecting Jjust one Red vessel given there are a certain

number of PCs in the strait.
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C. CONOPS FOR SBs THREATS

1. SB Traffic Management in the Strait

The littoral state wutilizes a series of CSRs and
mobile radars on its UAVs, USVs, and PCs to provide radar
coverage for the entire strait. It can detect most SBs in
the strait, but the present radar system is unable to

provide identification of them.

To circumvent this problem, the 1littoral state has
mandated that all SBs registered in the state be equipped
with automatic identification devices similar in function
to the IMO mandated AIS. However, other SBs in the strait
that are not registered in the 1littoral state are not

required to carry such a device.

When a SB in the strait is detected and identified, it
is tagged in the VTIS. Once a SB 1is tagged, the VTIS has
information of its location and identification. It remains
tagged as long as one of the sensors (coastal radar, PC,
UsSvV, or UAV) continues to track it; otherwise it 1is
considered “lost.” When a SB that is “lost” is re-detected
by a sensor, it is treated as a new detection. A tagged SB
is not known to Dbe armed/hostile/Red without further

investigation.

2. Threat Scenarios

The hostile SB’s (called Red boat) aim and goal is to
get within range of a High Value Target (HVT) which 1is
either berthed in the littoral state’s (called Blue) harbor

or transiting Blue’s strait. Once within range of the HVT,
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the Red boat will detonate explosives. Two possible SB

threat scenarios will be addressed in this thesis.

In the first scenario, the Red boat waits outside the
strait at an ambush location for an opportunity to attack
the HVT in the strait or harbor. The Red boat 1is not
subjected to Blue’s surveillance when it 1s outside of
Blue’s strait. At the time of attack, the Red boat will
breach Blue’s waters in an attempt to reach or intercept
the HVT within the shortest time by proceeding at high
speed.

In the second scenario, the Red Dboat conceals 1its
intention to attack an HVT until the very last minute. Red
boat could disguise itself to blend in with legitimate SB
traffic in the strait. Red boat could also wait outside the
strait at an ambush location for the opportunity to attack
the HVT in the strait or harbor. While proceeding toward
the HVT for the attack, the Red boat will attempt to keep a
low signature Dby proceeding at an inconspicuous speed,
usually quite slowly. In Dboth situations, Red Dboat’s

intention is to remain innocuous until the time of attack.

3. A CONOPS for Detection of SB Threat

The CSRs and land-based EO/IR systems, complemented by
the mobile sensors, are the primary means for the detection
of SBs in the strait. In addition, the PCs, USVs, and UAVs
are used to conduct preliminary investigations and provide
identification of the SBs. This level of inspection (Type
I) classifies the SBs as either friendly, neutral, or

suspicious. When Type I inspection determines that a SB is
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suspicious, only a PC or a USV is able to determine if it
is a threat through a Type II inspection. Type II
inspections require the personnel on the PC to conduct
boarding operations. A Type II inspection for a USV has
personnel situated at the C2 center ashore to communicate
with personnel on the SB using a public address system on
the USV. If the suspicious SB is detected by the UAV, the
next available PC or USV will be tasked to investigate it.
In such situations, the UAV will continue to monitor the SB
until the arrival of the PC or USV. PCs and USVs engaged
in Type I inspections can be reassigned to conduct Type II
inspections on another suspicious SBs. PCs that are used in
the inspection of SBs differ from those wused in the
inspection of large dangerous vessels. Once a SB 1is
determined to be a threat, resources for subsequent

response actions are readily available.

When the VTIS loses track of a previously tagged SB,
all information on the vessel 1is considered lost. Track
loss occurs when none of the radars 1s able to continue
tracking a SB; this can happen in two ways. First, track
loss can occur when the SB exits the CSR coverage, which in
our model means leaving the strait. Second, track loss of
SBs that are within the CSR surveillance can result from
other factors, such as the environmental clutter of rain
and land. If the same SB is subsequently re-detected, it is
treated as a new target, and 1is subjected to the same

inspection process again.

In the first SB threat scenario, once the Red boat is
in the strait it will be considered suspicious because of

its high speed. Any available Blue USVs or PCs immediately
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subjects the Red boat to inspection. The time available for
Blue to start investigating the Red boat is short. The Red
boat will be considered detected if it 1is subjected to

inspection by a USV or PC before it reaches its target.

In the second SB threat scenario the Red boat can be
detected in two ways. First, it must be subjected to Type I
inspection, classified as suspicious, and then subjected to
a Type II inspection before it commences attack. Second, if
it is not inspected before it commences attack, then the
situation essentially becomes the first threat scenario

with a shorter reaction time for Blue.

D. SB MODEL DETECTION OF SB THREAT BY PCs, USVs, AND UAVs

It is assumed that the SBs are dispersed uniformly
throughout the strait. Because of airspace restriction in
the strait, a maximum of two UAVs can operate
simultaneously there. Since the PCs and USVs essentially
perform the same function, for the purpose of this model
they are treated as the same entity and collectively

referred to as USVs henceforth in this formulation.

1. Formulation

The model will be formulated in two parts. In the
first part, the states of SBs in the strait (also referred
to as region) and the processes of Type I and 1II
inspections of the SBs are modeled as a deterministic fluid
model. A schematic representation of the sequence of events
for the CONOPS against the SB threat is displayed in Figure
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5. The objective of this

number of un-identified SBs and the long-run mean number of

is to

study the long-run mean

USVs and UAVs that are engaged in the inspection processes.

These measures are the

model that determine

single Red boat.

inputs to the

the probability of detection

second part of the

of

ol boa TG

| arrival |

UAV 1, A C g UAV

» inspecting » following
AI AF
O oM 4] W, Yy ApMy- V- Vgl
4 B'WI -
unidentified | «— TT— l;::::tsr lezzgi
smagvboats (radar) small boats
E oW, suspicious
small boats
i Yv Wy Pr
}"w.wu }\‘W.WI
8,[M,~v,-v.] W, p, Hy Vi
\ 4
usv usv

,,,,,,,,, ) A Inspecting | by Vi'Cywr | inspecting
| unidentified | > (typel) (type 1) |
| small boat Vi Vi
' reaches port | vV Cyww i

Figure 5. A schematic flow diagram of the sequence of

events for a SB model®

(From Gaver,

Alderson 2007).

Jacobs,

Chng and

6 pA and pV are factors concerning priority in inspection which are
functions of K‘A and K’V as presented in Section 3 on model parameters.
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2. State Variables
Let

W%(ﬁ = Mean number of unidentified SBs that are not

suspicious at time f¢;

W&O) = Mean number of unidentified suspicious SBs at

time ¢t;
WQO) = Mean number of identified SBs at time ¢;

zg(ﬁ,bEﬂxmﬁvdy,V}O)) = Mean number of platforms engaged

in identifying SB (one on one) at time ¢t (Type I inspection)

for UAV or respectively USV;

VHO) = Mean number of USVs engaged in investigating a
suspicious SB at time ¢t (Type II inspection); and
AFO) = Mean number of UAVs shadowing suspicious SBs

(one on one) at time ¢ (which 1is equal to the number of

suspicious SBs being followed by a UAV).

3. Parameters

o, = Arrival rate of SBs into the region/strait;

— = Mean time a SB remains in the region/strait;

Dss = Probability that a SB will act suspiciously
before it leaves the region. Assume that the time a SB

remains in the region and the time an wunidentified SB
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remains unsuspicious before becoming suspicious are

independent and exponentially distributed with means of

1
2,

1
and.-é, respectively; then pg = The value of 6 1is

0
0+4,
chosen so that the equation is satisfied for given wvalues

of ZW, and pg. A SB may become suspicious after leaving the

region, but it is outside the B’s surveillance area, and is

ignored.

1
— = Mean time identified SBs remain tracked by the

B

surveillance system (CSRs, UAVs, and USVs);

1 . 1
—, | respectively, — | = Mean time taken to classify a SB
‘LLA ‘uV,I

as harmless or suspicious (Type I inspection) by UAV or

respectively, USV;

1
—— = Mean time taken by a USV to classify 1f a

‘LLV,II

suspicious SB is a threat (Type II inspection);

1 ) 1
g—{}eqmcUde,g—] = Mean time taken to proceed to an

A 14
unidentified SB by an idle UAV or respectively, USV. See

Appendix A for estimation method;

1
— = Mean time taken to proceed to a suspicious SB by
Vv

an idle USV (if followed Dby UAV or identified by shore

assets). See Appendix A for estimation method;
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AdA,Oeqmcﬁvdy,AAJ = Number of UAV (respectively USV)

platforms active in the region;

QMW,Oeqmdh@b;qu) = Probability that, during a Type I
inspection, a White SB 1s classified as harmless by a UAV

or respectively, USV;

c = Probability that a White SB is misclassified as

Awr
suspicious by a UAV during a Type I inspection and must be
followed wuntil a USV arrives to complete a Type II

inspection;

c = Probability that, during a Type I inspection, a

Vwr
White SB 1is classified as suspicious by a USV, and must
undergo a Type II inspection.

cﬁwsﬁmmaﬂvdycwr) = Probability that the Red boat is

classified correctly by a UAV or respectively, USV;

KA,ﬁamaﬁvdeV) = A decision parameter the larger K,

or Kk, the more likely an idle UAV or respectively, USV,
will investigate an unidentified suspicious SB rather than
an unsuspicious SB;

Kpg = A decision parameter the smaller Kyg s the more

likely a USV engaged in a Type I 1investigation will be

reassigned to an unidentified suspicious SB; and

TAxnxpmﬂderVandrm) = A model tuning factor applied
with the decision parameter Kk, (respectively K, and Kpg) .

The larger TA,OmmaﬂvdyTVandrm), the more quickly will Blue

concentrate on suspicious SBs.
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4. Equations for Part I Dynamic Evaluation of States

The following system of differential equations
represents the change dynamics of the mean number of SBs in
their respective states over time. ©Note that many/all
“parameters” may be time-dependent, allowing the modeling

of arrival surges.

7, 1)
— = oy, + B (t) - A, (1) O, (1)
dt —_— — (SR —
Arrival  Mean Mean Mean number
of number number of  of
SBs of unlD'd unlD'd
ID'd SBs SBs
SBs that that
lost leave act
from track  region suspicious

/4

I LAUNS
_{5A[MA—AI(t)—AF(z)T} e A[WU(I)] W, ()

Mean number of idle UAVs that approach unID'd SBs
ws(t)

_{5V[MV_V,(f)_V,,(t)]+} [WUJ w, (1)

Mean number of idle USVs that approach unID'ed SBs

— ke [MV_VI(I)_VH(’)T
” v (0)

+{j/VV[(t)} e [Ws(t)+ AF(t)]

s

Mean number of USVs engaged in Type I inspection that are reassigned
to unID'd suspicious SBs and suspicious
SBs being followed by UAV

where xT=xif x>0 and x" =0if x<0.
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s (1)

= QWU (t) - ;LWWS (t)
Mean Mean number
number of suspicious
ofunID'd  unID'd
SBs SBs
that are that leave the region
detected
by shore-
based
radar
as acting
suspicious

Mean number of idle UAV that approach unID'd suspicious SBs (2.7)

o) )

_{VV[MV —V,(t)—Vﬂ(l‘)T} 1—e_KV[WU(Z)] W (1)

Mean number of idle USVs that approach unID'd suspicious SBs

_ ke |:MV Bd (’)_Vu (’)T
" V(1)

_{VVVJ([)} ¢ Ws(t)

s

Mean number of USVs engaged in Type I inspection
that are reassigned to unID'd suspicious SBs
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g
LX) g, (1) g5, ()
w1l
dt —
Mean Mean
number number
of ID'd of ID'd
SBs SBs
lost from that leave
track region (2.8)
A, (t)CAWW iV (t)chw + Vo (t)
Mean number Mean number Mean number
unsuspicious unsuspicious suspicious
SBs SBs SBs
ID'd by ID'd by ID'd by
UAV Usv usv

The following set of differential equations represents
the change dynamics of the mean number of UAVs in their

respective states over time.

Mean number of UAVs that approach unknown SBs for ID

(2.9)

—p 4, (t)= A4, (1)

\é/——/ —

Mean Mean number of

number unsuspicious

of UAVs SBs

that that leave

complete region

Type 1

inspection
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A 1)

dt - 'uAAI (t)CAwr
%/—/

Mean number of
UAVs following
SBs that
UAVs classified
as suspicious and
require Type II
inspection

Mean number of UAVs that follow suspicious SBs
until USVs arrive

0,

_{YV[MV 'V,(l)—Vﬂ (l)T} 1—e_KV[WU(I)] AF(t)

Mean number of idle USVs that arrive at suspicious SBs

being followed by UAVs
+ s
[MV v, (t)-vy (t)]
“Kys v ( t)
I
RtAGHE Ap(0)= Ay g 1)
%,_J
Mean number
of suspicious
L a SBs being followed
by UAVs that
Mean number of USVs engaged in Type I inspection leave region

reassigned to suspicious SBs being
followed by UAVs
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The following set of differential equations represents
the change dynamics of the mean number of USVs in their

respective states over time.

Mean number of idle USVs that approach unknown
SBs for ID (Type I inspection)

[MV_VI(’)_VH(’)T
~{r7 (1)} e g [ (e)+ 4. (1)] (2.11)

ys

—Kyg

Mean number of USVs engaged in Type I inspections that
are reassigned to unID'd suspicious boat and suspicious
SBs being followed by UAVs

_w_ A’WVI(t)

%/_/
Mean Mean number
number of suspicious
of USVs SBs that leave
that region
complete
Type I
inspection

40



dv

(1)

Y HyrVy (t)chr

Mean number of
USVs that are
inspecting (Type II)
SBs ID'd

as suspicious by USVs

+{VV | My, =V, (2)-7, (t)T} 1- e_KV[WU(’)

Mean number of idle USVs that approach unID'd suspicious
SBs for Type II inspection

10,07} ol Ael0)

(2.12)

Mean number of USVs that arrive at suspicious SBs
being followed by UAVs

» [ My, v, (1) (1)
® vi(7)

Hy v ()} e [ws(t)+ 4. (¢)]

s

Mean number of USVs engaged in Type I inspection that are
reassigned to unID'd suspicious boat and suspicious
SBs being followed by UAVs

- /IWVII(I) = My Vy (t)

Mean Mean number
number of USVs

of suspicious  that complete
SBs Type I

that leave inspection
region

Equations (2.6) to (2.

set of

Wy (1) W e). w7

boundary conditions:

L(6)=0

12) are subject to the following

0< 4, (t)+ 4, (1)< M

P (2.13)
0<V,(t)+V,(t)< M,
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Equations (2.6) to (2.12) are solved numerically using
implementation of the Euler method in MATLAB to determine

the limits of the state variables.

5. Equations for Part II-A Probability of Detection
for SB Threat Scenario A

In SB threat scenario A, a Red boat (R) wailts outside
the strait at an ambush location for the opportunity to
attack the HVT in the strait or harbor. Once R is in the
strait its actions would be similar to those of a
suspicious SB and it can be subjected to inspections. A
suspicious SB can either be inspected by an idle USV that
is not engaged in any type of inspection, or a USV that is
reassigned from a Type I to a Type II inspection. It is
assumed that R will only be inspected if at least one USV
is available at R’s arrival time and it chooses to inspect

R.

Assume the number of unidentified SBs, W%, and

unidentified suspicious SBs, W&, in the region when R

enters the straits Dboth have Poisson distributions with

means that are the steady state means W@::Hnle(ﬂ and
o0

W}zlhnﬂg(ﬁ, respectively. An idle USV chooses the next SB
[—>oo

to be inspected from among lV§+1 suspicious SBs (including
R), with probability Dy = 1—exp Ky | == . Assume the

number of USVs (AV) that are idle and not engaged in any
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inspection when R arrives has a Binomial distribution with

number of trials the number of USVs, AL,, and mean A@f—BV,

where BV:Jifkfb and the steady state values fazlhnv}@) and

f—>o0

Z,:IHthO); the estimate of the probability a USV is idle
f—>o0

and available to intercept R 1is p,, = Assume the

number of busy USVs that are engaged in Type I inspections

and are reassigned to inspect a suspicious SB when R
arrives (BR) has an independent Binomial distribution with

number of trials the number of busy USVs; the estimate of
the probability that a USV 1s engaged in a Type I

inspection and is subsequently reassigned to Type II

Vi

inspection is ppp,==—"=7p ;
BR V47, VI,R

USVs engaged 1n Type I

inspection are reassigned with probability

[MV_

— o+ \'rs
= expd —ic ]_V]]]
Py r = SXP ~Kyg .

S|

The joint probability of the number of USV available

to inspect suspicious SBs 1s (assuming independence)

P(4, =a,B, =b)

14 R
M a —a M, — —a—p (2.14)
:{ an(pSpAV) (l_pSpAV)MV ( Vb aj(pBR)b(l_pBR)MV '

for a and b nonnegative integers satisfying 0<a+b< M, .

Among the W& suspicious SBs and the R, the next

suspicious SB to be investigated is chosen at random; each
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unidentified suspicious SB is equally likely to be chosen.
Let K Dbe the event in which the R 1is inspected. An

expression for P(K) appears in (2.15).

P(K)
M, M,~a - 7 v J ;
v atb-1  _ py ] - = W./ —@+bﬁ4
W W J
:2 2 P(AV:a,BR:b) Ze sS4 Z e s S| 1-
. U ! j+1
a=0 b=0 . j=0 : j=a+b :
Probability that a+b
USVs are available to | Probability there are Probability the R is chosen
mspect suspicious fewer than a+b for inspection (sampling
small boat suspicious SBs without replacement)
(including the R) |
My, My —a e 4 VI_/Sj (a+b)
= P(4,=a,By=b)1- Y e 1-
4 R ! i+ 1
a=0 b=0 | J=atb J: J
M, M,-a [ arb- 7 J 7
vy My a+b-1 w./ a+b J
—W [ a+b —W o W
= P(4,=a,By=b)| Y e s(=) sy at -y sl )Zs
V R i W. i
a=0 b=0 =0 J: S =0 J
(2.15)

Assume that the time R takes to travel across the

region to the target is a random variable, T,,. Given a

USVs are idle and b USVs engaged in Type I inspections are
reassigned, assume that the USVs that will inspect a

suspicious SB each cover a segment of the coast of length

M
y

a+b

, where M, is the length of the region. The mean time

for a USV to approach a suspicious SB is given by

I R (L) (2.16)
yKR(a,b) (a—%b)Z v, '
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where v, 1s the speed of the USV and the USV 1is assumed to
be stationed in the middle its segment of the coast, hence

the distance to a suspicious SB is half its segment length.

The conditional ©probability that a USV reaches R
before R gets across the region, given a+b USVs are

assigned to suspicious vessels is approximated by
E[l—exp{—ynk(ajﬂ]}A}J.

Let K, be the event in which R 1is chosen to be

inspected and an idle USV reaches R before R gets across

the region. An approximation to P(KA) appears 1in equation

(2.17) .
P(K,)
M, M, —a — T
v My a+b-1 _ J
=Y > P(4,=aBy=b) Y &' P Bl exp!- (a,0)T, {1
v~ %PR " P17V \a0)1p
Probability that a+b Probability that USVs reach
USVs are available to R before R gets to target
inspect suspicious SB | given a+b USVs are available

M, M, —

y My—a atb _ g7 J
a+b 7 w
+ P(A4,=a,B,=b 1-Y e 's S |E[1-expi—Y, (a,b)T
v R m P17y R
a=0 b=0 — Ws (°°) Jj=0 J: ;
Probability that a+b Probability that USVs reach
USVs are available to R before R gets to target
inspect suspicious SB | given a+b USVs are available |
(2.17)
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6. Equations for Part II-B Probability of Detection
for SB Threat Scenario B

In the SB threat scenario B, R will enter the region

and attempt to blend in with or hide among the other
unsuspicious SBs for some time Tk. R then comes out of

hiding and is suspicious for a short time until it reaches
its target. The Blue forces can detect R while it is hiding
in two ways. If a USV detects and correctly classifies 1it,
R is neutralized. If a UAV detects it and classifies it as
suspicious, R 1is neutralized 1if a USV is available to
inspect it. When R becomes suspicious, R may be neutralized
if at least one USV is not busy with an inspection or is

reassigned from a Type I inspection.

Another set of differential equations is used to model
the state of R during the period of time when it attempts

to stay hidden.

7. Additional State Variables

Let

RO) = Mean number of R that is not inspected at time
t, (hSRO)Sl. (The probability R is subjected to Type I

inspection at time ¢ is [L—R(ﬁ});

AIRO) = Mean number of UAVs engaged in attempting to

identify R at time ¢t (Type I inspection);
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AFR(Q = Mean number of UAVs shadowing R at time ¢

while waiting for available USVs to conduct Type II

inspection;

V}RO) = Mean number of USVs in process of identifying

R at time ¢t (Type I inspection); and

Vﬁﬂ(o = Mean number of TUSVs engaged in Type 1II
inspection on R at timer.

Let the mean number of busy UAVs at time t Dbe
B, = A1(t)+ AF(t)+ AI,R(t)+ AF,R(t) .

Let the mean number of busy USVs at time ¢t be

B, =V, (t)JrV11(t)+V1,R(t)+V11,R(t) :
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8. Differential Equations for Probability of
Detection in Scenario B

The following set of equations represents the
dynamical development of the SBs in their various states

over time.

o)
— = oy, + B (2) - A, (1) 0w, (1)
dt — —— —_— —
Arrival  Mean Mean Mean number
of number number of unID'd
SBs of ID'd ofunID'd  SBs
SBs SBs that that act
lost leave suspicious

from track  region

_{6A[MA—AI(t)—AF(t)T} e A[Wu(f)“?(f)] ) W, (1)

Mean number of idle UAVs that approach unID'd SBs, excluding Red

_{SV[MV—Bv(t)T} e_Kv[WUV(iS)EII)?(f)}V e ) (2.18)

) k) o)

Mean number of idle USVs that approach unID'd SBs, excluding Red

[MV_BV(t)T

L)+, &(0)

+{yV[P}(ﬁ4—VLR(ﬁ}} e ’ [W&(ﬁ4—AF(O}

ys

Mean number of USVs engaged in Type I inspection that are reassigned
to unID'd suspicious SBs and suspicious
SBs being followed by UAVs

where xT=xif x>0 and x" =0if x<0.
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s (1)

= o () - A5 00)
dt N/ w
Mean Mean number
number of of suspicious
unlD'd unlD'd
SBs SBs
that are that leave the
detected by  region
shore-based
radar
as acting
suspicious

_{5/1 [MA -5y (I)T} 1= e_KA [WUV(IZS)YI)?(I)]TA W (1)

Mean number of idle UAVs that approach

unlD'd suspicious SBs

—{VV | M, - B, (t)T} 1- e_KV[WUV(V’;%] V W

Mean number of idle USVs that approach unID'd

suspicious SBs

_{71/ |:VI (t)+ Vir (t)}} ¢

000

s

[MV_BV(t)T

Mean number of USVs engaged in Type I inspection that are
reassigned to unID'd suspicious SBs
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dt
Mean Mean
number number
of ID'd of ID'd
SBs SBs
lost from that leave (2.20)
track region

+ 4, (t)cAww + My Y, (t)chw + MV (’)

Mean number of Mean number of  Mean number of

unsuspicious unsuspicious suspicious
SBs SBs SBs
ID'd by UAV ID'd by USV ID'd by USV

The following set of differential equations represents
the change dynamics of the mean number of UAVs in their

respective states over time.

I (LU L
SRR i) o e

Mean number of UAVs that approach an unknown SBs,
excluding Red, for ID

- ‘uAAI(t) - ;LWAI(t)
AN, Y

Mean number  Mean number

of UAVs of unsuspicious
that complete ~ SBs

Type | that leave
inspection region
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_ {6,4 ot -5, (’)T} e—m[WU(f)m(t)] [%]R(,) (2.22)

Mean number of UAVs that approach hidden Red for ID

M4 R (t )
%/_J
Mean number
of UAVs
that complete
ID of
hidden Red
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A 1)

dt - 'uAAI (t)CAwr
%/—/

Mean number of
UAVs following
SBs that
UAVs classified
as suspicious and
require Type II
inspection

+{6A[MA —BA(t)T} 1_e_KA[Wu(fS)@?(f)]TA (1)

Mean number of UAVs that follow suspicious SBs,
excluding Red, until USVs arrive

_{YV[MV -By(r)T} 1—8[/6(1)*()] V A1)

Mean number of idle USVs that arrive at suspicious SBs,
excluding Red, being followed by UAVs

+
ke [MV -By, (’)J
V.

> Vl(t)+V1,R(t)

_{yV[Vl(t)+VLR(t)}} e A (t)= AyAg(?)
(S

Mean number
of suspicious
SBs being followed
by UAV
Mean number of USVs engaged in Type I inspection that leave
reassigned to suspicious SBs, excluding Red, region
being followed by UAVs

s
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dAp p (¢) Y
dt =H A“'I,R  grr
| —

Mean number of
UAVs following
hidden Red that
UAVs classified
as suspicious and
require Type II
inspection

_{VV (M, -B, (r)ﬂ - e[VVV(V’)%]

Ap (1)

Ap (1) + A g

] Ap (1) (2.24)

Mean number of idle USVs that arrive at hidden Red being followed by UAVs

[, -5,()]
_{yV [VI (t) + V]’R (t)}} e

s Vl(t)+V1,R(t)

s

Ap (1)

Mean number of USVs engaged in Type I inspection

reassigned to Red being followed by UAVs
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The following set of differential equations represents
the change dynamics of the mean number of USVs in their

respective state over time.

av, (1)
dt

:{5V[MV—BV (t)ﬂ e_KV[WUV(V’j&e(’)]TV Wl L, (¢)

Wy (e)+R(e) [ Y

Mean number of idle USVs that approach unknown SBs,
excluding Red, for ID (Type I inspection)

[MV_BV(t)T

s Vl(t)+VI,R(t)

—{yVV,(t)} e [WS(t)+AF(t)+ AF,R(t)j|

s

(2.25)

Mean number of USVs engaged in Type I inspection that are
reassigned to unID'd suspicious SBs, suspicious SBs
and hidden Red being followed by UAVs

- ‘uVIVI(t) - V](t)
%f_/ %f_/
Mean number  Mean number
of USVs of SBs that
that complete  leave
Type I region
inspection
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:{5V|:MV_BV (t)T} e_KV[%V(IS%JTV R R(t)

Wy (1) + R(:)

Mean number of idle USVs that approach hidden Red for ID (Type I inspection)
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Mean of number of USVs engaged in Type I inspection of hidden Red
that are reassigned to unID'd suspicious SBs, suspicious SBs
and hidden Red being followed by UAVs

My Vg (f )
%/_J
Mean number
of USVs

that complete
Type I
inspection

of hidden
Red
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v, (1)

Y HyVy (t)CVwr

Mean number of
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inspecting (Type II)
SBs ID'd

as suspicious by USV

+{7V[MV - By, (t)T} I-e ")

Mean number of idle USVs that approach unID'd

suspicious SBs

+{7V[MV - By, (t)T} I-e o)

Mean number of USVs that arrive at suspicious SBs

being followed by UAVs
[M,-8,(1)]
+{7V |:VI (’) +Vi R (t)}} ¢

_KVS VI ([)+ V],R (t)

s

Mean number of USVs engaged in Type I inspection that are

reassigned to unID'd suspicious SBs and suspicious

SBs being followed by UAVs

- ;LWVII(t) - 'uVIIV]I(t)

Mean number  Mean number
of suspicious  of USVs

SBs that complete
that leave Type 1
region inspection
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The following equation represents the rate of change

of the probability R is not inspected over time.

dR(t)
dt

=— Uy Vrg () ey,

Mean number of

hidden Red that is ID'd
as suspicious by USV
after Type I inspection

. —kq/[xmf‘z;;f;u})]rv Ap g (1)
—{J/v[Mv—BV(f)] } lI-e U {AF(Z‘)F.;RAF’R(IJAF’R(I) (2.29)

Mean number of USVs that arrive at hidden Red being followed by UAVs

i
VitV nl(t
—{J/v [Vi()+ Vg (t)]} e B Ap g (1)

Al

Mean number of USVs engaged in Type I inspection that are
reassigned to hidden Red being followed by UAVs

The initial conditions for the state variablesﬂb(ﬂ,
we(t),  w,(t),  A4(), 4.(¢), V(1) ana V,(r) are the
corresponding steady state wvalues from equations (2.6) to
(2.12). State wvariables ALRO)’ AF}(O' PlR(ﬁ and Vﬁﬂ(ﬁ
have initial condition equal to zero. R(ﬁ has value one as
its initial condition.

Equations (2.18) to (2.29) are solved numerically
using the author’s implementation of the Euler method in

MATLAB to determine the limits of the state variables.
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The R 1is assumed to stay hidden for a deterministic

time of T,. The probability R is detected during its hidden

time T, 1is [l—RCEJ]. Let K,; be the event in which R is

detected in scenario B. An approximation of the probability

of event K,, given T,, is displayed in equation (2.30).

P(K,)=[1-R(T,)]+[R(T,)]P(K,) (2.30)

9. Measure of Effectiveness

The MOE for the SB model is the probability of
detecting a single Red boat in both threat scenarios given

there are a certain number of UAVs and USVs in the strait.

59



THIS PAGE IS INTENTIONALLY LEFT BLANK

60



IIT. MODEL EXPLORATION AND SENSITIVITY ANALYSIS

A. LS THREAT MODEL

1. Significant Factors

The large ship (LS) threat model of chapter 2 1is
exercised for values of model parameters that form a nearly
orthogonal Latin hypercube design (Sanchez 2006). The model
is exercised at these parameter values to determine those
parameters (factors) that have the most affect on the model
output (the probability of neutralizing a hijacked LS). It
is also used to determine the effects that wvarying the
number of sub-regions, n, and the number of service periods,
m, have on the model output. The factors are varied over
ranges that are assessed to be likely practical wvariations
in the D-vessel traffic and the PC’s operational
capability. A summary of the results follows. Details of
the experimental design and detailed results are presented

in Appendix B.

The number of sub-regions, n, into which the strait is
divided affects the outcome of the model. As n increases,
the probability of detection decreases for fixed values of
the other parameters. The PCs are distributed uniformly
over the sub-regions. When a D-vessel travels through a
sub-region uninspected, only the PCs in the subsequent sub-
regions have a chance to inspect it, independent of the
previous sub-regions. Thus for large n, the time until the
D-vessel 1is 1inspected has approximately an exponential

distribution. Since the number of PCs per sub-region
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becomes smaller as the number of sub-regions increases, the
probability that the D-vessel is inspected becomes smaller.
Hence, larger n has the effect of reducing the chance of
inspecting a D-vessel. The effect of n on the model’s
outcome is also more significant for lower values of the
number of PCs, M . On the other hand, the number of service
periods in the PCs’ boarding and inspection process, m, has
a small effect on the probability of detecting the hijacked
ship, except when M <3. When M <3, higher m results in a
lower probability of detection. When M is small, the PCs
will be busy most of the time and the representation of the
service time distribution has more effect. For large values
of m the service time distribution is approximately that of
a constant. The wvalues for n and m used in the remainder
of this thesis are n=10 for all values of M; m=8 for M<3;
and m=2 for M>3. These values were chosen because they
result in ©pessimistic values for the probability of
detection (see Appendix B for details). These results also
suggest that in a higher resolution model it 1is important
to represent the distribution of time that a LS 1is
available for inspection; it is less important to represent
the distribution of the service time if the number of PCs

considered is small.

The results displayed in Appendix B suggest that the

most significant factor in determining the probability that
Red vessel 1is detected (P(K)) is the number of active PCs
(M) 1in the strait. The next most significant factors are

the arrival rate of D-vessels (o) followed by the rate at

which the PCs are able to inspect D-vessels once onboard

(W) .
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Table 1. Parameter values for Base Case LS model.

Parameter Symbol Value
Mean time from D-vessel entry to region and "
can be inspected wuntil it reaches ©port — 2
(hours) A
Mean time for ©PC to inspect a D-vessel IE 4
(hours) H
Mean time for ©PC to travel to D-vessel }_ 1
(hours) y
Arrival rate of D-vessels to strait (per o 20/24=0.83
hour)
Number of sub-regions in the strait n 10
Number of service time periods in a boarding m 8 for M <3

and inspection process

2 for M>3
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2. Complementary Effect of M and «

This analysis examines the effects on the outcome of
the model when M, number of PCs, and «, arrival rate of D-
vessels, are varied. In a base case with a of 20 D-vessels

per day, approximately 0.83 per hour, six PCs are required

in the strait to achieve a P(K):O.9O of detecting the

hijacked D-vessel. This analysis determines how the P(K)

changes when the average number of arrivals ranges from 10
to 40 D-vessels per day, M is varied from 1 to 10, and all
other factors are have values equal to those in the base

case presented in Table 1.

Contour Plot of Probability Red is Inspected, P(K)
avs M

o -
© - [N

Arrival Rate, a (hour_1)

o
)

0.4

1 1
1 2 3 4 5 6 7 8 9 10
Number of PCs, M

Figure 6. Contour plot of the probability that the Red
vessel i1s detected versus the number of PCs active in
the strait and the D-vessels’ arrival rate
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The contour plot of P(K), displayed in Figure 6,
indicates that there 1is a nearly linear relationship
between a and M in maintaining a given level of P(K). For

every increment of 0.2 in arrival rate (or increment of 4.8

D-vessels per day), an additional PC 1s required to
maintain P(K) approximately 0.90 or higher. With six PCs
active in the strait, the arrival rate of LSs may be as
large as 25 D-vessels per day and still have a P(K) of

approximately 0.90.

3. Complementary Effect of M and u

This analysis examines the effects on the outcome of

the model when M, the number of PCs, and Hu, where is

u
the mean time boarding party from PC is on a D-vessel, are

varied at the same time. M 1is varied from 1 to 7 while all

other factors except U are kept at their base case values

as in Table 1.

From the contour plot displayed in Figure 7, it can be
determined how much WU has to increase 1in order to allow
reduction in M. In the base case with u=0.25, six PCs are
required to achieve P(K)>0.90 of detecting the hijacked D-
vessel. If only five PCs are available, then U must be at
least 0.3 to achieve P(K)>O.90; that 1is a reduction of
about % hour in the mean time taken by the personnel
onboard a PC to board and inspect D-vessels P(K). To

maintain the same level of P(K), every unit decrement in M

65



requires an exponential increment in pu. It is difficult in
practice to decrease the mean inspection time. Thus, this
model suggests decreasing the mean PC inspection time has a

limited practical effect in reducing M. In summary, if a

high level of search rate, u, is achievable when boarding,

it can compensate for a small number of boarding from PCs.

Contour Plot of Probability Red is Inspected, P(K)
uvs M
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0.2
1

4
Number of PCs, M

Figure 7. Contour plot of the probability that the Red
vessel is detected versus the number of PCs active in
the strait and the PC service rate; o=0.83.

4. Comparison of the Deterministic Fluid Model and A
Birth-Death Model

This analysis is a comparison between the results from
the deterministic fluid (DF) model described in Chapter 2
and two versions of a stochastic birth-death (BD) model.

The BD models represent the effect of CONOPS of inspection
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of LSs as a birth and death process of a system with
processes that have times between events that are
exponentially distributed. The second version of the BD
models 1is a generalization of the first with the strait
divided into a number of sub-regions. Descriptions of the
two versions of the BD models are in Appendix C. The values
used for the parameters in this analysis are the same as
those displayed in Table 1, except for the number of sub-

regions and service periods.

a. Case 1: DF Model versus BD Model 1 (BD-1)

Figure 8 displays the plot of the probability
that the Red vessel 1is inspected versus the number of
active PCs in the strait for both models. For consistency,
the DF model has the number of sub-regions, n=1, and the
number of service periods, m=1. From Figure 8, 1t 1is
observed that the BD-1 model results are more pessimistic
than those of the DF model for all M. The curve for BD
model does not rise as rapidly as the DF one when M
increases. The largest difference, 1in percentage, Dbetween
the results of the two models is at M=3 where the BD-1
model’s result is almost 40% lower. This suggests that the
DF model may be optimistic. To achieve a probability of
detection of more than 0.9, the DF model indicates that at
least five PCs are required and the BD-1 model indicates at

least eight PCs.
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Probability Red is Inspected, P(K)
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Figure 8. Plot of probability that the Red vessel is
detected versus the number PCs active in the strait
for the deterministic fluid model and birth-death
model 1, with n=1 and m=1.

b. Case 2: DF Model versus BD Model 2 (BD-2)

Figure 9 plots the probability that the Red
vessel 1is inspected versus the number of active PCs in the
strait for both models. The DF model and the BD-2 model
both have the number of sub-regions equal to the number of
PCs, n=M, and the number of service periods, m=1. There
is one PC per sub-region. From Figure 9 it is observed that
both models produce very similar results. The BD-2 model,
which is a generalized version of BD-1, gives slightly more
optimistic results than the BD-1 model. The result of this

comparison gives more confidence in the DF model.
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Figure 9. Plot of the probability that the Red vessel is
inspected versus the number of PCs active in the
strait for the deterministic fluid model and birth-
death model 2, with n=M and m=1.

5. Optimal PC Deployment Using BD-2 Model

In this analysis, the generalized birth-death model
(BD-2) 1is wused to study the optimal way of deploying a
given number of PCs. Here the strait is divided into two
sub-regions, n=2, and there are a total of five PCs
deployed in both regions, M=5. The number of service
periods 1s one: m=1. The wvalues used for the other
parameters in this analysis are the same as those displayed

in Table 1.
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Probability Red is Inspected, P(K)
Total number of PCs, M =5

Number of sub-regions, n=2
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Figure 10. Plot of the probability that the Red vessel
is inspected versus the number of PCs active in sub-
region 1, with n=2, m=1, and M=5.

Figure 10 plots the probability that the Red vessel is
inspected versus the number of PCs active in sub-region 1.
Figure 10 shows that the probability is the highest when
three PCs are deployed in sub-region 1. Detection is at the
lowest when all PCs are deployed in either one of the sub-
regions. The model suggests that the optimal deployment
plan for a force of five PCs is to assign three and two PCs
in sub-region one and two, respectively. Similar analysis
should be carried out for other force sizes and numbers of

sub-regions.
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B. SB THREAT MODEL

Table 2 displays the parameters values for the
surveillance platforms under good and poor visibility
conditions that are used in the analysis in this chapter.

Table 2. Parameter values for SB model - surveillance
platforms.
Good Visibility Poor Visibility
Parameter Symbol
UAV Usv PC UAV usv PC
Speed (nm per hour) VeV, 100 30 30 100 20 20
Sensor footprint (nm x ‘f,f 1x1 0.5x |0.75x| 0.8x | 0.4x . 6x
nm) AJV 0.5 | 0.75| 0.8 0.4 0.6
Mean time a UAV and USV
(PC) takes to classify 1 1
a SB as harmless or —_—,— 5 10 8 7 13 11
suspicious (Type I | My MVJ
inspection) (minutes)
Mean time a TUSV (PC)
requires to classify a 1
suspicious SB a threat — - 20 18 - 27 24
(Type 1T inspection) HVﬂ
(minutes)
Probability a White SB
is misclassified as
suspicious by the UAV
and USV (PC) during € 4or>Crinr 0.1 0.1 0.01|0.15|0.15 .05
Type I investigation
and must undergo Type
IT inspection
Probability  that the
Red is classified
correctly by a UAV and € v - 93 <93 -99 <93 - 93 -99
Usv (PC)

1. Suspicious SB Priority Parameters

The decision parameters, K, and K,, are wused to
represent the modus operandi for the UAV and USV
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respectively. They are measures of how the platforms
prioritize their inspections between suspicious and
unsuspicious SBs. Larger parameter values mean that the
platform gives higher priority to inspecting a suspicious
SB; conversely, a value of zero means that unsuspicious SBs
always have ©priority over suspicious SBs. It makes
operational sense to always give priority to inspecting a
suspicious SB. However, this analysis will study how
different priority settings for the UAV and USV affect the
MOE .

First, suitable values are determined for k, and kK

that represent higher priority being given to suspicious

SBs. The term

ws(1) )
Wy (1)

is used in the differential equations to multiply the

1—expy -k, (3.1)

proportion of suspicious SBs that will Dbe 1inspected by
USVs; a similar term exists for UAVs. When &k, 1s large,
expression (3.1) approaches wunity, and a free USV will
almost always choose to inspect a suspicious SB rather than
an unsuspicious SB. Conversely, when K, approaches zero,
expression (3.1) tends to zero, and a free USV 1is more
likely to choose an unsuspicious SB to inspect. The tuning
factors 7, and 7, are (arbitrarily) set equal to two for
all computations in this thesis. Figure 11 displays the
plot of the probability that the Red boat is inspected
versus the suspicious SB priority parameter K, where

K=K,=K,. In Figure 11, the results are for nine USVs with
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respective number of UAVs, A4A=O, 1 and 2, and the

parameter values as displayed in Table 2. From Figure 11,
it 1s observed that the ©probabilities become nearly
constant for k>200, so those values are omitted. For the
purpose of this thesis, a value of k,=k,=300 will be used
to represent the effect of higher priority being given to

suspicious SBs by both UAVs and USVs.

Probability Red is Inspected, P(K A)
Scenario A; Good Visibility

1 T

Probability
o o o o o o
w » (4] (o)) ~ ©
T T T T T T
Il Il Il Il Il Il

o
o
T
Il

M, =2
0.1 —o—M,=1H
——M,=
0 5‘0 160 1’:":0 200
Suspicious Small Boat Priority Parameter,
Figure 11. Plot of the probability that the Red is

inspected in scenario A versus the suspicious SB
priority parameter, for nine USVs under good
visibility conditions.

An ORBAT mix of one UAV and nine USVs, 1in good
visibility conditions, (parameters displayed in Table 2),

are used as the basis for the next analysis. Figure 12

displays the contour plot of scenario A’s P(KA) versus the

USVs’ priority parameter k), on the x-axis and the UAV's
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priority parameter Kk, on the y-axis. Both parameters take

values between 0 to 300 and are displayed on a log-scale in

the figure. Figure 13 displays a similar plot for scenario

B's P(Kg).

Figure 12 shows that ITKA) is highly dependent on K .
For a given k5, larger values of Kk, result in a slightly

lower [TKA). When the USVs’ priority parameter increases,

P(KA) increases rapidly because only a USV 1is able to

detect a Red boat, which is a suspicious boat in scenario
A. On the other hand, the model represents little to no
benefit to having the UAV assigned to a suspicious SB
detected by the shore-based radar. Only a USV can service
such a suspicious SB. A UAV giving priority to a suspicious
SB  only keeps the UAV Dbusy, and prevents it from

identifying other unsuspicious SBs. Similar, but more

pronounced, results are obtained for scenario B’s P(KB).
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Contour Plot of Probability Red is Inspected, P(KA)
Scenario A; Good Visibility
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Figure 12. Contour plot of the probability that Red is
inspected in scenario A versus the suspicious SB
priority parameters for UAV and USV.

Contour Plot of Probability Red is Inspected, P(KB)

Scenario B; Good Visibility
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Figure 13. Contour plot of the probability that Red is

inspected in scenario B versus the suspicious SB
priority parameters for UAV and USV.
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Figure 14 displays the plot of the probability Red is
inspected and identified as Red versus the number of active
USVs in the region with «,=k,=300. It is observed that for
a small number of USVs (less than three), the addition of a
UAV actually causes P(KA) to drop. The likely cause is that

a small number of USVs (or PCs) can be overwhelmed by the
additional workload created by the UAVs; when a UAV
misclassifies a neutral SB (White) as suspicious, a USV or
PC must travel to the SB and perform a Type II inspection.

Consequently, there are fewer idle USVs (or PCs) to detect
Red, which results 1in lower P(KA). This phenomenon 1is

likely to be more apparent when the surface platforms are
less effective, such as under poor visibility conditions.
Figure 15 displays the corresponding plot of mean number of
USVs not engaged in any inspection versus the number of
those active in the region under the same conditions as in
Figure 14. For three or fewer active USVs, it 1s observed
that the addition of one UAV causes a significant drop in
number of available USVs. A USV is said to be available if
it 1is not engaging in an inspection or 1t has Dbeen
reassigned from a Type I inspection to a Type 2 inspection.
When the second UAV i1s added, the number of available USVs
drops further, though not as much as for the first. When
there 1is a sufficient number of USVs to deal with the
workload generated by the UAVs, each USV addition increase
the availability of USVs, as observed in Figure 15 for a
number of USVs greater than three. It is further observed
in Figure 15 that when there is no UAV, there is only a
marginal increase in the mean number of available USVs when

the number of active USVs increases. This marginal increase
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is because the USVs’ high priority to inspect suspicious
SBs decreases the number of USVs available to inspect
unsuspicious SBs, even though the mean number of
unsuspicious SBs is much larger than the mean number of
suspicious SBs. As a result, the mean number of available
USVs is quite high compared to the number of active USVs;
the number of active USVs equals the number deployed in the
strait. This effect is most significant when there is only
one active USV; for the parameter values used in Figure 15,
the mean number of available USVs is 0.5, while the mean
numbers of unidentified unsuspicious SBs and suspicious SBs
are 41 and 3.5, respectively. When the ©USVs have no
priority to inspect suspicious SBs and there is one active
USV, the mean number of available USVs is only 0.06, and
the mean number of USVs engaged in Type II inspections is
zero. Table 3 displays the mean numbers of USVs engaged in
Type I and II inspections, and those that are not busy with
an inspection in scenario A under good visibility
conditions, for the two cases when a USV has high wversus no
priority  to inspect suspicious SBs. The  number of
reassigned USVs is not shown in Table 3 because 1in both
cases, no USV 1is reassigned since there 1s a positive
number of USVs not engaged in some form of inspection. When
k,=300, the mean number of available USVs increases from
0.50 to 0.91 as the number of active USVs increases from
one to four. Conversely, when a USV has a low priority to
inspect suspicious SBs, the mean number of available USVs
increases from 0.06 to 0.80 as the number of active USVs
increases from one to four. If there is only one USV active
in the region, it makes operational sense not to task it to
inspect unsuspicious SBs, but to put it on standby to
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inspect the

less

frequent

suspicious SB in scenario A).

Table 3.

visibility when

(1)

suspicious

(2)

SBs

(as

Red 1is

Table of number of USVs engaged in inspection and
available to inspect Red in scenario A,
K,=k,=300 and

under good
k,=300 and k,=0.

. (1) K,=K,=300 (2) K,=300, K,=0
Active
Type I Type II |Available] Type I Type II |Available
0 0 0 0 0 0 0
1 0.35 0.15 0.50 0.94 0.00 0.06
2 1.10 0.32 0.58 1.83 0.00 0.17
3 1.84 0.47 0.69 2.60 0.00 0.40
4 2.51 0.58 0.91 3.20 0.00 0.80
5 3.06 0.67 1.26 3.61 0.00 1.39
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Plot of the probability that Red is

inspected in scenario A versus the number of active

USVs;

K,=k,=300.
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Figure 15. Plot of mean number of USVs available (not

engaged in any type of inspection) to inspect Red in
scenario A; under good visibility conditions, with
K,=k,=300.

Therefore, 1in this case, operating the UAV with no
priority for following a suspicious SB detected by land-
based radar and having the USV give a high priority to
inspecting suspicious SBs will result in a better chance of
detecting the Red boat, subject to there being enough USVs
to manage the workload from the UAVs. An extension of the
current model may have a term that represents the effect of
UAVs being tasked to follow suspicious SBs detected by the
land-based radar. One such effect may be that the SB ceases
its suspicious behavior when the UAV 1is sighted. In the
current model, the UAV should concentrate its efforts on
reducing the number of unidentified, but not suspicious,
SBs. The USV should give priority to inspecting suspicious
SBs.
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2. USV Reassignment Parameter

The decision parameter K, is a measure of how likely a

USV that 1is engaged 1in a Type I inspection will be
reassigned to inspect another suspicious SB. The

reassignment term

multiplies the number of USVs engaged in Type I inspection

in equations (2.6) to (2.12).

Table 4 displays the values of expression (3.2) for
all combinations of the integral mean number of USVs
engaged in Type I and Type II inspections. This is for the

case of a total of nine USVs active in the region with
Ky¢=10 and 7,,=0.25, 0.5 and 2. The other parameters have
values representing good visibility conditions as displayed

in Table 2. For =0.25, it 1is observed that the

Tys
probability of reassignment is zero or very low when total
mean number of USVs engaged in Type I and II inspections is
not nine, 1i.e. there are idle USVs. When the total mean

number of USVs engaged in Type I and Type II inspections is

equal to nine, the probability of reassignment 1is one,
hence capturing the desired effect. For 7,,=0.5 and 2, the
situation when not all USVs are busy has higher probability

of reassignment than when 7,,=0.25. Hence, larger values for

T,s do not represent the desired effect as well. Therefore,

to ensure that reassignment only occurs when all USVs are
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engaged in some form of inspection, the tuning factor 7, is
set to a wvalue 0.25 for the rest of the analyses in this

thesis.

Figure 16 displays the plot of the probability the Red
boat is inspected in scenario A versus the USV reassignment
parameter for the case of nine USVs. The other parameters
have wvalues representing good visibility conditions as
displayed in Table 2. From Figure 16 it is observed that

when the USVs are always reassigned under all conditions,

K the probability of detecting the Red is the highest.

s =0r
That 1is, all USVs not engaged in Type II inspections are
candidates to investigate a suspicious SB. As Kj¢ 1ncreases,
the probability of detecting the Red decreases slightly and

becomes constant for KVS>8' As Ky increases, it i1is less

likely that USVs are reassigned when there are idle (not

engaged in any form of inspection) USVs. The tuning factor,
Tyg s ensures that, (for the parameters wused 1in this

analysis), reassignment is less 1likely to happen when there

are idle USVs. For the purpose of this thesis, a value of
Kyg=10 will be used to model the reassignment of USVs. With

this choice, it 1s unlikely that there will be a

reassignment of busy USVs when there are idle USVs.

81



Table 4.

inspections;

Table of equation

(3.2)

as a function of the mean
numbers of USVs engaged in Type I and Type II

and TVS=O.25, 0.5 and 2.

for nine USVs active in the region; Kp¢=10

Mean number of

Mean number of

USVs engaged in USVs engaged in Probability of reasség;ment, equation (3.2)
Type II Type I
inspections inspections
v, (t) v, (t) £, =025 £, =05 £ =2
1 1 0 0 0
1 2 0 0 0
1 3 0 0 0
1 4 0 0 0
1 5 0.0002 0.0004 0.0273
1 6 0.0005 0.0031 0.3292
1 7 0.0021 0.0228 0.8154
1 8 1 1 1
2 1 0 0 0
2 2 0 0 0
2 3 0 0 0
2 4 0.0001 0.0002 0.0036
2 5 0.0004 0.0018 0.2019
2 6 0.0017 0.0169 0.7575
2 7 1 1 1
3 1 0 0 0
3 2 0 0 0
3 3 0 0 0
3 4 0.0002 0.0008 0.0821
3 5 0.0012 0.0114 0.6703
3 6 1 1 1
4 1 0 0 0
4 2 0 0 0
4 3 0.0001 0.0003 0.0117
4 4 0.0008 0.0067 0.5353
4 5 1 1 1
5 1 0 0 0
5 2 0 0 0
5 3 0.0005 0.0031 0.3292
5 4 1 1 1
6 1 0 0 0
6 2 0.0002 0.0008 0.0821
6 3 1 1 1
7 1 0 0 0
7 2 1 1 1
8 1 1 1 1
*When the first two columns sum to nine (shaded rows), i.e. all
active USVs are engaged in inspections, then the probability of

reassignment is one.
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Probability Red is Inspected, P(K A)
Scenario A; Good Visibility

MA =2
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USV Reassignment to Level Il Inspection Parameter, Kyg
Figure 16. Plot of probability that Red is inspected in

scenario A versus the USV reassignment parameter for
nine USVs under good visibility conditions; k,=0 and
K,=300.

3. White SB Classification Probabilities

The platforms’ accuracies in classifying unsuspicious
White boats are modeled as the probability of correctly

classifying unsuspicious SBs. The classification parameters

for the UAV and USV are ¢, and c respectively. This

Viow !
analysis compares how the accuracy of the classification of
White boats by the UAV and USV affects the probability of
inspecting the Red boat. The parameters will take wvalues
from 0.5 to 1.0, which 1s deemed an operationally
reasonable range. As before, the Dbasis of this analysis
will be an ORBAT mix of one UAV and nine USVs and good
visibility conditions for all other ©parameters. The

parameter values are displayed in Table 2.
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Figure 17 displays the contour plot of scenario A’s
P(KA) versus the platforms’ accuracies in classifying White
boats. Figure 18 displays a similar plot for scenario B’s
P(Ké). In general, the 1larger probabilities of correct

classification result in fewer false suspicious SBs being
generated for Type II inspections by the USVs.
Consequently, the probability of detecting Red 1is higher
due to greater availability of the USVs. The UAV makes the

greatest contribution to a high probability of detecting

the Red when it is highly accurate >0.95) in

( ww
classifying White SBs. In Figure 17, it 1is observed that

when the UAV’'s ¢, >0.95, the USVs need only to be fairly

accurate, i.e. with c W>O.65, in order to achieve

Vw
P(KA)=O.9. On the other hand, 1if the USV is highly
accurate, the accuracy of the UAV is not really important.
Similar observations are also made for scenario B’s P(KB).

The same results hold for a smaller number of USVs; see
Figure 19 for the same case but with one UAV and three

USVs.
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Contour Plot of Probability Red is Inspected, P(KA)

Scenario A; Good Visibility
UAV=1, UAV=9
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Figure 17. Contour plot of the probability that Red is
inspected in scenario A versus the probability of
correctly classifying White for UAV and USV; UAV=1 and
usv=9; k,=0 and k,=300.

Contour Plot of Probability Red is Inspected, P(KB)

Scenario B; Good Visibility
UAV=1, UAV=9
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Figure 18. Contour plot of the probability that Red is
inspected in scenario B versus the probability of
correctly classifying White for UAV and USV; UAV=1 and
Uusv=9; k,=0 and k,=300.
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Contour Plot of Probability Red is Inspected, P(KA)

Scenario A; Good Visibility
UAV=1, UAV=3
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Figure 19. Contour plot of the probability that Red is
inspected in scenario A versus the probability of
correctly classifying White for UAV and USV; UAV=1 and
usv=3; k,=0 and k,=300.

To summarize, if UAVs are to be deployed with USVs,
the UAV should have a high ¢, =~ 1in order to make a

significant positive contribution to the outcome of

detecting Red. The generation of false positives by the UAV

(cAm,zl—cAww) is actually not high but there are many
opportunities for misclassifying a White as suspicious SB.
There are two consequences of misclassification; the UAV
must follow the apparently suspicious SB and so is unable
to identify other SBs; 1in addition a USV must conduct a

Type II inspection and so is unavailable to conduct other

inspections.
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4. Red’'s Hidden Time in Scenario B
This analysis considers how the mean time the Red boat
attempts to hide, Tk, affects scenario B’s P(Kb). Four

values are considered for Tk: 0.5, 1, 2, and 5 hours, and a

mixed ORBAT of one UAV and some USVs.

Figure 20 displays the plots of the probability Red is
inspected/neutralized as a function of the number of USVs

under good and poor visibility conditions. The four curves

in each plot correspond to different values for T,. 1In
general, it is observed that, as expected, P(KB) is higher
when 7T, 1s longer. Given one UAV and nine USVs under good
visibility conditions, if 7, 1is shortened from two hours to
half an hour, P(KB) drops from 0.92 to 0.86, about 7%. See

Figure 21 for the plot P(Kb) versus T, for the ORBAT mix of

one UAV and nine USVs.
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Probability Red is Inspected, P(KB)
Scenario B; Good Visibility
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Figure 20. Plot of the probability that Red is

inspected in scenario B versus the number of active
USVs for different Red hidden times under (a) good

visibility and (b) poor visibility; k,=0 and k,=300.
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Probability Red is Inspected, P(KB)

Scenario B; Good Visibility
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Figure 21. Plot of probability that Red is inspected
versus Red hidden time in scenario B under good
visibility, for ORBAT mix of one UAV and nine USVs,
k,=0 and k,=300.

5. UAV’'s Mean Inspection Time
This analysis considers how the UAV’s mean time to

1
conduct a Type I inspection, —, affects the probability of
Hy

inspecting the Red boat. The basis for this analysis 1is an
ORBAT mix of one UAV and various numbers of USVs under good
visibility conditions for all other parameters, as
displayed 1in Table 2. The values for the UAV’s mean

inspection time vary from one minute to 10 minutes.

Figure 22 displays the contour plot of scenario A’s

1
P(KA) versus — and the number of active USVs. It can be
My
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observed that the UAV’'s mean inspection time has very
little impact on ITKQ) for the case examined. For a given
number of active USVs, a shorter UAV mean inspection time
only results in a slight increase in P(KA). When there are
eight USVs, if the UAV mean inspection time is reduced from

five minutes to one minute, P(KA) only increases from 0.91

to 0.92. Similar observations are made for P(KA) under poor

visibility conditions (see Figure 23). Therefore, for this
case with the given USV parameters for good visibility

conditions, efforts to reduce UAV mean inspection time will
not help much in improving ETKQ). It should be noted that

longer UAV inspection times could potentially result in an
increased probability of correct <classification. This
effect is not represented in the current model and could be
investigated in future work. It should also be noted that
variability in the inspections times is also not

represented in this model.
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Contour Plot of Probability Red is Inspected, P(K A)

Scenario A; Good Visibility
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Figure 22. Contour plot of the probability that Red is

inspected in scenario A versus the UAV’s mean
inspection time and the number of active USVs, under

good visibility conditions, k,=0 and k,=300.

Contour Plot of Probability Red is Inspected, P(K A)
Scenario A; Poor Visibility
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Figure 23. Contour plot of the probability that Red is

inspected in scenario A versus the UAV’s mean
inspection time and the number of active USVs, under
poor visibility conditions, k,=0 and k,=300.
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6. USV Mean Inspection Time for Type I and Type II
Inspections

This analysis considers how the USV’s mean inspection

1 1
times, —— and , affect the probability of inspecting
My 1 My 11

the Red boat. The basis for this analysis is an ORBAT mix
of one UAV and nine USVs under good visibility conditions

for all other parameters, as displayed in Table 2. The

are varied from five to 10 minutes

values for —— and
My ; My i

and 10 to 30 minutes respectively.

Figure 24 displays the contour plot of scenario A’s

It can be observed that the

1
P(KA) versus —— and
My 1 My n

1
partial derivative of P(KA) with respect to —— 1is higher
Hy 1

than that with respect to Assume that the original

My i

mean values for —— and are 10 and 20 minutes,

My 1 My it
respectively, with ITKQ)=O.94, and there are technology or

procedures to make it possible to reduce either mean time

1
by 20%. Reducing —— to eight minutes increases fTKA) to
Hy 1

about 0.96, while reducing to 16 minutes increases

Hy 11

P(KA) to about 0.95. Therefore, for the given parameters,
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efforts on reducing the USV’s mean time taken for a Type I

inspection will result in a slightly greater impact on
increasing P(KQ) as long as there 1is no decrease in the
probability of correct classification. Once again, the

effects of wvariability 1in the inspection times are not

represented in the model.

Contour Plot of Probability Red is Inspected, P(KA)

Scenario A; Good Visibility
UAV=1;USV=9

USV Mean Type Il Inspection Time, wvu (minutes)

7 8 9 10, 1 12 13
USV Mean Type I Inspection Time, le (minutes)

Figure 24. Contour plot of the probability that Red is
inspected in scenario A versus USV mean inspection

times for Type I and Type II inspections, under good

visibility conditions with 1 UAV and 9 USVs; k,=0 and

K,=300.
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IV. RESULTS AND ANALYSIS

In this chapter, the models described in Chapter 2 are
used to estimate the number of surveillance platforms
required to detect the two types of maritime threats, large
ship (LS) and small boat (SB). The analyses in Chapter 3
provide insights on the mechanics of the model under
different decision parameters settings and form the Dbasis

for specifying their values in this chapter.

The required detection criterion for each type of
threat is a probability of Red detection of at least 0.9.
As a PC is the only platform deemed suitable for the LS
threat, the required number to attain the criterion will Dbe
proposed. For the SB threat, it is possible to use USVs,
PCs, or both, with or without UAVs. Some combinations of
USVs, PCs, and UAVs that can achieve the criterion for the
SB threat will be proposed and their estimated costs
discussed. For the background setting of the two models,
the notional strait 1is represented by a 36 nm’/ by 5 nm
rectangle region. The port is situated 18 nm from either
end of the strait. The parameter values concerning the LS
and SB traffic in the strait are described 1in the
respective sections for each model. The settings for the
parameters concerning surveillance platform characteristics
and performance are based on the author’s assessment of

reasonable wvalues.

7 Nautical miles.

95



A. LS THREAT

1. Measure of Effectiveness (MOE)

The CONOPS developed for the LS threat requires only
one type of sensor platform, which is the PC. The MOE used
in this analysis is the probability of detecting a single
hijacked D-vessel given M number of PCs active 1in the

strait dedicated to inspecting D-vessels.

2. Parameters

D-vessels arrive at the strait at a rate of about 20
vessels per day. It takes an average of two hours for the
D-vessels to transit to the port. The mean time PCs take to
transit and prepare to board a D-vessel 1s one hour and
another four hours to conduct the inspection. Table 5
displays the parameter used in the LS model. The number of
PCs active in the region, M, 1is a variable that ranges

from 1 to 10.
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Table 5. Parameter values for LS model

Parameter Symbol Value

Mean time from when D-vessel enters region n
until it reaches port if it is not inspected — 2
by PC (hours) A
Mean time for PC to inspect a D-vessel ﬂ 4
(hours) u
Mean time for PC to travel to D-vessel l 1
(hours) y
Arrival rate of D-vessels to strait (per o 20/24
hour)
Number of sub-regions in the strait n 10
Number of service time periods in a boarding 8 for M <3

. . m
and inspection process 2 for M>3

3. Results and Analysis

Figure 25 displays the plot of the probability of
detecting a hijacked D-vessel as a function of the number
of PCs active in the strait. The marginal increase in the
probability of detection falls when the number of active
PCs 1s more than four. In order to achieve a detection
probability that is greater than 0.9, at least six PCs are
required to be deployed in the strait. This minimum number
of PCs ensures that there are sufficient idle PCs (a mean
of at least 2.7) available to inspect the hijacked D-vessel

when the latter enters the strait.

From Figure 26, it is observed that the mean number of
uninspected PCs is small when there are more than six PCs
active in the strait. The mean number of busy PCs when six

PCs are active is about 3.3 (see Figure 27).
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Therefore, six PCs should be deployed in the strait
achieving a 0.95 probability of detecting a hijacked D-

vessel.
Probability Red is Inspected, P(K)
1 T T T T T
0.9 o
0.8 =
0.7 o
> 0.6 =
%
S 0.5 =
2
o 0.4 o
0.3 4
0.2 o
0.1 o
0 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
Number of PCs, M
Figure 25. Plot of probability of detection of Red

vessel against the number of PCs active in the strait.
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Mean Number of Dangerous Large Ships Not Inspected Per Day
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Figure 26. Plot of mean number of D-vessels not
inspected per day against the number of active PCs
active in the strait.
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Figure 27. Plot of mean number of busy PCs against the

number of active PCs in the strait.
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B. SB THREAT

1. Measure of Effectiveness (MOE)

The MOE used in this analysis is the probability of
detecting a single Red given M, number of UAVs and M,
number of USVs active 1in the strait. Recall that due to

airspace restriction, a maximum of two UAVs can be deployed
above the strait. Both I%KA) and }%Ké) of the two threat

scenarios A and B, respectively, will be considered. First
a comparison of the cost effectiveness of the USV versus PC
will be done because they essentially perform the same
function in this scenario. Then, the number of USVs or PCs,
with and without UAVs, required to achieve a given
probability of detection will be determined. Cost
comparison of the assets will Dbe based on the cost
estimates of the respective surveillance platforms as given
in Table 6 (see Appendix D for details). The unit costs are
based on 10 vyears of operating 1life, and include annual

operating and support costs.

Table 6. Estimated unit acquisition and operating
cost of surveillance platforms based on 10 years
operating life (in millions USS$ FY2007).

UAV usv PC

Cost per unit per year 1.88 0.49 0.92
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2. Parameters

Two types of environmental conditions for the model
are considered; good and poor visibility in the strait. The
SB arrival rate, the mean length of time SBs spend in the
strait, and the proportion of SBs that act suspicious are
the same under Dboth conditions. However, under poor
visibility conditions, SBs will remain tracked for a
shorter period of time. The SBs of concern here are those
that do not have AIS. There are an average total of 48 such
SBs in the strait at all times. Table 7 displays the values
of parameters concerning the SB traffic in the strait for

both visibility conditions.

Table 7. Parameter values for SB model - SB traffic.
Good Poor
Parameter Symbol | ;i sivility |Visibility
Arrival rate of SBs into the strait
(04 12
(per hour) W
Mean time each SB remains in the L 4
strait (hours) A'W
Probability that a SB acts 0.1
suspicious before leaving the strait Pss )
Mean time identified SBs remain 1
— 2 1.3
tracked (hours) ﬁ

It is assumed that Red for scenario A takes a mean
time of 15 minutes to cross the strait to its target, i.e.,

the mean of T,, is 15 minutes. It is also assumed that in

scenario B Red will attempt to hide among other SBs in the

strait for a period of two hours. Thereafter, Red will take

TR,A

a mean time of to reach its target, i.e., 7.5 minutes.

101



These parameters concerning Red are the same for both good

and poor visibility conditions.

Table 2 displays the wvalues of the parameters
concerning the surveillance platforms. The parameters for
USVs and PCs share the same symbols. The PCs are modeled to
have shorter mean inspection times and to be much more
accurate in classifying SBs than the USVs. Hence, the key
differences between them are that a PC has a larger sensor
footprint, slightly higher inspection rates, and much lower
probabilities of misclassifying a Red and suspicious SBs.
Both platforms are 1less effective under poor visibility
conditions, i.e., longer inspection times, slower platform
speeds, shorter sensor ranges, and higher misclassification
rate for white SBs. In general, a platform’s performance in
the respective parameters is degraded by about 30%.
However, it is assumed that the platform’s effectiveness in
classifying a Red remains unchanged under both visibility

conditions.

The decision parameters (kx,, k,, and K, ) concern how
the surveillance platforms set their priorities in
selecting targets for inspection. The CONOPS assumes the
USVs (or PCs) are more 1likely to inspect a suspicious SB
than unsuspicious ones; i.e., k,= 300. A UAV has no
priority in inspecting suspicious SBs; instead it will
focus on inspecting unsuspicious SBs, i.e., K,=0. The

tuning factors for both priority parameters are set at

T,=7T,=2. A USV (or PC) already engaged in a Type I

14
inspection is only —reassigned to «conduct a Type II

inspection on an unidentified suspicious SB when all USVs
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(PCs) are engaged in some activities; this is represented

by setting k,;=10 and 7,,=0.25.

Table 8. Parameter values for SB model - surveillance
platforms.

Good Visibility Poor Visibility
Parameter Symbol

UAV usv PC UAV usv PC

Speed (nm per hour) V.,V 100 30 30 100 20 20

Sensor footprint (nm x f f' 1x1 0.5x |0.75x] 0.8x | 0.4x | 0.6x%
nm) A JV 0.5 0.75 0.8 0.4 0.6

Mean time a UAV and USV
(PC) take to classify a 1 1
SB as harmless or |—, — 5 10 8 7 13 11
suspicious (Type I MA HVJ
inspection) (minutes)
Mean time a USV (PC)
takes to classify 1
whether a suspicious SB — - 20 18 - 27 24
is a threat (Type 1II uVﬂ
inspection) (minutes)
Probability a White SB
is misclassified as
suspicious by the UAV
and USV (PC) during a | ¢, .C, 0.1 0.1 {0.01|0.15|0.15]0.05
Type I inspection and

must undergo a Type II
inspection

Probability  that the
Red is classified
correctly by a UAV and
Usv (PC)

c .95 .95 .99 .95 .95 .99

Arr? chr

3. Results and Analysis

Figure 28 displays the plots of scenario A’s P(KA)
against the number of USVs active in the strait in good and
poor visibility conditions. The three curves on each plot
are for the cases with no UAV, one UAV, and two UAVs
deployed. Similar plots for PCs are displayed in Figure 29.
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In order to achieve [%K;)>O.9 under good visibility
conditions and with no UAV contribution, at least nine USVs
or eight PCs are required to be deployed in the strait.
Under poor vwvisibility conditions, I%KA) for nine USVs or
eight PCs (without a UAV) drops by almost 30% to 0.68 for
USVs and 0.70 for PCs. The contribution of UAVs in
improving P(K;) is not very significant; each additional
UAV 1s equivalent to about one USV or PC for cases of
P(KA)>O.9 for both good and poor visibility. Furthermore,

UAVs are more costly to acquire and operate than USVs or

PCs; see Table 6.

Figure 30 displays the plots of scenario B’s P(Kb)

versus the number of USVs active in the strait under good
and poor visibility conditions. The three curves on each
plot are for the cases with no UAV, one UAV, and two UAVs
deployed. Figure 31 displays similar plots for PCs. 1In
general, it 1is observed that the UAVs are making a higher

contribution 1in scenario B compared to scenario A. For
example, for eight USVs, two UAVs increase I«Kﬁ) by 0.11
(about a 14% increment) compared to an increment of 0.07 or
about 8% in I%K;). The UAVs’ higher rate of inspection for

Whites is assisting in detecting the Red while it is hidden
among the other Whites. However, even with the larger

contribution, each additional UAV remains equivalent to
about one USV or PC. In order to achieve }%K§)>O.9 under

good visibility conditions and no UAV contribution, at
least 10 USVs or eight PCs are required. When compared with
scenario A, one additional USV 1is required; for PCs, the

number required remains the same. In scenario B, Red is
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hidden among other White SBs for a period of two hours, and
when it becomes suspicious the idle USVs have only half the
time they have in scenario A to detect Red. From Figure 32,
it is observed that, with 10 USVs and no UAV, the
probability of detecting Red within its hidden time 1is
0.42. The additional USV for scenario B as compared to
scenario A, 1s needed to ensure at least a 0.83 probability
of detecting Red within the shorter time after it becomes
suspicious 1in Scenario B. This 1is so that the total

probability of detecting Red is more than 0.90 Under poor
visibility conditions, P(Ké) for 10 USVs or eight PCs

(without a UAV) drops by about 30% to 0.67 for USVs and
0.72 for PCs.
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Probability Red is Inspected, P(K A)
Scenario A; Good Visibility
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Figure 28. Plot of probability that SB threat is
detected in scenario A against the number of active
USVs in the strait under (a) good and (b) poor
visibility conditions.
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Probability Red is Inspected, P(K A)
Scenario A; Good Visibility

T T T T & & & > a4

1 T

09— ——— i — e e daat s

0.8~ B

0.7+ - B

0.5 b

Probability

0.4 B

0.2~

01r ——M,

0 1 2 3 4 5 6 7 8 _ 9
Number of PC, MV

Probability Red is Inspected, P(K A)

Scenario A; Poor Visibility
1 T T T T

09 ———— et R e R e s et

0.8~ B

07f : e

051 : v ~ .

Probability

0.4 B

0.2~

0.1 oM, =1H

6 7 8 _9 10 11 12 13 14 15
Number of PC, Mv

(b)

Figure 29. Plot of probability that SB threat is
detected in scenario A against the number of active
PCs in the strait under (a) good and (b) poor
visibility conditions.
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Figure 30. Plot of probability that SB threat is

detected in scenario B against the number of active
USVs in the strait under (a) good and (b) poor
visibility conditions.
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Scenario B; Good Visibility
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Figure 31. Plot of probability that SB threat is

detected in scenario B against the number of active
PCs in the strait under (a) good and (b) poor
visibility conditions.
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Scenario B; Good Visibility

Red hidden time = 2 hours
1 T T T T T T T T

Probability
o
-

I
~
T

5 6 7 8 9 10 11 12 13 14 15
Number of USV, Mv

Figure 32. Plot of probability Red is inspected in
scenario B within its hidden time of 2 hours, under
good visibility.

4. Cost Effectiveness Analysis and Recommendations

The effectiveness of the PCs in the SB model is only
marginally better than the USVs while costing two times
more than the USVs. For the conditions examined, to achieve
a probability of detection of greater than 0.9, the number
of PCs required is only one to two less than the number of
USVs. From a purely cost-effectiveness standpoint, having
an order of battle (ORBAT) of all USVs seems to be the
better choice. However, from an operational perspective a
mixed ORBAT of USVs and PCs is more robust. A mixed USV and
PC ORBAT allows operator flexibility in the deployment of

assets; it allows for manned platforms to take over in the
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event that a USV is unable to complete a surveillance task.
The manned PCs will also likely have a higher deterrence
effect and exercise better ground Jjudgments than a USV.
Note also that use of PCs puts human operators at risk.
Since a pure USV ORBAT will require about 10 USVs and a
pure PC ORBAT will require about eight PCs, a mixed ORBAT
is estimated to require a total of about eight to 10
surface platforms. A possible ratio for the mix is one PC

to two USVs, i1.e., a total of three PCs and six USVs.

The model results show that a UAV does not greatly
improve the probability of detection. One UAV is equivalent
to about one surface platform 1in terms of achieving a
probability of detection of more than 0.9. However, the
model does not take into account some capabilities of the
UAV as part of the whole surveillance system. First, the
UAV has a deterrence effect; it is a conspicuous airborne
sensor. Second, the UAV’s airborne sensor provides a plane
view perspective of targets. This additional perspective
adds another dimension to the situational picture, which
will improve situational awareness. Representing the
consequences of these capabilities in the model requires

research in future studies.

Therefore, to achieve a probability of detection of at
least 0.9, it 1is recommended to have an ORBAT of a total of
nine surface platforms comprising three PCs and six USVs.
The estimated cost of this ORBAT mix is US$5.7 million per
year for a period of 10 years. If one UAV is added to the
ORBAT mix, one less surface platform is required. For an
ORBAT mix comprising one UAV, two PCs, and six USVs, the

estimated cost is US$6.7 million per year for a period of
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10 years. For an ORBAT mix comprising one UAV, three PCs,
and five USVs, the estimated cost 1s US$7.1 million per

year for a period of 10 years.
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V. CONCLUSION AND RECOMMENDATIONS

A. CONCLUSION

Two CONOPS were developed to address the surveillance
requirements to counter two types of maritime terrorism
threats 1in the congested strait of a littoral state. The
first maritime threat concerns the use of large ships (LSs)
carrying highly dangerous cargo (D-vessels) to inflict
extensive damage to port facilities or other ships. The
CONOPS against this threat in this thesis is to use coastal
radars and boarding teams from PCs to conduct boarding and
inspection of D-vessels 1in order to detect a LS that has
been hijacked by, or is in the hands of terrorists (Red).
If such a LS is not detected and disabled it can instill
severe damage to a port. The second maritime threat
concerns the use of small boats (SBs) to inflict damage on
infrastructure, e.g. the port, or other vessels. These
terrorist SBs are called Red boats. The CONOPS against this
second threat, here consisting of one Red boat, 1is to use
cooperative coastal radar, UAVs, USVs, and PCs. The UAV is
used to rapidly identify unsuspicious SBs; USVs and PCs are
used to inspect suspicious SBs detected by the coastal
radar and the UAVs, and to detect the Red boat. Two
possible scenarios are considered for the SB threat, one is
a direct attack by the single Red boat, and the other is a
sneak attack where the one Red boat attempts to hide among
other neutral (White) SBs for some time before attacking.
Two environmental conditions, good and poor visibility, are
considered in the analysis. For both CONOPS, the analyses

considered only attacks from a single Red; consideration of
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attacks by a team of Red boats, involving both lethal Reds

and use of Red decoys are not taken in this thesis.

B. RECOMMENDATIONS FOR SURVEILLANCE PLATFORM MIX AND
MODUS OPERANDI AGAINST LS AND SB THREAT

The LS model is applied to a situation with an arrival
rate of 20 D-vessels per day. In order to have a
probability of detecting the Red vessel greater than 0.9,
an order of battle (ORBAT) of at least six PCs 1is required
to be deployed. An additional PC 1is required for every

increment of four to five more D-vessels to arrive per day.

The SB model is applied to a situation with an arrival
rate of 12 SBs per hour and an average of 48 unidentified
SBs in the strait at any time. These SBs are the portion of
the total 1in the strait that require inspection to
ascertain identity. The criterion for the ORBAT mix 1is to
achieve a probability of detection of the Red boat of at
least 0.9. In good wvisibility conditions, the recommended
ORBAT mix of six USVs and three PCs without any UAVs
results in an estimated cost of US$5.7 million per year for
a period of 10 vyears. A mixed USV and PC ORBAT 1is
recommended because the presence of PCs makes a more robust
surveillance force 1in terms of deterrence and exercising
ground Jjudgment. USVs are useful 1in situations when it 1is
not necessary to risk human lives. If a UAV is 1included,
the recommended mix is one UAV, two PCs, and six USVs at an
estimated cost of US$6.7 million per year for a period of

10 years.
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The analysis of the SB model results also provides
some insight on the possible modus operandi for the
surveillance platforms. The UAV’s contribution 1is only
significant when it is highly reliable 1in correctly
classifying White small boats. The UAV must be able to
quickly identify SBs and classify them as suspicious or not
suspicious. If the UAV mistakenly classifies a non-
suspicious SB as suspicious, a USV or PC must do a Type II
inspection on the SB. Thus, UAVs increase the workload for
the USVs and PCs. If deployed, a UAV should have low
priority in following suspicious SBs detected by land-based
sensors; 1in this model there is no advantage to having the
UAV follow such a suspicious SB. Conversely, the USV should
give highest priority to inspecting suspicious SBs to
achieve higher probabilities of detecting the Red. 1In
addition, the UAV mean inspection time appears not to have
much impact on the probability of detection; this result
assumes the probability of correct classification 1is not
affected by the classification time. Reducing USV mean
inspection time for Type I inspections, instead of Type II
inspections, has a larger impact in increasing probability
of detection. Once again, the ©probability of correct
classification as suspicious or not suspicious that results
from a Type I inspection is assumed not to depend on the

length of time spent conducting the inspection.

C. RECOMMENDATION FOR FUTURE WORK

This thesis identifies several possible refinements to
the SB model. The first refinement is to include possible

suspicious SBs’ Dbehavioral change when they are being
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followed Dby UAVs. This would allow for the suspicious SBs
to change to unsuspicious SBs when they detect they are
being followed by a UAV; this reduces the probability of
having USVs do a Type II inspection. A second refinement
is to have the probability of correct classification of
White SBs by both UAVs and USVs be functions of the Type 1
inspection times. This would allow for possible
determination of the optimal length of inspection times.
Incorporation of the deterrence effect of having assets
visibly patrol the straits may influence the number of

assets required.

A comparison between the probabilities of detecting
the Red showed that they are similar for the deterministic
fluid model and a generalized birth-death stochastic model
for the LSs. Further formulation and study of stochastic
models for the two scenarios can further inform decision
makers concerning the number of UAV, USV, and PC assets
needed to respond to the threats. They can also be used to
study the allocation of surveillance assets to different

sub-regions.

Another extension to the model that can be explored is
to consider teamed-attack by Red boats, instead of the
current Red tactics of a single attacker. One possible
teamed-attack tactic by the Red is the use of a decoy and

an attacker SB.
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APPENDIX A: ESTIMATION OF PARAMETERS

A. INTRODUCTION

This appendix discusses the methods used in estimating

the following parameters:

1 . 1
5—,(&3pmﬂvdy,g—] = Mean time taken by an idle UAV and
A vV

(respectively, USV) to proceed to an unidentified small

boat;

1
— = Mean time taken by an idle USV to proceed to a

Vv

UAV shadowing a suspicious small boat.

1 1
B. METHOD FOR — AND —

S, Sy

The region 1is rectangular with sides M, and A{y. If

the number of UAVs, A{A>l (respectively USVs, A@,>1), each

1 1
platform is assigned a fraction —— (respectively ——) of
M, M,

the region. We assume that a UAV (respectively USV) has a

square footprint with side f, (respectively f,); the area

that can be seen by the sensor on the platform 1is fj

(respectively fﬁ). The sub-region assigned to a UAV

(respectively USV) is tiled with the square footprints with
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M M M M
; (respectively ;)
ati My, fy

a total of tiles (see Figure

M
33).

Let v, (respectively v,) Dbe the speed of a UAV

(respectively USV). The time for a UAV (respectively USV)

to cross one footprint along the x-direction (or y-
direction) 1is jg/vA (respectively j;/vV). The mean time for

a UAV (respectively USV) to travel over the entire sub-

region assigned to it (using a raster scan pattern) is

T M M M M T M M
_A:x—;éz# (respectively 4 = r ) ),
My M fiva My, My, My f,vy,
MX
: S ! Region M,
roo
Figure 33. Schematic diagram of the tiling of the

region by a platform sensor footprint.

WU : WU
We assume that there are —— (respectively ——)
M, M,

unidentified small boats in each sub-region for a UAV
(respectively USV), where W, 1is the mean number of

unsuspicious SBs. Therefore, the mean time taken by a UAV
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(respectively USV) to travel between the unidentified small

oL Ty My T - Iy
boats is —=—*—==—* (respectively —=—).
6A MA WU WU 6V WU

1
C. METHOD FOR —
Vv

The time taken for each USV to travel around its sub-

T
region is —~. An estimate of the mean travel time of a USV
\4

to respond to a report of a suspicious small boat is
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APPENDIX B: DESIGN OF EXPERIMENT FOR THE
EXPLORATION OF THE LARGE SHIP THREAT MODEL

A. OBJECTIVE

The objective of this design of experiment (DOE) is
twofold. First is to determine the effects of varying the
number of sub-regions, n, and the number of service periods,
m, on the outcomes of the large ship (LS) model. The values

of n and m should be at least 1. Second is to determine the

most significant factors in the model.

B. DOE

The design points for all parameters of the model,
except n and m, are generated by the Nearly Orthogonal
Latin Hypercube (NOLH) design method (Sanchez 2005) used in
designing simulation experiments. Table 9 displays the
ranges of the parameter values considered and the 17 design

points generated. For each design point, the probability
that Red is detected (P(K)) is determined as the number of
sub-regions, n, varied from 1-25 and the number of service
periods, m, is set at five levels (1, 2, 4, 8, 16). Recall

that a service time for a PC 1is the sum of m service

periods of equal length.
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Table 9. DOE design points

Parameters
(Ranges)
Degign A u Y o M
Foint | (4-1) (%5-%) | #-%) | (h-%) | (1-10)
1 0.79 0.5 1.21 0.73 3
2 0.96 0.28 1.25 0.89 1
3 0.92 0.33 0.71 0.63 7
4 0.88 0.39 0.88 1.25 6
5 0.5 0.48 0.96 0.52 4
6 0.33 0.29 0.92 1.09 2
7 0.58 0.26 1.33 0.68 9
8 0.63 0.46 1.17 1.2 8
9 0.67 0.35 1 0.83 6
10 0.54 0.2 0.79 0.94 8
11 0.38 0.43 0.75 0.78 10
12 0.42 0.37 1.29 1.04 4
13 0.46 0.31 1.13 0.42 5
14 0.83 0.22 1.04 1.15 7
15 1 0.41 1.08 0.57 9
16 0.75 0.44 0.67 0.99 2
17 .71 0.24 0.83 0.47 3
C. RESULTS
1. The Effects of Varying n and m

Figure 34 displays the 17 sub-plots of the results
from the LS model for the 17 design points. Each sub-plot

is the plot of P(K) against n and each curve on the sub-
plot is for m set at different levels. From Figure 34, it
appears that m has no significant effect on the P(K) in the
LS model except for those runs when the number of active

PCs (M) is three or fewer [see Figure 34 (b), (f), (p), and
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(g)]. When M <3, higher m results in lower P(K). In run 2
where M=1, the difference in }%K) between m=1 and m=8 1is
30% (at n=10). This suggests that when M <3, m should take
a larger wvalue such as m=8. When M >3, m could take a
smaller value such as m=2. P(K) tends to decrease as n
increases. In all 17 design points, the 1largest drop in

P(K) occurs from n=1 to 10. At n=10 and m=8, the percentage

drop in P(K) ranges from near zero to about 30% across the
17 design points. The sub-plots also appear to indicate

that the effect of m is more significant when there is a

smaller number of active PCs. This suggests that the

parameter m should be set to a wvalue around »n=10 for this

size region.

The recommendations of this analysis are that for the

size of the region considered and the service time
considered, n should be set to a value of n=10; for M>3, m

should be equal to two; and for M <3, m should be equal to
eight.
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2. Significant Factors in the LS Model

Values of the model parameters considered appear in
Table 9. The wvalues of these parameters form a nearly
orthogonal Latin hypercube design (Sanchez 2006). The model
results are summarized by a linear —regression with
explanatory variables the model parameters M, «a, u, A,
and ¥ ; the resulting R-square value 1is 0.96. The estimates
of the coefficients and their significance in the model are
displayed 1in Figure 35. The polynomial and interaction
terms are centered at the means of the corresponding

individual factors.

The factor M, the number of PCs, is the most
significant in this model, followed by the arrival rate of
D-vessels (o) and the service rate of the PC (u), 1i.e.,
the rate at which the PCs board and inspect the D-vessels.

The rate at which D-vessels transit the strait (A) and the

rate at which PCs get to the next un-inspected D-vessel (Yy)

are the least significant factors in the model.

Sorted Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t|
M 0.0789696 0.006669  11.84 <.0001*
(M-5.52941)*(M-5.52941) -0.016784 0.003218  -5.22 | 0.0006*
alpha -0.330338 0.070518  -4.68 I 0.0011*
mu 0.6676073 0.197 3.39 _i 0.0080*
(alpha-0.83412)*(M-5.52941)  0.1244455 0.038197 3.26 0.0099*
lambda 0.086608 0.088008 0.98 il 0.3508
gamma -0.027024 0.088397  -0.31 0.7668
Figure 35. Sorted estimates of the parameter of the

fitted model.

127



THIS PAGE IS INTENTIONALLY LEFT BLANK

128



APPENDIX C: COMPARISON OF THE DETERMINISTIC FLUID
MODEL AND A BIRTH-DEATH MODEL OF THE LARGE SHIP
PROBLEM

The models presented in this appendix are reproduced

from a working paper by Gaver and Jacobs (2007).

A. MODEL C-1: A TIME-HOMOGENEOUS MARKOV/BIRTH-DEATH
VERSION OF LARGE SHIP MODEL

Suppose there are ‘LO) un-inspected large ships (LSs)

in the strait at time ¢; L(ﬁ::{O,L2,“.,L}. For simplicity

L= can be tolerated.

Let the probability that there are [ LSs at time ¢,

given there are % LSs as the initial condition when ¢=0 be

PL(t)=1|L(0)=1} (C.1).

1. Transition Probabilities

The transition probabilities between states for L(ﬁ

are displayed in the equations (C.2) and (C.3).

P{L(t+dt)=l+1‘L(t)=l}=Ocldt+0(dt) (C.2)

Note this generalizes Poisson arrivals since if LO)=ZL>O

more arrivals cannot occur. o, is the rate of arrival of

LSs, given [ uninspected LSs are in strait at time ¢.
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P{L(t+dt)=l—l‘L(t)=l}

pldt + o(dt ) for0<I< M (C.3)

uMdt+A[1- M1 +o(dr) for /> M

Note this combines the act of joining a PC with a LS and

1 1
=—+4+— where — 1is the mean

1
the act of PC boarding with —
uH; Up Hpg

1
time to board and inspect the LS and — is the mean time

My
for the PC to travel to and prepare to board (join with)

1
the LS. M 1is the number of active PCs in the strait and z

is the mean time a LS remains in the strait. The first line
expresses the rate of service when there are more than
enough PCs; the second represents the situation in which

all M PCs are occupied and so the remainder of the LSs,
Lﬁ)—ﬁl, escape the region (e.g. reach the port) at

individual rate A.

2. Long-run / Steady-State Solution
Let
oydt+o(dt)=P{L(t+dt)=1+1|L(t)=1} (C.4)

and

wde+o(de)= P{L(t+dr)=1-1|L(r)=1}  fori=1
pldt + o(dt) for0OSI<SM  (C.5).

uMdt+A[1- M1 +o(dr) for > M
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The limiting probabilities:
7, = P{L(e)=1} (C.6)

always exist if L is finite, or A>0.

The solution of the Balance Equations, see Ross (2007,

p. 387), is

aa ...a
m, =m,~——=1 (C.7)
‘Ltluz...ul
where m, 1is found by normalization. For the special case

of stationary Poisson arrivals, a,=a, and ie(O,L2P.),

T, = (C.8).
=) n
a
I+ —
n=1 gty - H,
3. Probability of Detecting Red Vessel

A Red vessel (hijacked LS) enters the strait. Let K be
the event that the Red vessel 1s detected. For the
parameters (rates) used here, the Red vessel 1s detected
when the number of un-inspected LSs is less than the number
of active PCs 1in the strait when Red enters the strait.
Hence, the probability of detecting Red vessel for M

active PCs is
M-1
P(K|M)= X =, (c.9).
1=0

An important generalization, not covered here, deals

with streams or surges of Red entrants bound for the port.

131



B. MODEL C-2: A GENERALIZED TIME-HOMOGENEOUS PSEUDO-
MARKOV/BIRTH-DEATH VERSION OF LARGE SHIP MODEL WITH
SEQUENTIAL SUB-REGIONS

The strait is next subdivided into n contiguous sub-

regions traversed sequentially. Let L;(f) be the number of
un-inspected LSs in sub-region j, je(OJ,2““,J). LSs enter

the strait in sub-region 1. Let A{i be the number of PCs

assigned to sub-region j; these PCs only inspect LSs 1in

sub-region j.

1. Transition Probabilities

The transition probabilities between states for L(O

are displayed in the expressions (C.10) and (C.11).

PlL;(rvar)=1,+1|L,(1) =1, L (0)=1,. ]

O!ljdl‘-i-o(dl‘) fOI‘jZI (C.10)

n/l[lj_l —Mj_lT dt+0(dt) forj>1

Note that this generalizes Poisson arrivals since if

Ljﬁ):Z}>O more arrivals can be prevented. Such cases are

not addressed in this thesis; here ajE(X constant.
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First,

P{Lj(t+dz): L —I‘Lj(t):lj}
ul dt + o d) for0</,< M,

= N (C.11) .
uMdi+nd[ 1M, | +oldi)  forl,> M,

=, (j)dt+0(dt)

J

Approximation of the 1limiting distribution (assuming

independence between strait segments) :

lim P{L,(t) = oL, (6) = 1, } = T ], (i) (C.12)

=ee i=1
where
I,
a.l
K forj=1
(1) pa (1) my (1) !
r, ()= , c.19)
K nlAﬂ& forj>1
(7)1 (7)o (1)

and <Kj is a normalizing constant as in the Model C-1 in

this appendix (same limiting distribution but with »nd

instead of A and A{i instead of M . Additionally,

- ]ak forj=1

1+
s (1)1 (1) (1)

K, = 1 (C.14)
p forj>1

o (nlAf4)

1+
ity () (7)o 1 ()
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4= 3 (k= M, ) () forj >0
k:Mj

The ©probability an entering Red 1is

(approximately Markov, hence “sub M”):

Pal8)=-T1 1= 3 =)
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APPENDIX D: COST ESTIMATES

A. PLATFORM ACQUISITION COST

The acquisition cost estimates for each of the
platforms are Dbased on awarded contracts of similar

platforms in recent years or program reports.

According to a report from the Fire Scout UAV program,
each UAV unit is estimated to cost FY2007 US$9.4 million
(Defense Industry Daily, 2007).

The unit cost of the Rafael Protector USV is
unavailable 1in open sources and has to be estimated from
the cost of other USVs. In 2006, a US$12.7 million contract
was awarded to provide four USVs for the Littoral Combat
Ship’s (LCS) Anti-Submarine Warfare (ASW) Mission Module.
It is assumed here that the LCS’s USV with the ASW payload
is similar 1in cost to the Protector USV with EO/IR, and
radar sensors, and a small caliber weapon system. Hence the
estimated cost of one Protector USV unit is FY2006 USS$3.2

million.

The estimated cost of the PCs is based on the Israeli
Navy’s US$40 million program to acquire eight fast patrol
crafts (FPCs) in 2002. Hence the estimated acquisition cost

for one unit PC 1is USS5 million (FY2002).

Table 10 displays the FY2007 normalized acquisition

cost for the platforms.
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Table 10. Table of platform acquisition cost normalized to

FY2007.

UAV usv PC
Unit acquisition cost 9.4 3.2 5.5
(US$ million) (FY 2007) | (FY 2006) | (FY 2002)
Inflation rate (%) 1.00 1.02 1.11
Unit acquisition cost

9.40 3.26 6.11
(USS$ million FY2007)

B. EXPECTED LIFE SPAN OF THE PLATFORMS

It is assumed the platform will be deployed for a

period of ten years.

C. OPERATION AND SUPPORT (O&S) COST

As no open-sourced data 1is available on the 0&S of
these platforms, they are estimated as a proportion of
their respective unit acquisition cost. It 1is assumed that
the unit annual 0&S costs for each of the platforms is 10%,

5% and 5% for UAVs, USVs, and PCs respectively.

D. ESTIMATED COST PER UNIT PER YEAR

Table 11 displays the estimated total cost per unit

year.
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Table 11. Estimated total cost per unit per year for each

platform.
UAV Usv PC
Unit acquisition cost (USS
9.40 3.26 6.11
million FY2007)
Expected life span 10 10 10

Unit acquisition cost per year

of life span (USS$ million 0.94 0.33 0.61
FY2007)
0&S cost per year (USS

0.94 0.16 0.31

million FY2007)

Total cost per unit per year

(USS million FY2007)
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