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Abstract  We suggest the utilization of the Modeling 

Field Theory (MFT) to deal with the combinatorial 

complexity problem of language modeling in cognitive 

robotics. In new simulations we extend our previous MFT 

model of language to deal with the scaling up of the 

robotic agent’s action repertoire. Simulations are divided 

into two stages. First agents learn to classify 112 different 

actions inspired by an alphabet system (the semaphore 

flag signaling system). In the second stage, agents also 

learn a lexical item to name each action. At this stage the 

agents will start to describe the action as a “word” 

comprised of three letters (consonant - vowel - 

consonant). The results of the simulations demonstrate 

that: (i) agents are able to acquire a complex set of 

actions by building sensorimotor concept-models; (ii) 

agents are able to learn a lexicon to describe these 

objects/actions through a process of cultural learning; 

and (iii) agents learn actions as basic gestures in order to 

generate composite actions. 

 

1. INTRODUCTION 

 

Recent research in autonomous cognitive systems has 

focused on the close integration (grounding) of language 

with perception and other cognitive capabilities [1]-[4]. 

This approach is based on the important process of 

“grounding” the agent’s lexicon directly into its own 

internal representations. Agents learn to name entities, 

individual and states whilst they interact with the world 

and build sensorimotor representations of it. For example 

Steels [5] studied the emergence of shared languages in 

group of autonomous cognitive robotics that learn 

categories of object shapes and colors. Cangelosi and 

collaborators analyzed the emergence of syntactic 

categories in lexicons supporting navigation [6] and 

object manipulation tasks [7, 8] in populations of 

simulated agents and robots.  

Current grounded agent and robotic approaches have their 

own limitations, in particular for the scaling up of the 

agents’ lexicon since they can only use few tens of lexical 

entries (see [5]) and can deal with a limited set of 

syntactic categories (e.g. nouns and verbs in [6]). This is 

mostly due to the use of computational intelligent 

techniques (e.g. neural networks, rule systems) subject to 

combinatorial complexity (CC). The issue of scaling up 

and CC in cognitive systems has been recently addressed 

by [9]. In linguistic systems, CC refers to the hierarchical 

combinations of bottom-up perceptual and linguistic 

signals and top-down internal concept-models of objects, 

scenes and other complex meanings. Perlovsky proposed 

the Modeling Field Theory (MFT) as a new method for 

overcoming the exponential growth of CC in 

computational intelligent techniques currently used in 

cognitive systems design. MFT uses fuzzy dynamic logic 

to avoid CC and computes similarity measures between 

internal concept-models and the perceptual and linguistic 

signals. More recently, Perlovsky [10] has suggested the 

use of MFT specifically to model linguistic abilities. By 

using concept-models with multiple sensorimotor 

modalities, a MFT system can integrate language-specific 

signals with other internal cognitive representations.  

Perlovsky’s proposal to apply MFT in the language 

domain is highly consistent with the grounded approach 

to language modeling discussed above. That is, both 

accounts are based on the strict integration of language 

and cognition. This permits the design of cognitive 

systems that are truly able to “understand” the meaning of 

words being used by autonomously linking the linguistic 

signals to the internal concept-models of the word 

constructed during the sensorimotor interaction with the 

environment. The combination of MFT systems with 

grounded agent simulations will permit the overcoming of 

the CC problems currently faced in grounded agent 

models and scale up the lexicons in terms of high number 

of lexical entries and syntactic categories. 

In this paper we propose the utilization of the Modeling 

Field Theory (MFT) to deal with the combinatorial 

complexity problem of language modeling. MFT aims at 

overcoming such limitations by dynamic logic learning of 
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lower-level signals (e.g., inputs, bottom-up signals) with 

hierarchies of higher-level concept-models (e.g. internal 

representations, categories/concepts, top-down signals). 

This is the case of language, which is characterized by the 

hierarchical organization of underlying cognitive models. 

Modeling Field Theory may be viewed as an 

unsupervised learning algorithm whereby a series of 

concept-models adapt to the features of the input stimuli 

via gradual adjustment dependent on the fuzzy similarity 

measures. 

In this paper we present an integration of the Modeling 

Field Theory algorithm for the classification of objects 

with a model of the acquisition of language in cognitive 

robotics. We will further extend our previous modified 

version of the MFT algorithm [11] to deal with the scaling 

up of the robotic agent’s action repertoire. The new 

extended MFT model will be presented in Section 2. 

Simulation setups and results are reported in Section 3. 

 

2. MATHEMATICAL FRAMEWORK 

 

We consider the problem of categorizing N   objects  

Ni ,,1 K= , each of which characterized by d   features 

de ,,1 K= . These features are represented by real 

numbers ( )1,0∈ieO - the input signals. Accordingly, we 

assume that there are M  d -dimensional concept-models 

Mk ,,1 K= described by real-valued fields keS , with 

de ,,1 K=  as before, that should match the object 

features ieO . Since each feature represents a different 

property of the object as, for instance, color, smell, 

texture, height, etc. and each concept-model component is 

associated to a sensor sensitive to only one of those 

properties, we must, of course, seek for matches between 

the same component of objects and concept-models. 

Hence it is natural to define the following partial 

similarity measure between object i and concept-model k 

[9] 
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where, at this stage, the fuzziness keσ  are parameters 

given a priori. The goal is to find an assignment between 

models and objects such that the global (log) similarity    
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is maximized. This maximization can be achieved using 

the MFT mechanism of concept formation which is based 

on the following dynamics for the modeling field 

components 
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are the  fuzzy association variables which  give a measure 

of the correspondence between object i and concept k 

relative to all other concepts k’. This quantity can be 

viewed as (adaptive) neural weights that yield the strength 

of the association between input and concepts. Using the 

explicit expression for the similarity measure, Eq. (1), the 

dynamic equations become 
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i
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for Mk ,,1 K=  and de ,,1 K= . From Eq. (5) it becomes 

clear that the fuzzy association variables are responsible 

for the coupling of the equations for the different 

modeling fields and, even more importantly for our 

purposes, for the coupling of the distinct components of a 

same field. In this sense, the categorization of multi-

dimensional objects is not a straightforward extension of 

the one-dimensional case because new dimensions should 

be associated with the appropriate models [11]. This 

nontrivial interplay between the field components will 

become clearer in the discussion of the simulation results. 

 

It can be shown that the dynamics (5) always converges to 

a (possibly local) maximum of the similarity L [9], but by 

properly adjusting the fuzziness keσ  the global maximum 

often can be attained. A salient feature of dynamic logic is 

a match between parameter uncertainty and fuzziness of 

similarity. In what follows we decrease the fuzziness 

during the time evolution of the modeling fields according 

to the following prescription 

 

                         ( ) 222 exp)( bake tt σασσ +−=                     (6) 

 

with 
4

105
−×=α , 1=aσ  and 03.0=bσ . Unless stated 

otherwise, these are the parameters we will use in the 

forthcoming analysis. 

3. SIMULATIONS  

 

In this section we will report results from three 

computational experiments. Initially they will be aimed at 

a simple scaling up of the agent’s action repertoire using 

multi-dimension features. In the second simulation we 

will demonstrate the correct classification of the input 

object though the dynamic introduction of the lexicon 

feature. The third simulation will concentrate on breaking 

down the actions into basic gestures in order to generate 

composite actions. To facilitate the presentation of the 

results, we will interpret both the object feature values and 

the modeling fields as d-dimensional vectors and follow 

the time evolution of the corresponding vector length    
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which should then match the object length 
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Simulation I: Classification and categorization of 

actions / building sensorimotor concept-models 

 

Let’s first consider having 112 different actions, some 

inspired by an alphabet system (the semaphore flag 

signaling system, see Figure 2). We have collected data 

on the posture of robots using 6 features. The object input 

data consist of the 6 angles of each, left arm and right arm 

joints (shoulder, upper arm and elbow). The agents first 

have to learn to classify these actions; at this stage we are 

using a multi-dimensional MFT algorithm with 112 fields 

randomly initialized. Figure 1 shows that the model is 

 

able to correctly identify the different actions. The time is 

presented in units of the time step h of Euler’s algorithm 

used to solve the coupled set of dynamic equations. 

Although the simulation initially dealt with 112 actions 

the MFT algorithm was able to categorize to 

approximately 95% successful matching. Therefore there 

was a slight reduction in the number of completed actions. 

Figure 3 shows our system consisting of two simulated 

agents - teacher and learner -  embedded within a virtual 

simulated environment (using Open Dynamic Engine).  

In respect to equation (1), in this experiment M=N=112 

and d = 6 features.  

 

 

 

 
Figure 1 - Time evolution of the fields with 6 features being used as input: 112 different actions 

 

 

Figure 2 - Few examples of type of behavior used for the classification and categorization of actions. (Here the semaphore 

alphabet) 
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Figure 3 - Teacher and learner before (left) and after (right) the action is learnt. 

 

Simulation II: Incremental Feature – lexicon 

acquisition 

 

In the first simulation we have proposed the use of the 

multi-dimensional MFT in order to categorize 112 

different actions. At this stage we wanted to explore the 

integration of language and cognition in cognitive robotic 

studies.  Here we extend the multi-dimensional MFT 

algorithm, used in Simulation 1, to enable the agents to 

learn a lexical item to name each previous action. After 

performing the action, the agents will start to describe it 

as three letters words (consonant – vowel – consonant; for 

example: “XUM”, “HAW”, “RIV”, etc.).  Each letter uses 

two features therefore each word is represented by 6 

additional features. Each word is unique to the action 

performed. This phonetic feature is dynamically added 

immediately after the action. At timestep 12500, (half of 

the training time) both features are considered when 

computing the fuzzy similarities. From timestep 12500, 

the dynamics of the σ2 fuzziness value is initialized, 

following equation (6), whilst σ1 continues its decrease 

pattern started at timestep 0. Results in Fig. 4 show that 

the model is able to categorize an action and assign a 

‘word’ to this action.  In this experiment d = 12 

comprising of the robot and phonetic features.  

 

 
 

Figure 4 - Time evolution of the fields using as input the action and phonetic feature: 112 different actions + 112 words 
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Figure 5- Teacher and learner before action is learnt and after with the addition of the ‘word’. For visualization purposes, the 

word is added on the image. 

 

Simulation III: Progressive learning of basic gestures 

into composite actions 
 

The previous simulations consisted of learning actions or 

a combination of actions and words. In this final 

simulation we take a step backwards in the categorization 

of actions and break down the action into basic gestures. 

Before learning a complete action we are interested in the 

systematic breakdown of actions into individual gestures, 

that is to say for example a two-handed action would be 

broken down into two single handed-actions and analyzed 

as individual steps in the process of a compound action. 

As an extension to the previous simulations, each feature 

is added dynamically. The simulation starts with the left-

handed action. Then at timestep 10000 (1/3rd of the 

simulation run) we consider the right-handed action, using 

the same dynamics of the fuzziness values as for 

simulation II, and finally at timestep 20000 we consider 

the phonetic feature. Figure 6 shows that the model is able 

to dynamically adapt to compound action associated with 

the word generation.  

 

 

 

 

 

 

 

 

 
 

Figure 6: Time evolution of the fields using as input the composite action and phonetic feature: 112 different composite 

actions + 112 words 
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4. CONCLUSION 

 
In this paper we presented an integration of the Modeling 

Field Theory algorithm for the classification of objects 

with a model of the acquisition of language in cognitive 

robotics. In new simulations we have applied and 

extended our previous modified version of the MFT 

algorithm to deal with the scaling up of the robotic 

agent’s action repertoire. The various simulations showed 

that (i) agents are able to acquire a complex set of actions 

by building sensorimotor concept-models; (ii) agents are 

able to learn a lexicon to describe these objects/actions 

through a process of cultural learning. (iii) agents learn 

actions as basic gestures in order to generate composite 

actions.  

Future work will look at the further development of the 

MFT algorithm to allow a more implicit link between 

action representations and lexicons and the learning of 

meaning-word pairs. In addition, we are going to test the 

above simulation model in a hardware robotic platform. 
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