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Executive Summary 
 
In order to avoid detection by hostile radar systems, it is essential for modern military 
platforms to have the capability to detect deterministic signals buried in white noise. A 
wide variety of detection techniques have been developed in answer to this problem; their 
efficiency depends on the degree of knowledge of the incoming signal. This report is 
applicable to the case where nothing is known a priori about the parameters of the 
incoming signal, and where the background noise is Gaussian. 
 
 Two approaches are compared. The first is a “normality” detector, which 
constructs a histogram of the incoming signal data points, and then compares this to the 
assumed Gaussian distribution of the background noise by means of a chi-squared test to 
determine the presence or absence of deterministic signal.  The second is called the 
recurrence plot detector since it employs the time-delay vectors used to construct the 
recurrence matrix – a concept that has shown great utility for analyzing dynamical 
systems. This detector constructs a histogram from the distances between the time-delay 
vectors, and then uses a chi-squared test to compare it to the Gamma-like distribution that 
results when only Gaussian noise is present. The recurrence plot detector has the 
advantages of a larger number of data points as well as the explicit incorporation of time 
information in the incoming signal. Unfortunately, there may exist redundancies among 
the larger number of recurrence values that weaken the performance of this approach. 
However, by judicious choice of the embedding parameters, the deleterious effect of 
redundancies are shown to be minimized. 
 
 Comparison of the performance of both detectors are given for two types of 
incoming signals in the form of Receiver Operating Characteristic (ROC) curves. In each 
case, there exists a range of signal-to-noise ratios for which the recurrence plot detector 
offers superior performance over the normality detector, thereby demonstrating that the 
recurrence matrix concept has utility for signal detection.  Appendices provide 
derivations of the relevant probability density functions as well as a procedure for 
constructing  “ideal” Gaussian background data sets. 
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Introduction 
 Detection of deterministic signals buried in white noise is an essential tactical 
requirement for present-day military platforms in order to avoid detection by hostile radar 
systems.  However, current low-probability of intercept (LPI) radar systems spread the 
energy they transmit over a large spectral range, reducing the power in the signal to a 
level below the thermal noise in the target platform’s radar-warning receiver.  
 
 A wide array of detection techniques exist for finding a signal in background 
noise. In each the general approach is the same: compute a test statistic from the data and 
compare it to a detection threshold.  Which statistic to compute and where to set the 
threshold depend on the amount of a priori knowledge one has about the signal and on 
the costs assigned to a missed detection.  For example, when detecting known signals in 
additive Gaussian noise an optimum receiver (test statistic) has been developed based on 
the likelihood ratio, yielding the Matched Filter.  The detection threshold can be set using 
any one of a number of criteria for optimality including: maximum a posteriori (MAP), 
Bayes’ criterion, and Neyman-Pearson criterion to name a few.  An extensive literature 
has also evolved to handle cases where the parameters of the signal are only partially 
known.  A thorough review is given in McDonough and Whalen1.  The case of interest in 
this paper is that in which nothing is known a priori about the parameters of the incoming 
signal.  This is the most difficult detection scenario, and some form of normality detector 
is really the only option. 
 
 This paper explores the utility of recurrence plots for detecting signals hidden in 
noise, when the signal is completely unknown and the background noise is Gaussian.  
The recurrence plot was originally constructed as a graphical tool to check stationarity in 
dynamical systems2.  It essentially quantifies correlations in a time series by keeping 
track of when the signal “recurs”; that is, returns to a previous state.  It has proven to be 
very useful in both depicting and analyzing complex, nonlinear, especially chaotic, 
systems.  Examples may be found in fields as diverse as economy and earth science, 
astrophysics and physiology3.  Applications of recurrence plot techniques to signal 
detection have also appeared in the literature4, ,5 6.  Zbilut et al, used a detector based on 
recurrence plots to distinguish deterministic signals from noise.  A detector based on 
cross-recurrence plots was used to extract signals from noise and was compared to a 
spectral detection scheme5.  Recurrence plots were also used to distinguish signal from 
noise in physiologically generated signals (EMG signal) in Filligoi .7

 
 One promising approach to signal detection based on recurrence plots focuses on 
the structure of the recurrence plot itself8.  Essentially this approach starts with the 
recognition that the points in the recurrence plot for pure Gaussian noise are uniformly 
distributed (except for the diagonal) so that the existence of structured dark and light 
patterns must be due to a signal.  This analysis develops various metrics to quantify these 
patterns and tests their performance in detecting signals.   
 
 This paper will present a different approach, based on the statistical properties of 
the points in the unthresholded recurrence plot.  For a signal-in-noise data stream 
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consisting of M independent measurements the NxN unthresholded recurrence matrix is 
formed.  This results in N(N-1)/2 data points as the recurrence matrix is symmetric about 
the diagonal.  One potential advantage of recurrence-based detectors is therefore that the 
number of data points available for processing is increased from M to N(N-1)/2 points, 
where in practice N is nearly as large as M.  Additionally, the time delay parameter used 
in constructing the recurrence plot explicitly incorporates the time information in the 
incoming signal.  This information is not included in a normality detector.  But, there is 
the disadvantage that there may be redundancies among the N(N-1)/2 data points now 
under consideration.  If these redundancies are excessive, the additional data points will 
actually be detrimental rather than advantageous.  Judicious choices for the embedding 
parameters of the recurrence matrix will minimize this problem. 
  
 In this paper, both the normality detector and recurrence-based detector are 
compared using a chi-squared test. For the normality detector, the M data points are used 
to construct a histogram, which is compared to the Gaussian distribution of the 
background noise in order to test the hypothesis of whether a signal is absent or present.  
The other detector, referred to as the recurrence plot detector, instead uses the N(N-1)/2 
distances between data points in the recurrence matrix to construct a histogram which is 
compared to a Gamma-like distribution (derived in the text) of distances between the 
Gaussian-distributed noise vectors.  The expected and observed distributions for both 
detectors are compared using a chi-squared test in order to determine the absence or 
presence of a signal.     
 
 Even though it has been shown9 that the expectation of unthresholded recurrence 
plots can often be computed simply from second-order statistical quantities, this paper 
will directly address the question of whether the advantages (an increase in available data 
from M to N(N-1)/2 points and the inclusion of temporal correlations) are sufficient to 
evince low power signals for which the recurrence plot detector provides a performance 
gain over the normality detector. 
 
 The manuscript is organized as follows.  First, there will be a brief explanation of 
recurrence plots, which introduces the mathematical notation for this paper.  Next, the 
probability distributions relevant to this analysis will be derived.  As the two detection 
approaches are formulated in detail, the importance of the precision required for the 
Gaussian distribution representing the background noise will be discussed, as well as 
binning techniques for the chi-squared test employed.  Results are presented in the form 
of Receiver Operating Characteristic (ROC) curves for various signal types and 
parameter values for which the recurrence plot detector provides a detection performance 
gain are identified.  Extensive calculations are required since the analysis is sensitive to 
several significant parameters; viz, sampling rate, embedding dimension, delay time, and 
a chi-squared statistics adjustment factor (to be defined in the text). 
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Recurrence Plots 
 
Recurrence plots were originally intended as a tool for analyzing the output of nonlinear, 
dynamical systems and have been used to estimate a host of quantities pertaining to the 
dimensionality and stability of the system being observed3.  The goal in this work, 
however, is to use the recurrence plot as a tool for exploring correlations in time series 
data and not to draw inference about the system that produced the signal.   
 
 
 Consider the vector 
  
 { }(1), (2), , ( ), ( )x x x x m x M=

G … …  
 
consisting of M real data values sampled at discrete times t = mΔt.  From this single 
vector, a new family of N time-delay vectors each of length n<M is constructed by means 
of a time delay embedding 
  
 { }( ), ( ), , ( ( 1) )   1, 2, ,iX x i x i L x i n L i N= + + − =… …  
 
where n is referred to as the embedding dimension and L is a measure of time delay.  
Clearly M=N+(n-1)L.  Hence the M one-dimensional data points have given rise to N 
vectors of dimension n. Prescriptions for selecting L,n can be found in10, however, these 
approaches were designed for use with the output of a deterministic dynamical system 
subject to relatively low levels of noise.  By contrast our application involves very high 
noise levels, thus the standard algorithms will fail.  The approach used here, therefore, is 
to vary both L and n as parameters associated with the proposed detector. 
 
 The unthresholded recurrence matrix is the NxN matrix  where ,[ i jd ]

 ,i j i jd X X= −  

is the distance between the vectors iX and jX .  In this paper, this distance will always be 
the Euclidean distance; that is, the square root of the sums of the squares of the 
corresponding component differences.  Other definitions of distance have been used in 
other applications.  This unthresholded matrix will be the concept of interest in this paper. 
 
 Note that in the literature, a standard recurrence plot compares the distances to a 
pre-determined threshold valueε , and a black dot is placed at location (i,j) if ,i jd ε≤ or a 
white dot if ,i jd ε> .  So for any threshold 0ε ≥ , the main diagonal of the recurrence plot 
will always be black.  By convention, the (1,1) location is the lower left entry of the 
recurrence plot and the (N, N) location is in the upper right corner.  Mathematically, the 
entries of the recurrence plot are given by 
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 ( )i jX XεΘ − −  

 
where Θ is the Heaviside step function 
  

 ( )
1  0
0  0

z
z

z
≥⎧

Θ = ⎨ <⎩
 

 
so a value of 1 corresponds to a black dot, and 0 to a white dot.   
 
 Consider the following simple example.  Suppose the original data vector is 

{ }0, 4, 2,3,7,9x =
G  and let n=3 and L=1.  Then N=6-(2x1)=4 and 
  

 

{ }
{ }
{ }
{ }

1

2

3

4

0, 4, 2
4,2,3
2,3,7
3,7,9

X
X
X
X

=
=
=
=

 

  
The unthresholded recurrence plot is then given by 
  

 ,

67 62 21 0

30 21 0 21
[ ]

21 0 21 62

0 21 30 67

i jd

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

  
Note that in this example the time delay vectors are all distinct, but there are clearly 
redundancies in the distance values.  
 
 Standard recurrence plots have been useful in many applications because they 
provide evidence of the underlying structure of a system. For example, compare the 
recurrence plots for a deterministic periodic function, a chaotic system, and random noise 
in Fig. (1). 
 

  
 Fig. 1.  Example unthresholded recurrence plots for Gaussian noise, a sine-wave, 
and the output of the chaotic Lorenz system. 
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Probability Distributions 
 
In order to formulate the signal detection strategies to be assessed in this paper, some 
basic probability distributions need to be calculated.  In these derivations, 1 2, , , nx x … x are 
defined to be independent Gaussian random variables, each with zero mean and 
variance 2σ .  The xi  used here are arbitrary random variables and are not related to the Xi 
defined already as the delay vectors.   Additionally, the index n is not necessarily related 
to the embedding dimension although later it will be interpreted as such.  For the 
purposes of our analysis, we require the probability distribution of the length and the 
length squared of the vector ( )1 2, , , nx x x… .  Each ix  has probability density function 
  

 ( ) 2 2/ 21  1, 2, ,
2

ix
ip x e iσ

σ π
−= = … n .  

We first derive the probability density function for 2 2
1 2 nr x x x2= + + +" .  This can be 

achieved readily if we can obtain a one-to-one transformation on Rn in which r is one of 
the transformed variables and r is also separable from the other variables in the joint 
probability density function of the transformed variables. A transformation of variables 

1 2 1 1( , , , ) ( , , , )nx x x r nθ θ −→… …  satisfying these requirements is given by 
  

 

1 1

2 1 2

3 1 2 3

1 1 2 2

1 2 2

cos
sin cos

sin sin cos

sin sin sin cos
sin sin sin sin

n n

n n

x r
x r

x r

x r
x r

1

1

n

n

θ
θ θ

θ θ θ

θ θ θ θ
θ θ θ θ

− − −

− −

=
=

=

=
=

#
…
…

 

  
  
where 0  andr≤ < ∞ 0 iθ π≤ < . Then 
  

 ( )1 1
1

, ,
n

n n
i

( )ip r Jθ θ −
=

= ∏… p x  

 
where  is the Jacobian of the transformation.  Inserting the formula for computed in 
Appendix A yields 

nJ nJ

  

 ( ) ( ) ( ) 2 222 31 /
1 1 1 2 2

1 1, , , sin sin sin
2

n

n nn r
n n np r r e 2σθ θ θ θ θ

σ π
− −− −

− −
⎛ ⎞= ⎜ ⎟
⎝ ⎠

… …  

  
The terms containing 1, , n 1θ θ −…  may be integrated out to get p(r), but, since they are all  
independent of r, they must be a constant.  It is easier to simply note that 
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2 21 / 2( ) n rp r Cr e σ− −=  
  
where 
  

 
2 2

1

1 / 2

0

n rC r e drσ

−∞
− −⎛ ⎞

= ⎜ ⎟
⎝ ⎠
∫  

  
since a probability density function must  integrate to one.  Now 
  

 
2 21 / 2

/ 2
0

2

2
12

2

n r
n

n

r e drσ

σ

∞
− −

⎛ ⎞Γ⎜ ⎟
⎝ ⎠=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∫  

so 
  

 

/ 212
2

2

n

n
C

nσ

⎛ ⎞
⎜ ⎟
⎝ ⎠=

⎛ ⎞Γ⎜ ⎟
⎝ ⎠

 

 
 and 
  

 
2 2

/ 2

1 / 2

12
2( )   0

2

n

n r

n
p r r e r

n
σ

σ

− −

⎛ ⎞
⎜ ⎟
⎝ ⎠=

⎛ ⎞Γ⎜ ⎟
⎝ ⎠

≤ < ∞  (1) 

 
 
where Γ(.) is the Gamma function.  This is the probability density function of the 
Euclidean length of n-dimensional vectors in Rn whose components are i.i.d and drawn 
from a zero mean Gaussian random process with variance σ 2. The mean of the above 
distribution is given by 
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( )

2 2

0
/ 2

/ 2

0

/ 2

1
2

2

12
2

2

1 12
2 2

122 2
12

2

2

r

n

n r

n

n

n
n

rp r dr

r e dr
n

n

n

n

n

σ

μ

σ

σ
σ

σ

∞

∞
−

+

=

⎛ ⎞
⎜ ⎟
⎝ ⎠=

⎛ ⎞Γ⎜ ⎟
⎝ ⎠

+⎛ ⎞ ⎛ ⎞Γ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

⎛ ⎞Γ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
+⎛ ⎞Γ⎜ ⎟

⎝ ⎠=
⎛ ⎞Γ⎜ ⎟
⎝ ⎠

∫

∫

 

 
and the variance by 

 

( )

2 2

2 2 2

0
/ 2

1 / 2

0

/ 2

2
/ 2 1

2

2

2 2

2

12
2

2

12 1
2 2

122 2

1
22

2

1
22

2

r r

n

n r
r

n

n

rn
n

r p r dr

r e dr
n

n

n

n

n
n

n

n
n

σ

σ μ

2μ
σ

μ
σ

σ

σ σ

∞

∞
+ −

+

= −

⎛ ⎞
⎜ ⎟
⎝ ⎠= −

⎛ ⎞Γ⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞Γ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= −

⎛ ⎞ ⎛ ⎞Γ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ + ⎞⎛ ⎞Γ⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟= −
⎛ ⎞⎜ ⎟Γ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎡ ⎛ + ⎞⎛ ⎞Γ⎢ ⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎜ ⎟= −
⎢ ⎛ ⎞⎜ ⎟Γ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎣

∫

∫

2σ

⎤
⎥
⎥
⎥

⎢ ⎥
⎦

 

Note that in the special case where n=3, these formulas reduce to 
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( ) 2 22 / 2
3

2 2

1 2   0

22

83

r

r

r

p r r e rσ

σ π

μ σ
π

σ σ
π

−= ≤ < ∞

=

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

 
Next we derive the distribution of .  Making the change of variables 
u=r

2 2 2
1 2 nr x x x= + +" 2

2 yields 
  

 

( ) ( )

2

/ 2

( 1) / 2 / 2

1/ 2

( )

12
2

2
2

n

n u

n

p r u
p u

du
dr

u e
n u

σ

σ

− −

=

⎛ ⎞
⎜ ⎟
⎝ ⎠=

⎛ ⎞Γ⎜ ⎟
⎝ ⎠

   

 
2

/ 2

/ 2 1 / 2

1
2   0

2

n

n u

n
u e u

n
σ

σ

− −

⎛ ⎞
⎜ ⎟
⎝ ⎠=

⎛ ⎞Γ⎜ ⎟
⎝ ⎠

≤ < ∞  (2) 

 
This distribution is readily recognized as a Gamma distribution, or more particularly, a 
Chi-square distribution with n degrees of freedom when σ =1.  For this distribution, the 
mean is given by 
  

 

( )

2

0
/ 2

/ 2 / 2

0

/ 2

/ 2 1

2

2

1
2

2

1 1
2 2

1
2 2

u

n

n u

n

n

n
n

up u du

u e du
n

n

n

n

σ

μ

σ

σ
σ

σ

∞

∞
−

+

=

⎛ ⎞
⎜ ⎟
⎝ ⎠=

⎛ ⎞Γ⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞Γ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

⎛ ⎞ ⎛ ⎞Γ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
=

∫

∫
 

 
and the variance by 
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( )

2

2 2 2

0
/ 2

/ 2 1 / 2 2

0

/ 2

2 4
/ 2 2

2

4 2 4 4

1
2

2

1 2
2 2

1
2 2

( 2) 2

u u

n

n u
u

n

n

n
n

u p u du

u e du
n

n

n
n

n n n n

σ

σ μ

μ
σ

σ
σ

σ
σ σ σ

∞

∞
+ −

+

= −

⎛ ⎞
⎜ ⎟
⎝ ⎠= −

⎛ ⎞Γ⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞Γ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= −

⎛ ⎞ ⎛ ⎞Γ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
= + − =

∫

∫
 

 
In the special case where n = 3, these formulas become 
 

 

( ) 21/ 2 / 2
3

2

2 4

1   0
2

3

6

u

u

u

p u u e uσ

σ π
μ σ

σ σ

−= ≤

=

=

< ∞

 

 
 The formulas derived above can be found in the literature; for example, a proof 
for (1) by means of a geometrical method may be found in Parzen11 and a proof for (2) 
by means of characteristic functions is in McDonough and Whelan1.  In fact, the case for 
n = 2 and 3 is found in many textbooks as an example of the transformation of variables.   
The straightforward proof by induction given here is included because the authors have 
not seen it in the literature. 
 
 Formulas (1) and (2) give the probability densities of the length and the length 
squared for a vector whose components are independent samples from the same Gaussian 
distribution with mean 0 and variance σ2.  However, what is needed for this paper is the 
distance between two vectors.  That is, let x1,x2,…,xn and y1,y2,…,yn be independent 
random variables chosen from the same Gaussian distribution with mean 0 and variance 
σ2, and define 
  

 ( ) ( ) ( )2 2 2
1 1 2 2

2

 andn nr x y x y x y

u r

= − + − + + −

=

"  

 
However, note that if x and y are independent Gaussian random variables with mean 0 
and variance σ2, then (x-y) is also Gaussian, again with mean 0 but now with variance 
2σ2.  In fact, we can relax the requirement that x and y have zero mean. As long as they 
have the same mean, then the result is equally valid.  Consequently, for the case of the 
distance between two vectors, formulas (1) and (2) become 
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 ( ) 2 2

/ 2

1 / 4

12
4   0

2

n

n r

n
p r r e r

n
σ

σ

− −

⎛ ⎞
⎜ ⎟
⎝ ⎠=

⎛ ⎞Γ⎜ ⎟
⎝ ⎠

≤ < ∞  (3) 

 

 ( ) 2

/ 2

/ 2 1 / 4

1
4   0

2

n

n u

n
p u u e u

n
σ

σ

− −

⎛ ⎞
⎜ ⎟
⎝ ⎠=

⎛ ⎞Γ⎜ ⎟
⎝ ⎠

≤ < ∞  (4) 

 
 
  
 

Detection Strategies 
 
Suppose we are sampling from a data stream of values of the form  
  
 ( ) ( ) ( )                1, 2, ,x m s m n m m M= + = …  
 
where the s(m) are values of a signal and the n(m) are Gaussian white noise with zero 
mean and variance σ2.  The signal may or may not be present, and the parameters of the 
signal are unknown.  Two approaches will be evaluated in this paper: the first is a 
straightforward normality detector and the second makes use of the recurrence matrix of 
the data. 
 

Normality Detector 
 
If the signal is absent, then the measured values x(m) represent just Gaussian noise n(m).  
Hence the histogram generated from the x(m) values should fit the Gaussian density 
function of the background noise.  This hypothesis is tested by means of a χ2 Goodness-
of-fit test based on the χ2 statistic 
  

 
2

1

( )K
k k

k k

o eS
e=

−
= ∑  

 
where K is the number of bins of the histogram and the ok and ek are the observed counts 
and the expected Gaussian counts in each bin, respectively.  The statistic S is compared to 
the appropriate threshold value 2

0χ  of the χ2 distribution with K-1 degrees of freedom.  If 
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2
0S χ≤ then we declare no signal present.  However, if 2

0S χ> , then we declare a signal 
present. 
 
 In the calculations to follow, K=15 bins proved to be suitable for M=100 to 200 
(the size of the signals considered in this work).  The threshold used in this detection 
scheme corresponded to a critical region of size 0.05 for the χ2  distribution.  
 
 Initially the Gaussian noise was generated using the MATLAB random number 
generator.  It was surprising how often (approximately 5% of the time) such values failed 
the χ2 test for normality.  A typical example is shown in Figure 2.  Note the 
  

 
 Fig. 2.  Comparison of MATLAB generated Gaussian deviates (left) and those 
generated from the “ideal” Gaussian (right).  The estimated distribution in the left plot 
fails the chi-squared test for normality despite the fact that the data was produced by a 
Gaussian number generator. 

 
frequent presence of spikes near the mean of the plot.  Such anomalies cannot be 
tolerated in testing our technique because these spikes produce false alarms.  For 
detection of very small signals, a much more precise representation of the background 
Gaussian noise is needed, so we developed a method for constructing data sets having a 
nearly ideal normal properties [Appendix C].  
 
 

Recurrence Plot Detector 
 
In this case, the time-delay vectors Xi for i = 1,…,N are constructed from the x(m) values 
as described before, thus incorporating the time signature of the original time series.  
Each of these vectors has length n, where n is the embedding dimension, and each 
component of Xi is a value in the original data stream which samples are assumed to be 
independent.  The NxN unthresholded recurrence plot has entries 
  
 ,i j i jd X X= −  
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which is just the distance r between the vectors as described above.  If there is no signal 
present then the original samples come from a Gaussian distribution with zero mean and 
variance σ2 and so the non-diagonal entries in the unthresholded recurrence plot follow 
the Gamma-like distribution given in Equation (3).  To avoid duplications, we only use 
the N(N-1)/2 entries above the main diagonal.  This technique could also be based on r2 
values, and then Equation (4) would be used.   
 
 The procedure is now similar to the first technique.  If there is no signal present, 
the histogram of the di,j values should fit the Gamma-like distribution of Equation (3).  
Again a χ2 Goodness-of-fit test can be applied with a threshold based on the χ2 
distribution with K-1 degrees of freedom if σ is known (K-2 degrees of freedom if σ is 
estimated from the data) 
 
 We now have many more data points than in the corresponding Normality 
Detector Test, but K=15 bins still proved to be sufficient for a valid χ2 test.  Again, if the 
χ2 value was below the threshold, we declared the signal to be absent; if above the 
threshold, we declared the signal present.  In this case, however, we found that for the 
types of signals treated in this analysis, too many false positives occurred when 
comparing S to the threshold χο

2 .  That is, the value of S was often rather large even with 
no signal present, but much larger when the signal was present.  This effect is probably 
due to the redundancies in the recurrence matrix data.  The derivation of the null 
distribution assumed independent distances when in reality these distances may contain 
redundancies.  The result is that the size of the test (the probability that the null 
hypothesis is rejected) is not commensurate with the observed Type-I error.  In this case, 
if the threshold χο

2 is set such that we expect 5% false alarms, the correlations in the data 
result in a percentage of rejections that can be much larger than 5%.  We therefore 
calibrated our test by using an adjustment factor κ to multiply the χ2 statistic, S.  This 
factor reduces the number of false positives to the correct level thus allowing for a more 
meaningful test12.  Calculations have shown that small values n=2,3,4 of the embedding 
dimension work best in this detector, and for these values κ=0.5,0.3,0.1 respectively.   
The number of data can also influence the choice of κ.  We have found that larger values 
for M require a decrease in κ value.  
 
 Embedding dimension n is one important sensitivity parameter; others are the 
delay time, L and the sampling rate of the original data stream.  Of course it is desirable 
that our detection technique will be effective for many signal types.  The optimal values 
of the key sensitivity parameters will generally be a function of the type of signal 
received.  Consequently, in practice, a bank of parameter values should be swept through 
to test for the presence of an unknown signal.  
 
 Both detectors (normality and recurrence) are compared here in terms of their 
Receiver Operating Characteristic (ROC) performance.  The ROC curve simply displays 
the probability of detection PD versus the probability of false alarm Pfa associated with 
these detectors as a function of the detection threshold.  The signal of interest was taken 
to be a 10Hz sine wave with additive Gaussian noise.  The signal-to-noise ratio (SNR) 
was taken as the average power of the signal divided by the variance of the noise.  Figure 
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(3) shows some typical results comparing detector performance as a function of signal to 
noise ratio. 
 
 

 

 
 

 Fig. 3. ROC curves associated with detecting a 10 Hz. sine-wave in Gaussian noise 
for varying SNR levels.  Sampling parameters were M=100 and Δt=0.01s.  
Embedding parameters were n=3, L=5. Threshold factor was κ=0.3. 

 
The embedding parameters used in this example were M=100, n=3, L=5.  The signal was 
sampled at intervals of Δt=0.01s.  For the recurrence-based detector the threshold 
adjustment factor was set to κ=0.3.  The results of Figure (3) are typical of those found 
using other embedding parameters.  For low SNR values, the normality detector easily 
outperforms the recurrence detector.  However, for intermediate SNR levels there 
typically exists a range where the recurrence-based detector shows superior ROC 
performance.  Changing the embedding parameters does not seem to affect the result.  
For example, using a dimension of n=2 and L=8 and κ=0.5 results in the ROC curves of 
Fig (4). 
 
 Again, for low SNR values (<10dB) the chi-square test for non-normality is the 
best performer while for higher SNR values the recurrence-based detector shows the best 
ROC performance.  The influence of the number of points and sampling rate were also  
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 Fig. 4. ROC curves associated with detecting a 10 Hz. sine-wave in Gaussian noise 
for varying SNR levels.  Sampling parameters were M = 100 and Δ t = 0.01s.  
Embedding parameters were n = 2, L = 8.  Threshold factor was κ = 0.5. 

 
explored.  Fig (5) shows the results of increasing the number of data to M =200 points 
and decreasing the sampling interval to Δt = 0.005s (thus the total duration of the signal 
is kept constant from the previous examples).  The embedding parameters used were  
n = 2, L = 8 as in the previous example.  For this number of data, an appropriate threshold 
value was determined to be κ = 0.3. 
 
 As before there exists a range of SNR values below which the normality detector 
yields the more powerful result.  Above -12dB SNR, however, the recurrence-based 
detector again shows superior performance until both methods converge to unity for the 
probability of detection for any probability of false alarm. 
 
 The results shown above hold for a variety of both embedding and sampling 
parameters.  For n>3, however, the redundancies in the recurrence plot become much 
larger so that the threshold adjustment factor must be set to values κ<0.1.  It is therefore 
apparent that there does exist a range of SNR values for which the recurrence-based   
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 Fig. 5. ROC curves associated with detecting a 10 Hz. sine-wave in Gaussian noise 
for varying SNR levels.  Sampling parameters were M=200 and Δt=0.005s.  
Embedding parameters were n=2, L=8.  Threshold factor was κ=0.3. 

 
 
 
detection schemes have some merit over the more general normality detector in detecting 
the presence of a sine-wave in Gaussian noise.  It should be stressed, however, that the 
value of these detectors is that they do not assume a priori knowledge of the incoming 
signal.  If it was known that a sine-wave was the signal of interest an optimal detector can 
be derived, depending on how much is known about the sine-wave (frequency, phase, 
etc.). 
 
As another test of the recurrence-based detector, the detection of a square wave in 
additive Gaussian noise was considered.  The embedding parameters n = 2, and L = 8 
were used along with the sampling parameters of M = 200, Δt = 0.01.  Figure (6) shows 
these results. 
 
Even for a very different type of signal, the same trend in ROC curves persists as a 
function of SNR.   
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Fig. 6. ROC curves associated with detecting a 10 Hz. square-wave in Gaussian 
noise for varying SNR levels.  Sampling parameters were M = 100 and Δt = 0.01s.  
Embedding parameters were n = 2, L = 8.  Threshold factor was κ = 0.3. 

 

Summary 
 
This work has focused on the detection of signals in noise using a detector based on the 
signal’s recurrence matrix.  Under the null hypothesis of no signal, the probability 
distribution for the entries of the recurrence matrix was derived and found to be a 
Gamma-like distribution.  Using this distribution, a chi-squared test was performed in 
order to assess whether or not some underlying signal was present.  Due to redundancies 
in the recurrence plot, this test had to be slightly modified in order to produce a 
meaningful Type-I error.  Receiver Operating Characteristic (ROC) curves were then 
used to assess the performance of this detector as a function of embedding parameters, 
signal sampling parameters, and signal-to-noise ratio (SNR).  Comparisons were drawn 
between the recurrence-based detector and a normality detector for demonstrating non-
normality of the incoming signal.  Results indicated that there is a range of SNR values 
for which the recurrence-based detector offers superior performance (in the sense of 
lower Type-II error for a given Type-I error) over the normality detector.  This behavior 
was observed for both sine wave and square wave signals in additive Gaussian noise.   
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Appendix A. 
 
Calculation of the Jacobian of the Transformation of Variables.   
 
For the transformation of variables ( ) ( )1 2 1 1, , , , , ,n nx x x r θ θ −→… …  
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where 0  andr≤ < ∞ 0 iθ π≤ < , the Jacobian is given by 
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we shall prove that 
  
 ( ) ( )2 31

1 2sin sin sinn nn
n nJ r 2θ θ θ− −−

−= …  
 
Consider Jn for a few special cases: 
 
For n = 2: 
 
  

 1 1
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r
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r
θ θ
θ θ

−
= =  

 
For n = 3: by expanding by cofactors of the first row 
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For n = 4: by expanding by cofactors of the first row 
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In general we will demonstrate that 
  
 ( ) ( ) ( )2 31

1 2 1 1 2 2, , , , sin sin sinn nn
n nJ r r nθ θ θ θ θ θ− −−

− −=… …  
 
The proof is by induction and again proceeds by expanding by cofactors of the first row.  
We have shown it above for n = 2,3,4.  Assume true for n = (K-1). Then 
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by the induction hypothesis, which is the desired formula for n = K. 
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Appendix B. 
 
Summary of Probability Density Functions 
 
 The following list provides, for ready reference, the probability density functions 
required in the body of the report.  The variables, x; x1,x2,…,xn;  y1,y2,…yn are 
independent Gaussian random variables, each with zero mean and variance σ2
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Appendix C. 
 
Construction of a data set having “Ideal” Gaussian properties 
 
As mentioned in the text, computer-generated histograms of Gaussian distributions often 
(approximately 5% of the time) fail a chi-square Goodness-of-Fit test for normality.  
Such distributions are unacceptable representations of the background noise for the 
purposes of this analysis.  Two such examples are shown in Fig. AB1 below. 
 
 

  
 Fig. C1 Two example plots showing the observed and expected counts associated 
with 10000 Gaussian deviates generated via the MATLAB random number 
generator.  The number of bins was set to K=50.  In both examples the data failed the 
chi-square Goodness-of-Fit test for threshold value 2

0χ =59.3 (corresponding to a 
Type-I error of 5%). 

 
 To test the detection strategies in this paper a nearly perfect Gaussian 
representation of the noise is needed.   In this Appendix, a method is shown to 
mathematically construct an ideal approximation to a Gaussian distribution of white 
noise; that is, a finite sequence of numbers with the following properties: 
 

1) Gaussian-shaped histogram of amplitudes 
2) Delta-function autocorrelation function and therefore a flat power spectral 

density function. 
 
 Consider the particular normal distribution N(0,1) with zero mean and unit 
variance.  The probability that such a random variable x occurs in the range a x  is 
given by 

b≤ ≤

 ( ) ( ) ( )21 1exp( / 2) / 2 / 2
22

b

a

P a x b x dx erf b erf a
π

⎡ ⎤≤ ≤ = − = −⎣ ⎦∫  

 
If x(t) is a time series whose values are independently sampled from the above 
distribution, then its autocorrelation function is given by13
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and its two-sided power spectral density 
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That is, the power spectral density is flat, independent of frequency. 
 
The process for constructing a data vector having the desired properties is as follows. 
 

1. Choose the number of points M in the data vector, the number of bins K, and the 
maximum and minimum values of the histogram, xmax and xmin, respectively. 
 
2. Then the width of each bin is ( max min) /x x KΔ = − , 
bin edges occur at  ( )( ) min ( 1)   for   1, 2, , 1ex k x k k K= + − Δ = +"  (note that this 
includes the lower edge of the lowest bin and the upper edge of the upper bin), and 
bin centers occur at ( ) min ( 1) / 2   for   1, 2, ,cx j x j j K= + − Δ = " . 
Hence there are K bin centers but  (K+1) bin edges. 
 
3. The exact (non-integer) number of entries in each bin is given by 
 

 ( ) ( )( ) ( / 2) ( 1) 2 ( ) 2 ,    1, 2, ,e ev j M erf x j erf x j j K= + − = "  

. 
 
We calculate the integer number of entries in each bin  using Matlab by 
rounding to the nearest integer,

( )rv j
( ) ( ( ))rv j round v j= . Hence, the “error” in the count in 

each bin is  ( ) ( ) ( ).rdv j v j v j= −
 
4. Once the integer number of points in each bin, , is known we construct an 
actual set 

( )rv j

jS of data values for each bin by choosing the appropriate number of points 
from a uniform distribution on the interval of values using the rule: 
 

 ( ){ }( ) ( ( ),1)j e rS x j rand v j= + Δ .  
 

Here, the Matlab function returns a set of  values uniformly 
distributed on the interval (0,1). 

( ( ),1)rrand v j ( )rv j

 
5. Append together all K number sets  to form an M-dimensional data vectorjS x′G . 
This data vector has the required property of Gaussian distribution of amplitudes but, 
due to the way the numbers were obtained, the ordering of the values contains 
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unwanted structure – structure that can be eliminated by properly “shuffling” the 
vector components. This is accomplished in Matlab by first generating a uniformly-
distributed random vector r  of the same length asK x′G . The elements of are then 
sorted in ascending (or descending) order. Since the elements of 

rK

rK  are randomly 
distributed, the indices of the sorted values should be randomly distributed and we 
use this property to shuffle the ordering of the values in x′G . The values in x′G  are re-
arranged using the indexing obtained from sorting the values in rK , resulting in the 
final data vector xG . 
 
 

 This final data vector now has all the required properties: 1) Gaussian distribution 
of amplitudes, 2) flat power spectral density, and 3) delta-function-like autocorrelation 
function.  
 
 It should be noted that the approach described above generally yields a histogram 
that is nearly, but not perfectly, Gaussian and that generally contains nearly, but not 
exactly, the number of points M specified at the beginning of the process. In some cases, 
the agreement can indeed be perfect but this is only an accident. The reason is simple. 
Although the fraction of the total number of points that should reside in any bin of the 
histogram can be calculated to any degree of precision, there is no guarantee that this 
fraction of the total number of points is an integer.  Hence, the best we can do is to round 
the required number of points to the nearest integer.  The resulting errors are surprisingly 
small as shown below. 
 
 Figure C.2 shows the histogram of actual (non-integer) values, the histogram of 
integer values, and the error in each of 32 bins for M=1024 data points. In this case the 
actual size of the data vector was 1026 . 
 
 
 
 

 
   (a)      (b) 
 

Fig. C2. Comparison of histograms for (a) calculated (non-integer) values, and (b) 
values rounded to nearest integer. 
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These two histograms are nearly identical with differences in the counts in each bin due 
entirely to the rounding process. The differences, plotted below in Fig. C3, are no longer 
than approximately 0.5 counts. 
 

 
 

Fig. C3. Discrepancy in bin occupancy between actual values and rounded integer 
values. 

 
 
The sets of values for each bin are shown in Fig. C4(a) while the shuffled version of the 
same set of values is shown in Fig.C4(b) indicating at least qualitatively the effectiveness 
of the shuffling procedure. 

 
 
 

 
 
    (a)      (b) 
 

Fig. C4. Comparison of (a) ordered and (b) shuffled values. 
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Finally, the power spectrum and autocorrelation are shown in Figs. C5 and C6, 
respectively. 
 
 

 
 
 

Fig. C5. Power spectrum of the shuffled data vector in Fig. C4(b). 
 
 
 

 
 

Fig. C6. Autocorrelation  of the shuffled data vector in Fig. C4(b). 
 

 
 

26 



 

 

References 
References 
                                                 
1 R. N. McDonough and A. D. Whalen, “Detection of Signals in Noise, 2nd edition”, 
Academic Press, San Diego, Ca. 1995. 
2 J.-P Eckmann, S. O. Kamphorst, and D. Ruelle, “Recurrence Plots of Dynamical 
Systems”, Europhysics Letters, 4(9), pp. 973-977, 1987. 
3 N. Marwan, M. C. Romano, M. Thiel, and J. Kurths, “Recurrence Plots for the Analysis 
of Complex Systems”, Physics Reports, 438, pp. 237-329, 2007. 
4 J. P. Zbilut, A. Giuliani, and C. L. Webber Jr. “Recurrence Quantification Analysis and 
Principal Components in the Detection of Short Complex Signals”, Physics Letters A, 
237, pp. 131-135, 1998.   
5 J. P. Zbilut, A. Giuliani, and C. L. Webber Jr. “Detecting Deterministic Signals in 
Exceptionally Noisy Environments Using Cross-Recurrence Quantification”, Physics 
Letters A, 246, pp. 122-128, 1998. 
6 J. P. Zbilut, A. Giuliani, and C. L. Webber Jr. “Recurrence Quantification Analysis as 
an Empirical Test to Distinguish Relatively Short Deterministic Versus Random Number 
Series”, Physics Letters A, 267, pp. 174-178, 2000. 
7 G. Filligoi and F. Felici, “Detection of Hidden Rhythms in Surface EMG signals with a 
Non-Linear Time-Series Tool”, Medical Engineering & Physics, 21, pp. 439-448, 1999. 
8 B. M. Dissinger, G. K. Rhode, R. B. Rhodes, Jr., F. Bucholtz, and J. M. Nichols, 
“Intensity Analysis of Recurrence Plots for the Detection of Deterministic Signals in 
Noise”, Naval Research Laboratory Report NRL/MR/5650—06-9004, Dec. 12, 2006. 
9 G. K. Rhode, J. M. Nichols, F. Bucholtz, and B. M. Dissinger, “Stochastic Analysis of 
Recurrence Plots with Applications to the Detection of Deterministic Signals”. 
(submitted for publication to Physica D).   
10 L. M. Pecora, L. Moniz, J. M. Nichols, and T. Carroll, “A Unified Approach to 
Attractor Reconstruction”. Chaos 17, 013110, 2007. 
11 E. Parzen, “Modern Probability Theory and its Applications”, John Wiley & Sons, Inc., 
New York, 1960. 
12 T. Schreiber and A. Schmitz, “Discrimination Power of Measures for Nonlinearity in a 
Time Series”, Physical Review E., 55(5), pp. 5443-5447, 1997. 
13 J. S. Bendat and A. G. Pierson, “Random Data Analysis and Measurement Procedures, 
3rd Edition”, John Wiley & Sons, Inc., New York, 2000. 

27 




	 
	 
	 
	 Executive Summary 
	 Introduction 
	 Recurrence Plots 
	Probability Distributions 
	Detection Strategies 
	Normality Detector 
	Recurrence Plot Detector 

	Summary 
	 Appendix A. 
	 Appendix B. 
	 Appendix C. 
	References 




