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Abstract— Polarization diversity has proved to be a useful tool
for radar detection, especially when discrimination by Doppler
effect is not possible. In this paper, we address the problem of
improving the performance of polarimetric detectors for targets
in heavy inhomogeneous clutter. First, we develop a polarimetric
detection test that is robust to inhomogeneous clutter. We run
this polarimetric test against synthetic and real data to assess its
performance in comparison with existing polarimetric detectors.
Then, we propose a polarimetric waveform-design algorithm to
further improve the target-detection performance. A numerical
analysis is presented to demonstrate the potential performance
improvement that can be achieved with this algorithm.

I. INTRODUCTION

The detection of static or slowly moving targets in
heavy-clutter environments is considered a challenging prob-
lem, mainly because it is not possible to discriminate the
target from the clutter using the Doppler effect. Polarization
diversity provides additional information that enhances the
detection of targets, particularly under the conditions described
above. Detection performance could be further improved if the
polarization of the transmitted signal were optimally selected
to match the target polarimetric aspects.

Earlier work in the field of polarimetric detection has
addressed the design of detectors under the assumption that
training data is available [1]-[3]. The performance of these
detectors can be severely degraded in the presence of in-
homogeneous and non-stationary clutter. To overcome this
problem, the application of compound-Gaussian distributions
for modeling the global behavior of nonhomogeneous clutter
has been proposed. However, the use of non-Gaussian models
increases the difficulty of developing efficient detection algo-
rithms. For instance, the detection statistic derived from the
scheme presented in [4] has a closed-form expression only for
the special case of two polarimetric channels, and the detector
proposed in [5] does not support the constant false-alarm rate
(CFAR) property with respect to the clutter covariance.

In this paper, we first develop a polarimetric detector
whose decision-making capability is based only on the data
collected from the range cell under test, without resorting to
secondary data or prior knowledge of the target and clutter.
This feature makes it robust against inhomogeneous and
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non-stationary clutter. Later in this paper, we address the
problem of waveform design by presenting an algorithm for
selecting the waveform polarization. The developed test statis-
tic has a closed-form expression that incorporates information
about the transmitted signal polarization. Hence, analysis of
detection performance is used to select the next transmission
polarization, which improves the target detection.

II. POLARIMETRIC RADAR MODEL

We consider a mono-static radar capable of transmitting
waveforms with any arbitrary polarization on a pulse-by-pulse
basis. In addition, we assume that the radar system illuminates
a point target. The recorded data from the range cell under test
consist not only of the target echoes but also of the undesired
reflections from the target environment (clutter).

A. Polarimetric Data

The output of a diversely polarized array of Q sensors
receiving the echoes from the cell under test can be expressed
as

y(t) = B
(
St + Sc

)
ξ(t) + e(t), t = 1, . . . , N, (1)

where

• The Q × 1 vector y(t) is the complex envelope of the
measurements.

• The Q × 2 matrix B is the response of the diversely
polarized sensor array. If the receiver array is a vector
sensor [6], the array response is given by

B =




− sinφ − cosφ sinψ
cosφ − sinφ sinψ

0 cosψ
− cosφ sinψ sinφ
− sinφ sinψ − cosφ

cosψ 0



, (2)

where φ and ψ are the azimuth and elevation angles of the
cell under test, respectively. For a conventional polarized
radar measuring the horizontal and vertical components
of the electric field and assuming these two sensors are
orthogonal to the direction that points toward the cell
under test, the array response matrix is B = I2.
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• The complex scattering matrix S represents the polariza-
tion change of the transmitted signal upon its reflection
on the target or clutter:

S =
[
s11 s12
s21 s22

]
, (3)

where the variables s11 and s22 are co-polar scattering
coefficients and s12 and s21 are cross-polar coefficients.
For the mono-static radar case, s12 = s21. The super-
scripts t and c refer to the target and clutter.

• The vector ξ(t) is the narrowband transmitted polarized
signal which can be represented by

ξ(t) =
[
ξ1
ξ2

]
s(t) =

[
cosα sinα
− sinα cosα

] [
cosβ
j sinβ

]
s(t),

(4)
where ξ1 and ξ2 are the signal components on the
polarization basis of the transmitter, α and β are the
orientation and ellipticity angles, respectively, and s(t)
is the complex envelope of the transmitted signal.

• The vector e(t) represents the thermal noise.

Equation (1) can be written as

y(t) = s(t)Bξ̄ (µ + x) + e(t), (5)

where the scattering coefficient vectors of the target and
clutter are µ = [sthh, s

t
vv, s

t
hv]

T and x = [schh, s
c
vv, s

c
hv]T ,

respectively, which have dimension P = 3. The polarization
matrix ξ̄ is

ξ̄ =
[
ξ1 0 ξ2
0 ξ2 ξ1

]
. (6)

The time samples can be stacked in one vector of dimension
NQ× 1:

y =
(
s ⊗Bξ̄

)
(µ + x) + e, (7)

where s = [s(1), . . . , s(N)]T and ⊗ is the Kronecker product.
Piling together the data corresponding to pulses of different
polarization yields

y = Aµ +Ax + e, (8)

where A is a M × P (M = KNQ) complex matrix that
represents the system response:

A =




s ⊗Bξ̄1
...

s ⊗Bξ̄K


 , (9)

and ξ̄k is the polarization matrix of each diversely polarized
pulse (k = 1, . . . ,K).

B. Statistical Model

We assume that the target is a small man-made object;
hence, µ is a deterministic vector. On the other hand, the
clutter in the range cell under test can be considered as a large
collection of point scatterers producing incoherent reflections
of the radar signal. Then, x is a zero-mean complex Gaussian
random vector with covariance matrix Σ. The noise e is a
zero-mean complex Gaussian random vector with covariance
matrix σIM , where IM is the M × M identity matrix. In

addition, we assume that the clutter reflections and the thermal
noise are statistically independent.

The radar dwell consists of a series of pulses that can be
seen as “snapshots” of the range cell under test. If the pulse
duration is short with respect to the dynamic of the target and
its environment, it is reasonable to assume that their scattering
coefficients are constant during each pulse. However, from
pulse to pulse, we consider the clutter scattering coefficients
as independent realizations of the same random process. Then,
the distribution of each snapshot is

yd ∼ CN (Aµ, AΣAH + σIM ), d = 1, . . . , D, (10)

where D is the total number of snapshots or pulses in the
radar dwell and H denotes the conjugate transpose operator.

C. Known and Unknown Model Parameters

We assume the system response matrix A is known, since
we consider that the receiver antenna array has been calibrated.
In addition, we assume that the power of the thermal noise
σ is known, because it can be easily estimated from the
recorded data when no signal has been transmitted. However,
we suppose that we have no prior knowledge about the target
and the clutter, nor do we count on a secondary data set for
estimating the statistical properties of the clutter. Hence, the
vector µ and the matrix Σ are the unknown parameters of the
statistical data model (10).

III. DETECTION TEST

We aim to decide whether a target is present or not in the
range cell under test, based on the recorded data. Then, the
decision problem consists of choosing between two possible
hypotheses: the null hypothesis H0 (target-free hypothesis) or
the alternative hypothesis H1 (target-present hypothesis){ H0 : µ = 0, Σ

H1 : µ �= 0, Σ (11)

where the matrix Σ is considered as a nuisance parameter.
Next, we derive the generalized likelihood ratio (GLR) test
[7] and study its performance. We omit derivation details in
this paper due to space limitation; refer to [10] for an extended
version of this paper.

A. GLR Test

The logarithmic GLR test decides H1 if

lnLGLR = ln f1(y1, . . . ,yD; µ̂1, Σ̂1) −
ln f0(y1, . . . ,yD; Σ̂0) > γ, (12)

where f0 and f1 are the likelihood functions under H0 and
H1, Σ̂0 and Σ̂1 are the MLEs of Σ under H0 and H1, µ̂1

is the MLE of µ under H1, and γ is the detection threshold.
For simplicity of notation we will omit references to the data
in the arguments of the functions f0 and f1 in the rest of the
paper.

We start the derivation of the GLR test by determining the
likelihood functions and MLEs of the unknown parameters.
Under hypothesis H0, it is assumed that µ = 0; then

ln f0(Σ) = −D [
M lnπ + ln |C| + tr(C−1S0)

]
, (13)



where C = AΣAH +σIM is the theoretical covariance matrix
of the data, defined in (10), and S0 is the sample covariance
matrix

S0 =
1
D

D∑
d=1

ydy
H
d . (14)

The MLE of Σ is

Σ̂0 = A+S0A
+H − σ(AHA)−1, (15)

where A+ = (AHA)−1AH is the generalized matrix inverse.
Under hypothesis H1, the likelihood function is

ln f1(µ,Σ) = −D
[
M lnπ + ln |C| + tr(C−1C̃1)

]
, (16)

where

C̃1 =
1
D

D∑
d=1

(yd −Aµ) (yd −Aµ)H
. (17)

The MLE of the unknown parameters are

µ̂1 = A+ȳ, (18)

Σ̂1 = A+S1A
+H − σ(AHA)−1, (19)

where ȳ is the sample mean vector

ȳ =
1
D

D∑
d=1

yd, (20)

and S1 is the sample covariance matrix

S1 =
1
D

D∑
d=1

(yd − ȳ) (yd − ȳ)H
. (21)

Then, substituting the MLEs and likelihood functions in (12),
and after some mathematical simplification, the GLR test can
be written as

LGLR =
[
1 + ȳHA

(
AHS1A

)−1
AH ȳ

]D

. (22)

Since (22) is a monotonically increasing function of the second
term inside the brackets, an equivalent detection test statistic
can be defined as

TGLR = ȳHA
(
AHS1A

)−1
AH ȳ. (23)

B. Detection Performance

Applying Corollary 5.2.1 from [8], it is straightforward to
verify that the detection statistic (23) is distributed as follows

TGLR
D − P

P
∼

{ F2P,2(D−P ) under H0

F ′
2P,2(D−P )(λ) under H1

(24)

where Fν1,ν2 denotes an F distribution with ν1 and ν2 degrees
of freedom, and F ′

ν1,ν2(λ) denotes a non-central F distribu-
tion with ν1 and ν2 degrees of freedom and non-centrality
parameter λ. The non-centrality parameter is given by

λ = 2DµH
[
Σ + σ

(
AHA

)−1
]−1

µ. (25)

Thus, the detection performance becomes

PFA = QF2P,2(D−P )(γ
′)

PD = QF ′
2P,2(D−P )(λ)(γ′), (26)

where Q is the right-tail probability function [7, Chap. 2] and
γ′ is the detection threshold for the required probability of
false alarm. In particular, note that the expression for PFA does
not depend on the covariance of clutter and thermal noise, nor
on the transmitted signal; hence, equation (23) is a CFAR test.

C. Detector Performance in Inhomogeneous Clutter

A significant characteristic of the detector presented in this
paper is that the test statistic (23) is computed using only data
from the cell under test. No assumption is required about the
range homogeneity of the clutter. Thus, the detector is robust
against spatially fluctuating clutter.

To support this assertion, the PFA is computed using 5 ·105

runs of Monte Carlo simulations in the presence of inhomo-
geneous clutter. The clutter echoes are assumed to follow a
compound-Gaussian distribution with covariance matrix τΣ.
The texture τ has a generalized Gamma probability density
function [4]:

p(τ) =
1

Γ(ν)

(ν
δ

)ν

τν−1 exp
(
−ν
δ
τ
)
, (27)

where ν is the order parameter and δ is the average power.
Note that ν = ∞ corresponds to clutter echoes with Gaussian
distribution, but when ν decreases, they deviate from Gaus-
sian. Additional information about the simulation setup is as
follows. The transmitted signals are rectangular pulses, which
are transmitted in a sequence of alternating vertical (V) and
horizontal (H) polarization (K = 2). The radar dwell consists
of 10 repetitions of this polarimetric sequence (D = 10).
On the receiver side, samples of the V and H electric field
are recorded (Q = 2) at a rate of one sample per pulse
(N = 1). Since the simulations are intended to compute the
PFA, no target is considered. The average power of the texture
is δ = 50 and the covariance of the speckle component is
Σ = I3.

For comparison purposes, we also compute the performance
of two other polarimetric detectors that use secondary data:

• Polarization-space-time GLR (PST-GLR): This detector
was derived under the assumption of homogeneous Gaus-
sian clutter [1].

• Texture free GLR (TF-GLR): This detector was
formulated assuming that the clutter follows a
compound-Gaussian distribution [4].

In Fig. 1, the PFA of our detection test TGLR, as well as of
the PST-GLR and TF-GLR tests, is plotted as a function of the
order parameter of the clutter texture distribution. For the latter
two tests, we consider 80 adjacent range cells for generating
the secondary data. We observe that the performance of our
detector TGLR and the TF-GLR test remains constant at the
designed false-alarm rate. However, there is a discrepancy
between the design and the actual clutter that increases the
probability of false alarm for the PST-GLR test as the clutter
process departs from being Gaussian.

D. Detector Performance Using Real Data

To evaluate the performance of the polarimetric detectors
in a real application situation, we use data collected at the
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Fig. 1. Probability of false alarm as a function of the order parameter ν of
the clutter texture distribution.
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Fig. 2. Magnitude in range and time domain of the IPIX radar dataset
stare1, collected on November 11, 1993. The target location is indicated by
the markers “>” and “<”.

Osborne Head Gunnery Range (OHGR), Dartmouth, Nova
Scotia, Canada, with the McMaster University IPIX radar [9].
Specifically, we use the data recorded on November 11, 1993.
Fig. 2 shows the magnitude of the echoes from a small target in
inhomogeneous sea clutter of the four polarimetric channels:
HH, VH, VV, and HV.

Fig. 3 shows detection maps for the TGLR, PST-GLR and
TF-GLR tests, setting the threshold for PFA = 10−3. For the
latter two tests, a guard region of two range cells on either
side of the cell under test is used to avoid the leakage of
the target energy into the secondary data. We observe that
our detection test finds the true position of the target with
only a few false detections despite the strong clutter echoes,

T
GLR

> <

Baseline: PST−GLR

> <

Baseline: TF−GLR

R
an

ge

> <

Time

Fig. 3. Detection map in range and time domain for the IPIX radar
dataset stare1, collected on November 11, 1993. Black pixels indicate that the
detection statistic is larger than the threshold. The target location is indicated
by the markers “>” and “<”.

which can be appreciated from Fig. 2. On the other hand,
the PST-GLR has high false-alarm rate due to the presence
of inhomogeneous clutter, as was predicted in the previous
subsection. The TF-GLR test greatly reduces the false-alarm
rate with respect to the PST-GLR test; however, it still remains
considerably high.

We acknowledge that comparing the TF-GLR test with the
other two is not strictly fair, since the closed form of this test
was developed for only two polarimetric channels (we have
used HH and VV for the previous results). Our goal is not to
extend the work in [4] but to show that polarimetric detection
tests using secondary data may have larger false false-alarm
than their designed value, in the case of inhomogeneous
clutter.

IV. TARGET DETECTION OPTIMIZATION

We aim at improving target detection by optimizing the
design of our system. In the previous section, we have shown
that the target probability of detection depends on the system
characteristics through the non-centrality parameter λ, which
in turn depends on the system response A. We recall that
matrix A carries the information of the transmitted waveform
and the receiver sensor array. Our optimization approach
consists of designing the matrix A in order to maximize the
parameter λ, and consequently the probability of detection.

In order to find the value of the matrix A that maximizes
the parameter λ, we rewrite Equation (25) as

λ

2D
= µHΣ−1µ − µH

(
Σ +

ΣAHAΣ
σ

)−1

µ. (28)

Maximizing λ, given µ and Σ, is equivalent to minimizing
the second term of (28). Assuming that η is a vector whose
entries are the parameters of the transmit waveforms, the
system response matrix is parameterized as A = A(η). Thus,



to improve detection, we seek

η̂ = arg min
η

{
µH

[
Σ +

ΣAH(η)A(η)Σ
σ

]−1

µ

}
. (29)

We first solve the product AHA using the system response
matrix given by (9), obtaining

AHA = cPs

K∑
k=1

ξ̄H
k ξ̄k, (30)

where the value of the coefficient c depends of the receiver
sensor array, and Ps is the transmit signal energy:

Ps =
N∑

t=1

|s(t)|2. (31)

The constant c for a conventional V/H sensor array is c = 1;
and for the electromagnetic vector sensor is c = 2. Thus,
the performance of our polarimetric detector does not depend
on the pulse envelope of the waveform but rather on the
polarization parameters η = [α1, β1, . . . , αK , βK ].

We mention here that in a real application the true values
of µ and Σ are not known. Instead, their estimates µ̂1 and Σ̂1

should be used. Nevertheless, solving Equation (29) with the
true target and clutter values provides an upper bound of the
detection improvement.

A. Simulation Example

In order to study the detection improvement by optimally
selecting the signal polarization, we design a simple problem.
We assume a system in which the first pulse is vertically
polarized and the second can be of any arbitrary polarization.
When the second pulse is horizontal, this system corresponds
to a conventional polarimetric radar. Fig. 4 shows the average
detection performance of 1000 cases where parameters µ and
Σ were randomly selected. The figure shows the average
performance of the conventional system (the second pulse
has fixed H polarization) in addition to the results obtained
when the polarization is optimally selected to satisfy Equation
(29) and when the worst possible polarization is selected. We
observe that the performance of the conventional system is
somewhere in between the optimal and worst polarization.
Specifically, the optimal polarization shows, for PD = 0.5,
a reduction of 1.5dB of target-to-clutter ratio with respect to
the conventional system and 3.8dB with respect to the worst
polarization.

V. CONCLUSIONS

In this paper, we addressed the problem of detecting small
and slowly moving targets in heavy inhomogeneous clutter
by exploiting polarization diversity. To improve the detection
performance, we first developed a new polarimetric detector
that is robust against space and time variations of the clutter.
The proposed detector decides the presence of a target based
only on the data recorded from the cell under test, without
requiring secondary data or prior knowledge about the clutter.
We tested this detector with synthetic and real data, and it
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Fig. 4. Detection performance of the GLR test statistic TGLR as a function
of the target-to-clutter ratio, for PFA = 10−3.

demonstrated a significant performance improvement with re-
spect to other polarimetric detectors. An additional advantage
of our detection algorithm is that it is computationally less
intense because it does not require recording and processing
of training data. Furthermore, we proposed an adaptation rule
for designing the transmit polarization by maximizing the
non-centrality parameter of the detector distribution in order
to improve the target-detection performance. We showed that
the detection performance depends on the signal polarization,
but no on the pulse envelope. A numerical experiment was
presented to demonstrate the performance improvement that
could be obtained from the adaptation rule.
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