

AFRL-RI-RS-TR-2007-244
Final Technical Report
November 2007

EFFICIENT PATHFINDING IN VERY LARGE
DATA SPACES

Cycorp, Inc.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Public
Affairs Office and is available to the general public, including foreign nationals. Copies
may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2007-244 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

PETER J. ROCCI, Jr. JOSEPH CAMERA, Chief
Work Unit Manager Information & Intelligence Exploitation Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

NOV 2007
2. REPORT TYPE

Final August 2006 - September 2007
3. DATES COVERED (From - To)

5a. CONTRACT NUMBER

FA8750-06-C-0003

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

EFFICIENT PATHFINDING IN VERY LARGE DATA SPACES

5c. PROGRAM ELEMENT NUMBER
92498F

5d. PROJECT NUMBER
RAPD

5e. TASK NUMBER
01

6. AUTHOR(S)

Douglas B. Lenat, Keith Goolsbey , Kevin Knight and Pace Smith

5f. WORK UNIT NUMBER
04

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Cycorp, Inc.
7718 Wood Hollow
Austin TX 78731-1645

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RIED
525 Brooks Rd
Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2007-244

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# WPAFB 07-0376

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This project created a corpus of large test problems relevant to the Intelligence Community (IC). These problems required bringing
together only facts and rules from the unclassified OpenCyc knowledge base. Because many current theorem provers are unable to a
reason with (or even load) an IC-sized knowledge base, six different ‘levels’ of problems were created, each containing
progressively larger theories. Dozens of Automatic Theorem Proving (ATP) researchers are now heavily engaged in attacking more
and more of these six new TPTP problem sets. In addition to challenging the theorem-proving community, this project contained a
series of experiments to assess and, where possible, improve the efficiency of Cyc’s general inference engine. These experiments
identified areas for immediate improvement, and approximately one full factor of 10 speedup was obtained just in the course of
carrying them out and analyzing their results.

15. SUBJECT TERMS
Knowledge Bases, Theorem Provers, Inference, Reasoning

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Peter J. Rocci, Jr.

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

62
19b. TELEPHONE NUMBER (Include area code)

N/A
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

 i

Table of Contents

1. Introduction... 1

2. Experiments Enhancing A Single Theorem Prover’s Reasoning Capabilities 4

2.1 Using Reinforcement Learning to Improve Tactical Decision-making.............. 6

2.2 Leveraging Prior Similar Queries: Cased-based Tactician................................. 9

2.3 Knowledge Clustering .. 22

3. Challenging the Theorem Proving Community.. 25

3.1 New Classes of TPTP Problems ... 25

3.2 FOL Theorem Prover Integration Feasibility Experiments 34

3.3 FOL community Results ... 39

4. Conclusions and Recommendations ... 41

4.1 Project Results .. 41

4.2 The Path Forward: Further Enhancing Cyc’s Reasoning 42

4.3 The Path Forward: Harnessing the Machine Reasoning Community............... 44

5. References... 45

6. List of Symbols, Abbreviations and Acronyms.. 46

Appendix A. CADE-21/ESARLT Talk Overview... 47

Appendix B. Relevant Chaff Experiments ... 51

 ii

List of Figures and Tables

Figure 1: Architecture of the Cyc Inference Engine……………………………..………..5

Figure 2: Time to first answer results for the RL Tactician and the Balanced Tactician... 8

Figure 3: Generation of a Proof Spec from a set of answers to a prior query………...…10

Figure 4: Use of a Proof Spec to increase efficiency in answering a new query………..11

Figure 5: Comparison of complete total time with and without the Proof Spec
Tactician………………………………………………………………………………....13

Figure 6: Comparison of time to first answer with and without the Proof Spec
Tactician..………………………………………………………………………………..14

Figure 7: Comparison of time to first answer with and without the Proof Spec
Tactician.……………………………………………………………..………………….14

Figure 8: Comparison of total time with and without the Proof Spec Tactician………...16

Figure 9: Speedup signature of the Proof Spec Tactician………………………….…….17

Figure 10. Comparison of time to first answer with and without the Proof Spec
Tactician…………………………………………………………………………………18

Figure 11. Speedup signature of the Proof Spec Tactician………………………....……19

Figure 12. Comparison of total time with and without the Proof Spec Tactician….…....20

Figure 13. Speedup signature of the Proof Spec Tactician…………………….……..….21

Figure 14. A rule co-occurrence heuristic………………………………………….….…22

Figure 15. Comparison of time to first answer with and without the rule connectivity
heuristic……………………………………………………………………….……..…...23

Figure 16. Time versus Theory Size with SPASS………………………………….……35

Figure 17. Cyc’s performance on an example of TPTP problems versus various scaled
versions of the problem for E and SPASS…………………………………………….…38

 iii

Abstract

The amount of data available to US Intelligence Community (IC) is growing far faster
than the community’s ability to identify the paths through this data that represent critical
patterns of information. And the IC is held responsible – by the media, hence the public,
hence Congress – in hindsight for not having connected an “obvious” set of dots, even
when those data were needles hidden in acres of haystacks.

There have been a very large number of automated inference efforts over the past two
decades which could have served as “forcing functions”, as drivers to get researchers and
developers to tackle this problem of finding paths (of potential interest to analysts) in
enormous datasets. But unfortunately each problem, each project, has had its own
idiosyncratic features that could be used to advantage – to cut ontological corners, as it
were – and therefore what has evolved, during these two decades, is a proliferation of
specialized reasoning systems that fill various narrow niches. Some of them achieve
lightning-fast performance by drastically restricting the expressiveness of their
representation language, or by prohibiting incremental updates or additions to their data
base, or by assuming one consistent, global information-space, etc. We say
“unfortunately” because the overall problem of efficient IC pathfinding involves dealing
with data which are complicated assertions (“Israeli intelligence now believes that
HAMAS will not oppose a U.S. demand that at least some of its…”), a continual stream
of realtime updates, multiple contexts and multiple belief systems, etc.

So each of these various specialized reasoning systems, while useful for the problem it
was designed and built for, is ill-matched to the full IC pathfinding problem. And yet
they are just so damn fast at what they can handle, compared to general theorem provers!
Is there some way we can take advantage of this, some way we can harness them, for the
general IC pathfinding task? That is the question we addressed in this project. Our basic
hypothesis was that some of these specialized reasoners might be able to at least solve
some sub-goals, some sub-problems. If we could characterize which ones were good for
which types of subproblems, and delegate to each one the specific subproblems it would
be efficient at working on, then a “community” of n reasoners might be able to solve a
top-level problem more efficiently than any one of them, in fact in less than 1/nth time
the that any one of them would have taken for that overall problem. In other words, our
original motivation was to identify synergies between state-of-the-art machine reasoning
systems such as SPASS, VAMPIRE, E, on the one hand, and Cyc’s expressiveness and
generality, its ability to model and attack complex problems more representative of those
facing the IC, on the other hand.

The project originally aimed to bring together dozens of leading players in the machine
reasoning community to identify specific types of problems for which different inference
techniques were most effective; and to use Cyc, whose architecture already provides
support for a community of reasoning agents (see Figure 1), as the integration test bed.
There was a nearly-unanimous positive reaction and willingness to participate in such an
effort, by the worldwide theorem proving community (26 out of 28 invitations resulted in
such acceptances).

 iv

However, just as the project was to begin, its budget was reduced by an order of
magnitude. Working with our government technical program managers and
“champions”, we worked to scale it back in a way that allowed it to still address these
core issues, albeit via drastically more tightly focused tasks. In essence, the strategy
became one of communicating with, exciting, involving, and thereby engaging (and at
least partially “harnessing”) the worldwide theorem-proving community. I.e., our goal
became to get them to focus not just on the third decimal digit of performance of their
reasoning systems when applied to a set of “toy” problems, but also to add into their
sights some much larger reasoning problems that are on the order of those needed to do
IC pathfinding, larger in both the sense of number of axioms (assertions, data points) and
in the sense of more sophisticated sorts of axioms involving quantifiers, modals, etc., as
we exemplified above.

To that end, we created a corpus of IC-sized test problems, problems which while large
(in cardinality and sophistication) required bringing together only facts and rules from the
unclassified OpenCyc knowledge base. We began dialogues with the theorem-proving
community: going to their conferences, giving talks there, exciting them about this new
level of problem, and formatting and sharing with them this new corpus of problems in
their own accepted format, namely TPTP (which stands for Thousands of Problems for
Theorem Provers; see http://www.tptp.org). Somewhat to the surprise of their creators,
many of the leading automatic theorem proving (“ATP”) programs were unable to even
load these problems, due to their size, and others took literally months of cpu time to load
a single problem. Because many current theorem provers are unable to a reason with (or
even load) a Cyc-sized – an IC-sized – knowledge base, six different ‘levels’ of problems
were created, each containing progressively larger theories. Dozens of ATP researchers
all over the world are now heavily engaged in attacking more and more of these six new
TPTP problem sets.

In addition to challenging the theorem-proving community, this project contained a series
of experiments to assess and, where possible, improve the efficiency of Cyc’s general
inference engine. These experiments identified areas for immediate improvement, and
approximately one full factor of 10 speedup was obtained just in the course of carrying
them out and analyzing their results. I.e., Cyc now runs about 10 times faster than it did
one year ago, because of this project. This reflects just the lowest-hanging fruit of the
experiments; the also provided several indications of opportunities where additional
inference techniques could, in the future, be cost-effectively brought to bear, to gain
possibly another order of magnitude speedup. And we even more firmly believe in our
original hypothesis about the utility of characterizing and harnessing a “team” of the
world’s best specialized reasoners; we now believe that there is yet a third order of
magnitude speedup possible through that activity. We hope that the U.S. is the first to do
that, and that the U.S. intelligence community reaps the early benefits from it.

http://www.tptp.org

 1

1. Introduction
The amount of data available to the US Intelligence Community (IC) continues to grow at
an accelerating – and often alarming – rate, far outpacing the rate of increase in brute
force computing power. Even worse, the connections among this growing mass of data,
representing the information patterns indicative of potential threats or opportunities, is
expanding faster still. If the IC is to retain its ability to find the proverbial needles in this
explosively growing data hayfield, there must be dramatic increases in the efficiency with
which data is processed and information gleaned from it.

The good news is that the past decade has shown some promising advances in machine
reasoning and automated inference. This included the progress along a number of fronts
within the theorem proving community. As initially proposed, the Efficient Pathfinding
project aimed to work with this community on a focused set of problems with the dual
goals of 1) identifying best-of-breed solutions (e.g., theorem provers) for specific classes
of reasoning problems and leveraging those from within more general Cyc reasoning,
when appropriate, and 2) using Cyc to generate problem sets that would represent
“stretch goals” for those existing technologies.

When the budget and scope of the initially proposed project were substantially scaled
back, by approximately one factor of 10, the project objectives were modified
accordingly. The spirit of the original proposal was maintained as best it could be: to
dramatically increase the community’s joint ability to successfully attack problems of a
complexity comparable to those faced by the IC, by increasing the effectiveness of
individual reasoning systems (including, of course, Cyc) and/or by exploring the
synergistic use of multiple theorem provers, allowing each to play to its strength.
However, the extent of these activities, in particular the latter, was, of necessity, scaled
back.

A set of key tasks were identified that would both produce tangible interim results as
well as lay the foundation for subsequent (2008+) actions by, and interactions with, the
larger ATP (automated theorem proving) community. These tasks fell into two main
categories:

• The first set of tasks comprised a set of experiments that evaluated the efficiency
and effectiveness of Cyc’s reasoning capabilities. These experiments then
explored – and quantitatively measured – the impact of (potential) enhancements
to Cyc’s reasoning processes, for example different meta-reasoning (tactician) and
meta-meta-reasoning (strategist) reasoning modules (see Figure 1). In addition to
providing substantial improvements in both inference speed and the quality of the
resulting answers, these experiments also established an evaluation framework
that could be extended and applied to assessing other reasoning engines.
Furthermore, some of these experiments examined the effect of meta-reasoning
within Cyc, using, for example, machine learning techniques to determine which

 2

rules often co-occur within a proof. This meta-reasoning is the framework for, and
the first step toward, enabling cross-reasoner “harnessing”: the integration of
additional types of reasoning engines (such as neural networks) that may be better
suited to various particular subtasks, achieving as a result a speedup that is
potentially dramatically more than linear in the number of different reasoners
being harnessed together.

• The second set of tasks focused more directly on using Cyc’s knowledge base as a
means to assess and stretch the current capabilities of a range of theorem provers.
The automated theorem proving community has made substantial strides in part
because of their ability to settle on a common representation format and a large
corpus of shared evaluations, namely the “Thousands of Problems for Theorem
Provers” test compendium (TPTP)—see www.tptp.org . Prior to this project,
there was a chasm between the types and complexity of knowledge captured in
the Cyc knowledge base and that being used by the TPTP community. These
heavily-TPTP-tuned theorem provers competed with each other and gradually
evolved into a state where they are extremely efficient when addressing a certain
class of problems − in some cases very small (a few tens of axioms) problems,
and in some cases larger but very narrowly constrained problems (e.g., assigning
rooms for courses at a university, given constraints on buildings, teachers, etc.,
where the constraints may be numerous but they are all very similar and are easily
stated within a simple constraint language such as SAT). Those are exactly the
sort of problems in the TPTP list, at least until this project got underway. But
these theorem provers are constrained in numerous ways that prevent them from
successfully solving (and, in many cases, even loading) the types of problems that
Cyc addresses: large numbers of axioms over a very large vocabulary, and ones
that are complicated enough to make it cost-effective to state them in full first
order logic or higher order logic. Those are exactly the sorts of problems that the
Intelligence Community faces continually: massive amounts of data, and complex
assertions (e.g., source x overheard person y say that they were concerned that in
some rural city of country z next month there will be a meeting between…)
Therefore, part of this project set out to bridge this divide, by creating a series of
evaluations, in a form directly usable by the TPTP community, reasoning
problems to challenge that community in ways that the TPTP problem set hitherto
had not done, IC-sized reasoning problems to get them to identify and overcome
some of their current limitations. A fully unclassified Cyc-derived TPTP problem
set was presented at the Empirically Successful Automated Reasoning in Large
Theories workshop (see http://www.cs.miami.edu/~geoff/Conferences/ESARLT/)
last month, at the 21st Conference on Automated Deduction (CADE-21, which
was held in Bremen, Germany, from July 15-20, 2007) and that presentation was
very well received. It was agreed enthusiastically that those large problems will
now officially become part of the thousands of problems for theorem provers on
the www.TPTP.org website, and will thereby harness the ATP community to
drive the further development of IC-community-relevant theorem provers.

http://www.tptp.org
http://www.cs.miami.edu/~geoff/Conferences/ESARLT
http://www.TPTP.org
http://www.cs.miami.edu/~geoff/Conferences/ESARLT

 3

A guide to the layout of the remainder of this final report: In the following section,
Section 2, the experiments and their resulting impacts on Cyc’s reasoning (and, therefore,
on efficient pathfinding) are described. Next, in Section 3, the generation of the new
TPTP problem set is discussed in detail, along with a description of experiments using
this problem set – experiments to explore the feasibility of integrating Cyc with other
theorem provers. Finally, Section 4 presents a review of the accomplishments of this
project in the context of the originally proposed objectives (i.e., pre-down scoping to
meeting the scaled-back budget) and offers suggestions for the potential next steps most
likely to bring the IC further along the road of successfully tackling its efficient
pathfinding challenges.

 4

2. Experiments Enhancing A Single Theorem Prover’s
Reasoning Capabilities

Three families of experiments were designed to measure the inference capabilities of a
large-KB-oriented theorem prover (Cyc) and to explore and assess the impacts of three
different approaches to significantly speeding up its reasoning algorithms.

The resulting improvements provided immediate benefit in terms of improving both
speed and quality of Cyc’s query answering. But much more significantly, and more
broadly applicable, the results of these experiments point to several potential areas for
cost-effective insertion of other, different (from Cyc and from each other) reasoning
technologies (e.g., SPASS, E, VAMPIRE) into a multi-reasoning-system “harness”, as
was originally envisioned for this project. If and when the project is able to ramp up to --
or restart and tackle -- its original mission, the results of these experiments will enable us
(or whoever takes up that mantle) to jump-start that project, so that the time spent this
past year on this part of the effort can be leveraged dramatically and directly.

The three approaches examined were:

1) using reinforcement learning to improve tactical decision-making,

2) leveraging prior inference results on similar queries, and

3) clustering knowledge to effectively reduce the size of the search space for a given
query.

These three (families of) experiments, and their results, are described the three
subsections, Sections 2.1, 2.2, and 2.3.

 5

2.1

The basic inference engine in Cyc (and similar inference engines) consists of a large
number of Workers, of varying degrees of generality (e.g., a full first order logic
theorem prover) and specificity (e.g., a module that keeps commonly-used transitive
relations R fully expanded, so if we assert R(a,b), R(b,c), R(c,d), R(e,f), and ask
whether R(a,f), that module will be able to answer affirmatively (and provide the
three-step proof) immediately. This typically requires having specialized data
structures, and “demons” to update them. Each Worker has some characterization of
what sorts of problems it is able to handle, and at what cost in terms of time to first
answer, total time, memory cost, chance of returning at least one answer (if there is
one), chance of returning all answers, etc. At a meta-level, there are some modules
called Tacticians that decide which Worker to call on, how much resources to give
them, etc., by examining the problem, matching its characteristics to those of the
Workers, and so on. Analogously to the Workers, the Tacticians also have a
characterization of what they are good at, how costly they are, etc. And at the meta-
meta-level there are reasoning modules called Strategists that decide which Tacticians
to give control to, for how long, and when to interrupt them and switch to a different
tactic (hand control to a different Tactician).

Figure 1: The architecture of the Cyc inference engine. This can also serve as a
“harness” for other reasoning systems, which can be “published” as new Workers
(proxies who just call the external reasoning system). These proxies can be
characterized the same as the other 1097 Workers, so they can be called on when and
as appropriate, to tackle sub-problems they would be good at, and can recursively re-
broadcast sub-sub-problems back to the overall assemblage of modules – i.e., to the
overall inference engine, hence they might end up being called on multiple times in
the course of solving a single problem, with different sub*-problems.

4
Tacticians

1
Strategist

1097
Workers

Parameterized – equivalent
to having many strategists
and many more tacticians

 6

2.1 Using Reinforcement Learning to Improve Tactical
Decision-making

The first experiment was designed to
determine the usefulness of harnessing
certain kinds of meta-reasoners, namely
those that use reinforcement learning
techniques, to help a reasoner make
tactical decisions.1,2 The experiment
analyzed data that had originally been
collected for the DARPA Transfer
Learning project3. As we will see below,
this experiment showed that such meta-
reasoners can be usefully employed for
this meta-reasoning task, and indicated a
methodology for employing them.

Cyc takes a hierarchical approach to
inference: a strategist layer is
responsible for selecting an appropriate
overall approach to solving a given
problem. As part of this strategy, any
number of reasoning tacticians may be
invoked, each of which uses a specific
set of tactics for deciding what inference
actions should be taken and when.

One can think of the basic reasoning
engine as a set of cooperating agents,
each of them capable of carrying out
some specialized sort of reasoning (e.g.,
domain-independent transitive closure
graph-walking; or domain-specific

1 A good grounding in Reinforcement Learning can be obtained from Leslie Kaebling’s survey article
available as http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume4/kaelbling96a-html/rl-survey.html.
2 This comes from a good, terse, recent introduction and overview of Reinforcement Learning,
http://en.wikipedia.org/wiki/Reinforcement_learning . See also the references cited therein.
3 Oblinger, D. 2005. Darpa Transfer Learning Program. This contains a good overview of transfer learning;
available online as http://www.darpa.mil/ipto/solicitations/closed/05-29 PIP.htm .

“Derived from the psychological theory of
the same name, in computer science,
Reinforcement Learning is a sub-area of
machine learning concerned with how an
agent ought to take actions in an
environment so as to maximize some notion
of long-term reward. Reinforcement
learning algorithms attempt to find a policy
that maps states of the world to the actions
the agent ought to take in those states. In
economics and game theory, reinforcement
learning is considered as a low-rationality
interpretation of how equilibrium may
arise.

The environment is typically formulated as
a finite-state Markov decision process
(MDP), and reinforcement learning
algorithms for this context are highly
related to dynamic programming
techniques. State transition probabilities
and reward probabilities in the MDP are
typically stochastic but stationary over the
course of the problem.

Reinforcement learning differs from the
supervised learning problem in that correct
input/output pairs are never presented, nor
sub-optimal actions explicitly corrected.” 2

http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume4/kaelbling96a-html/rl-survey.html
http://en.wikipedia.org/wiki/Reinforcement_learning
http://www.darpa.mil/ipto/solicitations/closed/05-29

 7

balancing of aqueous chemical equations). The tacticians are a smaller set of agents
which function as meta-reasoners: agents which guide the system as it decides which
reasoners to call on and what resources to give them, when to interrupt them and switch
directions, etc. And the strategists are an even smaller set of meta-meta-reasoners: agents
which guide the system as it chooses which tacticians to listen to (e.g., when the
tacticians disagree with each other).

Let’s consider one of the most widely-
used tactician modules in Cyc, the
"balanced tactician". It balances the
application of inference rules that
simplify problems (which we call
"removal" steps) with inference rules
that make problems more complex
(which we call “transformation”
steps).

In this experiment, a reinforcing
learning (RL) tactician can be used to
complement and inform the balanced
tactician, identifying areas for
potential improvement and suggesting strategies for achieving them.

As an example, the RL tactician task was set to improve the time to first answer. After
training, the RL tactician was three times faster than the balanced tactician with respect to
median time to first answer, although it was 36% slower with respect to mean time to
first answer. Also the RL tactician suffered a 0.6% completeness loss compared to the
balanced tactician. Out of 1648 queries run in this experiment, the balanced tactician
answered 13 that the RL tactician failed to answer, and the RL tactician answered 9 that
the balanced tactician failed to answer, for a net completeness loss of 4 queries. The time
to first answer and the number of queries that became answerable were the two metrics
used in the RL tactician's evaluation function; the total time to find all possible answers
was not optimized for, in this experiment.

On a second set of simple test queries, the results were similar except the RL tactician
was faster with respect to mean time to first answer. (It was still slower with respect to
total time, but it was not aiming to optimize that metric.)

The results of this experiment are depicted in Figure 2.

In order to understand why one group of queries showed a substantial improvement, one
first needs to understand a particular choice available to the Cyc inference Tactician
when it attacks conjunctive queries. Consider, for example, a conjunction A(x) ^ B(x) that
shares variables, x, across the two clauses. There are two ways the Tactician could
attempt to solve this:

Why ever do “transformation” steps at all?
I.e., why would one ever want to make a problem
more complex? Consider a math problem like this
one: If you multiply all the natural numbers from 3
to a trillion, and add one, is that number divisible
by 15153241? The simplest way to solve this is to
prove that more generally, if you multiple a set of
numbers together and add 1, then that product has
remainder 1 if you divide it by any of those
numbers. Solving a harder, more general problem,
is often a useful tactic. Of course most of the time
one should be simplifying, doing “removal” steps.

 8

• JOIN: It could solve for all values satisfying A(x) and independently solve for all
values satisfying B(x) and then simply intersect the two sets of results. This is
called a “join”.

• JOIN-ORDERED: Alternatively, it could solve only A(x) in its entirety and use
the answers for x (call them a1,a2,... aN) to produce restricted forms of B(x) – i.e.,
B(a1), B(a2),… B(aN) – and then attempt to solve only that restricted set of
(hopefully very small number of) of B(x) problems. This approach is called “join
ordered” and makes sense when the estimated number of answers for B(x) is
much larger than the estimated number of answers for A(x). When the two
estimates are comparable, it makes more sense to solve both via a "join". (If
there are far more A(x) answers than B(x) answers, the most appropriate tactic is
to do a “join ordered” search in the opposite order.)

Practically the entire performance benefit seen in the above experiment was explained by
one group of queries – the ones in the blue circle – with only one salient difference: the
RL tactician chose a join-ordered search for their solution rather than a simple join. This
proved effective because while joins are better for getting all answers effectively, join-
ordered currently have better support for returning answers as they are found (i.e.,
“iteratively support”) which reduces the time required to return the latency to first answer

Figure 2: Time to first answer results for the RL Tactican (Green) and the Balanced Tactician (Red);
the circle highlights a group of queries for which the RLT was 10x faster due to its use of join-order.

 9

(i.e., its “latency”). This, in turn, suggested an implementation enhancement for all
tacticians, namely to make join tactics iterative.

While the particular inference improvement identified by this experiment was useful (i.e.,
the RL tactician automatically learned to sidestep the current lack of join tactic
iteratively), the more significant result was demonstrating the use of an RL tactician as a
means for identifying opportunities for modifying current inference tactics to improve
specific performance objectives. I.e., modifying the inference engine so that joins are also
iterative. It remains an open question as to whether there is a large number, or small
number, of inference speed improvements that can be found by reinforcement-learning-
trained inference engines. This question should be aggressively investigated in further
work. The fact that the very first experiment we tried yielded such an improvement is
very encouraging, and supports further investigation into this question.

2.2 Leveraging Prior Similar Queries: Cased-based Tactician

The second experiment was designed to evaluate another class of meta-reasoners, namely
those that recognize when a query is similar to queries that have been asked in the past
and then use the experience from answering those earlier queries to answer the current
one more efficiently. This can be thought of as a form of analogical reasoning.

Inferences in Cyc and other theorem proving systems are rarely entirely novel; often
queries are constructed by modification of an existing template, or an application that
asks a number of similar queries or even the same query repeatedly. Given the relatively
low cost of disk space, storing a large case library of past inferences is certainly viable.
Given the relatively low cost of cpu “cycles”, parallelizability, etc., learning from this
stored corpus of past experience is also viable – i.e., getting the inference engine to learn
how to better answer future queries, based on their similarity to past queries.

To draw a parallel to our own human educational experience, most of us studied calculus,
and in particular the problem-solving method called integration by parts. After a while,
we began to recognize which sorts of integration problems would and would not be
attackable, solvable, that way. We characterized features of the problems that indicated
the applicability of that tactic.

This approach led to the development of a Case-Based Tactician that, when given a new
query, finds the most similar past queries and applies the approaches used to answer them
to the new query.

There was already is a clear qualitative performance difference between Cyc’s existing
rule-only “proof-checker” mode (in which the set of rules to be used is already specified,
allowing a very rapid search for a proof using those rules) and exploratory inference with
all rules as candidates for inclusion. The Case-Based Tactician has managed to extend
this sort of speed-up to novel problems, by remembering attributes of past cases of

 10

successful proofs, and generalizing them (the tactics that did and didn’t work well on
those problems, historically) to brand new cases.

The case memory consists of proof recipes that encompass all Tactician and Worker
decisions. This abstraction, or cached recipe, is called a “proof spec”. See Figure 3 for
an example of proof spec generation, and see Figure 4 for an example of proof spec usage
in action.

A proof spec is a problem-store-independent abstraction of the structure, modules and
rules used to generate a proof. Proof specs can be generalized by replacing terms with
generic patterns or by adding disjunctive options at any level of the proof spec. The case-
based tactician based on this approach is referred to as a Proof Spec Tactician.

This approach is particular effective in situations where there the same query may be
asked numerous times (such as “standing queries” in the intelligence domain) or where
similar versions of a query may be asked often (such as those seeking the same
information about many different people). For some applications, it should be possible to
generate such queries upon application installation or startup, thereby greatly increasing
the speed with which similar or analogous queries can be answered.

Figure 3: Generation of a Proof Spec from a set of answers to a prior query.

 11

Figure 4: Use of a Proof Spec to increase efficiency in answering a new query. Once the Proof Spec
from Fig. 3 was learned, queries such as “Which states in India border Pakistan?” could be answered

efficiently.

To evaluate the potential impact of a Proof Spec Tactician, proof specs were collected for
a large test corpus. Then, using a “straw-man” implementation of the proof spec (i.e., one
that simply constrained the heuristic level (HL) modules (i.e., inference engines) and
rules allowed to the tactician, but did not constrain it in any other way), these queries
were re-run using these proof specs in order to assess their impact.

2.2.1 Answerability Analysis
The Proof Spec Tactician was permitted to say “Don’t bother even trying a certain
approach to solving this subproblem, I learned empirically from past experiences that it
never works on this sort of subproblem.” Because of this, the Proof Spec Tactician
effectively constrains the reasoning that Cyc performs, and one concern was whether this
approach would be less successful in answering queries. In particular, 838 queries were
answerable in both the baseline and the experiment. 30 queries were answerable in the
baseline but not in the experiment. 0 queries were answerable in the experiment but not
the baseline. Thus, there was about a 3.5% reduction in the number of queries that were
answered. However, the experiment resulted in about 10% more total answers than the

 12

baseline did – presumably due to increased efficiency – so the net result was a 6.5%
increase in answerability, not a net decrease.

We then analyzed the 30 queries that had become unanswerable. This experiment had
been using a simplified, partial proof spec implementation intended to provide a lower-
bound to performance improvement results. Looking at the 30 queries that ceased to be
answerable with this partial proof spec implementation identified places where a full
implementation of the Proof Spec Tactician would have succeeded, where this partial
implementation failed. Thus, the efficiency analyses that follow included only the sub-
corpus of questions for which the simpler proof spec implementation was representative.

2.2.2 Efficiency Analysis

A set of experiments were conducted running queries with and without the Proof Spec
Tactician. A number of metrics were recorded covering two basic categories:
completeness (as measured by the number of answers produced) and performance
(measured in time until a first answers was returned and time until all answers were
returned). For the performance metric, both mean times and medium times were
calculated. Table 1 presents the results of the efficiency analysis using the mutually
answerable subset of the corpus with and without the Proof Spec Tactician.

Table 1: Efficiency analysis of the mutually answerable queries
showing the effects of including the Proof Spec Tactician

Analysis Baseline Experiment Improvement
Factor

SUM-ANSWER-COUNT 101620 110793 1.09

MEAN-COMPLETE-TIME-TO-FIRST-ANSWER 0.8002 0.4996 1.602

MEDIAN-COMPLETE-TIME-TO-FIRST-ANSWER 0.1367 0.06974 1.96

MEAN-COMPLETE-TOTAL-TIME 2.744 1.788 1.535

MEDIAN-COMPLETE-TOTAL-TIME 0.375 0.1641 2.285

These metrics show over a 50% speedup with respect to the mean and a greater than
200% speedup with respect to the median time to return all answers. It should be noted
that these results are conservative in two ways: First, this speedup resulted from the
straw-man version of the proof-spec tactician; an actual proof-spec tactician should do
better still. Second, this speedup is for just for answerable queries; the proof-spec
tactician can yield an almost infinite speedup on unanswerable queries by simply giving
up immediately.

 13

Figure 5 shows a graphical comparison of the baseline versus the Proof Spec Tactician
results with respect to time to return all answers. In this case, the queries in each run
were independently sorted by time so as to show an overall performance signature over
the corpus.

Figure 5. Comparison of time to first answer with and without the Proof Spec Tactician, with each
set of results independently sorted by time.

Figure and 7 show the corresponding results for the time required to return the first
answer, with the results independently sorted and then correlated, respectively.

 14

Figure 6: Comparison of time to first answer with and without the Proof Spec Tactician,
with each set of results independently sorted by time.

Figure 7: Comparison of time to first answer with and without the Proof Spec Tactician,
showing the correlated results for each query

 15

2.2.3 Final Proof-Spec Results

Based on the promising results from the straw man (partial) implementation of the Proof
Spec Tactician, we implemented a real, full Proof Spec Tactician that takes a proof spec
provided as a query parameter and ensures that only tactics that rigorously match the
proof spec are allowed to be executed. Since the Tactician already maintains
bookkeeping information to keep track of which problems in a problem store are relevant
to a particular inference, it was natural to extend the notion of relevance to include
explicit recording of the relevant proof specs for a problem. Relevant proof specs
propagate down problem links based on the types of the links in a way exactly analogous
to relevance propagation.

We evaluated the query-genericizing algorithm performance by investigating an
automatically generated corpus of a large number of analogous queries from a
representative setting, namely all the backward inferences that are performed by the
forward inference algorithm when a new assertion triggers forward inference. Forward
inference makes extremely heavy use and is dominated by backward inference.
Furthermore, since the same set of forward rules are being repeatedly triggered by KB
modifications, the queries that result are likely to be almost totally unique (due to the new
content triggering the inference) but almost totally analogous to other recent queries (due
to the same rule being triggered).

We obtained 668 queries by running through a randomly chosen transcript of queries and
operations actually being asked of Cyc (namely, the initial portion of the KB 941
modification transcript). Only about 30% (194) of these queries had unique genericized
query forms and 71% (474) had the same generic form as some other query.

We evaluated the performance on two corpora, selected from previous Intelligence
Community applications, the Arete TKB (terrorism knowledge base) corpus and the
Leviathan corpus.

2.2.3.1. Arete Corpus. The Arete TKB corpus contains queries that typically involved
conjunctions requiring relatively shallow inference. This corpus was designed to mirror
the types of queries intelligence analysts perform when performing investigative analysis
on suspected or known terrorists, and organizations of interest. For each query in the
baseline run, the proof spec for its result was generated and passed to the proof spec
tactician in the experiment run.

 16

Figure 8. Comparison of total time with and without the Proof Spec Tactician,
with each set of results independently sorted by time.

 17

Figure 9. Speedup signature of the Proof Spec Tactician
with results independently sorted by time.

For this corpus, the speedup appears primarily at the faster (leftmost) end of the
spectrum, with only a moderate speedup at the middle and slower ends of the spectrum.

2.2.3.2. Leviathan corpus. The second corpus we evaluated was the Leviathan corpus,
which contains deeper queries that require chaining two or more rules together. This
corpus is designed to mirror the types of queries that appear in the more analytical
investigations done by analysts when pondering scenarios and hypothesizing possible
links between agents and organizations. These queries tend to be longer and generally
suffer more from the algorithmic effects of exponential fanout of the search space when
chaining rules together.

 18

Figure 10. Comparison of time to first answer with and without the Proof Spec Tactician,
with each set of results independently sorted by time.

 19

Figure 11. Speedup signature of the Proof Spec Tactician
with results independently sorted by time.

For this corpus, the speedup is significant and across-the-board, with even greater benefit
for the harder queries at the slower (rightmost) end of the spectrum.

 20

Figure 12. Comparison of total time with and without the Proof Spec Tactician,
with each set of results independently sorted by time.

 21

Figure 13. Speedup signature of the Proof Spec Tactician
with results independently sorted by time.

For total time in the Leviathan corpus, the Proof Spec Tactician results in significant
speedups across the entire spectrum, with large speedups at the slower end of the
spectrum.

The speedup of the very fastest and very slowest queries with only moderate speedups on
the middle queries was unexpected. We surmise that for the fastest queries the benefit
comes from avoiding costly but less fruitful reasoning modules and that the benefit for
the slowest queries comes from algorithmic simplification through pruning the fanout in
the search space. Note also that the benefit for the middle queries displayed by the straw
man Proof Spec Tactician implementation appears to be missing in the actual Proof Spec
Tactician. We believe this is due to inefficiency in the current proof spec propagation
code, and that an optimization pass would recoup most of this loss. If not, then a clear
hybridization opportunity exists by using the straw man approach for the faster queries
and the complete proof spec approach for the longer queries.

 22

2.3 Knowledge Clustering

The third experiment explored ways of clustering knowledge so as to much more
effectively predict which parts of the KB will be relevant to a given query, thus reducing
the size of the search space for answering the query as well as reducing the amount of
knowledge sent to an external reasoner to help with the query. The latter could become a
dominant factor in harnessing E, SPASS, Vampire, and most other theorem provers.

For this experiment, a test suite of queries whose proofs included two or more rules,
called the Leviathan corpus, was selected as the baseline. From a baseline run of this
corpus, all pairs of rules that ever actually successfully co-occurred in any inference
proof together were identified. This data was used to construct (and dynamically
maintain) an undirected graph, called the “Rule Connectivity Graph”, comprising all such
pairs of co-occurring rules.

Next, using this graph, a new inference transformation heuristic was added that favored
proof paths that involved sets of rules that had the highest fraction of pairwise graph
connectivity. (See 14 for an example.) The hypothesis was that this heuristic would
greatly improve the time to first answer for the Leviathan corpus (over a blind subset of
this corpus) by heuristically delaying historically unpromising rule combinations and
effectively reducing the branching factor among the heuristically promising portions of
the search space.

Figure 14. A rule co-occurrence heuristic favors solution paths that include pairs of rules that have
previously co-occured on another proof (e.g., F&G, F&H, G&H, or A&B).

 23

Figure 15. Comparison of time to first answer with (green) and without (red) the rule connectivity
heuristic, showing the correlated results for each query

The empirical results of this experiment were surprising and frankly a bit disappointing.
In fact, without the caption (of Figure 15) explaining which was the red curve and which
was the green curve, it would be difficult to tell which was the baseline and which was
the result of using the rule connectivity heuristic. The heuristic appears to have very little
additional benefit beyond what’s already available in the baseline. Only a small group of
queries in the middle of the signature improved.

We believe it is worth investigating why it was not more beneficial We surmise that the
faster queries may naturally have fewer ways of combining the rules and therefore don’t
need the heuristic suggestion of candidate combinations. We surmise that the slower
queries are being dominated by some other algorithmic issue that warrants further
investigation. Another possible explanation is that the weight of the heuristic was not
high enough to have a sufficiently discriminating impact on search ordering.

Still, the potential promise from algorithmic reduction of the search space using this
approach suggests that further exploration into meta-reasoning about other promising

 24

proof skeletons is warranted and that different type of external reasoners suited to this
purpose may be appropriate.

Despite this one disappointing result, the results from the three families of experiments
(Sections 2.1 – 2.3) were overall quite dramatic, and together resulted in more than a
factor of 10 speedup of the system for a significant reasons (i.e., ones which will be
generalizable to other domains and to other theorem proving systems.)

That brings up the second portion of the project, this past year: engaging the broader
international theorem proving community, so that in the future they will continue to work
on this characterizing and harnessing notion themselves.

 25

3. Challenging the Theorem Proving Community

One of the major goals of this project was to show how multiple theorem provers could
be combined to achieve a theorem-proving capability that is superior to that of any
individual theorem prover (including Cyc itself). The most naïve approach would be to
examine a particular problem to be solved (or query to be answered) and then select
which theorem prover is best suited to address it. Previous work showed us that this was
sub-optimal: various provers do well on various subproblems and poorly on other
subproblems. [This particular solution would have been impractical for an even simpler
reason: none of the other theorem provers we experimented with were able to load the
entire Cyc KB due to its size!] .

To address this need, two problem suites were produced: A scaling suite and an
elaboration suite. The scaling suite contains knowledge bases of varying sizes to enable
the theorem proving community to address at least scaled-down versions of Cyc-like
problems, even if they are unable to load the full KB. The elaboration suite focuses on
problems that, in going from one problem to the next, add or remove things from the
theory, encouraging the theorem problem community to address such deltas as deltas,
rather than resorting to reloading the entire theory from scratch for each problem.

Below we report on the techniques we used to generate these problem suites and how
they are already stimulating the research community to try to overcome the problems the
currently have addressing them. Next, we report on the integration feasibility experiments
we performed.

3.1 New Classes of TPTP Problems

The 21st Conference on Automated Deduction (CADE-21) was held in Bremen, Germany
from July 15 - 20, 2007. CADE is the major forum for the presentation of research on all
aspects of automated deduction. We have been using this project as a springboard for
increasing the visibility of large scale, IC-community-relevant inferential problem
solving in the theorem-proving community worldwide, and in the TPTP community in
particular. As a result, Cycorp was invited to speak at the CADE-21 Workshop on
Empirically Successful Automated Reasoning in Large Theories (ESARLT) which was
held on July 15th, and we took them up on this offer (no foreign travel was charged
against the budget of this project). The workshop proved to be an excellent forum to
expose the wider automated deduction community to the inference design challenges
posed by Cyc and large scale inference.

Keith Goolsbey presented an invited talk there, entitled Cyc Design Challenges and
Solutions which had the following abstract:

 26

Cyc comprises a large, contextualized, common sense knowledge base (KB)
which is encoded in an expressive representation language (essentially FOL with
a few key extensions) and paired with an inference engine optimized for the
classes of queries we most frequently encounter. These queries tend to mix
relatively shallow reasoning within one of a large number of idiosyncratic
subtheories with relatively deep reasoning within one of a very small number of
stylized subtheories. The constraints of these queries in a large and expressive
KB combined with the need to efficiently react to KB elaboration together provide
a unique set of design challenges that are extremely stressful for the solutions
provided by the current state of the art FOL theorem provers. The solutions to
these challenges currently adopted by the Cyc inference engine will be presented
within the context of a new suite of TPTP problems that are derived from Cyc's
KB and typical queries and are intended to demonstrate Cyc's design challenges
for investigation by the wider community.

To recap, the TPTP Problem Library is a collection of test problems for automated
theorem proving (ATP) systems. This is the main regression and benchmarking suite
used by the ATP community worldwide (primarily comprised of researchers in Europe,
the U.S., Australia, India, China, and Japan) and as such it acts as the primary use-cases
on which this community focuses its efforts. Everyone acknowledges that many of the
problem sets in this library reflect the mathematical theorem proving historical
background of early ATP efforts, namely relatively deep general proofs within extremely
small but powerful theories. This also reflects what could be done “by hand” early in the
20th century, and what could be done by early computers in the 1950’s-1980’s.

The Cyc use-cases – and the general IC pathfinding problem – are very different from
those narrow reasoning problems in which the entire small KB changes every time.
Namely, our use-cases involve an extremely large KB that changes “a little bit” between
queries, or possibly not at all, and which is targeted by many queries each involving
relatively shallow proofs. Problems with that characterization were completely
unrepresented in the TPTP library. Not surprisingly, without focus on Cyc-like theories
this community is not directly confronting Cyc-like design problems or producing novel,
innovative solutions for these problems. To eliminate this blind spot, we developed a new
TPTP problem set derived from OpenCyc content and Cyc-representative queries.

The new TPTP problem set also addresses the problem of other theorem provers not
being able to load a KB the size of Cyc’s. Rather than each problem requiring all of
Cyc’s knowledge, we constructed six different ‘levels’ of problem, each containing
progressively larger theories:

• Level 1: Proof-only - In the Level 1 or “proof-only” problems, we ran a query
against Cyc’s theorem prover and extracted all and only the facts necessary to answer
the problem. Just those facts were included in the theory provided for this problem.
This is close to what the existing TPTP test problems are like, and was meant to ease
the ATP research community into working on our task, enabling them to succeed on
some of our problems rather than just starting with the hard ones and giving up.

 27

• Level 2: All Known useful facts - In Level 2, the background theory contained all of
the facts used in the proofs of any of the fifty problems generated. So for any
problem (in this set of 50), all facts in the theory were known to be useful somewhere,
but not necessarily in this particular problem. This eased the ATP research
community into the mindset of having a large set of queries going against a single
theory, a single axiom set, without having too astronomical a number of irrelevant
axioms; i.e., in this case, about 10% of the axioms would turn out to be used in
proving each problem (some axioms were used in proving more than one problem).

• Level 3: Addition of some Potentially Relevant Facts - In Level 3, the background
theory includes all information from Level 2, plus some facts not used in any proofs,
but where all the predicates (relations, functions, properties, attributes, slots) were
used in some proofs. So there weren’t any predicates that were just red herrings here,
and there weren’t too many irrelevant axioms even involving those used-somewhere
predicates.

• Level 4: Addition of all Potentially Relevant Facts - In Level 4, the background
theory includes all information from Level 3, plus all facts in the current Cyc KB
using predicates that are in any of the proofs. So as with Level 3, there were no red
herring predicates, but the number of axioms involving some of the predicates present
could be quite high – up into the tens of thousands of axioms in many cases.

• Level 5: Addition of some Irrelevant Facts - In Level 5, the background theory
includes all information from Level 4, plus a random set of additional assertions that
are completely unrelated to any of the problem queries. This is much more
representative of the IC pathfinding problem: separating the wheat from the chaff.

• Level 6: Entire KB - In Level 6, the entire OpenCyc KB is included as the
background theory, adding literally a million axioms which were (in hindsight of
course) irrelevant to proving any of the test problems.

3.1.1 TPTP Problem Generator

There has been a lot of impressive work in the First-Order Logic (FOL) theorem proving
community in recent years. Much of this advance can be credited to the community
adopting a standard test representation language and accumulating a large repository of
tests in this representation (TPTP) via yearly, objective competitions (CASC). Given the
similarity of expressiveness of FOL and CycL, it appears at first blush that the champions
of these competitions (VAMPIRE, E, and SPASS) might be ideally suited to providing
commonsense inference capabilities over the Cyc knowledge base. However, analysis of
the classes of problems in the competitions reveals an apparent impedance mismatch
between the theory expectations of the current state of the art theorem provers and the
theory expressed in the Cyc KB.

 28

FOL problems have historically been driven by mathematical use-cases in which a single
relatively deep proof within a single, small, static theory is obtained. On the other hand,
commonsense queries in Cyc tend to be a very large number of queries instantiated from
a relatively large set of query classes targeting a KB with a large number of different
(micro-) theories, which can dynamically change as the KB is updated. Furthermore,
these queries usually expect multiple answers to be derived and justifications for these
different answers to be maintained. Finally, the commonsense proofs tend to be either
relatively shallow or deep but only within a very stylized proof space.

Because of these potential differences in the expectations of the theorem provers, it was
not initially clear whether current theorem provers, developed largely to address
problems in mathematical logic, would perform well on Cyc commonsense inferences.
Our preliminary experiments (with Cyc itself – see Section 2 above – and with the other
theorem provers -- see e.g. Section 3.2.1 below) show that current theorem provers have
substantial difficulty with the Cyc problem set. Below we discuss the methodology we
employed when devising the test set, which we used for our preliminary experiments and
also presented at the ESARLT workshop discussed above. It is a goal of this work on
TPTP, and indeed of the Efficient Pathfinding project in its initial conception, to inspire
the theorem-proving research community to address the classes of queries and theories
over everyday concepts that have been the focus of work on Cyc. By engaging the TP-
community it will be possible to perform ‘apples to apples’ comparisons with respect to
performance, and to properly leverage the design and implementation benefits that this
community can provide in applying inference to problems of interest to the IC.

3.1.2 Requirements

The design constraints that Cyc has been developed under have been driven primarily by
the intelligence community in the past decade; they are substantially different from those
that guided the design of most theorem provers.

The six constraints that we paid specific attention to when designing the TPTP problem
set include the following:

1. Expressivity: Cyc includes a number of extensions to first order logic which can
be converted into a first-order logical representation. However, when these
extensions are expressed in first order logic, care must be taken or they can
overwhelm other theorem provers. One substantial problem posed by Cyc’s
expressivity is the need to canonicalize queries and facts as they are presented,
rather than assuming everything is already in Conjunctive Normal Form. By
presenting all of our TPTP problems in FOL, all systems are required to factor in
canonicalization time. Various other aspects of Cyc’s language (e.g. micro-theory

 29

inheritance, functions, quantification into predicates) require special handling to
do efficiently.4

2. Large Background Theory: Because most theories used by theorem provers are
fairly small, load time can be effectively ignored. However, with large
background theories, the effect of load time cannot be ignored. Substantial
amounts of time may be spent pre-seeding the theorem-prover with useful
information from the theory if there is a large amount of background information.
Theorem-provers that go to considerable effort at load time, for example in
indexing theorems, may be shifting work to load time that would need to be done
at run time if the theories were larger.

3. Multiple Varied Queries: The fact that theorem provers may be queried multiple
times is reflected in the fact that our TPTP problems include multiple queries to
be posed against the same theory. A theorem prover with persistent state, for
instance, they might be able to maintain this background theory and reuse it
against the working clauses. This type of behavior should be encouraged.
Systems that rely on modifying their knowledge bases as part of answering a
question will be confronted with the challenge of figuring out how to ask multiple
queries during a single run.

4. Microtheories: Most reasoning systems do not allow for knowledge inheritance,
so if multiple reasoning contexts are needed, each context must effectively
contain all of the knowledge that logical belongs in it. This is potentially
problematic if hundreds or thousands of reasoning contexts are required. Cyc
contains a context (or microtheory) mechanism in which microtheories are first
order objects and may subsume other microtheories. All assertions in Cyc are
stated within a microtheory. To capture this within a first-order representation, we
transformed statements of the form (ist M1 R(X)) – meaning that the statement
R(x) is true in the context M1 – into the statement (mtVisible M1) → R(x) –
meaning that if context M1 is “visible”, then statement R(x) is true – and a rule
stating that if Mx is visible, the parent context of Mx is also visible. Assertions
that particular contexts are visible – (mtVisible M1) – are then included as part of
the conjecture.

When boiled down to a first-order representation, knowledge inheritance (in the
form of mtVisible assertions) effectively prohibits the use of unlimited forward
propagation because of extremely large number of mtVisible assertions that are
necessary. Systems that rely on forward propagating all facts run the risk of

4 For more details on these higher-order features, see First-Orderized ResearchCyc: Expressivity
and Efficiency in a Common-Sense Ontology by Deepak Ramachandran, P. Reagan, and K.
Goolsbey in Papers from the AAAI Workshop on Contexts and Ontologies: Theory, Practice and
Applications. Pittsburgh, Pennsylvania, July 2005.

 30

spending so much time forward propagating the mtVisible facts that they never
get around to dealing with the actual problem.

5. Elaboration Tolerance: The requirement that the reasoning system be mutable at
run-time presents several challenges to theorem provers. In particular, it means
that the system cannot safely ignore load time, the language cannot remain fixed
for the entire run-time of the system, the addition of new assertions means that the
system cannot simply be restarted for updates (because assertions made before the
update would be lost), and the fact that some assertions and concepts will be
removed means that the systems need to have facilities maintaining system
integrity with respect to the consequences of removal (known as “truth-
maintenance”).

6. Queries Interspersed with Elaboration: A system that is required to perform
interspersed theory extension and queries must be able to do both of those within
a reasonable time-frame. Performing KB compilation after elaboration may cause
significant delays between when the KB gets updated and when the system is able
to answer queries against the KB, especially if there are many queries interspersed
in the new assertions, and if the KB compilation is time-consuming.

3.1.3 TPTP Problem Creation

The TPTP elaboration suite was designed to simulate a set of KB operations:

• Creates: the addition of new terms;

• Asserts: the addition of new statements about existing terms;

• Queries: accessing information already in the KB;

• Unasserts: removing existing assertions from the KB; and

• Kills: removing existing terms from the KB.

To do this, we took advantage of the "include" feature of TPTP, and also add additional
"pragmas" (pragmatics) in the form of specially formatted TPTP comments. The TPTP
format already provided for structured comments that act as meta-statements; we
negotiated with the TPTP community to gain acceptance to use these for purposes such as
representing which parts of the KB are static and which dynamic, and for identifying a
sequence of problems and ordering the problems with that sequence (as opposed to just
having a set of individual problems).

 31

Using these meta-statements, the OpenCyc KB was split up into static and dynamic
sections; the dynamic section was further split into those changes that had no impact on
query answerability (so called “dynamic chaff”) and those that changed whether a query
was answerable (so called “dynamic linchpin.

The static KB forms one massive TPTP include file. This include directive is preceded by
a pragma indicating that this is the static KB, and the theorem prover can assume that it
will be present throughout all the Cyc TPTP problems. The dynamic portions of the KB
are separated out into many different include files via a method described below. Each
TPTP problem in the problem set consists of:

• a header

• the static KB include directive

• several additional include directives (to pick out a subset of the dynamic KB)

• the conjecture

An include file that is present in one query but absent in a following query simulates a set
of unasserts (i.e., removing statements about terms) and kills (i.e., removing the terms
themselves). An include file that is absent in one query but present in a following query
simulates a set of asserts and creates.

In order to create the problems, we generated synthetic KB content. This was necessary
for elaboration and also because we wanted these problem-sets to be runnable with
OpenCyc, which has a relatively small number of implication rules and a relatively
shallow set of predicates. The process of choosing the dynamic KB content and the
conjecture for each problem is described below.

To start out, we generated many TPTP problems that test aspects of inference, but do not
test elaboration, called non-elaboration queries. To generate these, we called the query
generation modules directly (described below). We generated equal proportions of
answerable and unanswerable queries, and for those queries where it made sense, we
generated equal proportions of open queries (where the system expects to get multiple
bindings) and closed (Boolean) queries. We analyzed and indexed the justifications of the
answerable queries, then set them aside for a while.

Next we identified a set of linchpin CycL terms. This was done by calling a set of
linchpin modules. Each linchpin module describes a particular kind of inference and a
particular kind of elaboration that we want to test. A linchpin module calls its associated
query generation module (described below) to generate an answerable TPTP problem. It
chooses its linchpin from the full justification/proof of that answerable problem, making
sure that it's not used in the justification of any other problem. If linchpins are found, it
throws the problem away and tries again until it succeeds. These are called "linchpins"
because each one is a critical part of the justification of exactly one answerable TPTP
problem. Each linchpin module generates at least 3 linchpins.

 32

For each linchpin module, the system then partitions its linchpins into three elaboration
categories: static, to-be-added, and to-be-removed. Static means that the linchpin will be
present throughout the simulation. To-be-added means that the linchpin will be absent
from earlier states and present in later states, simulating the assertion of the linchpin. To-
be-removed means that the linchpin will be present in earlier states but absent in later
states, simulating the un-assertion of the linchpin. Each linchpin has a corresponding
TPTP conjecture, from which we construct 2 TPTP problems, one before the elaboration
and after. Hence the 2 TPTP problems have the same conjecture but different include
files. For static linchpins, their conjectures should be answerable both before and after
elaboration. For to-be-added linchpins, the conjectures should be unanswerable before
elaboration and answerable after. For to-be-removed linchpins, the conjectures should be
answerable before elaboration and unanswerable after.

After the linchpins and the conjectures were established, we attached “chaff” to the
linchpins. This forms the dynamic chaff section of the KB mentioned earlier. The system
finds synthetic terms and assertions that are not used in any justification of any TPTP
problem, and marks them as potential chaff. Each linchpin is then assigned some chaff,
with each linchpin getting approximately the same amount of chaff. The linchpin is
inserted into the chaff, the list is randomized, and the resulting list of assertions is
assigned to an include file.

To produce the order of the TPTP problems and elaborations, we randomly sorted the
linchpins, and added two copies of its corresponding TPTP problem, once before the
linchpin and once after. This forms the TPTP transcript, which is a series of operations --
either TPTP queries or linchpins (i.e. theory elaborations). The non-elaboration queries
generated earlier were then added more or less randomly into the TPTP transcript. From
this TPTP transcript we then produced actual TPTP problems with headers, correct lists
of include files, and conjectures.

3.1.4 Query Set

During discussions with Dr. Geoff Sutcliffe, the organizer of all of TPTP, CASC and
ESARLT, it became clear that our initial TPTP suite (hereafter referred to as the
Elaboration Suite) was so far beyond what the current state of the art theorem provers
can handle, that there was a significant risk that they would simply be ignored because
they were too hard. In response to this, we designed a new, similar suite, called the
Scaling Suite, comprising 6 sets of 50 problems, where each set increases the number of
axioms in the background theory by an order of magnitude. Problems in the final set 6
are the same size as those in the Elaboration Suite, so the two suites maintain some
overlap. The Scaling Suite encourages the community to tackle the suite as a whole
because the smallest set 1 is already easily answerable by the current state of the art. The
scaling suite will be released to the TPTP community this coming month, i.e., in
September 2007.

 33

At each of the 6 Problem Levels, the 50 problems comprised 5 examples each of 10
predicate types. The types selected were representative of those predicates with the
highest utility, based on factors such as the total number uses. These types included:

• genls
(genls Hammer Artifact): Is a hammer an artifact?

• isa
(isa France Country): Is France a country?

• disjointWith
(disjointWith Eagle Airplane): Is it true that no eagles are airplanes?

• value inheritance
(relationAllInstance languageSpoken AustralianPerson EnglishLanguage):
Do all Australians speak English?

• role filler existence
(relationAllExists anatomicalParts Elephant Trunk-BodyPart)”
Do all elephants have trunks?

• symmetry
(bordersOn Germany France): Does German border on France (and vice versa)?

• transitivity
(geographicalSubRegions Europe CityOfParisFrance): Is Paris, France in Europe?

• genlPreds
(genlPreds mother relatives):
If someone is a person’s mother is she also their relative?

• Look ups (directly stated assertions)
(capitalCity France CityOfParisFrance):
Is Paris the capital of France?
(i.e., Is this known to be a fact, without requiring any inference?)

 34

3.2 FOL Theorem Prover Integration Feasibility Experiments

As a prelude to full integration as reasoning modules within the Cyc inference engine
(which would have been expected in a fully-funded EP project), we carried out
integration feasibility experiments using three leading theorem provers: Otter5, E6, and
SPASS7. As already mentioned, we had previously discovered that none of these
theorem provers is capable of loading the entire OpenCyc Knowledge Base as it currently
stands. The design of the TPTP problem sets discussed above is closely tied to the results
of our integration feasibility experiments. All of the theorem provers were capable of
running the queries at both Level 1 (the minimal theory required to answer the particular
question) and Level 2 (the minimal theory required to answer all of the questions).
However, using either Level 1 or Level 2 as the basis of integrating the theorem provers
into a confederated system is quite impractical, because it would require the dispatching
system to know exactly which pieces of information would be necessary. In effect, the
dispatching system would need to solve the problem before sending it out for one of the
other systems to solve. Thus, experiments were focused on determining the systems’
behavior at the higher levels (though not as high as Level 6, which is completely outside
the realm of all of these systems).

Initial experiments with Otter showed that it is not capable of handling the larger
problems that are of interest, apparently because of a hard-coded memory limit that
causes it to halt early on all of our larger problems (anything more than a few thousand
axioms).

Initial experiments with E showed that it works correctly on queries for which a proof
exists, but runs infinitely for queries where no proof exists. Further experiments with E
got around this problem by using an external timeout.

Initial SPASS experiments showed no hard limits on its utility.

3.2.1 KB Scaling Experiments

As an exploration of how SPASS scales with the number of irrelevant (chaff) axioms, we
ran an experiment in which the TPTP problem generator was used to generate multiple
TPTP problem sets with the same conjecture but different amounts of chaff. We

5 See “OTTER 3.3 Reference Manual” by William McCune at
http://www.cs.unm.edu/~mccune/otter/Otter33.pdf
6 See “E - a brainiac theorem prover,” Journal of AI Communications 15(2):111-126
7 See the “SPASS: Combining superposition, Sorts and Splitting” chapter in the “Handbook of
Automated Reasoning” by C. Weidenbach, 1999, Elsevier.

http://www.cs.unm.edu/~mccune/otter/Otter33.pdf

 35

generated a problem set of 12 queries, 8 of which were satisfiable and 4 of which were
unsatisfiable. Of the satisfiable queries, 3 were simple lookups and 5 had multi-step
proofs. These three categories of queries have different scaling properties, as seen in the
following graph:

Figure 16. Time versus Theory Size with SPASS. The red line shows the amount of time it took to
give up on unanswerable problems, the green line shows the time it took to answer problems requiring
the chaining of multiple facts or rules, and the blue line shows how long it took to answer questions that
involved simply looking up the answer in the data. For all question classes, time to answer appears to
increase rapidly with the size of the theory.

This experiment shows that in its current incarnation, SPASS encounters substantial
difficulty with larger theories. Even the lookup time appears to be increasing super-
linearly and is already on the order of 100 seconds with just 14,000 axioms. As a
reference point, Cyc contains millions of axioms, and can answer most lookup queries in
milliseconds, or a small number of seconds if there is a page fault. We conclude that
SPASS in its current form is not capable of efficiently handling large axiom sets, so if it
is to perform reasonably on the Cyc TPTP challenge problem set, it will first need
additional indexing support. If SPASS is representative of the state of the art among FOL
theorem provers, many of them will need additional indexing support and probably more
efficient KB data-structures in order to perform reasonably well on the Cyc TPTP
challenge problem set.

 36

An unfortunate consequence of this is that we could not directly test the Cyc TPTP
challenge problem set for satisfiability. Instead, we were forced to make scaled-down
forms of the challenge problem set, and then afterwards add additional chaff (i.e. the six
levels of problems discussed earlier). Unless there is a bug in the TPTP problem
generator, the chaff will not introduce a contradiction (which would allow intentionally
unprovable problems to be proven). Given the slowness of FOL theorem provers
(exemplified here by SPASS), we were not able to test conclusively for the lack of a
contradiction, but could only deem it statistically unlikely by testing smaller versions of
the problem set.

The results for very small numbers of axioms are interesting, but we refrain from drawing
conclusions from them, since the variance in timing could well account for the data,
especially with only 12 queries.

An interesting feature is found at the far right of the graph, where the unanswerable total
time rises sharply (remember, the graph is on a log scale, so the increase is very sharp).
Our hypothesis is that this is because of the connectedness properties of the synthetic KB
and the way in which the TPTP problem generator chose the chaff to export. For this
experiment, the TPTP problem generator selected a random subset of the chaff in the
synthetic KB to export for each experiment. The rightmost data points are 100% of the
synthetic KB that was generated for this set of experiments. We hypothesize that the KB
connectedness increases sharply as the percentage of chaff exported approaches 100%,
and that hence the theorem provers have more and deeper dead ends to attempt to prove.
This hypothesis could be tested by experiments (not yet conducted) in which 100% of the
synthetic KB is always exported, but in which we generate different synthetic KBs of
different sizes. If our hypothesis is correct, we would expect that experiment to not show
the sharp upturn in unanswerable total time, since all the chaff would have the same KB
connectedness.

3.2.2 Expanded Transitivity Experiments

In April 2007, we expanded the set of tests to include queries involving:

• Disjointness:
(disjointWith Dog Cat) → no individual cat is also a dog, and vice versa

• Genlpreds: (generalization over predicates)
if (hotelInCity BerkshireHotel-London CityOfLondonEngland) is true,
then the following are also true:
- (hotelInRegion BerkshireHotel-London CityOfLondonEngland) and
- (objectFoundInLocation BerkshireHotel-London CityOfLondonEngland) .

We also expanded our support for converting Cyc’s KB into First-Order Logic by adding
support for some additional transitivity:

 37

• if (hotelInRegion BerkshireHotel-London CityOfLondonEngland) is true,
 then so are :
- (hotelInRegion BerkshireHotel-London England) and
- (hotelInRegion BerkshireHotel-London
 UnitedKingdomOfGreatBritainAndNorthernIreland).

These changes led to an interesting change in the behavior of SPASS (but not Otter or E),
namely an enormous increase in the time taken to give up on unprovable problems. In
previous experiments, the median time to give up on unprovable problems was only
slightly longer than the median time to find a proof for provable problems. For example,
in SPASS scaling exploration shown if 16 for a data point with a comparable number of
axioms, the median answerable time was 0.58s and the median unanswerable time was
0.72s.

After the addition of the transitivity extensions to the problem set, the median answerable
time was 0.62s and the median unanswerable time was 10118s (over 2.8 hours). Also
interestingly, the time did not vary much depending on the predicate used in the
conjecture. We hypothesize that the additional axioms we exported added enough
connectivity (i.e., ensuring that the terms in the KBs we generated were connected to a
similar degree as that in the original KB) and inferential fertility to allow SPASS to waste
lots of time going down irrelevant paths.

3.2.3 Cyc versus Otter, SPASS, and E Performance on TPTP Problems

For an initial comparison of capabilities we investigated the theorem provers E and
SPASS on disjointness queries in both proof-checker mode (where exactly and only the
background theory axioms needed for the conjecture are provided) and in “elaboration
mode” (which is the union of the background theories for proof-checker mode for the
entire Elaboration suite of queries). The background theories for the proof-checker
problems therefore had less than 100 axioms and the background theories for the
elaboration mode problems had around 1600 axioms. The results are shown in Figure 17,
below.

 38

Figure 17. Cyc’s performance on an example of TPTP problems versus various scaled versions of
the problem for E and SPASS. Both E and SPASS were able to find solutions for the proof-
checker mode experiments, although E was several orders of magnitude slower than Cyc, even
with the greatly simplified problem space.

All queries were run with a 212 second timeout. For comparison, the performance of
Cyc with its full background theory of 4 million axioms is also shown. SPASS
performed 2-3 orders of magnitude faster than E in proof-checker mode, and was able to
answer about half the queries in elaboration mode before timing out. E was only able to
answer about half of the proof-checker queries before timing out, and was unable to
answer any queries in elaboration mode before timing out.

Finally, note that Cyc performed several orders of magnitude faster than the theorem
provers with a background theory that is many orders of magnitude larger than those
given to the provers.

3.2.4 Relevant Chaff Experiment

It was conjectured that the process used by which chaff (i.e., axioms other than used
needed to prove a conjecture) was selected might impact the resulting problem difficulty.
To measure this, a set of experiments was conducted during the TPTP problem

 39

generation that examined the effect of using potentially relevant chaff versus using
random chaff. The problem difficulty was measured by the amount of time it took the
theorem prover to find a proof (for provable queries), or the amount of time it took the
theorem prover to give up looking for a proof (for unprovable queries). The overall
results of these experiments were inconclusive; more detailed data is presented in
Appendix B.

3.3 FOL community Results

Shortly after publishing the TPTP Scaling Suite and the initial version of the Elaboration
Suite we ran Vampire, E, SPASS and Otter over the suites to determine their baseline
performance. Their performance on the Scaling Suite is given below.

Scaling Suite
Number of problems answerable out of 50, time limit = 212 seconds

Vampire 9.0 E 0.99 Singtom SPASS v3.0c Otter 3.3f

Level 1 50 48 49 50

Level 2 50 27 37 10

Level 3 43 25 0 0

Level 4 13 10 0 0

Level 5 0 0 0 0

Level 6 0 0 0 0

Total 156 (52.0%) 110 (36.7%) 86 (28.7%) 60 (20.0%)

We also tested the initial version of the Elaboration Suite in proof checker mode. As
expected, none of the theorem provers could currently answer any of the 300 problems.

 40

We verified that the problems were actually answerable by generating proof-checker
versions of each of the Elaboration Suite problems and evaluating performance on those.

Elaboration Suite, proof-checker
Number of problems answerable out of 50, time limit = 212 seconds

Vampire 9.0 E 0.99 Singtom SPASS v3.0c Otter 3.3f

Total Not run 298 (99.3%) 293 (97.7%) 300 (100.0%)

 41

4. Conclusions and Recommendations

4.1 Project Results

This project set out to explore ways to obtain the qualitative improvements in machine
reasoning performance needed to ensure that the Intelligence Community will have a
fighting chance of culling critical information from a rapidly increasing swarm of
available data. Prior to this project, progress had been made on two somewhat
orthogonal and independent fronts: 1) the automatic machine reasoning (aka theorem
proving) community has been improving the efficiency with which deep reasoning can be
performed within a fairly narrow theory and simple world model; and 2) Cyc has
continued to expand its ability to reason over very rich and broad base of knowledge and
address problems more akin to those faced by the IC, albeit trading increased
representational fidelity and inferential complexity for speed. This project set out to
identify opportunities to find synergies that leverage the strengths of both approaches.

Despite a severe down-scoping at the start of this project, significant progress was made
towards these goals along two different dimensions. The first goal was to energy the
theorem proving community to turn their attention to problems of increasing complexity
by using Cyc to generate a set of scalable problems for them to tackle. Since the TPTP
Problem Library is the main regression and benchmarking suite used by the automatic
theorem proving community, providing a suite of more challenging problems in this
syntax to via this channel facilitates the communities ability to begin addressing them.

Even if Cyc were to be removed from the picture at this point, these problem suites
would provide fodder to that can bring the theorem proving technologies closer to
addressing the types of problems critical to IC success. However, there is a second
benefit to growing theorem proving technologies in these directions, namely an increased
likelihood of Cyc being able to leverage some of these technologies to attack specific
types of problems – or parts of problems – very efficiently. Since Cyc’s architecture
supports the assimilation of a panoply of problem solvers to attack any given problem,
improvements in efficiency of one or more of these leading theorem provers is expected
to have rapid payback in Cyc’s ability to solve complex problems in realistic timeframes.

In addition to fostering advancements in the theorem proving community, this project
also supported a series of experiments that enabled immediate and substantial
improvements to the efficiency of Cyc’s current reasoning capabilities. A variety of
techniques were examined and implemented, including the use of reinforcement learning,
reuse of problem-solving knowledge from past problems to address later similar ones,
and the clustering of knowledge used to solve specific problem types, thereby greatly
reducing the overall search space. While these experiments yielded significant results,
they also served to identify likely paths forward for even more significant improvements.

 42

4.2 The Path Forward: Further Enhancing Cyc’s Reasoning

As described above, the experiments with Cyc’s current inference capabilities led to
some immediate improvements in Cyc’s reasoning efficiency as well as to a long list of
additional opportunities. The most promising of these are outlined here:

4.2.1 Proof Spec Tactician

• Make Strategist automatically use Proof Spec Tactician

Currently the Strategist only uses the Proof Spec Tactician when an explicit proof
spec is passed in via an inference parameter. The Strategist could be extended to
automatically extract relevant proof specs for a query from Cyc’s case store of
existing proof specs. If resources permit, it can then fall back to general discovery
proof after first attempting the relevant proof specs.

• Store and access sub proof specs as well

Currently Cyc only stores top-level proof specs that applied to an entire inference.
We can investigate extending that to sub proof-specs as well, which would enable
more cross-query reuse between queries that are not analogous at the top-level but
share common subqueries that are analogous.

• Work offline to expand proof store

The proof store is built from experience in general discovery proof. Therefore, we can
leverage an arbitrary amount of offline inference to increase the proof store. This
could be achieved by asking queries analogous to those already in the store.

• Explore alternate reasoners for case generalization and abstraction

The efficient storage and retrieval of relevant proof stores is itself an interesting
problem to investigate and optimize. Even with a perfect Proof Spec Tactician we
still need to be able to access a relevant proof spec more quickly than the savings it
provides in order to be a net performance gain. This can be viewed as a form of
analogy reasoning so existing analogy reasoners could be evaluated here.

• Profiling sweep of propagation code

Effort on the current Proof Spec Tactician was primarily focused on correctness
rather than efficiency. We should perform a profiling analysis on the Proof Spec
Tactician and investigate reducing the expense of the bookkeeping overhead on the
propagation of proof-specs.

 43

4.2.2 TPTP

• Formally publish Elaboration Suite

Currently, only the Scaling Suite has been published to the TPTP community. We
should publish the Elaboration Suite as well.

• Update both suites each year

Both the Scaling and Elaboration Suites should be updated with newly generated
problems at least yearly.

• Extend from OpenCyc to ResearchCyc

Currently, only OpenCyc KB Content is used to generate the TPTP suites. We should
extend that to use ResearchCyc so that ATP developers that have a ResearchCyc
license can work on a version that even more closely mirrors ResearchCyc content
and behavior.

• Extend reasoning modules covered

We should explore extending the TPTP generation modules to cover more cases of
Cyc subtheory reasoning.

• Improve relevant chaff generation algorithm

Our current relevant chaff generation algorithm appears to be indistinguishable in
effect from just random selection of chaff to include. We should investigate whether
this is due to a flaw in our approach and whether paying closer attention to axiom
connectivity would behave better.

4.2.3 Rule Connectivity Graph

• Extend to rule sets

Currently the rule connectivity heuristic is based on pairwise rule success. We should
investigate whether or not extending this to remember actual sets of successful rules
rather than just pairwise success would maintain generality and improve focus
without overfitting.

• Learn heuristic weighting

We should perform a hill-climbing walk through heuristic weight space to learn the
best a priori weighting for the rule connectivity heuristic in relation to the other
existing inference heuristics.

 44

4.2.4 Reinforcement Learning Tactician

• Implement join iteratively

When working on a join of A(x) ^ B(x) the tactician should interleave iterative work
on A(x) and B(x) so that we don't have to entirely finish one problem (e.g. A(x) or
B(x)) before we start working on the other problem (e.g. B(x) or A(x)).

• Reward answer count

The Reinforcement Learning Tactician learned a policy that favored time to first
answer by sacrificing time to later answers. We should device a policy that fairly
factors in later answers and repeat the learning experiment under the new policy.

4.3 The Path Forward: Harnessing the Machine Reasoning
Community

The final conclusion is that the overall hypothesis appears to be empirically verified, to
the extent we have been able to do these experiments: a group of n of the world’s leading
theorem-provers “harnessed together” ought to be able to solve many of the problems,
especially the IC-sized Level 6 problems, more than n times faster than any one of them
(any one of the theorem proving programs) could, working on that same problem in its
entirety all by itself.

The path forward from this point includes continuing to interact with, engage, and
challenge the worldwide ATP community, to get them as much as possible to adopt this
challenge as their own. Without participation by Cyc or other U.S. Government funded
researchers and developers, and without some of the problems coming from (or
motivated by) IARPA or the IC more broadly, the ATP community is likely to once again
become diverted toward fine-tuning against the existing problem set rather than coming
up with new, IC-sized and IC-relevant challenge problems.

We hope that this resource – the now-engaged worldwide ATP community – is not left
“on the shelf.” We strongly urge IARPA to follow through with the original plan to
harness that resource, even if Cyc is only one of many players in that endeavor.

 45

5. References

1. Kaebling,Leslie, http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume4/kaelbling96a-
html/rl-survey.html.

2. Wikipedia Reinforcement Learning Overview,
http://en.wikipedia.org/wiki/Reinforcement_learning

3. Oblinger, D. 2005. Darpa Transfer Learning Program.
http://www.darpa.mil/ipto/solicitations/closed/05-29 PIP.htm .

4. Ramachandran, Deepak, Reagan P., and Goolsbey, K., First-Orderized ResearchCyc:
Expressivity and Efficiency in a Common-Sense Ontology, Papers from the AAAI
Workshop on Contexts and Ontologies: Theory, Practice and Applications. Pittsburgh,
Pennsylvania, July 2005.

5. McCune, William, “OTTER 3.3 Reference Manual”
http://www.cs.unm.edu/~mccune/otter/Otter33.pdf

6. “E - a brainiac theorem prover,” Journal of AI Communications 15(2):111-126

7. Weidenbach, C., “SPASS: Combining superposition, Sorts and Splitting” chapter in the
“Handbook of Automated Reasoning”, 1999.

http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume4/kaelbling96a-html/rl-survey.html
http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume4/kaelbling96a-html/rl-survey.html
http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume4/kaelbling96a-html/rl-survey.html
http://en.wikipedia.org/wiki/Reinforcement_learning
http://www.darpa.mil/ipto/solicitations/closed/05-29
http://www.cs.unm.edu/~mccune/otter/Otter33.pdf

 46

6. List of Symbols, Abbreviations and Acronyms

ATP – Automatic Theorem Proving

Cyc – The Cyc Knowledge Base

FOL – First Order Logic

HL – Heuristic Level

IC – Intelligence Community

KB – Knowledge Base

RL – Reinforcement Learning

TPTP – Thousands of Problems for Theorem Provers

 47

Appendix A. CADE-21/ESARLT Talk Overview
The following is an overview of an invited talk entitled Cyc Design Challenges and
Solutions that was presented by Keith Goolsbey at the CADE-21 Workshop on
Empirically Successful Automated Reasoning in Large Theories (ESARLT) on July 15th
in Bremen, Germany.

Abstract

Cyc comprises a large, contextualized, common sense knowledge base (KB)
which is encoded in an expressive representation language (essentially FOL
with a few key extensions) and paired with an inference engine optimized for
the classes of queries we most frequently encounter. These queries tend to mix
relatively shallow reasoning within one of a large number of idiosyncratic
subtheories with relatively deep reasoning within one of a very small number of
stylized subtheories. The constraints of these queries in a large and expressive
KB combined with the need to efficiently react to KB elaboration together
provide a unique set of design challenges that are extremely stressful for the
solutions provided by the current state of the art FOL theorem provers. The
solutions to these challenges currently adopted by the Cyc inference engine will
be presented within the context of a new suite of TPTP problems that are
derived from Cyc's KB and typical queries and are intended to demonstrate
Cyc's design challenges for investigation by the wider community.

Background on Cyc and CycL

CycL is essentially a first-order logic (FOL) with a few useful higher-order logic (HOL)
extensions. The Cyc knowledge base (KB) is a very large common-sense knowledge
base with millions of assertions over hundreds of thousands of terms. CycL has two
components, the Epistemological Language (EL), which is the external language of
expression and semantics, and the Heuristic Language (HL), which is the internal
language of implementation. We translate between the EL and the HL to have both an
expressive language for representation and a powerful language for reasoning.

OpenCyc based TPTP Suite

Cycorp announced that it is releasing to the CADE community a new TPTP suite of 300
problems based on OpenCyc KB content and queries. The suite is derived from
OpenCyc and as such is freely available to anyone to use for any purpose. It is Cycorp’s
hope that by extending TPTP to include queries that express the design constraints of Cyc
the CADE community will begin to address these constraints and therefore make their
systems more directly useful for Cyc inference.

 48

FOLification

FOLification is the process of converting CycL into a FOL for use in TPTP problems on
FOL theorem provers in the CADE community. An extremely high percentage of
OpenCyc is FOLifiable (> 89%).

Large, Persistent KB

The time spent to load a background theory cannot be ignored when the background
theory is millions of axioms. It is best to reuse the background theory for multiple
queries by maintaining state for the background theory between queries and to separate
the store of background theory clauses from the store of working clauses in inference.
Where possible, the background theory should be swapped in and out of memory lazily
from disk via indexing since a given query only uses a small portion of it at any one time.

Indexing

Although the KB is large, comprehensive indexing allows for focused access to subsets
of the KB that match expected unification patterns. This allows for tractable working
sets during inference even with an immense KB. The SPASS theorem prover is
distracted by irrelevant chaff which is an indication that better indexing is warranted.

Elaboration Tolerance

John McCarthy defined Elaboration Tolerance as follows:

A formalism is elaboration tolerant to the extent that it is convenient to modify
a set of facts expressed in the formalism to take into account new phenomena or
changed circumstances. Representations of information in natural language have
good elaboration tolerance when used with human background knowledge.
Human-level AI will require representations with much more elaboration
tolerance than those used by present AI programs, because human-level AI
needs to be able to take new phenomena into account.

The Cyc KB must be elaboration tolerant because we constantly do theory revision and
need to query the KB quickly after each revision. This limits optimizations that perform
extensive global analysis or assume a read-only knowledge base.

We simulate elaboration tolerance in the TPTP suite via the inclusion or omission of
include files. Inclusion of an include file mimics either the creation of a term or asserting
something. Exclusion of an include file mimics unasserting something or removing a
term.

 49

Pragmatic Incompleteness

Pragmatic incompleteness is just as bad as theoretical incompleteness in practice. When
dealing with very large theories, the community needs to accept incompleteness and
instead focus on metrics over a representative corpus of queries, such as time to first
answer, time per answer and answerability within a given amount of time.

Optimized Subtheories

Subthoeries of interest are worth providing optimized HL representations and inference
modules for the reasoner to use. The CADE community already does this with equality
reasoning (for example, the paramodulation inference rule). Subtheories of interest to
commonsense reasoning in general and Cyc in particular include: genls, isa, disjointness,
value inheritance, role filler existence, symmetry, transitivity, predicate generalization
and predicate negation. The performance of Cyc on disjointness queries is compared to
SPASS, E and Otter which all currently lack optimized support for a disjointness
subtheory.

Microtheories

A lattice of microtheories in Cyc tersely supports a large number of theories via
inheritance via the genlMt predicate. Cyc dynamically reasons about microtheory
subsumption and relevance in the tightest inner loop of inference at runtime. This has an
impact on FOLification and usually confounds the unit propagation heuristic used by
FOL provers.

Meta-Reasoning

Cyc manages the complexity of its inference rules (called the Worker) via explicit meta
reasoning (called the Tactician) and meta-meta reasoning (called the Strategist). The
desirable division of computational labor is usually about 90% Worker, 9% Tactician and
1% Strategist. We demonstrated the power of meta-meta reasoning by showing results of
an experiment where meta-meta reasoning substantially sped up trivial queries.

Presentation and Reception

The talk was well-received and the CADE community appears to be interested in tackling
Cyc-scale problems. During each CADE conference the CADE ATP System
Competition (CASC) is a formal competition held between theorem provers of the CADE
community over a set of problems selected from the full TPTP suite.

The next CASC competition will be the first to include TPTP from the Cyc TPTP suite!
There will be a new batch division with very large theories and there will be a Cyc
subdivision. Cycorp will sponsor a monetary prize to the prover that does the best on the
Cyc subdivision at the next CASC competition.

 50

Scaling Suite vs. Elaboration Suite

During discussions with Dr. Geoff Sutcliffe, the organizer of all of TPTP, CASC and
ESARLT, it became clear that our initial TPTP suite (we'll refer to this from now on as
the Elaboration Suite) is so beyond what the current state of the art can handle that we
run the risk of being ignored for being too hard. Instead, we designed a new, similar suite
which we will call the Scaling Suite. This new suite will be 6 sets of 50 problems, where
each set increases the number of axioms in the background theory by an order of
magnitude. Problems in the final set 6 will be the same size as those in the Elaboration
Suite, so the two suites will maintain some overlap. The Scaling Suite encourages the
community to tackle the suite as a whole because the smallest set 1 is already easily
answerable by the current state of the art. Work by Cycorp on developing and releasing
the Scaling Suite will proceed in August for release and inclusion in the next planned
TPTP release, currently slated for September 2007.

 51

Appendix B. Relevant Chaff Experiments
During development of the Scaling Suite we ran an experiment with our TPTP problem
generation we called the Relevant Chaff Experiment, which is described below.

In the TPTP problem set, a small number of axioms, usually between 1 and 40, are used
to prove the conjecture. These are the "wheat" and all the other axioms are the "chaff".
This experiment tested the hypothesis that using potentially relevant chaff would create
more difficult problems than choosing random chaff. We measured difficulty by the
amount of time it took the theorem prover to find a proof (for provable queries), or the
amount of time it took the theorem prover to give up looking for a proof (for unprovable
queries).

We constructed two sibling problem sets with the same conjectures -- 10 provable
disjointWith queries and 10 unprovable disjointWith queries. In one problem set, we used
an algorithm to select potentially relevant chaff axioms to add to the "wheat". In the
other, we randomly selected chaff axioms to add to the "wheat". We called the first
problem set the "potentially relevant chaff problem set" and the second the "irrelevant
chaff problem set". Each of these two problem sets contained exactly 200 axioms and 1
conjecture.

The algorithm used to generate the relevant chaff is roughly as follows:

Iterate over the "wheat" axioms. For each "wheat" axiom W,

• Select a chaff generation module M from the following probability distribution:
chaff-generator-transitive-generality-estimate .45
chaff-generator-random-gaf-for-term .40
chaff-generator-random-gaf-with-same-predicate .10
chaff-generator-random-gaf-with-spec-predicate .05

• Apply module M to axiom W. If this yields an axiom, add it to the set of chaff
axioms.

The chaff generation module algorithms are as follows, assuming an input axiom W:

• chaff-generator-transitive-generality-estimate
Applies only to axioms with transitive predicates. Select an axiom sharing an
argument with W and with the other argument near the top of the ontology.

• chaff-generator-random-gaf-for-term
Select a random gaf that shares a predicate and a term in the arg1 or arg2 position
with W

• chaff-generator-random-gaf-with-same-predicate
Select a random gaf with the same predicate as W

 52

• chaff-generator-random-gaf-with-spec-predicate
Select a random gaf with some specialization of W's predicate

We ran this experiment on three ATPs: Otter, SPASS, and E. The experiments were run
concurrently on a 4-CPU machine with 8 GB of RAM, where each CPU is a dual-core
AMD Opteron. The results, shown over the next three graphs, were inconclusive:

Otter

Statistical Analysis (potentially relevant chaff)

N : 20

Min : 0.1165s

Max : 0.4439s

Median : 0.2284s

Mean : 0.2298s

Standard Deviation : 0.0951

Statistical Analysis (irrelevant chaff)

N : 20

Min : 0.1173s

Max : 0.2944s

Median : 0.219s

Mean : 0.1858s

Standard Deviation : 0.05956

Potentially Relevant Chaff
Irrelevant Chaff

 53

The data from Otter weakly supports our hypothesis that potentially relevant chaff is
more distracting than random chaff, but more data would be needed to prove anything
conclusively.

SPASS

Statistical Analysis (potentially relevant chaff)

N : 20

Min : 0.2155

Max : 17350

Median : 8.074

Mean : 2036

Standard Deviation : 4181

Statistical Analysis (irrelevant chaff)

N : 20

Min : 0.1415

Max : 18070

Median : 4.786

Mean : 2079

Standard Deviation : 4311

The data from SPASS also weakly supports our hypothesis that potentially relevant chaff
is more problematic than irrelevant chaff, but more data would be needed to prove
anything conclusively.

Potentially Relevant Chaff
Irrelevant Chaff

 54

E

Statistical Analysis (potentially relevant chaff)

N : 20

Min : 27.24

Max : 2617

Median : 2134

Mean : 1843

Standard Deviation : 690.8

Statistical Analysis (irrelevant chaff)

N : 20

Min : 27.92

Max : 2624

Median : 2156

Mean : 1841

Standard Deviation : 682.7

The data from E differs so little between the two conditions that we can't conclude
anything useful from it, except that the relevance of chaff doesn't apart to be particularly
significant in this implementation of E.

We suspect that the effects of the relevant versus irrelevant chaff may be being drowned
out due to the lack of indexing support in ATPs. If any of these ATPs use a clause tree
internal representation, potentially relevant chaff would be represented more efficiently,
so this might offset the indexing-related slowdown. The fact that the number of facts that
are potentially relevant to the problem seems to have no effect on the time to answer the
problem was quite surprising to us, as we expected the systems to spend more time

Potentially Relevant Chaff
Irrelevant Chaff

 55

solving problems when the number of easily accessible inference paths was higher. The
degree to which any of these systems are affected by the amount of potentially relevant
chaff appears to be un-testable until the ATPs have improved their indexing support.

Questions, suggestions, and other feedback are welcome, and should be directed to the PI
of this project: Doug Lenat doug@cyc.com .

We wish to thank Geoff Sutcliffe, Andrei Voronkov, and Michael Genesereth, for their
substantive technical collaboration, and Eric Rickard, DTO, and AFRL for their support
of this work, but all the opinions expressed herein reflect those of the authors, not
necessarily those of the United States Government nor of those individuals.

mailto:doug@cyc.com

