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Abstract

A novel approach for detection of broad-band (BB) transients (DBBT) is proposed. DBBT
is based on an analysis of the spectrograms, calculated from time series of one or more hy-
drophones. A spectrogram is divided into locally normalized time-frequency cells (TFC).
Two TFCs, which are measured at the same time but at different neighboring frequencies,
are said to include a signature of a broad-band transient signal if their empirical centres
of masses estimated in a higher-dimensional feature space using a Gaussian kernel exhibit
correlation higher than a predefined threshold. A spread coefficient p of a Gaussian kernel
is chosen so that the correlation between the pairs of centres of masses of TFCs that do
not include transient signatures appear to be uncorrelated. Tests of BB transient detection,
carried out using a number of real-world data sets, demonstrate robustness of the proposed
method. In particular, DBBT was able to detect the launch and explosion of a torpedo, the
start and stop of small boat engine, and other events. Reusable values of size of TF cells, a p
value, and correlation threshold were used. The same settings were also successfully used
with two sets of torpedo and ship measurements artificially combined at different bearings
within a framework of simulated beam-forming. The results were found to be relatively
insensitive to the array shape and target bearing errors. A few tests that were carried out
on artificially generated narrowband signals using modified DBBT were found to be too
limited and therefore inconclusive.

Résumé

On propose une nouvelle méthode de détection de transitoires à large bande (DBBT). La
méthode DBBT est basée sur une analyse des spectrogrammes, obtenus à partir de séries
chronologiques d’un ou de plusieurs hydrophones. Un spectrogramme est divisé en cel-
lules temps-fréquence (TFC) normalisées localement. On dit de deux TFC mesurées à la
même heure mais à des fréquences voisines différentes qu’elles contiennent une signature
de signal transitoire à large bande si leurs centres de masse empiriques estimés dans un
espace de caractéristiques à plus grand nombre de dimensions à l’aide d’un noyau gaus-
sien présentent une corrélation supérieure à un seuil prédéfini. Un coefficient d’étalement
p d’un noyau gaussien est choisi de façon que les paires de centres de masse des TFC
qui ne contiennent pas de signatures transitoires semblent non corrélées. Des essais de
détection de transitoires à large bande, effectués avec un certain nombre d’ensembles de
données réels, montrent la robustesse de la méthode proposée. En particulier, la méthode
DBBT a permis de détecter le lancement et l’explosion d’une torpille, le démarrage et
l’arrêt d’un moteur de petite embarcation, de même que d’autres événements. Des va-
leurs réutilisables de la taille de cellules temps-fréquence, une valeur de p et un seuil de
corrélation ont été utilisés. Les mêmes réglages ont aussi été utilisés avec succés avec deux
ensembles de mesures relatives à des torpilles et des navires combinées artificiellement à
différents relévements dans un cadre de mise en forme de faisceau simulée. On a constaté
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que les résultats étaient relativement indépendants de la forme du réseau et des erreurs
de relévement des cibles. On a constaté que quelques essais effectués sur des signaux à
bande étroite générés artificiellement, à l’aide d’une version modifiée de la méthode DBBT,
étaient trop limités et par conséquent non concluants.
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Executive summary

A Novel Detector of Broadband Transient Signals
Jüri Sildam; DRDC Atlantic TM 2006-258; Defence R&D Canada – Atlantic;
November 2006.

Introduction: Detection of transients (e.g. a torpedo entering the water), can be seen as a
first step in target detection, localization, and classification problem. The non-stationarity
of acoustical signal measured during a transient event makes detection of the transient a
challenging task. For example, one may need to detect a transient against the background
of relatively loud non-stationary and non-Gaussian noise created by one or more moving
ships. The present work proposes a novel approach to the problem of detection of broad-
band transients.

Results: The proposed of detection of broad-band transients (DBBT) is based on analysis
of the spectrograms, calculated from time-series of one or more hydrophones. DBBT is
able to detect the transients that manifest themselves as a sudden increase in spectral energy
observed in a short time over a broad band of frequencies. In contrast to the approaches of
transient detection, which directly test the signal changes in time, DBBT tests for similarity
of time-frequency cells along a frequency axis to decide whether there were any significant
changes in time. Tests of BB transient detection, carried out using a number of real-world
data sets, demonstrate robustness of the proposed method.

Significance of results: The proposed approach can be used for detection of BB transients
in a number of different applications where transients manifest themselves as a sudden
increase in spectral energy observed over a short time in a broad band of frequencies.
This algorithm is potentially useful for torpedo detection under the Multi-Sensor Torpedo
DCL TDP as well as in Marine Mammal detection and general transient-based submarine
detection.

Future work:

1. The approach will be tested against recorded data collected as part of the MSTDCL
TDP

2. If the approach shows promise, the approach will be coded into a Transient Detection
module for the System Test Bed (STB)
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A Novel Detector of Broadband Transient Signals
Jüri Sildam; DRDC Atlantic TM 2006-258; Defence R&D Canada – Atlantic;
novembre 2006.

Introduction: : La détection de transitoires (p. ex. lorsqu’une torpille entre dans l’eau)
peut être considérée comme une première étape de la résolution du problme de détection,
localisation et classification des cibles. La non-stationnarité du signal acoustique mesuré
durant un événement transitoire complique la détection du transitoire. Par exemple, il peut
être nécessaire de détecter un transitoire en présence d’un bruit de fond non stationnaire
et non gaussien relativement élevé créé par un ou plusieurs navires en déplacement. Le
présent document propose une nouvelle méthode de résolution du problme de détection de
transitoires à large bande.

Résultats: : La méthode proposée de détection des transitoires à large bande (DBBT) est
basée sur l’analyse de spectrogrammes, obtenus à partir de séries chronologiques d’un ou
de plusieurs hydrophones. La méthode DBBT permet de détecter les transitoires qui se
manifestent sous forme d’un accroissement soudain de l’énergie spectrale observé pendant
une courte période sur une vaste gamme de fréquences. Contrairement aux autres méthodes
de détection des transitoires, qui cherchent à déterminer directement les variations du signal
dans le temps, la méthode DBBT cherche à déterminer la similarité des cellules temps
fréquence suivant un axe de fréquences pour déterminer s’il s’est produit des variations
appréciables dans le temps. Des essais de détection de transitoires à large bande, effectués
avec un certain nombre d’ensembles de données réels, montrent la robustesse de la méthode
proposée.

Portée: : La méthode proposée peut être utilisée pour la détection de transitoires à large
bande dans un certain nombre d’applications différentes dans lesquelles les transitoires se
manifestent sous forme d’un accroissement soudain de l’énergie spectrale observé pendant
une courte période sur une vaste gamme de fréquences. L’algorithme de cette méthode
pourrait être utile pour la détection de torpilles dans le cadre du projet de démonstration de
technologie de détection, de classification et de localisation de torpilles à partir de capteurs
multiples (PDT MSTDCL), de même que pour la détection de mammifères marins et la
détection générale de sous-marins basée sur les transitoires.

Recherches futures: :

1. La méthode sera testée avec des données enregistrées recueillies dans le cadre du
PDT MSTDCL.
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2. Si elle se révle prometteuse, la méthode sera codée sous forme d’un module de
détection de transitoires pour le banc d’essai de système (STB).
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1 Introduction

A transient is an acoustic event of short duration that causes significant changes in an
acoustic environment. From a point of view of a target detection, classification, and lo-
calization (DCL), transient detection can be seen as a first step in target DCL (e.g. a
torpedo entering the water). Non-stationarity of acoustical signal measured in background
prior, during-, and after of a transient event, makes detection of the transient a challenging
task. For example, one may need to detect a transient at the background of relatively loud
non-stationary and non-Gaussian noise caused by one or more moving ships. For known
signal and noise distributions, a transient detection becomes a classical test for detection
of statistical change such as Generalized Likelihood Ratio (GLR) test or Page’s CUSUM
test ([1, 2]). Time-frequency representations are often used for analysis of non-stationary
signals. In particular, spectrograms can be segmented using local statistical properties of
time-frequency cells (TFCs) [3, 4]. When the underlying distributions are unknown or
when an accurate signal model is unavailable, model-free approaches should be considered
[5]. The present work follows the latter path. It can be used in an automation of BB tran-
sient detection, which is one of the goals of Multi-sensor Torpedo Detection, Classification,
and Localization TDP, carried out by DRDC-Atlantic.

A brief description of the problem, its formulation, and a proposed solution for detection
of broadband (BB) transients is presented in the next section (more details on model-free
novelty detection in the context of present work can be found in the companion report
[6]). The proposed technique is applied then to a number of real-world acoustic data-sets
available at WWW sites [7] and [8]. For sake of completeness, two real-world examples
(torpedo launch, run, and target hit, and noise of a ship) are taken, and artificially mixed as
they would have been observed by an array of hydrophones freely towed behind a vessel.
Robustness of the proposed approach is tested by introduction of errors in array shape and
in target bearing estimation. Finally, a discussion of results and summary of conclusions is
provided.
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2 Detection of Broad-Band Transient Signals
2.1 Framework of Non-parametric Detection of

Transients
Transient detection is based on estimation of some dissimilarity measure D between two
successive data sets yi and yi+1. The respective sets can be obtained by arranging time-
series of a measured parameter yt or descriptors xt estimated from the time-series yt (in
what follows the upper bold, lower bold, and lower letters will stand for a vector, a matrix,
and a scalar respectively). Under a zero hypothesis (H0), two successive sets yi and yi+1

are said to be similar if a chosen dissimilarity measure does not exceed a preset threshold
η. In an opposite case (here in a case of transient), a hypothesis H1 is said to be true:

{
H0 : D(yi,yi+1)≤ η,
H1 : D(yi,yi+1) > η (1)

For a purpose of the following analysis, we arrange the sets of original time-series yi =
[yt0, ...,ytN ]T (here T means transpose) into matrices Y = [yi, ...,yN]. The last equality can
be written equivalently in a full matrix form:

Y =




y1,1 y1,2 . . . y1,L
y2,1 y2,2 . . . y2,L

...
...

...
yN,1 yN,2 . . . yN,L


 (2)

By applying a column-wise magnitude-square FFT to equation (2) one obtains the matrix
representation of a spectrogram:

X =




x1,1 x1,2 . . . x1,L
x2,1 x2,2 . . . x2,L

...
...

...
xN,1 xN,2 . . . xN,L


 (3)

Similarly to the dissimilarity tests carried out in time domain (equation 1), dissimilarity
analysis can be carried out in time-frequency domain. In this case, two spectra estimated
at two consecutive mean time values can also be compared in terms of their similarity. It
is straightforward to extend the respective analysis so that the tests will be carried out on
two successive sets of spectra instead of a pair of spectra. For example, X in equation (3)
can be divided into two parts, the first consisting of 1, ...,L/2, and the second consisting
of L/2 + 1, ...,L spectra i.e. X1 = [x1,x2, ...,xL/2] and X2 = [xL/2+1,xL/2+2, ...,xL],
where xj = [x1, j, ...,xN, j]T , j = 1, ...,L. Now, the dissimilarity test can be written as:

{
H0 : D(X1,X2)≤ η,
H1 : D(X1,X2) > η (4)

2 DRDC Atlantic TM 2006-258



2.2 Kernel Based Similarity Measure in the Context of
Support Vector Machines

In recent decade, the machine learning approaches based on kernel methods for pattern
analysis have been widely used (see e.g. [9]). In this framework the problem of transient
detection based on a limited amount of data can be addressed via a single class classification
problem. In the context of our spectral data, the underlying idea in its simplest form is to
map input spectral data φ(x) into some higher dimensional feature space F where it can be
enclosed into a hyper-sphere. The volume of this hyper-sphere can be minimized so that it
would include most of the data points of a single class defined by a set of measured spectra.
In F the distance from the hyper-sphere can be then estimated for any newly measured data
φ(z) in terms of its novelty (novel data would lie outside the hyper-sphere). A so called
kernel trick is introduced to avoid computationally expensive explicit data mapping. A
kernel matrix K(j, i) provides inner product information evaluated between all pairs of
elements of X:.

k(xj,xi) =< φ(xj),φ(xi) > (5)

As a result of use of a Gaussian kernel,

k(xj,xi) = e(− ||xi−x j ||2
p ) (6)

spectral data is mapped on to a hyper-sphere and k(xi,xi) = 1. Therefore, use of a Gaussian
kernel changes geometrical interpretation of novelty detection, which can be shown using
the following example. Figure 1 shows an example of two data sets of points (black dots)
located on the surface of three-dimensional sphere. The two sets can be distinguished by
two green thick circles surrounding the respective sets. For clarity the smaller data set
can be dismissed for now. Color of the sphere surface corresponds to the relative distance
values from the green circle of the bigger data set on the right side of the Figure. The
regions inside and outside of the bigger circle correspond to positive and negative distances
respectively. One can see that the absolute value of negative distance increases as one
moves away from the bigger circle. These distances as well as the green circle around
the bigger data set were obtained as result of a solution of one-class problem based on
support vector machines (SVM). Although SVM was not used in the present work, to
put the approach used in this work into a proper context, a short description of the SVM
approach for one class problem is given below.

One could think of the example shown in Figure 1 as a N dimensional hyper-sphere, with
the data points that lie on its surface as the spectra that had been mapped into F . According
to the SVM approach ([9, 5]), the problem of novelty detection based on a Gaussian kernel
(recall that in this case k(xi,xi) = 1) is to find a hyper-plane, which divides the origin of
the hyper-sphere and most of the data in F so that the distance between the hyper-plane
and the origin would be maximized (for more details see [6]). In the present example, the
thick green line would correspond then to the region of intersection

DRDC Atlantic TM 2006-258 3



Figure 1: An illustration of the two cases of novelty detection using the kernel based
approaches. In the first case, the data set shown by the small black circles in the right of
side of the sphere corresponds to one class. Color of the sphere corresponds to the distance
from the decision boundary obtained from a solution one class SVM (green line). Any
measurement that lies outside or inside this decision boundary would be called a novel or
belonging to this class respectively. In the first case the smaller data set seen in the left side
was not used to obtain the decision boundary seen in the right. In the second case, another
decision boundary was obtained from a solution one class SVM (green circle in the left)
independently of the data seen in the right side. In the second case, a novelty index can be
obtained as an arc distance between the two centres of masses of the two data sets without
using SVM. The white small circles on the top of the decision boundaries of both data-sets
represent support vectors and are shown only for illustration purposes. They were obtained
by solving a linear SVM problem for each of the data-sets.
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of the hyper-plane (which is not shown) with the hyper-sphere. Depending whether all
data points have to lie within the given circle or some outliers are allowed to lie outside
of the green circle, SVMs and other kernel based approaches are divided into hard- and
soft margin classifiers respectively. For the purpose of the present example it is sufficient
to consider only the hard-margin classifiers. The white small circles that lie right on the
green line correspond to the data points that define the intersection of the hyper-plane with
the hyper-sphere. The respective data vectors are called support vectors. In the context
of spectra based on acoustical measurements, the set of data points shown in Figure 1
could correspond to the spectra estimated at the time interval t + δt. The support vectors
would correspond then to the spectra that define the decision boundary (given by green
line) around the given set (according to Vapnik, instead of trying to address a difficult
problem of estimation of probability distribution function (PDF), one may address an easier
problem of estimating the support of underlying PDF). Now, any new measured spectrum
could be estimated in terms of its novelty (i.e. in terms of the distance from the decision
boundary of the larger data set). Another way for novelty detection would be to collect a
new set of measured spectra and to compare it with the set collected previously. Such a
situation is depicted in Figure 1. In [5] a dissimilarity measure D between a pair of data
sets was obtained by solving a one class classification problem separately for both data sets,
followed by estimation of a ratio of an arc distance between the empirical centres of masses
of the two data-sets and a sum of arc distances between the respective centres of masses and
their support vectors. For purpose of the present problem formulation, however, a simpler
and importantly computationally faster approach is used. Namely, instead of estimating
support of an underlying pdf, in F only an arc distance between the empirical centres of
the respective masses of the data sets Xi and Xi+1 is used. It may seem to be a significant
disadvantage not to consider a spread of data in F . However, as it will be seen below, by
limiting our solution only to a certain type transients, we obtain a sort of filtered approach
that would effectively suppress other types of events, making the similarity measure less
noisy, and making it easier to come up with a required threshold. So when a norm of a
Gaussian kernel ||xi−xj|| À p then K(xi,xj)→ 0, and in an opposite case if ||xi−xj|| ¿
p then K(xi,xj)→ 1. The correlation of the two centres of masses in a higher dimensional
feature space equals to:

r =

∑
i, j K(xi,z j)√∑

i, j K(xi,x j)
√∑

i, j K(zi,z j)
(7)

Note that in a context of this work xi and zi stay for the spectra of the first and second
data sets respectively (or vice versa). Note also that equation 7 corresponds to the ν-SVM
one-class decision function built on the Parzen window estimate [5]. Thus, for a purpose
of the present work D = 1− r. The next section will give an another example, which will
be followed then by the formulation of the test of transient detection using r.
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2.3 Example 1. Problem Formulation
In equation 6 it is possible to choose so small spread factor p such that even when two
datasets are obtained from an independent identical distribution (I.I.D.) (e.g. from a nor-
mal distribution with equal mean, and variance values), r is close to 0. In an event when
variance significantly increases and becomes comparable to p, the estimate of r will tend to
be close to 1. Thus by using a Gaussian kernel with a fixed spread factor p, one can detect
the onset or end of the processes, which variances are comparable or higher than p. By
itself such a result is not very interesting since it requires a priori knowledge of variance
values of underlying processes. However, one can make a problem solution invariant to
data absolute energy levels by normalizing data sets by norms of the respective data-sets:

X̂k,l =
Xk,l√∑

i,jX
2
i,j

(8)

To show another useful aspect of this normalization, let us inspect an example shown in
Figure 2. In this example, we generated non-stationary datasets using:

Xi =




g2
1,1 . . . g2

1,L
...

...
g2

N,1 . . . g2
N,L


+ si, i=0,...,J-1 (9)

Xi = [X1X2] , i=J (10)

where X1 = si +




g2
1,1 . . . g2

1,L/2
...

...
g2

N,1 . . . g2
N,L/2


 X2 =




g2
1,L/2+1 . . . g2

1,L
...

...
g2

N,L/2+1 . . . g2
N,L


2si + s2

i

Xi = 2si




g2
1,1 . . . g2

1,L
...

...
g2

N,1 . . . g2
N,L


+ s2

i , i=J+1,...,K (11)

where

si = s1 +
i(sK− si)

K−1
, i = 0, ...,K−2 (12)

and gi, j is a random number drawn from the normal distribution with mean equal to 0 and
standard deviation equal to 1. The constants used in equations [9], [10], [ 11], and [12] were
set as follows: s1 = 1, sK = 20, N = 200 (dimension of a data vector), K = 60, J = 15, and
L = 70. Index i can be interpreted here as an index of the average time when a dataset Xi
was measured. Due to monotonically increasing si (and hence changing statistical moments
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of Xi), equations [9], [10], [11] represent non-stationary data-sets. In the present artificial
simulation we have created the data sets under two statistical regimes at ti<J and at ti>J
respectively, and one data set at i = J, capturing the end of the first and the start of the
second regime. In order to detect the event at ti = J, we ran the equations [9], [10], [
11] twice with the only difference between Xi,1 and Xi,2 being the values of random
numbers g(l,k) drawn from the same normal distribution with mean 0, and variance 1. The
distribution of standard deviation and mean of the data set pairs (black and red markers
and lines) as a function si is shown in the panels B and C of Figure 2. Since the data set
pairs were generated using I.I.D., the respective first and second moments, as expected,
practically coincided,increasing as a function of si. A local peak at s2

i = 36 corresponds
to the occurrence of a transient at i = J. Distribution of mean and standard deviation of
normalized (using equation 8) data is shown in the panels D and E respectively. Note the
significant changes of the respective mean and σ values at i = J. The angle between the
two centres of masses is minimal (correlation is maximal) at i = J. Also the spread factor p
multiplied by variance of normalized TFC exhibits a local peak at s2

i = 36 (Figure 3). The
distribution of the first two components and histograms of all components of normalized
data is shown in Figure 4. Inspecting this Figure one can see that the main difference
between the histogram at s2

i = 36 and the rest of histograms is related to a number of peaks
in the respective distributions. Whereas at s2

i = 36 two peaks can be observed, the rest
of histograms show a single maximum. The top panel in the third column from the left
shows similar information. One can see that both data sets are similarly distributed (red
and black markers are almost on top of each other) with the two centres almost coinciding.
Occurrence of the transient described by equation 10 can be now understood in a context
of a relative change of spectral energy in time captured by both data sets X1 and X2. The
transient manifests itself as an abrupt change in statistical properties of spectra observed
from times t j=1,...,N/2 to times t j=N/2+1,...,N . In the case of a transient event, captured by
both data-sets, the empirical centers of masses of the two data-sets in a feature space are
highly correlated, and vice versa. Now, under the hypothesis H0, a transient is not observed
by any of the data sets Xi, Xi+1 if r≤ rη. In the opposite case when a correlation between
the respective pair of centres of masses in a feature space exceeds rη, a transient is observed
in both data sets. Thus the transient detection test can be written as:

{
H0 : X1,X2 i f r(X1,X2)≤ rη
H1 : X1,X2 i f r(X1,X2) > rη

(13)

At first sight, it may seem that the dissimilarity test given by equation 4 contradicts to the
respective test given by equation 13. However, it must be noted that in the former case a
transient is captured by a significant change from one set to another whereas in the latter
case a transient is captured by both data sets if they are similar to each other.
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2.4 Example 2
In this section a recording of a ship-engine, which lasted about 10 seconds is used as some-
what artificial but a clear example. The length of this recording was artificially increased

by using it repeatedly three times. Finally, to match the length of the torpedo recording
(which will be used in the next section), Gaussian noise was appended to this modified
ship-engine record. In this as well as in the all following examples the time series were
divided into segments, each 1024 points long. The FFT was applied at each time segment
without overlapping. The results were squared and divided into TFCs. Spectral data of
each TFC was normalized using a local norm estimated separately for each TFC, which for
the present examples consisted of 4 spectra each estimated at 6 frequencies. The width in
time and in frequency of a TF cell was equal to 0.46 s and 75.4 Hz respectively. At each
time instant in the spectrogram, equation 7 was applied pair-wise on all TF cells along a
frequency axis. As the result, a distribution of r2 was obtained as a function of time and
frequency. The results are shown in Figure 5. One can see that the start and the end of the
ship noise blocks were well resolved (panels A and B; see panel C for the spectrogram) at
all occasions except the change from the ship noise to Gaussian noise (at 32 s) when only a
single transient was detected since the transition period was too short. The panels D and E
are given for reference. They demonstrate that while the respective transient changes had
been resolved by the first two statistical moments as well, the relative TFC gradients were
not so well pronounced as compared to r2, and the definition of a threshold for a transient
detection would have been less straightforward. While the presented simplified example
is useful in terms of understanding of transient detection basics based on the present ap-
proach, more realistic examples are required to show its usefulness. This is done in the
next section.
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Figure 2: Simulated change of: (A)- correlation between the pairs of centres of masses
of TF cells in a feature space (eq. 7), (B, C)- the first two statistical moments of TF cells
(equations 9, 10, 11), and (D,E)- the first two statistical moments of normalized (equation
8) TF cells as a function of s2

i (equation 12)
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S2 = 1.00 S2 = 1.00S2 = 5.87 S2 = 5.87S2 = 18 S2 = 18

S2 = 36 S2 = 36S2 = 60 S2 = 60S2 = 91 S2 = 91

S2 = 128 S2 = 128S2 = 172 S2 = 172S2 = 221 S2 = 221

S2 = 278 S2 = 278S2 = 340 S2 = 340S2 = 409 S2 = 409

Figure 4: Three leftmost columns: distribution of two runs (the different runs are shown by
the different colors) of simulated data shown along the first two dimensions; three rightmost
columns: histograms of two simulated data sets combined Xi,1,Xi,2. Note that a transient
occurs at s2

i = 36
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Figure 5: Results of transient detection from the artificially generated onsets and stops of
a ship engine. The same recording was used repeatedly three times (the first three blocks)
followed by the appended Gaussian noise at the end (the fourth block). A- distribution
of r2 as a function of time and frequency; B- distribution of mean r2 > 0.001 estimated
for all columns of data shown in panel A; C- spectrogram of concatenated ship noise; D -
distribution of standard deviation of normalized TF cells; E - distribution of mean values
of normalized TF cells
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3 Results of Detection of Transients

The results presented in this section are based on the data sources open to public at the
World Wide Web sites [7, 8]. The time series of acoustical data were extracted from WAV
files (in a case of other formats, the respective files were first converted to WAV files),
and divided into data sets each 1024 data points long. At the sampling frequency of Fs =
11025 Hz, the frequency resolution was 10.8 Hz, and the upper frequency limit set to
5500 Hz. Inspection of Figures 6-11 shows that the proposed method detects well the

Data Description Freq.
Limits
(Hz)

Transients Fig.
No

Live torpedo shot taken aboard an
American submarine

0-5000 Torpedo launch at 1 s;
hatch closing at 11 s, ex-
plosion at 30 s

6

Ship noise 0 - 5000 No detected transients 7
Motor boat 0 - 5000 Start of the engine (0.5 s),

engine shifting into gear
(8.5 s), stop of the engine
(15.5 s)

8

Motor boat 0 - 5000 No detected transients 9
Pings of active sonar 100 -

2000
Onset and end of pings is
resolved to limited extent

10

Live torpedo shot taken aboard an
American submarine

1200 -
1600

decreasing the bandwidth
as compared to the first
row of this table improves
visibility of the BB tran-
sient due to hatch closure
but does not affect the re-
spective mean value of r2

11

Table 1: Table of acoustical files analyzed in terms of detection of BB transients

broadband transients and is insensitive to other types of spectral changes observed in the
spectrograms. It can be especially well seen in the panels of two-dimensional distribution
of r2. A one-dimensional novelty index was based on the mean of r2 > 0.001 estimated
at each TFC time-instant. Looking at the spectrogram of Figure 6 one can notice two well
pronounced broadband changes in spectral energy: the first during the torpedo launch, and
the second during the explosion. The hatch closing was slightly better pronounced in the
lower frequencies (up 2800 Hz) and generally was not resolved well at the given TFC
resolution. Consequently the mean r2 values appeared to be lower as compared to other
transients respectively. Inspection of the spectrograms in the Figures 7, 9 shows no BB

DRDC Atlantic TM 2006-258 13



transients. This corresponds well to the values of the estimated r2, which were low during
the whole time of observations.

If some a priori information were available about the frequency band of interest it could be
used to filter out the transients observed out-of band of interest. Such an example is given
in Figure 11. In this case by limiting the bandwidth to 1200-1600 Hz, one can observe more
clearly a transient related to the hatch closure at 11 s and suppress some variability observed
around 2000 Hz prior to the torpedo explosion. Finally, it must be noted that the choice of
the size of a TF cell must be based on some preliminary experiments with the spectrograms
of real life measurements. However, the tests with a wide range of different scenarios
shown in this work show that once a respective size of TFC has been established, it can
be used during a number of experiments unchanged (given that the sampling frequency
remains constant).
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Figure 6: Detection of the transients related to a torpedo launch (1 s), hatch closing (11 s)
and explosion (31 s). The top panel- time series of recorded data; the second panel from
the top- distribution of r2 as a function of time and frequency; the third panel from the
top- distribution of mean r2 > 0.001 estimated for all columns of data shown in the second
panel; the bottom panel-spectrogram of data shown in the top panel
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Figure 7: Detection of the transients related to a ship engine noise. No visible BB tran-
sients can be noted (bottom panel). The top panel- time series of recorded data; the second
panel from the top- distribution of r2 as a function of time and frequency; the third panel
from the top- distribution of mean r2 > 0.001 estimated for all columns of data shown in
the second panel; the bottom panel-spectrogram of data shown in the top panel
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Figure 8: Detection of the transients (1 s- start of the engine, 8.5 s - engine shifting into
gear, 14.8 s - stop of the engine) related to a first motor-boat. The top panel- time series of
recorded data; the second panel from the top- distribution of r2 as a function of time and
frequency; the third panel from the top- distribution of mean r2 > 0.001 estimated for all
columns of data shown in the second panel; the bottom panel-spectrogram of data shown
in the top panel
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Figure 9: Detection of the transients related to a second motor-boat. No visible transients
can be observed. The top panel- time series of recorded data; the second panel from the
top- distribution of r2 as a function of time and frequency; the third panel from the top-
distribution of mean r2 > 0.001 estimated for all columns of data shown in the second
panel; the bottom panel-spectrogram of data shown in the top panel
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Figure 10: Example of an active sonar signal; The top panel- time series of recorded data;
the second panel from the top- distribution of r2 as a function of time and frequency; the
third panel from the top- distribution of mean r2 > 0.001 estimated for all columns of data
shown in the second panel; the bottom panel-spectrogram of data shown in the top panel
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Figure 11: The same as in Figure 6 with the only difference that in the present case data
was analyzed for the bandwith 1200-1600 Hz
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4 Transient Detection in Beamformed Data

In the context of Naval acoustic applications, one of the approaches of transient detection
is based on hydrophones measurements arranged in towed arrays. In a case of known ar-
ray shape, the simultaneous measurements improve signal to noise ratio as well as provide
information about bearings of spatially localized acoustical sources. However, array shape
estimation can sometimes be a difficult problem (e.g. during turns). Errors in array shape
estimation lead to degradation of information extracted from data. Therefore it will be in-
teresting to test performance of BB transient detection under different error conditions. To
do this we will use two data sets analyzed in the previous section: torpedo launch-target hit
and ship noise records. Since the ship noise record was shorter, we will increase ship noise
record to the length of torpedo record by using the same ship noise measurements three
times (by concatenating them together), plus extending the concatenated measurements by
zeros to match the length of torpedo record. Assuming that during the whole period of
measurements the torpedo and the ship were located in the far-field at distinctly different
constant bearings θ1 and θ2 at equal distance from the array, the following array spectral
matrix at frequencies f and at array elements n would have been obtained:

X( f ,n) = 0.5
(
x1( f )ei2π f (znsin(θ1)−yncos(θ1))/c +x2( f )ei2π f (znsin(θ2)−yncos(θ2))/c

)
(14)

where c is sound speed, x1(f) and x2(f) are complex spectra of torpedo and ship respec-
tively, zn and yn relative horizontal coordinates of array elements. Assuming that the array
shape, the bearings of the torpedo and ship were known, conventional beamforming was
performed at the bearings θ = θ1 and θ = θ2.

X̂( f ) = ΣnX( f ,n)e−i2π f (znsin(θ)−yncos(θ))/c (15)

From results of transient detection given in the Figures 12, 13 one can see that the obtained
results of the distribution r2 were essentially same as in a case of analysis of original time
series (Figures 5, 6). Next, we used an incorrect array shape (yn was set to 0 and zn = nd,
where d was a constant distance between array elements). Thus, beamforming was carried
out using

X̂( f ) = ΣnX( f ,n)e−i2π f ndsin(θ)/c (16)

The respective results are shown in Figure (14). The transients due to the launch of tor-
pedo and the target hit were still detectable. Finally, additionally to the wrong array shape,
a torpedo bearing error of 20 degrees (θ = θ1 + 20) was introduced (equation (16)). Al-
though, in this case r2 was reduced, the two transients were still observable. Finally, as
a quality check of the performed calculations, the array shape was estimated using eigen-
vector method ([10]) using only acoustical data (equation (14)), known torpedo bearing θ1,
and distance between array elements. Figure 16 shows that the array shape was estimated
accurately.
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Figure 12: Detection of transients based on beamformed data with a look at a torpedo
bearing; A- distribution of r2 as a function of time and frequency; B- distribution of mean
r2 > 0.001 estimated for all columns of data shown in panel A; C- spectrogram of con-
catenated ship noise; D - distribution of standard deviation of normalized TF cells; E -
distribution of mean values of normalized TF cells
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Figure 13: Detection of transients based on beamformed data with a look at the ship bear-
ing; A- distribution of r2 as a function of time and frequency; B- distribution of mean
r2 > 0.001 estimated for all columns of data shown in panel A; C- spectrogram of con-
catenated ship noise; D - distribution of standard deviation of normalized TF cells; E -
distribution of mean values of normalized TF cells
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Figure 14: Detection of transients based on beamformed data using incorrect array shape
with a look at the torpedo bearing; A- distribution of r2 as a function of time and fre-
quency; B- distribution of mean r2 > 0.001 estimated for all columns of data shown in
panel A; C- spectrogram of concatenated ship noise; D - distribution of standard deviation
of normalized TF cells; E - distribution of mean values of normalized TF cells
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Figure 15: Detection of transients based on beamformed data using incorrect array shape
and incorrect torpedo bearing of 20 degrees; A- distribution of r2 as a function of time and
frequency; B- distribution of mean r2 > 0.001 estimated for all columns of data shown in
panel A; C- spectrogram of concatenated ship noise; D - distribution of standard deviation
of normalized TF cells; E - distribution of mean values of normalized TF cells
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5 Discussion

In this work an ad hoc approach has been proposed for detection of BB transients, which
manifest themselves as a sudden increase in spectral energy observed over a short time
in a broad band of frequencies. DBBT acts like a filter in a sense that if the variances
of the respective normalized TFC are significantly lower as compared to the spread factor
p of a Gaussian kernel, correlation of the centre of masses of TFCs in a feature space
decreases significantly. Because of data normalization, carried already out in the input
time-frequency space, one would expect that the proposed approach should be relatively
robust to the changes in absolute energy levels of spectrograms. Of course, should the
variance of normalized TF data be significantly higher than p, high correlation of the centre
of masses of TFC in a feature could be observed regardless the existence of transients.
Hence, the key to the successful application of DBBT is to have some a priori information
about the variance values of normalized spectra of TFCs. The preliminary tests of DBBT
have shown that this approach can be used without any changes of settings in a number of
different measurement conditions.

One may be tempted to modify DBBT for detection of narrow-band signals or for changing
the axis of similarity analysis from frequency to time. The results based on simulated
data (Figures 17, 18) respectively show that the respective changes can be successful in a
simulated environment. However, one may experience significant difficulties in obtaining
a robust algorithm for the respective real-world problems. More real-life measurements are
needed to see how successfully the modified DBBT can be applied. Finally, it would be
interesting to test the proposed algorithm on data from Halifax-class towed, hull-mounted
sonars and sono-buoys from recent torpedo exercises. The preliminary results obtained
in this work indicate that DBBT should show good results in terms of false alarms and it
should work well with the BB transients observed in the time intervals comparable to a TF
cell size.
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Figure 17: Quadratic frequency modulated chirp and a tonal mixed with white Gaussian
noise. Upper panel: distribution of r2 as a function of time and frequency. Gaussian spread
parameter is set such that background noise appears to be correlated in a feature space
whereas the detected signals exhibit r2 close to zero. Lower panel: spectrogram of given
data
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Figure 18: Quadratic frequency modulated chirp and a tonal mixed with white Gaussian
noise. Upper panel: distribution of r2 as a function of time and frequency. Similarity
analysis is carried out along time axis (whereas in the upper Figure, as well as in the rest
of this work it is carried out along frequency axis) Gaussian spread parameter is set such
that background noise appears to be uncorrelated in a feature space whereas the detected
signals exhibit r2 close to one. Lower panel: spectrogram of given data
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6 Conclusions

In this work a novel approach for detection of broadband transients has been proposed.
DBBT was able to detect the transients that manifest themselves as a sudden increase in
spectral energy observed in a short time over a broad band of frequencies. In contrast to
the approaches of transient detection, which directly test the signal changes in time, DBBT
tests for similarity of time-frequency cells along a frequency axis to decide whether there
were any significant changes in time. Preliminary tests of BB transient detection, carried
out using a number of real-world data sets, demonstrate robustness of the proposed method.
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Jüri Sildam,

5. DATE OF PUBLICATION (month and year of publication of
document)

November 2006

6a. NO. OF PAGES (total
containing information.
Include Annexes,
Appendices, etc).

48

6b. NO. OF REFS (total
cited in document)

10

7. DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the
type of report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered).

Technical Memorandum

8. SPONSORING ACTIVITY (the name of the department project office or laboratory sponsoring the research and development.
Include address).

Defence R&D Canada – Atlantic
P.O. Box 1012, Dartmouth, Nova Scotia, Canada B2Y 3Z7

9a. PROJECT NO. (the applicable research and development
project number under which the document was written.
Specify whether project).

11cw02

9b. GRANT OR CONTRACT NO. (if appropriate, the applicable
number under which the document was written).

10a. ORIGINATOR’S DOCUMENT NUMBER (the official
document number by which the document is identified by the
originating activity. This number must be unique.)

DRDC Atlantic TM 2006-258

10b. OTHER DOCUMENT NOs. (Any other numbers which may
be assigned this document either by the originator or by the
sponsor.)

11. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security
classification)

( X ) Unlimited distribution
( ) Defence departments and defence contractors; further distribution only as approved
( ) Defence departments and Canadian defence contractors; further distribution only as approved
( ) Government departments and agencies; further distribution only as approved
( ) Defence departments; further distribution only as approved
( ) Other (please specify):

12. DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document. This will normally correspond
to the Document Availability (11). However, where further distribution beyond the audience specified in (11) is possible, a wider
announcement audience may be selected).



13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly
desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the
security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U).
It is not necessary to include here abstracts in both official languages unless the text is bilingual).

A novel approach for detection of broad-band (BB) transients (DBBT) is proposed. DBBT is
based on an analysis of the spectrograms, calculated from time series of one or more hy-
drophones. A spectrogram is divided into locally normalized time-frequency cells (TFC). Two
TFCs, which are measured at the same time but at different neighboring frequencies, are said
to include a signature of a broad-band transient signal if their empirical centres of masses esti-
mated in a higher-dimensional feature space using a Gaussian kernel exhibit correlation higher
than a predefined threshold. A spread coefficient p of a Gaussian kernel is chosen so that the
correlation between the pairs of centres of masses of TFCs that do not include transient signa-
tures appear to be uncorrelated. Tests of BB transient detection, carried out using a number of
real-world data sets, demonstrate robustness of the proposed method. In particular, DBBT was
able to detect the launch and explosion of a torpedo, the start and stop of small boat engine, and
other events. Reusable values of size of TF cells, a p value, and correlation threshold were used.
The same settings were also successfully used with two sets of torpedo and ship measurements
artificially combined at different bearings within a framework of simulated beam-forming. The
results were found to be relatively insensitive to the array shape and target bearing errors. A
few tests that were carried out on artificially generated narrowband signals using modified DBBT
were found to be too limited and therefore inconclusive.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could
be helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as
equipment model designation, trade name, military project code name, geographic location may also be included. If possible keywords
should be selected from a published thesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified.
If it not possible to select indexing terms which are Unclassified, the classification of each should be indicated as with the title).

spectrogram segmentation, broadband transient detection, torpedo detection



This page intentionally left blank.






