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Description of Spherical Aberration and Coma of a Microlens
Using Vector Diffraction Theory

Glen D. Gillena and Shekhar Guhab

aAir Force Research Laboratory, Materials and Manufacturing Directorate, Anteon
Corporation, Dayton, Ohio, 45431, USA;

bAir Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson
AFB, Ohio, 45433, USA

ABSTRACT

Light distributions of a plane wave refracted by a microlens are calculated using Kirchhoff vector diffraction
theory. Numerical results for one and two-dimensional beam profiles and the onset and effects of spherical
aberration and coma are investigated for different lens parameters.

Keywords: vector diffraction theory, microlenses, aberration

1. INTRODUCTION

Ray-tracing and geometrical optics are traditionally used to locate the focal regions of lenses. Although these
techniques are useful for quick calculations of focal distances and the magnitudes and regions of spherical aber-
ration and coma, they are limited if the vector components of the light fields and/or detailed beam distributions
are desired. For example, in the field of optical trapping and manipulation of cold atoms, it is desirable to have
precise knowledge of the field components of tightly focused laser beams. The trapping of cold atoms using the
dipole radiation force was first observed in 1978, by Bjorkholm, et al..1 Recent work by Dumke et al.2 used a
microlens array to focus laser light for the trapping of cold, neutral 85Rb atoms. In this work we apply vector
diffraction theory to the special case of a microlens in order to calculate light distributions and beam profiles
in the focal region. Using the radiation and vector diffraction theory of Stratton,3 the diffraction integrals are
numerically evaluated using average desktop computers. The onset and effects of spherical aberration and coma
on one and two-dimensional beam profiles is investigated for various microlens and light parameters.

2. THEORY

The vector electromagnetic fields within a given source-free volume of space can be determined from the vector
analog of Green’s second identity using Stratton and Chu’s method.4 The fields at point �r can be expressed in
terms of the field values on a surface, S, surrounding the point �r using the formulae of Rothwell and Cloud5 as

�E (�r) = −
∫

S

da′
[
−iωµ

(
n̂′ × �H (�r ′)

)
G +

(
n̂′ × �E (�r ′)

)
× �∇′G +

(
n̂′ · �E (�r ′)

)
∇′G

]
, (1)

�H (�r) = −
∫

S

da′
[
iωε

(
n̂′ × �E (�r ′)

)
G +

(
n̂′ × �H (�r ′)

)
× �∇′G +

(
n̂′ · �H (�r ′)

)
∇′G

]
, (2)

where n̂′ is the normal to the input surface pointing into the volume, �r ′ denotes a point on the surface S and
da′ is the surface area element pointing in the direction of n̂ ′. The integrations extend over the input surface S
and the values of �E (�r ′) and �H (�r ′) in the integrands are those evaluated ‘just inside’ the volume of space after
the input surface. The Green’s function, G, used in Eqs. 1 and 2 is given by

G =
e−ik1ρ

4πρ
, (3)
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where k1 = 2πn1/λ, n1 being the refractive index of the medium between �r and �r ′, and

ρ2 = |�r (x, y, z) − �r ′ (x′, y′, z′) |2. (4)

When the surface separating the two media is spherical in shape, it is convenient to use a spherical coordinate
system to evaluate the field integrals. For an incident plane wave traveling parallel to the z-axis, the values of the
electromagnetic field components �E (�r ′) and �H (�r ′) ‘just outside’ of the spherical surface can be obtained from
the surface curvature, refraction effects, and the appropriate Fresnel transmission coefficients. If Eo denotes the
amplitude of the electric field of the incident plane wave, assumed to be polarized along the x-direction,

�E (�r ′) = Eoe
−ip2cosθ′ (

Tp sin θ′t cos φ′r̂ + Tp cos θ′t cos φ′θ̂ − Ts sin φ′φ̂
)

, (5)

and
�H (�r ′) =

n1

Zo
Eoe

−ip2cosθ′ (
Ts sin θ′t sin φ′r̂ + Ts cos θ′t sin φ′θ̂ + Tp cos φ′φ̂

)
, (6)

where Zo =
√

µo

εo
, p2 = 2πn2R/λ, and R is the radius of curvature. θ′ and φ′ denote the angular coordinates of

the point �r ′. Tp is the Fresnel transmission function for p-polarized light,

Tp =
2n1 cos θ′

n1 cos θ′ + n2 cos θ′t
, (7)

and Ts is the Fresnel transmission function for s-polarized light,

Ts =
2n1 cos θ′

n2 cos θ′ + n1 cos θ′t
. (8)

The angle of transmission, θ′t, is given through Snell’s Law, or

θ′t = sin−1

(
n2

n1
sin θ′

)
. (9)

2.1. Normally incident light
The theoretical setup for this investigation is illustrated in Fig. 1. A plane wave is traveling within the microlens
medium having a refractive index of n2 and incident upon the spherical exit surface of the microlens. The
curvature of the spherical exit surface is assumed to have a maximum half-angle of θmax. Beyond the exit
surface, the refractive index is assumed to be n1, where n2 > n1.

For incident plane waves traveling parallel to the z-axis, the electric and magnetic fields can be expressed as

E (�r) ≡ A�U (�r) , (10)

and
H (�r) ≡ A

n1

Zo

�V (�r) , (11)

where

�U (�r) =
∫ 2π

0

∫ θm

0

sin θ′dθ′dφ′ [�u1 + �u2 + �u3] (12)

and

�V (�r) =
∫ 2π

0

∫ θm

0

sin θ′dθ′dφ′ [�v1 + �v2 + �v3] (13)

with
A =

−ip1Tp

4π
Eo, (14)
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where p1 = 2πn1R/λ.

The angle θm is the maximum half-angle of the aperture, and �u1, �u2, �u3, �v1, �v2 and �v3 represent the three
vectors of the three individual terms of �E and �H in Eqs. 1 and 2, respectively. Each of these vectors have the
following components:

u1x = f2G1

(
cos θ′ cos2 φ′ + t1 cos θ′t sin2 φ′)

u1y = f2G1 sin φ′ cos φ′ (cos θ′ − t1 cos θ′t) (15)
u1z = −f2G1 sin2 θ′ cos φ′,

u2x = f2G2 [(z1 − z′1)α1y − (y1 − y′
1)α1z]

u2y = f2G2 [(x1 − x′
1)α1z − (z1 − z′1)α1x] (16)

u2z = f2G2 [(y1 − y′
1)α1x − (x1 − x′

1)α1y] ,

u3x = f2G2 sin θ′t cos φ′ (x1 − x′
1)

u3y = f2G2 sin θ′t cos φ′ (y1 − y′
1) (17)

u3z = f2G2 sin θ′t cos φ′ (z1 − z′1) ,

v1x = f2G1 sin φ′ cos φ′ (t1 cos θ′ − cos θ′t)
v1y = f2G1

(
t1 cos θ′ sin2 φ′ + cos θ′t cos2 φ′) (18)

v1z = f2G1 (t1 sin θ′ sin φ′) ,

v2x = f2G2 [(z1 − z′1)β1y − (y1 − y′
1) β1z]

v2y = f2G2 [(x1 − x′
1)β1z − (z1 − z′1) β1x] (19)

v2z = f2G2 [(y1 − y′
1)β1x − (x1 − x′

1)β1y] ,

and

v3x = f2G2t1 sin θ′t sin φ′ (x1 − x′
1)

v3y = f2G2t1 sin θ′t sin φ′ (y1 − y′
1) (20)

v3z = f2G2t1 sin θ′t sin φ′ (z1 − z′1) .

The function f2 is the phase of the electromagnetic field at the point �r ′, or

f2 = e−ip2cosθ′
, (21)

and G1 and G2 are the functions:

G1 ≡ 4πRG =
e−ip2ρ1

ρ1
, and (22)

G2 ≡ − 1
ip2ρ1

∂G1

∂ρ1
=

G1

ρ1

(
1 +

1
ip2ρ1

)
. (23)

The parameter t1 is the ratio of the Fresnel transmission function for s-polarized light to the transmission function
for p-polarized light, or

t1 ≡ Ts

Tp
=

n1 cos θ′ + n2 cos θ′t
n1 cos θ′t + n2 cos θ′

. (24)

The components of �α1 and �β1 introduced in Eqs. 17 and 20 are given by:

α1x = sin φ′ cos φ′ (t1 cos θ′ − cos θ′t)
α1y = cos θ′t cos2 φ′ + cos θ′ sin2 φ′ (25)
α1z = −t1 sin θ′ sin φ′,
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and

β1x = − cos θ′ cos2 φ′ − t1 cos θ′t sin2 φ′

β1y = sin φ′ cos φ′ (t1 cos θ′t − cos θ′) (26)
β1z = sin θ′ cos φ′.

The coordinates x1, y1, z1, x′
1, y′

1, and z′1 can be expressed in terms of the spherical coordinates as

x1 = r1 sin θ cos φ

y1 = r1 sin θ sin φ (27)
z1 = r1 cos θ,

and

x′
1 = sin θ′ cos φ′

y′
1 = sin θ′ sin φ′ (28)

z′1 = cos θ′,

where r1 ≡ r/R.

θmax

point of
interest

r '

r

n1n2

plane of
zero phase

incident
plane wave

θ
ẑ

R

Figure 1. Theoretical setup for calculating light fields beyond the exit surface of a microlens. The plane wave is incident
in the +ẑ direction and refracted at the spherical exit surface with maximum half angle θmax, and radius of curvature R.

2.2. Light incident at an angle
Figure 2 illustrates the theoretical setup for light incident upon the spherical surface at an angle of γ with respect
to the z-axis. For ease of calculation, a second (double-primed) coordinate system is introduced such that x̂′′

and ẑ′′ are rotated about ŷ′ by the angle of incidence, γ, with respect to x̂′ and ẑ′, and ŷ′′ = ŷ′.

All of the equations described previously for normally incident plane waves are valid for light incident at
an angle, except for the fact that they apply to the double-primed coordinate system; i.e., all of the “primes”
in Eqs. 1–29 are replaced with “double-primes.” The difficultly in using the double-primed coordinate system
arises in the limits of the integrations. The limits of the integrations are determined by the shape of the exit
surface in that coordinate system. In the primed coordinate system of Fig. 2, the limits of integration are θ′ = 0
to θm, and φ′ = 0 to 2π. In the double-primed coordinate system, the limits of integration are a complicated
function of θ′′ and φ′′ due to the fact that z′′ does not pass through the center of the exit surface and the exit
surface is not angularly symmetric about r′′ for all values of θ′′. Mathematically and computationally it would
be desirable to perform the integrations over the primed coordinates. If an expression is found that transforms
the double-primed coordinates to the primed coordinates, then the integration can be performed in the primed
coordinate system where all of the variables and functions of �U and �V (Eqs. 12 and 13) are expressed in the
primed coordinate system.

SPIE-OSA/ Vol. 6342  63420B-4
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plane of
zero phase

incident
plane wave

γ
ẑz'^

z"^
x'^

x"^

r'̂

r"^

θ̂

θ̂'

"

Figure 2. Theoretical setup for calculating light fields beyond the exit surface of a microlens. The plane wave is incident
at an angle of γ with respect to the +ẑ direction.

The relationships between the primed and double-primed spherical coordinates can be found by first express-
ing the spherical primed coordinates in terms of the cartesian primed coordinates, or

x′ = sin θ′ cos φ′

y′ = sin θ′ sin φ′

z′ = cos θ′. (29)

Then the double-primed coordinate system is rotated about ŷ′′ by an angle −γ to become the primed cartesian
coordinates:

x′′ = x′ cos γ − z′ sin γ

y′′ = y′

z′′ = x′ sin γ + z′ cos γ. (30)

Substituting Eq. 29 into 30, we get

x′′ = (sin θ′ cos φ′) cos γ − (cos θ′) sin γ

y′′ = sin θ′ sinφ′

z′′ = (sin θ′ cos φ′) sin γ + (cos θ′) cos γ. (31)

Expressing the double-primed spherical coordinates in terms of the double-primed cartesian coordinates results
in

θ′′ = cos−1 (cos θ′ cos γ + sin θ′ cos φ′ sin γ) (32)

and

φ′′ = tan−1

(
sin θ′ sin φ′

sin θ′ cos φ′ cos γ − cos θ′ sin γ

)
. (33)

Equations 1–29 can now be used for light incident upon a microlens at an angle of γ if the right hand side of
Eqs. 32 and 33 are substituted for all of the “θ′” and “φ′” variables, respectively, in Eqs. 1–29.

3. NORMAL INCIDENCE CALCULATIONS

Figure 3 is a calculation of the modulus square of the electric field versus the on-axis distance from the center of
curvature. The parameters chosen for this calculation are the same as those for the microlenses by Dumke et.
al2 to optically trap cold 85Rb atoms. The microlens array is an array of spherically curved surfaces on one side
of a fused silica substrate (n = 1.454 at λ = 780 nm). The light enters the other (flat) side of the substrate and

SPIE-OSA/ Vol. 6342  63420B-5
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exits each spherical surface. The spherical surface has a radius of curvature of R = 312.5 µm and a maximum
half-angle of θm = 11.5◦. Using geometrical optics, the focal spot should be observed at an axial distance of
3.2 R from the center of curvature. The peak intensity calculated in Fig. 3 is found at an axial distance of 3.11
R. Figure 4 is a plot of the modulus square of the x-component of the electric field versus the radial position,
at the focal plane (z = 3.11 R). One interesting feature of the on-axis intensity is the asymmetry before and
after the focal region. The on-axis intensity modulations before the primary focal plane resemble the on-axis
intensity characteristics for the diffraction of light by a circular aperture without a focusing medium.6, 7 The
on-axis intensity features before the focal spot indicate that light distributions in this region are influenced by
the diffractive nature of the circular edge of the exit surface as well as the focal nature of the spherical shape
of the exit surface. To further investigate the features before the focal plane, Figs. 5 and 6 are plots of the
radial intensity at the locations of the on-axis minimum and maximum occurring just before the focal plane,
respectively. The beam profiles calculated in Figs. 5 and 6 very closely resemble those of beam profiles calculated
for diffraction of light by a simple circular aperture using scalar diffraction theory,6 and vector diffraction
theory.7, 8

600

400

200

0

|E
x|

2  / 
E

02

4.54.03.53.02.52.0

z / R

p2 = 3660
thetam = 11.5°

Figure 3. Modulus square of the x-component of the electric field versus axial position for a microlens with 2πnR/λ = 3660
and a maximum half-angle of 11.5◦.

600

400

200

0

|E
x|

2  / 
E

02

0.040.020.00-0.02-0.04

x / R

p2 = 3660
thetam = 11.5°
z = 3.11

Figure 4. Modulus square of the x-component of the electric field versus radial position for a microlens with 2πnR/λ =
3660 and a maximum half-angle of 11.5◦.

4. SPHERICAL ABERRATION

Figure 7 is a plot of the on-axis intensity for a lens with a focal parameter of p2 = 2πn2R/λ = 5×105 for a variety
maximum half-angles. A lens parameter of p2 = 5× 105 would correspond to a radius of curvature of 2.8 cm for
532–nm light. For p2 = 5 × 105 the onset of the effects of spherical aberration are evident for even a maximum
half-angle of θm = 7.5◦. As θm is increased from 5 to 7.5◦ the maximum value of the on-axis intensity increases.
Beyond a half-angle of 7.5◦, the maximum on-axis intensity no longer increases in magnitude with increasing θm.
For θm = 10◦, significant deviations exist in the on-axis intensity profile from that of an aberration-free lens such

SPIE-OSA/ Vol. 6342  63420B-6
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Figure 5. Modulus square of the x-component of the electric field versus radial position for a microlens with 2πnR/λ =
3660, a maximum half-angle of 11.5◦, and an axial position of the on-axis minimum closest to the focal plane, or z = 2.69R.
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Figure 6. Modulus square of the x-component of the electric field versus radial position for a microlens with 2πnR/λ =
3660, a maximum half-angle of 11.5◦, and an axial position of the first localized on-axis maximum closest to the focal
plane, or z = 2.54R.

as that of the θm = 5◦ on-axis intensity plot. Note that this was not the case for a microlens with p2 = 3660 and
θm = 11.5◦, discussed in the previous section, illustrating that the onset of spherical aberration is dependent
upon the ratio of the curvature of radius to the wavelength of light. The higher the ratio, the earlier the onset
of spherical aberration for increasing maximum half-angles. In Fig. 7(b) the maximum half-angle is increased
even further to investigate the effects of severe spherical aberration. Once the maximum on-axis intensity has
saturated (around 7.5◦ for p2 = 5× 105), the region of higher intensities elongates along the axis of propagation
towards the exit surface of the lens. The growth of the “focal spot” towards the exit surface of the lens can be
explained using geometrical optics. According to geometrical optics, if a series of parallel rays are refracted by a
spherical surface then the paraxial rays focus at the expected focal spot. Non-paraxial rays will be refracted by
the spherical surface such that they will cross the optical axis at a point closer to the exit surface. The farther
the initial ray is located from the optical axis, the closer to the surface of the lens the ray will cross the optical
axis.

Figures 8(a) and (b) are plots of the radial intensity profile at the focal plane of a plane wave refracted by a
spherical exit surface as a function of the maximum half-angle on a linear and a logarithmic scale, respectively.
The intensity axis of Fig. 8 is normalized to the incident intensity before the spherical surface. Once the on-axis
maximum intensity saturation point is reached for increasing θm, no significant changes in the radial beam profile
is observed on a linear scale for increasing θm. Figure 8(b) is the same plot as Fig. 8(a), except that the intensity
scale is logarithmic. On a logarithmic scale it is apparent that the light collected by the outer rings of the
spherical surface crosses the “focal” plane at off-axis locations; i.e., the energy collected by the outer regions of
the spherical surface is propagated to off-axis locations in the focal plane. Away from the central focal region,
the intensity of a spherically aberrated beam can be orders of magnitude higher than that of a non-aberrated
beam.
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Figure 7. Calculated values of the intensity (normalized to the incident intensity) along the axis of the lens (normalized
to the radius of curvature of the lens) for various values of the maximum half-angle θm (5◦, 7.5◦, 10◦, 15◦, 20◦, and 25◦)
of the lens surface for a normally incident plane wave with 2πnR/λ = 5 × 105.
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Figure 8. Calculated values of the focal plane intensity distributions (normalized to the incident intensity) along the
x-axis (normalized to the radius of curvature of the lens) on a linear and long scale, respectively, for various values of the
maximum half-angle θm (5◦, 8◦, 10◦, 15◦, and 25◦) of the lens surface. The light is a normally incident plane wave with
2πnR/λ = 5 × 105, and the ‘focal plane’ occurs for z/R = 2.984.
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5. OFF-AXIS FOCUSING AND COMA

Figure 9 is a calculation of the intensity of the light field versus x and y in the focal plane (z/R = 3.15 for
2πn2R/λ = 104) and incident angles, γ, of 0, 7 and 15◦. With an incident angle of 7◦ the effects of coma are
observed as subtle partial rings on the far side of the focal spot, and a slight elongation of the focal spot in the
direction of the incident angle. For an incident angle of 15◦, severe coma is observed as a broadening of the focal
spot in both the x and y-directions in addition to conical beam fanning as expected according to geometrical
optics. However, contrary to geometrical optics (which would predict a smooth intensity decay throughout the
beam fanning) intensity calculations presented here predict the interference patterns arising from the wave nature
of light. The degree of coma observed is also a function of the radius of curvature to wavelength ratio. Similar to
Fig. 9, Fig. 10 is a series of intensity versus x and y images, where the only difference is that the value of p2 has
been decreased from 104 to 3660. For smaller p2, the effects of coma for γ = 7◦ have essentially been eliminated,
and the coma effects for γ = 15◦ have been significantly reduced, as compared to Fig. 9.

Figure 11 is a calculation of the beam intensity profile (along the x-axis) for the same parameters as that of
Fig. 9, but a series of angles of incident leading up to 7◦. The relative ranges for each graph are kept constant to
aid in the visual comparison of the absolute intensities and radial beam fanning. Even for an angle of incidence
of 3◦ asymmetries in the beam profile are observed for 2πnR/λ = 104. As the angle of incidence is increased, the
overall maximum intensity decreases and the width of the focal spot increases as well as the amount of energy
observed outside of the primary focal spot.
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Figure 9. Calculated intensity distributions in the focal plane for 2πnR/λ = 104 with θm = 11.54◦, n = 1.454, and
incident angles of γ = 0, 7◦ and 15◦, respectively.
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Figure 10. Calculated intensity distributions in the focal plane for 2πnR/λ = 3660 with θm = 11.54◦, n = 1.454, and
incident angles of γ = 0, 7◦ and 15◦, respectively.
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Figure 11. Effects of coma on the radial beam profile of a plane wave incident on a microlens spherical exit surface with
2πnR/λ = 104 and z/R = 3.15 at an angle of (a) 3◦, (b) 5◦, and (c) 7◦. All horizontal and vertical scales are over the
same ranges.
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6. CONCLUSIONS

A computational method has been employed to determine all of the vector electromagnetic field components for
a region of space beyond a spherical microlens using vector diffraction theory. Using this method the field and
intensity distributions are obtained and the onset and effects of spherical aberration and coma can be studied.
The onset and severity of spherical aberration depend on both the maximum collection angle of the lens and the
ratio of the radius of curvature to the wavelength of light. The onset and severity of coma depend on both the
angle of incidence and the ratio of the radius of curvature of the lens to the wavelength of the incident light.
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