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1. Introduction 

1.1 Robotic Systems in the Military 

Future Combat Systems (FCS) is a U.S. Army program that will transform the battlefield.  Future 
force structure, doctrine, and tactics will change as new systems are introduced, possibly in ways 
that cannot be anticipated.  Elements of the force structure are being designed to be flexible, 
reconfigurable components of FCS tailored to specific combat missions.  One aspect of increased 
flexibility will be the introduction of numerous robotic systems.  The term robot is used in a 
generic sense to describe systems that are unmanned with some degree of autonomy and includes 
aerial, ground, subterranean, naval surface, and subsurface vehicles.  These systems will be an 
essential part of the future force.  It is anticipated that they will extend manned capabilities, be 
force multipliers, and (most important) save lives.   

Robotic assets will be used as part of a team.  For example, the robotic asset may be sent ahead 
of a troop to provide information about location and size of enemy units so as to facilitate safe 
movement of the troop.  Robots may be given firing capabilities so that the Soldier is able to 
engage an enemy without being present, thereby increasing survivability.  Currently, robots are 
being used to identify and remove unexploded ordnance.  Larger robotic assets such as the 
unmanned air vehicle (UAV) can provide reconnaissance information about areas far away from 
a unit.  Even though the addition of assets may enhance the lethality and survivability of the U.S. 
military, this benefit does have a cost.  For example, the current UAVs require multiple operators 
to control them, and these operators have no other tasks to complete.  Smaller ground systems 
are currently teleoperated by an operator and again, this is the operator’s primary task.  In the 
future, it is anticipated that robotic control will be one of many tasks the Soldier will be 
responsible for.  The future Soldier will conduct “traditional military tasks” such as scanning for 
threats, engaging targets, and conducting communications.  Additionally, the Soldier will have to 
control or monitor the unmanned system(s) and process information returned from the unmanned 
system(s). 

It is possible that the robotic control task and the information processing task for the unmanned 
system(s) are done by different individuals, which will minimize some of the workload.  The 
robotic operator typically will not be the decision maker; s/he will send a situation report 
(SITREP) to someone else.  This person will then decide what to do next.  It is anticipated that 
the unmanned system will be autonomous which is meant to further decrease the demands on the 
Soldier.  Parameters, set in the system, will tell the robot how to move through the environment 
and what to do when it encounters an obstacle.  One potential problem with automation is that 
once the operator chooses a path for the robot, it is assumed that the robot can get there easily; 
this may not always happen.  For example, if the robotic asset encounters a small log, it may try 
various movements for several minutes and then signal the operator that it is in trouble.  The 
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terrain is one factor that can impact how often the robot gets into trouble.  A plan is entered in 
the robot, based on terrain data.  If the asset gets in trouble, in order to determine the best path to 
take, the operator will have to retrace the robot’s steps to decide what to do.  This will require 
time and operator resources.  Further, communications are a high frequency event.  
Communications can come from various areas as well as be transmitted by operators to lower 
and upper command levels.  The hypothetical information flow in figure 1 was derived from 
subject matter expert (SME) input.  It shows the inherent complexity of the future robotic 
environment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Hypothetical information flow. 

Thus, any major change in the future force, such as the addition of robotic systems, implies 
problems as well as solutions.  Robotic systems with diverse roles, tasks, and operating 
requirements are being designed to exploit future battle spaces.  The role of the human operator 
is not well understood; however, most of the contemplated systems will require active human 
control or supervision with the possibility of intervention.  In the most extreme case, Soldiers 
will operate multiple systems while “on the move” and while undergoing enemy fire.  In all 
cases, the workload and stress will be variable and unpredictable—changing rapidly as a function 
of the military environment.   
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The U.S. Army Research Laboratory’s (ARL’s) Human Research and Engineering Directorate 
has begun a large-scale research endeavor with the U.S. Army Tank and Automotive Research 
and Engineering Center (TARDEC) to develop a common user interface that maximizes multi-
functional Soldier performance of primary mission tasks by minimizing required interactions and 
workload in the control of ground and air robotic systems.  ARL is investigating various 
technologies and concepts to achieve this minimization, one of which is adaptive automation.  

The purpose of this report is to investigate automation technologies that unload the war fighter 
interacting with unmanned systems during multi-tasking missions.  First, we investigate 
automation technologies, specifically their positive and negative effects on human performance 
and situation awareness (SA).  Next, we discuss adaptive and adaptable processes as methods 
that potentially overcome the disadvantages of pre-set automation.  The last section discusses our 
research approach for assessing the effectiveness of implementing automation for control of 
robotic systems.  

1.2 Automation 

Future robotic systems are being designed to be used in many facets of the modern battle space 
and to the degree possible, to be autonomous.  This requires rapid response capabilities and 
intelligence to be built into the system.  However, ultimate responsibility for system outcomes 
always resides with the human, and in practice, even highly automated systems usually have 
some degree of human supervisory control (Woods, 1996).  Particularly in combat, some 
oversight and the capability to override and control lethal systems will always be a human 
responsibility (Barnes, Wickens, & Smith, 2000).  Human involvement is necessary for system 
safety reasons in order to capture any changes in the commander’s goals and implied meta-goals 
and to minimize fratricide.  

1.2.1 Levels of Automation 

Automation is not an all-or-nothing phenomenon.  Automation can vary in the degree to which a 
particular function that was previously performed by a human operator is allocated to a machine 
agent.  That is, level of automation (LOA) can be fully autonomous, in which the machine agent 
performs the entire task, to manual, in which the human operator does (Sheridan, 1992).  
Automation can vary in dimensions and the stage of human information processing to which the 
automation is applied (e.g., information acquisition and analysis).  Parasuraman, Sheridan, and 
Wickens (2000) developed a taxonomy of human automation control which has two dimensions:  
degree of automation (i.e., control options) and type of information processing function.  The 
four information processing functions in the automation taxonomy are information acquisition, 
information analysis, decision making or action selection, and action implementation, which are 
similar to the observe-orient-decide-act or OODA loop in the parlance of military command and 
control.  The taxonomy also captures the multiplicity of control options from fully automated to 
fully manual for each of these functions.  The decision space in the taxonomy is complex and the 
inherent complexity implies that there is no single solution to partitioning control between the 
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human operator and the machine agent.  Specifically, as the type of task the operator performs 
changes, the control logic may need to change as well.  The taxonomy does not consider any 
other tasks the operator may be performing or the overall workload and stress imposed by the 
current environment.  The addition of tasks and increased workload may complicate the problem 
of how to partition control.  A review of the human performance literature reinforces the notion 
that there is no single solution to partitioning control; human performance varies greatly, 
depending on the operator task and the current environment (e.g., Parasuraman & Riley, 1997; 
Parasuraman et al., 2000).  

1.3 Human Performance Issues for Automated Systems 

1.3.1 Trust in Automation 

Numerous problems related to human performance in automated systems have been identified in 
the literature.  One problem with automated systems is the operator’s trust and level of use of the 
automation.  Parasuraman and Riley (1997) compiled research and real-world examples of 
automation misuse, disuse, and abuse.  The human operator ignored important indicators, failed 
to use reliable systems, misused unreliable systems, or misunderstood the true state of the 
system.  

1.3.1.1  Over-reliance 

Mosier and Skitka (1996) examined cases of automation bias, that is, bias toward relying on the 
automation.  For example, in one case of automation bias, the operator tended to over-rely on 
automated systems even in cases when appropriate operator intervention would have averted 
performance problems.  Mosier and Skitka did not identify a generalized automation bias per se 
but rather identified a number of performance problems related to lowered vigilance, high 
workload, time stress, and loss of SA because of this bias.  

1.3.1.2  Under-reliance 

Research has also shown that although there were circumstances when humans over-relied on 
automation, there were other equally important instances when they should have relied on 
automation and did not.  Research by Dzindolet and colleagues has shown opposite results 
(under-reliance).  In a study similar to the Battle Command Information System (BCIS) study, 
college students were asked to decide whether a target was present in or absent from the display 
(Dzindolet, Beck, Pierce, & Dawe, 2001).  After each trial, target advisories purported to be from 
an aid (automatic target recognition [ATR] device) or a “peer” were given to the students.  
Participants were told the relative accuracy rates for the aids (or peers) and their own decisions.  
Based on this information, they had to decide whether to base future decisions on their own 
performance or on that of the automated advisory (or peer).  Surprisingly, even when the aid 
made half as many errors (and the participants’ reward depended on accuracy), 80% of the 
participants chose to make their own decisions.  Participants trusted peer advisories more than 
the aid advisory with the same accuracy level.  They rationalized their decisions in terms of self 
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reliance.  The most salient difference between this study and the BCIS study was that 
participants were told the ATR-peer decision after they had made their own decision.  Thus, 
there was no workload advantage to using the aid advisory because the operator’s decision was 
made before the aid results were known.  This is important because a simple manipulation (the 
order in which information about system reliability was provided) caused an automation bias to 
shift to a self-reliance bias.  The same results were repeated in subsequent experiments but the 
self-reliance bias was mitigated if the individual was informed of the reason for the ATR errors 
and was given appropriate feedback during the initial trials (Dzindolet et al., 2001).  Anecdotal 
data also indicate that there is a mistrust of aids in cases when there are high false alarm rates 
(Parasuraman & Byrne, 2003).  In summary, humans are neither universally over-reliant or 
under-reliant on automated systems.  The crucial factors seem to be workload, time stress, false 
alarm rate, and decision order.  

1.3.1.3  Effect of Task Type, Workload, and Error on Automation Reliance 

Automation reliability has the same contradictory effects on performance, depending on the task, 
workload, and type of errors that the automated device makes.  Some research has shown no 
effect of aid reliability on performance (e.g., Dzindolet et al., 2001; Parasuraman, Molloy, & 
Singh, 1993; Singh, Molloy, & Parasuraman, 1997).  The most likely reason is the lack of 
consistency between these studies in the tasks given to the participants.  For example, in the 
Dzindolet study, participants received only one reliability level (60%, 75%, or 90%) and they 
were not given the system information that may have allowed them to respond effectively.  The 
literature suggests that humans have problems understanding probabilities and may need some 
form of intervention in order to perform efficiently (Barnes, 2003; Wickens & Holland, 2000).  
Reliability level effects depend on operator strategies and on the type of error the aid manifests.  
Meyer (2001) has shown that when automation reliability is such that malfunctions are almost 
always correctly indicated (i.e., the automation makes few misses) then the operator has high 
reliance on the automation.  This is an effective strategy but can result in a problem when the 
automation does miss because of the complacency effect.  On the other hand, if automation 
reliability is such that few false alarms are made, then the operator has high compliance; if an 
automated alarm sounds, then the operator tends to immediately comply with the alarm and tend 
to the situation.  Reliance on automated aids permits the operator to attend to tasks other than the 
automated task until the alert is triggered, thus improving multi-task performance and not just the 
performance of the automated task.  Research using realistic UAV operator tasks indicated that 
reliant behaviors are affected primarily by the misses.  In contrast, compliance errors are affected 
by the false alarm rate but not the miss rate of the automated device.  However, increasing the 
operator’s workload and decreasing the aid’s reliability level had adverse effects on compliance 
and reliance errors. 

The issue of automation reliance is complicated because performance depends on the type of 
processing task the operator performs, and paradoxically, high system reliability can result in 
costs as well as benefits.  For example, Rovira, McGarry, and Parasuraman (in press) 
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investigated automation of artillery targeting decisions.  For their particular task, Rovira et al. 
showed that reliable automation improved the commander’s decision latency without sacrificing 
accuracy.  However, particularly for decision tasks related to choosing a course of action, higher 
reliability hurt the operator’s performance when the aids gave incorrect information.  The 
surrogate commanders trusted 80% accurate aids more than the 60% ones in cases when they 
should have been more skeptical (i.e., when the aids gave them incorrect information).  
Apparently, the advisories from “trusted” aids were not scrutinized as thoroughly as those from 
less reliable aids.  

One interpretation of the previous results is to assume that reliable aids lulled the operator into a 
false sense of complacency (e.g., Horrey & Wickens, 2001).  However, the complacency literature 
suggests that the results depend on other factors than trust in the automation.  Further, several 
researchers had failed to show complacency effects.  Parasuraman et al. (1993) investigated the 
possible reason for the lack of complacency effects in a multi-task aviation environment.  They 
showed that complacency did not occur for low workload (single task) conditions.  However, for 
the high workload task, the operator became complacent (over relied) on the aid when the aid had 
a constant reliability level; when the reliability level varied over a block of trials, the performance 
decrement was ameliorated.  This suggests that complacency is not only a function of trust in the 
automation but also the strategy used by the operator to handle high workload.  For example, if an 
automation aid acted in a predictable manner (constant reliability), then the operators would 
commit their resources to other tasks in a high workload environment which in turn would cause a 
performance decrement in the unmonitored automation task.  

High workload is a major factor in the efficacy of automation. When workload is high, the 
operator may trade SA for decreasing his/her workload by depending on the automation aids, 
even in cases when it was not beneficial to do so.  This is not universally true; in some cases, 
automation improved overall performance even when the automated task required intervention 
because the operator’s residual cognitive capacity was allocated effectively among the set of 
tasks (Galster & Parasuraman, 2003; Lorenz, Di Nocera, Rottger, & Parasuraman, 2002).  Too 
often, the loss of SA related to inefficient automation monitoring leads not only to performance 
decrements but also to an increasingly impoverished understanding of the work environment, 
which can result in catastrophic errors over time (Endsley, 1996; Mosier & Skitka, 1996; 
Parasuraman & Riley, 1997).  Because of the uncertainty and risk associated with military 
environments, the use of automation must be done with extreme caution.  The Soldier and his 
chain of command need to maintain SA; keeping the Soldiers out of the loop will have 
consequences for the immediate task and will predispose them to miss important cues that signal 
change (Endsley, 1996).  Conversely, requiring Soldiers to engage in multiple tasks could very 
well have the same consequences.  
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1.4 Additive Principles 

A possible solution is to create enough opportunity for flexibility in the system to ensure more 
automation during peak workload and greater operator engagement during low workload.  The 
conventional view is that, generally, the greater the obvious workload, the more likely that a 
detrimental effect will be seen on overall performance.  A possible solution would be for the 
operator to decide when to automate and which tasks to automate as mission requirements 
change.  However, having the operator decide automation implementation is not always 
practical; it would burden operators with additional tasks precisely when they are already heavily 
loaded.  For this reason, a number of researchers have suggested using some form of behavioral 
indicator to change levels of automation dynamically as a function of the changing work 
environment, namely, adaptive automation (Byrne & Parasuraman, 1996; Parasuraman, Bahri, 
Deaton, Morrison, & Barnes, 1992; Rouse, 1977; Scerbo, 1996). 

The adaptive automation concept was proposed by Rouse about 25 years ago (1977).  However, 
the technologies needed for its effective implementation were not readily available until recently.  
In adaptive systems, the “division of labor” between human and machine agents is not fixed but 
dynamic, in contrast to systems where provision of computer aiding is pre-determined at the 
design stage and task allocation is fixed during system operations.  Adaptive automation uses 
mitigation criteria that drive an invocation mechanism to maintain an effective mixture of 
operator engagement and automation for a dynamic multi-task environment (as shown in 
figure 2).  The invocation mechanism is triggered by whatever measurement process is used to 
represent the current state of the operator and/or task.  If properly instrumented, the results of the 
measurement process should be displayed to operators in order to keep them informed of the 
state of the invocation process. 

 

Figure 2.  Example of a closed loop adaptation for A, automated; A/M, automated/manual; and M, manual task 
sets. 

Operator  

A 
A/M 
A/M 
M 
M 
M

Invocation 
mechanism 

Measurement 
of task 
effects  

Multi-task state  

Environmental 
Forcing functions 



 

8 

The adaptive automation process is more complex than simply unloading (or engaging) the 
operator of a task.  To be effective, the invocation process must be sensitive to the operator’s 
combined tasking environment, which depends on interactions among tasks as well as overall 
workload, stress and safety considerations (Wickens & Holland, 2000).  For example, the system 
might automate auditory tasks when the communication traffic reaches a predefined level but not 
change other task states until the overall workload measure (which could be a physiological 
index) reaches criterion (Dixon, Wickens, & Chang, 2004).  Furthermore, whenever certain 
critical events occur, the invocation mechanism must be sensitive to indices that imply that the 
operator requires emergency automation (e.g., loss of consciousness because of g forces as 
evinced by physiological measurements) (Barnes & Grossman, 1985). 

1.4.1 Characteristics of Adaptive Automation Systems 

1.4.1.1  Invocation Methods 

The method of invocation is a key issue in adaptive automation. Parasuraman et al. (1992) 
reviewed the major invocation techniques and divided them into five main categories: 

• Critical events, 

• Operator performance measurement, 

• Operator physiological assessment, 

• Operator modeling, and 

• Hybrid methods. 

The critical events method is exemplified by the work of Barnes and Grossman (1985).  In this 
approach, automation is invoked only when certain tactical environmental events occur.  For 
example, in an aircraft air defense system, the beginning of a “pop-up” weapon delivery 
sequence leads to the automation of all defensive measures of the aircraft.  If the critical events 
do not occur, the automation is not invoked.  Thus, this method is inherently flexible and 
adaptive because it can be tied to current tactics and doctrine during mission planning.  This 
flexibility is limited by the fact that the contingencies and critical events are anticipated.  A 
disadvantage of the method is its possible insensitivity to actual system and human operator 
performance.  The critical events method will invoke automation, regardless whether the pilot 
requires it when the critical event occurs.   

One potential way to overcome this limitation is to measure operator performance and/or 
physiological activity.  In the operator performance measurement and operator physiological 
assessment method, the operator mental states (e.g., mental workload or more ambitiously, 
operator intentions) may be inferred from performance or other measures.  The measures would 
then be used as input for the adaptive logic.  For example, from performance and physiological 
measurements, it could be inferred that a human operator is dangerously fatigued or experiencing 
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extremely high workload.  An adaptive system could use these measurements to provide 
computer support or advice to the operator that would mitigate the potential danger.  

In the adaptive automation literature, Scerbo and colleagues (e.g., Prinzel, Freeman, Scerbo, 
Mikulka, & Pope, 2000) have conducted an elegant series of experiments that use electro-
encephalography (EEG) activity to drive adaptive automation.  EEG is a non-invasive recording 
of the fluctuations in electrical activity of the brain.  A general assumption is made that changes 
in EEG reflect arousal and workload (Scerbo, 2001).  It is a closed loop adaptive system that 
moderates workload by decreasing the task demands when workload increases.  Increases in 
workload are assessed via EEG.  EEG is measured and an EEG engagement index is derived 
from alpha and beta components of the frequency domain.  The system allocates the tasks based 
on the engagement index.  A high engagement index is related to a high state of alertness and an 
increased ability to attend to stimuli (Freeman, Mikulka, Prinzel, & Pope, 1999).  The Multi-
attribute Task Battery (MAT) (Comstock & Arnegard, 1992) is used as the task test bed and 
includes a monitoring task, a resource management task, a communications task, and a tracking 
task.  The tracking task shifts between manual and automated, depending on the engagement 
ratio of the operator.  Tracking performance improved with an adaptive policy wherein high 
engagement EEG ratios invoked automation and low ratios invoked manual tracking compared 
to the opposite invocation policy (non-adaptive; switch to auto-low and manual-high).  Prinzel et 
al. (2000) showed that when the engagement index increased and the system automated the task, 
performance of the tracking task was better than when the task was always in the manual 
condition.  

However, these studies failed to show superiority of one invocation mechanism over another (e.g., 
adaptive automation versus simple automation of the tracking task).  For example, a recent study 
by Mikulka, Scerbo, and Freeman (2002) used a similar paradigm to investigate vigilance 
performance during low, medium, and high event rates.  They also introduced a control to ensure 
that the invocation policies based on the EEGs were the cause of the performance differences.  
Each EEG participant had a yoked partner who switched to automation (or manual) mode, based 
on task difficulty level (unrelated to his or her EEG state) as the EEG partner.  The group that had 
an adaptive EEG policy was again superior to the non-adaptive EEG engagement policy group.  
However, the yoked groups followed the same pattern, which implied that the results were caused 
by task difficulty and switching policy and not the EEG indices per se.  This suggests that 
modeling the task environment might be as effective as using the EEG engagement policy.  The 
third invocation method is operator modeling.  Human operator states and performance may be 
modeled theoretically, and the adaptive algorithm would be driven by the model parameters.  
Intelligent systems that incorporate human intent inferencing models have been proposed and are 
worth consideration (Geddes, 1985).  

The final approach, hybrid methods, combines one or more of these different invocation 
techniques so that the relative merits of each method can be maximized in order to minimize 
operator workload and performance.  It is possible that one measure or methods will not be able 
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to capture the complexity inherent in human performance.  In a limited sense, hybrid methods of 
invoking adaptive automation have been tested.  Wilson, Lambert, & Russell (2000) used a 
multiple measure approach to design a physiologically based adaptive automotive system.  
Wilson et al. had participants complete the MAT task with two levels of difficulty (varied the 
number of events that occurred in 5 minutes).  EEG, electrocardiogram, electro-oculography, and 
respiration were measured during the task.  Wilson et al. trained an artificial neural network 
(ANN) to recognize the physiological patterns that differentiate states of rest, low task difficulty, 
and high task difficulty.  The ANN was then used to determine which condition a participant was 
performing, and when the high difficulty task was detected, the monitoring and auditory tasks 
were automated.  Results showed that the ANN correctly identified the task conditions, and when 
adaptive automation was implemented, tracking error decreased and performance of the resource 
management task increased, compared to the manual condition.  No comparison was made 
between fully and adaptively automated performances (Wilson et al., 2000).  

1.4.2 Adaptive Versus Adaptable Automation 

In adaptive systems, the decision to invoke automation or to return an automated task to the 
human operator is made by the system via any of the previously described invocation methods.  
This immediately raises the issue of user acceptance of such a system.  Human operators may be 
unwilling to accede to the “authority” of a computer system that mandates when and what type 
of automation is or is not to be used.  Apart from user acceptance, the issue of system 
unpredictability and its consequences for operator performance may also be a problem.  It is 
possible that the automated systems that were designed to reduce workload may actually increase 
it.  Billings and Woods (1994) cautioned that a truly adaptive system may be problematic 
because the system’s behavior may not be predictable to the user.  To the extent that automation 
can hinder the operator’s SA by taking him or her out of the loop, unpredictably invoked 
automation by an adaptive system may further impair the user’s SA.  However, if the automation 
were explicitly invoked by the user, then presumably, the unpredictability will be lessened.  
However, involving the human operator in making decisions about when and what to automate 
can increase workload.  Thus, there is a trade-off between increased unpredictability versus 
increased workload in systems in which automation is invoked by the system or by the user.  
Opperman (1994) characterized these alternatives as “adaptive” and “adaptable” approaches to 
system design (see also Scerbo, 2001).  In either case, the human and machine systems adapt to 
various contexts, but in adaptive systems, automation determines and executes the necessary 
adaptations.  In adaptable systems, however, the operator is in charge of the desired adaptations.  
The distinction is primarily one of authority.  In an adaptable system, the human always 
maintains authority to invoke or change the automation, whereas this authority is shared in an 
adaptive system.  Inagaki’s (1999) design concept of “situation-adaptive autonomy” is related to 
this view of an adaptive system, but in his approach, control of a process is exchanged between 
human and computer in real time, based on time criticality and the expected costs of human and 
machine performance. 
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Although in this review we primarily consider how adaptive automation affects system 
performance, it is important to keep in mind that adaptable automation may provide an alternate 
approach with its own benefits.  The level of automation (LOA) concept introduced by Sheridan 
(1992) does not specify which level should be used or who decides that there should be a change 
in level.  When the decision is made by a designer before system operation, it is a part of system 
design and corresponds to picking an appropriate LOA for that system design.  The decision can 
also be made by automation itself (or some expert system) during system operations as a part of 
a truly adaptive automation system.  In both of these cases, the human operator is not involved in 
the decision.  In adaptable systems, however, the human operator is involved in the decision of 
what to automate, similar to the role of a supervisor of a human team who delegates tasks to 
team members, but in this case, tasks are delegated to automation.  The challenge for developing 
such an adaptable automation system is that the operator should be able to make decisions 
regarding the use of automation in a way that does not create such high workload that any 
potential benefits of delegation are lost. 

1.4.3 Human Interaction With Adaptive Systems 

Since the theoretical frameworks for adaptive automation proposed by Rouse (1988) and 
Parasuraman et al. (1992), there has been a steady stream of empirical work aimed at examining 
the effects of adaptive automation on human and system performance in different application 
domains (e.g., Hilburn, Jorna, Byrne, & Parasuraman, 1997; Kaber & Riley, 1999).  The initial 
studies were designed to investigate whether the performance costs of certain forms of static 
automation (described previously) such as reduced SA, complacency, and skill degradation can 
be mitigated by adaptive automation.  Most of these studies used a critical event or model-based 
approach for adaptive automation.  A task was allocated dynamically to human or machine 
control at some time during a simulated mission when some critical event occurred or as dictated 
by a simple model of operator and system performance.  For example, Hilburn and colleagues 
(1997) examined the effects of adaptive automation on the performance of military air traffic 
controllers who were provided with a decision aid for determining optimal descent trajectories of 
aircraft—a descent advisor (DA).  The DA was present at all times (static automation) or only 
when the traffic density exceeded a threshold.  Hilburn et al. found significant benefits for 
controller workload (as assessed with the use of pupillometric and heart rate variability 
measures) when the DA was provided adaptively during high traffic loads, compared to when it 
was available throughout (static automation) or only at low traffic loads.  In addition to 
physiological measures of workload, other measures can be used to assess the workload-leveling 
effect of adaptive automation.  Kaber and Riley (1999), for example, used a secondary task 
measurement technique to assess operator workload in a target acquisition task.  They found that 
adaptive computer aiding based on the secondary task measure enhanced performance of the 
primary task.  
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The results of these and other studies (see Parasuraman, 2000, for a review) indicate that 
adaptive automation can reduce the problem of imbalanced workload, with attendant high peaks 
and troughs, which static automation often induces.  As discussed previously, during high 
workload, operators tend to adopt an attention allocation strategy that results in diminished 
monitoring of an automated task (Parasuraman et al., 1993; Moray, Inagaki, & Itoh, 2000).  As a 
result, operators can miss malfunctions in the task or fail to correct suboptimal performance by 
the automation because they are busy attending to other tasks.  Adaptive automation in the form 
of a temporary return of the automated task to human control can mitigate this so-called 
complacency effect.  In a study with the MAT flight simulation battery, Parasuraman et al. 
(1999) showed that temporary return of an automated engine systems task to human control 
benefited subsequent operator monitoring of the task when it was returned to automated control.  
It is important to emphasize that the reallocation to human control was brief.  If the benefit could 
only be obtained by prolonged human intervention in the task, that would defeat the purpose of 
automating the task in the first place.  Parasuraman et al. found that the benefit of adaptive 
reallocation was found for either of two methods of invocation, a model-based approach in 
which the temporary return to human control was initiated at a particular time specified by the 
model, or a performance measurement approach in which the adaptive change was triggered only 
when the operator’s performance of the engine systems task fell below a specified level.  A 
subsequent study showed that the operator (and system) performance benefit could also be 
sustained for long periods of time, in principle, indefinitely, by repetitive or multiple adaptive 
task allocation at periodic intervals (Mouloua, Molloy, & Parasuraman, 1993).  Such brief, 
periodic, adaptive reallocation of an automated task to human control can enhance overall system 
performance by maintaining the operator’s awareness of the automated task parameters or by 
refreshing the operator’s memory (his or her “mental model”) of the automated task behavior.  In 
support of the latter explanation, Farrell and Lewandowsky (2000) showed that they could 
successfully computationally model the complacency effect and the benefit of adaptive 
reallocation in a three-layer connectionist network with a memory decay function for nodes 
representing automation performance. 

These results show that adaptive automation can balance operator workload and reduce 
automation complacency.  However, Parasuraman et al. (1999) also showed that performance 
benefits can be eliminated if adaptive automation is implemented in a clumsy manner, which 
supports the concerns of Billings and Woods (1994).  Moreover, these studies, while clearly 
pointing to the potential benefit of adaptive automation, had some limitations.  The model-based 
invocation method used in many of the studies has the advantage that the model can be 
implemented off line and easily incorporated into rule-based expert systems.  However, this 
method requires a valid model, and many models may be required to address all aspects of 
human operator performance in complex task environments. 
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2. Research Approach 

2.1 Robotic NCO (Noncommissioned Officer) Program 

Automation technologies have been applied to basic multiple task (i.e., the MAT battery) and 
aviation environments.  Research to date has not examined the feasibility of adaptive or 
adaptable automation in an environment in which an operator will control multiple robotic 
systems from a single control unit.  The robotic environment for the Future Force will be highly 
complex.  In order to control the task types and levels of automation, a new simulation test bed 
was developed by ARL in collaboration with George Mason University, which emulates the 
essential robotic tasks.  The program, robotic NCO, was based on an existing prototype operator 
control units (OCUs) designed by Micro Analysis & Design and TARDEC.  Figure 3 shows a 
picture of this OCU.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Prototype operator control unit. 

2.2 Program Specifications 

Robotic NCO is a multi-task environment that includes three main tasks:  unmanned ground 
vehicle (UGV) control, UAV sensor use, and multi-level communications.  The program runs on 
Java 1.5 and uses timers to initiate the tasks.  The overall speed of the UGV and UAV and 
duration of the scenario is manipulated by the experimenter.  The scenarios are created by the 
experimenter in the script creator (see figure 4).  First, the paths for the UAV and UGV are 
drawn with the mouse and then the units (enemy or friendly) are selected from a menu and 
placed on a map that depicts the common operational picture (COP).  This map is intended to 
support SA.  The experimenter can also program the locations at which the UGV will stop.  The 
communications are scripted on the basis of the time they will be presented.  The specific 
communications that will be received by the operator are typed into the script.  
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Figure 4.  Robotic NCO script creator. 

3. Experiment I 

3.1 Participants 

Participants were 17 (10 women, 7 men) students from George Mason University (GMU).  The 
mean age of the group was 22 (19 to 26 years old).  Participation in the experiment was strictly 
voluntary and participants could withdraw from the experiment at any time.  The experiment 
lasted approximately 2 hours and participants were paid $15.00 per hour.  

3.2 Apparatus 

3.2.1 Robotic NCO 

Robotic NCO required participants to complete three tasks simultaneously:  (a) respond to 
targets encountered by a UAV by using the mouse; (b) respond to potential obstacles and 
waypoints encountered by a UGV by using the mouse; and (c) respond to audio communications 
via the keyboard.  These communications consisted of call sign acknowledgments and answering 
“yes/no” SA questions.  The program was run with a Dell PC, keyboard, mouse, and monitor.  
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3.2.2 Workload and Situation Awareness Questionnaires 

A subjective overall rating was given at the end of each trial on the participant’s perceived 
overall workload (OW) and SA.  This was a single number from 0 to 100 for each rating.  OW 
and SA criteria were adapted from the National Aeronautics and Space Administration Task 
Load Index (NASA-TLX) (Hart & Staveland, 1988) and the Cognitive Compatibility Situation 
Awareness Technique questionnaire (CC-SART) (Taylor, 1990), which were both administered 
in their complete form at the end of all 16 trials. 

3.3 Experimental Scenario 

The general scenario was as follows:  one UGV and one UAV were supervised by a single 
operator for a mission.  The UAV and UGV starting point, ending point, and path were scripted 
before the operator use.  The UAV traveled faster than the UGV and provided 
surveillance/reconnaissance information to the operator.  The UGV followed its routed path and 
when an event occurred, waited for operator input.  While supervising the two robotic units, the 
operator received communications.  

More specifically, in the first experiment, participants were asked to take the role of a robotic 
operator in a Mounted Combat System (MCS) company.  The participant conducted a 
reconnaissance mission for the MCS platoon.  To complete the mission, the participant used two 
robotic systems:  a UGV and a UAV.  Intelligence identified areas of interest (designated on the 
COP map with letters) and way points had been planned for the UGV to look at these named 
areas of interest (AOIs).  The UAV had also been waypoint planned to view around the areas.  
During the reconnaissance mission, the UAV received electronic intelligence (ELINT) hits from 
possible targets which were displayed in the UAV view as white squares.  When the participant 
saw an ELINT marker, s/he focused on that location and identified the possible target as enemy 
or friendly.  The target was then displayed on the map. 

At the same time, the UGV moved through the area via pre-planned waypoints.  During the 
mission, the UGV stopped and the UGV status bar flashed.  When the participant noticed that the 
UGV had stopped, s/he clicked on the UGV bar which accessed views (simulating video images) 
from the UGV, a picture of the UGV obstacle.  The UGV view was displayed in the same 
location as the UAV view on the computer monitor.  There were two reasons why the UGV 
stopped; it reached the named AOI or encountered an unknown obstacle.  When the UGV 
reached the named AOIs, the participant conducted reconnaissance of the area and then caused 
the UGV to resume along its pre-planned path by selecting “continue”.  When the UGV 
encountered an unknown obstacle, it was one of two types, a blocking obstacle (e.g., log, ditch) 
or a traversable obstacle.  A blocking obstacle required re-planning and the participant re-routed 
the UGV by selecting “re-route”.  A traversable obstacle required the participant to cause the 
UGV to resume along its pre-planned path by selecting continue.  The design of the UGV 
manipulation was based on field observations of a UGV.  The current autonomous navigation 
system operates in the manner used in this experiment. 
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Communications were also received during the mission.  There were two types of 
communications:  call sign acknowledgment and status reports.  The participant heard call signs 
at random intervals, which were ignored or acknowledged, and at various times, s/he was 
prompted for UGV or UAV status update and location of targets.  These status communications 
were designed to assess SA.  Figure 5 shows screen shots of what the participants saw on the 
robotic NCO simulation during their mission. 

 
 
Zoomed In UAV View 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Non-Zoomed in UAV View 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Robotic NCO screen shots. 

At the end of the mission, the participant was given a map with two paths drawn on it.  Based on 
all the information retrieved from the UAV and UGV, the participant chose the safest path for 
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the MCS platoon to take.  The participant was instructed to choose the path that would minimize 
the exposure of the platoon to enemies in the area. 

3.4 Procedure 

Upon arrival at the lab at GMU, the experimenter briefed the participants about the purpose of 
the experiment to allow them to ask questions about the study and to determine if they would 
like to participate.  During this briefing, participants were told the study’s purpose and general 
procedures.  That is, a description of the NCO program was given, and the primary goals of the 
experiment were briefly outlined.  They were told that participation was strictly voluntary and 
that they could withdraw from the experiment at any time. 

The program robotic NCO was described to the participants, and the functionality of each button 
on the program was explained.  The participants were then put through one practice mission to 
ensure that they understood the task.  After familiarization, the participants complete 16 
missions. 

3.5 Experimental Design 

The design of the experiment was a 2 x 2 x 2 within-subjects design.  The within-subjects factors 
were the number of targets to be identified in the UAV task (UAV; low, 10 possible targets, 
high, 20 possible targets), number of times the UGV requested operator assistance (UGV; low, 
three AOIs, two obstacles, high three AOIs, four obstacles) and the priority of the incoming 
communications (COMMS; low, 16 low priority and four high priority messages; high, four low 
priority and 16 high priority messages).   

More specifically, each task was manipulated to produce a “high” and “low” condition in the 
following ways. 

3.5.1 UGV 

For the high condition, the UGV stopped seven times (three AOIs and four UGV obstacles) in 
which the participant had to attend to the UGV by selecting the UGV status bar.  The UGV 
would not move forward until each AOI or obstacle was identified by the operator.  For the low 
condition, the UGV stopped five times (three AOIs and two UGV obstacles) in which the 
participant had to attend to the UGV as described before.  

3.5.2 UAV 

For the high condition, the participant was presented with 20 targets in the UAV view.  The 
participant clicked the ELINT marker (i.e., white squares) with the mouse to obtain a clear image 
of the target.  S/he then used a right mouse click to identify the target as enemy or friendly.  An 
“enemy” was indicated by a red triangle, and an “unknown” was indicated by a yellow triangle.  
This procedure had to be completed within 6 seconds or the target would disappear, resulting in a 
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“missed” target by the participant.  For the low condition, the participant was presented 10 
targets and identified the targets as described before.  

3.5.3 Communications 

For the high condition, the operator was presented with 16 call signs to acknowledge (of 20).  
Call sign acknowledgment had to be performed within 5 seconds of the cue presentation or a 
“missed” call sign would result.  For the low condition, the operator was presented with four call 
signs to acknowledge (of 20) during the same conditions as before.  In each condition, the 
remaining four communications events were SA questions.  There were two questions that 
assessed Type 1 SA (perception), two questions for Type 2 SA (comprehension), and one 
question for Type 3 SA (prediction).  

The following SA questions were presented during the mission and required a “yes/no” response 
(Types 1, 2, and 3 refer to Endsley’s [1996] three-level taxonomy of SA): 

Type 1 SA Questions: 
1.  Has the UGV required re-routing? 
2.  Are there enemy troops in sector X? 

Type 2 SA Questions:  
3.  Is the UAV in Sector X? 
4.  Are there enemy troops within two grid squares of sector X? 

Type 3 SA Question: 
5.  Is it likely that there are enemies in sector X?  (This would pertain to a sector not yet 
encountered by the UAV, thus requiring prediction by the participant.) 

The task manipulations of high and low were verified in a pilot study.  In this experiment, 
participants completed 16 missions (two of each type).  Each mission lasted 5 minutes.  The 
order of the missions was counterbalanced. 

The following dependent variables were measured during the experiment: 

• UGV Route Planning:  Reaction time to implement new route on blocking obstacle event 
or to observe an AOI and continue UGV. 

• Target acquisition:  Accuracy (proportion correct) and reaction time to identify target as 
friendly or unknown. 

• Communications:  Reaction time and percent missed for status responses. 

• Situation Awareness:  Overall SA as measured by the CC-SART, and mean number of 
correct responses on the SA questions presented as communications.  

• Overall workload 
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4. Results 

To examine the effects of the three task types (UGV, UAV, and communications) and task load 
manipulations (low and high) on performance, multivariate analyses of variance (MANOVAs), 
and subsequent ANOVAs were conducted. 

4.1 UGV Task Performance—Reaction Time (RT) for AOIs and Obstacles 

Figure 6 is a graph of mean RTs to UGV obstacles.  Results for the UGV task showed that when 
the UGV stopped infrequently, participants were faster to respond to UGV obstacles when there 
were many UAV targets to identify than when there were a few.  This pattern was not significant 
when the UGV stopped frequently.  

A MANOVA revealed significant effects of UAV Targets x UGV Requests on UGV task 
performance and a main effect of UAV targets, F (2,14) = 7.29, p = 0.03 and F (2,15) = 2.14, 
p = 0.00, respectively.  No other effects were significant.  To determine whether RTs for AOIs or 
obstacles or both contributed to the significant interaction, ANOVAs were run.  ANOVAs showed 
a significant effect for UAV Targets x UGV Requests for RT for obstacles, F (1,15) = 17.96, 
p = 0.00, but not for AOIs, F < 1.0.  To explain this interaction, paired comparisons were 
conducted.  Results showed that when the UGV task was high, there was no effect of UAV 
condition on RT for obstacle (t < 1).  For the low UGV task, however, RT was significantly longer 
for the low UAV condition, t (15) = 4.11 p = 0.00, as shown in figure 7.  
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Figure 6.  Mean reaction times (seconds) for obstacles in the UAV and UGV conditions. 
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4.2 UAV Task Performance—RT to Targets and Percent Correctly Identified 

A MANOVA revealed a marginal effect of UAV targets on UAV task performance, 
F (2, 15) = 3.37, p = 0.06.  No other effects were significant.  To determine whether RTs to 
targets or the percent correctly identified or both contributed to the significant interaction, 
ANOVAs were run.  ANOVAs showed a significant effect for UAV targets for the percent of 
targets correctly identified, F (1,16) = 4.02, p = 0.05, but not for RTs, p > 0.10.  More targets 
were identified in the high UAV condition (x = 94%) than the low UAV condition (x = 92%).  

4.3 COMM Task Performance—Percent of Missed Call Signs and RT to Communications 

Figures 7 and 8 are graphs of mean RTs to communications.  Results for the communications 
task showed that participants generally took longer to respond to communications when they had 
to also identify many UAV targets.  Additionally, when the amount of high priority communica-
tions was low, participants took longer to respond to communications when they had many UAV 
targets and UGV requests.  
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Figure 7.  Mean RT (seconds) for communication events in the low COMM condition. 
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Figure 8.  Mean reaction time (seconds) for communication events in the high COMM condition. 
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A MANOVA revealed a marginal effect of UAV Targets x UGV Requests on communications 
task performance, F (2,15) = 5.11, p = 0.02.  Other significant effects were, UGV Requests, 
F (2,15) = 4.07, p = 0.03 and COMMS, F (2,15) = 5.71, p = 0.01.  To determine whether the 
percent of missed communications or the RT to communications or both contributed to the 
interaction, ANOVAs were run.  ANOVAs showed a significant effect for UAV Targets x UGV 
Requests x COMMS for reaction time, F (1,16) = 5.73, p = 0.02, but not for missed communica-
tions, F < 1.0. To explain this interaction, separate ANOVAs were conducted for each level of 
COMMS.  For the low COMMS condition, there was a significant effect of UAV Targets x UGV 
Requests, F (1, 16) = 7.88, p = 0.01.  No other effects were significant.  The interaction for high 
COMMS was not significant, F < 1.0.  Paired comparisons for the low COMM conditions were 
conducted.  Results showed that for the low UGV condition, there was no effect of UAV difficulty 
on communications RT (t < 1).  For the high UGV condition, however, communications RT was 
significantly longer for the high UAV condition, t (16) = 3.40, p = 0.00, as shown in figure 8. 

4.4 Self-Reported SA Ratings 

4.4.1 Overall Situation Awareness 

Figures 9 and 10 are graphs of mean SA reported at the end of each scenario.  Participants in the 
low UAV task condition (fewer possible targets) reported better SA when the UGV had more 
stops and communications were more frequent than when the UGV stopped infrequently.  A 
MANOVA revealed a significant effect for UAV Targets x UGV Requests x COMM Requests 
on SA ratings, F (1,15) = 12.91, p = 0.00, as well as a significant effect for UAV Targets x UGV 
Requests, F (1,15) = 11.87, p = 0.00, and UGV Requests x COMM Requests, F (1,15) = 4.38,  
p = 0.054.  No other effects were significant.  To explain the UAV Targets x UGV Requests x 
COMM Requests interaction, separate ANOVAs were conducted for each level of UAV target 
condition.  For the low UAV condition, there was a significant effect of UGV Requests x 
COMMS requests, F (1,15) = 11.66, p = 0.00.  The interaction for high UAV condition was not 
significant, F < 1.0.  Paired comparisons for the low UAV condition were conducted.  Results 
showed that when the communications task was low, there was no effect of UGV condition on 
overall SA, t (15) = -1.56, p = 0.13.  For the high communications condition, however, SA was 
significantly higher for the high UGV condition, t (15) = -3.98, p = 0.00, as shown in figure 9. 
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Figure 9.  Mean situation awareness in the low UAV condition. 
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Figure 10.  Mean situation awareness in the high UAV condition. 

4.4.2 Levels of Situation Awareness 

4.4.2.1  Type 1 Situation Awareness 

Figure 11 is a graph for type 1 SA questions presented during each scenario.  Analyses showed 
that there was a significant interaction of UAV Target x COMMS for Type 1 SA, F (1,16) = 5.68, 
p = 0.03.  The main effects for UAV Target and COMMS were not significant, p > 0.10, but was 
for UGV requests, F (1,16) = 9.79, p = 0.00.  Perception was significantly better when there were 
fewer UGV stops (x = 0.830) than when the UGV made many stops (x = 0.724).  To explain the 
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interaction of UAV Target x COMMS, paired comparisons were conducted.  Results for the low 
COMMS condition showed that SA was higher when UAV requests were low relative to high, 
t (16) = 2.48, p = 0.02.  There was no significant difference for the high COMMS condition, 
p > 0.10.  
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Figure 11.  Mean correct for type 1 SA communications in the UAV and COMMS conditions. 

4.4.2.2  Type 2 Situation Awareness 

Analyses showed that there was a significant main effect of COMMS for Type 2 SA, F (1,16) = 5.12, 
p = 0.03.  Comprehension was significantly better when there were fewer incoming high priority 
communications (x = 0.691) than when there were many high priority communications (x = 0.577).  
No additional interactions or main effects for UAV Targets, UGV Requests, or COMMS were 
significant. 

4.4.2.3  Type 3 Situation Awareness 

Analyses showed that there was a similar trend of COMMS for Type 3 SA as there was for Type 2 
SA, F (1,16) = 3.38, p = 0.08.  Prediction was better when there were fewer incoming high priority 
communications (x = 0.661) than when there were many high priority communications (x = 0.566).  
No interactions or main effects for UAV Targets, UGV Requests, or COMMS reached statistical 
significance. 

4.5 Overall Workload 

No interactions or main effects for UAV Targets, UGV Requests, or COMMS on overall 
workload reached statistical significance.  Reported workload was relatively low.  The mean 
workload, regardless of condition, was 39.6 (31.06 to 44.37).  
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5. Conclusions 

5.1 Findings from Experiment I and Future Experimentation  

Before the implementation of any automation scheme, whether it is adaptive or adaptable, we 
need an understanding of the robotic operators’ tasks and their abilities (or lack of) to complete 
them.  The goal of the first experiment was to identify tasks in the human-robot interaction 
environment that were challenging to the operator (i.e., high driver tasks).  We used the 
simulation environment, robotic NCO, to achieve this goal.  In experiment I, operators were 
required to use the robotic systems (UAV and UGV) to identify enemy units in a pre-defined 
area and to respond to incoming communications.  With the information received from the UAV 
and UGV, operators were asked to choose a safe path for a platoon to take through the 
reconnaissance area.  Overall, the results showed that participants were good at integrating 
information received from the UAV and UGV to choose the platoon path.  However, the data 
suggest that the multi-tasking requirements of the robotics NCO simulation diminished 
performance of the individual tasks.  In general, participants generally took longer to respond to 
communications when they had to also identify many UAV targets and UGV requests.  
Additionally, when the amount of high priority communications was low, participants took 
longer to respond to communications when they had many UAV targets and UGV requests (see 
figure 7).  This result appears to indicate that high priority but infrequently occurring 
communications pose a particularly high monitoring load on the operator, as suggested by recent 
studies of vigilance and monitoring in semi-automated systems (Warm, Dember, & Hancock, 
1996).  Participants also took longer to respond to UGV obstacles when there were fewer UAV 
targets to identify (see figure 6).  It is unclear at this point why this occurred.  Additional results 
were that when there were fewer targets to be identified with UAV but the UGV stopped 
frequently and there were many communications, overall SA was higher (see figures 9 and 10).  
Further comprehension was better when high priority communications were low.  In general, 
performance (e.g., RT) was degraded when task load was high (i.e., many UAV targets and UGV 
stops). 

Research conducted in more realistic simulation environments has also shown that in general, 
using multiple robotic systems has a negative effect on performance (e.g., Rehfeld, Jentsch, 
Curtis, & Fincannon, 2005; Chen, Durlach, Sloan, & Bowens, in process).  Rehfeld had 
participants indirectly monitor a robot(s) via a video feed sent from the robotic vehicle and 
identify a target in an urban setting.  In general, participants had a difficult time identifying 
targets with one UGV and when they were given two UGVs to complete the target identification, 
performance did not significantly increase.  However, when two operators were given one UGV, 
they found nearly 200% more targets than a single operator for the most difficult conditions.  
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Similarly, Chen et al. showed that single operators were not efficient when they had multiple 
systems; having additional systems for target acquisition did not significantly improve 
performance.  Chen also examined control modality for the UGV, whether teleoperated or way 
point controlled.  The teleoperated condition was the least efficient condition for target 
acquisition.  When operators were given a UAV and UGV, they relied on the UAV rather than 
an integrated strategy.  These results, along with the results of experiment I, suggest that even if 
robotic systems have minimum control requirements (waypoint control), targeting is a difficult 
task for the operator.  When other factors in the multi-tasking environment of robotic operators 
are taken into account, such as communications or the stress of combat, performance may be 
degraded even further.  The potential degrading effect of high communications load on Type 2 
SA of the battlefield environment was also noted in the current study. 

The current research investigations with the robotic NCO simulation and the simulation research 
by Chen and colleagues (in process) have identified several tasks to consider for automation or 
aiding target identification and robotic control.  In the next series of studies with robotic NCO, 
we will implement some of these automation strategies.  To evaluate the effectiveness of the 
automation, we will compare performance with and without its implementation.  For example, 
with the UGV task, we will increase operator involvement with the UGV and compare manual 
operation to fully autonomous operation.  For the UAV, we plan to investigate the effects of an 
automated target recognition system on operator performance.  The ensuing studies will compare 
the effects of various types of automation (adaptive, adaptable, full, manual control) on Soldier 
performance while we vary the multi-tasking environment, including the reliability of the 
proposed aids.  

5.2 Candidate Physiological Measures 

In addition to the types of automation to be implemented, we are examining the best triggers for 
the automation.  There are many ways in which the system changes can be initiated:  subjective 
workload assessments, operator performance, and physiological measures.  In a separate series of 
experiments, we will be assessing the utility of various physiological measures for invoking 
automation.  Physiological measures can provide additional information that can be tapped for 
control of adaptive systems.  When physiological measurement is used, the emphasis is on the 
operator’s capabilities, not the system’s. Measurement technology is developing rapidly and is 
showing improvements in the areas of non-intrusiveness, precision, and prediction.  Therefore, it 
is important to evaluate these methods for their practicality and sensitivity to operator workload.  

Kerick, Oie, & McDowell (research in progress) are evaluating EEG in realistic motion 
environments.  In the adaptive automation literature, a general assumption is made that changes 
in EEG reflect arousal and workload (Scerbo, 2001).  Therefore, it is only logical that we 
consider EEG as a potential trigger for automation.  One limitation of most physiological 
measurements, such as EEG, is their sensitivity to noise in the environment. Kerick and 
colleagues are assessing the feasibility of extracting high-quality, task-relevant EEG signals from 
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participants performing Soldier tasks.  EEG measures (i.e., P300) will be used to examine if 
state-of-the-art measurement technologies and signal-processing techniques will allow the 
recording of relevant signals in conditions that will induce different levels of self-induced (e.g., 
muscular activity) and external (e.g., electromagnetic) noise artifacts.  The ability to assess brain 
functions underlying performance in tasks and environments consistent with common Army 
operational scenarios is critical to the development of the ability to monitor Soldiers in real 
time—a key issue in using physiology for adaptive automation. 

In a related effort, Cosenzo and Fatkin (research in progress) are evaluating cerebral blood flow 
velocity (BFV) changes in a multi-tasking simulation. BFV is assessed by trans-cranial Doppler 
sonography (TCD).  TCD is used to assess the moment-to-moment changes in BFV.  TCD is 
being evaluated because it is robust in noisy environments.  It is also a relatively new technique 
in cognitive psychology and has not been used in adaptive automation applications.  Research 
results may show that BFV is a valid measure of an individual’s cognitive status and may be 
used as a driver in an adaptive system.  Future automation technologies may be driven by the 
patterns of electrophysiological activity that underlie cognition, whether it is EEG, TCD, or 
multiple measurements.  This work will be used to determine the feasibility of physiological 
activity as a driver for an automation system. 

5.3 General Conclusions 

The U.S. Army Future Force requires Soldiers to have multiple responsibilities in an 
information-rich environment.  Soldiers will be responsible not only for operating and fighting 
within their own vehicle but also for some set of robotic vehicles tethered to them, both air and 
ground.  The addition of robots will present challenges to the Soldier (Mitchell, 2005).  The 
combination of robotic operational tasks with other traditional military tasks will create high 
workload.  For example, Mitchell (2005) showed that the gunner (traditional military tasks-scan 
for targets) was overloaded when he had a UGV that required operator intervention and as a 
result, the gunner decreased his scanning.  

Studies conducted to date have identified some of the major issues (e.g., Mitchell, 2005)  and the 
preliminary results (e.g., Chen et al., in process; Rehfeld et al., 2005) indicate that adaptive 
automation may be a useful mitigation strategy to help offset the potential deleterious effects of 
high cognitive load on Army robotic operators in a multi-tasking environment.  There are human 
performance advantages and disadvantages of battlefield automation.  In implementing any 
automation, we must keep in mind issues relating to trust in automations.  Research has shown 
that individuals over-rely and under-rely on automated systems, depending on the following 
factors:  the decision order, operator overload, false alarm rate, and reliability of the system.  In 
addition, poorly designed automation can result in operator complacency and the loss of SA.  In 
designing the automation, we will consider its effects on operator workload and performance as 
well as operator complacency and reliance on the automation.  
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From the work with the robotic NCO simulation, we will identify the candidate tasks and define 
adaptive architecture concepts to mitigate the Soldier’s workload and improve overall 
performance in the environment, based on some subset of adaptive logics.  Work by 
Parasuraman, Galster, Squire, Furukawa, & Miller (2005) has demonstrated the efficacy of 
adaptable automation for aiding human control of multiple simulated robots; this will also 
provide input into the design of adaptive architectures.  We will also use the work of Kerick et al. 
and Cosenzo and Fatkin (research in progress) to determine if physiological measurements are 
practical triggers for this environment.  We intend to develop increasingly realistic simulations as 
we understand the efficacy of adaptable or adaptive options in multi-tasking environments.  The 
adaptive concepts will be first evaluated in the robotic NCO program and then in prototype 
robotic OCUs developed by the Army.  The ultimate goal of the program is to allow future 
combat vehicle operators to conduct remote targeting with aerial and ground robotic systems in a 
multi-tasking, high stress environment while maintaining sufficient combat awareness to ensure 
their survival.   
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