Simulation of Air Flow Through a Test Chamber

by Gregory K. Ovrebo

Approved for public release; distribution unlimited.
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
Simulation of Air Flow Through a Test Chamber

Gregory K. Ovrebo
Sensors and Electron Devices Directorate, ARL
1. REPORT DATE (DD-MM-YYYY)
December 2007

2. REPORT TYPE
Final

3. DATES COVERED (From - To)
October-November 2006

4. TITLE AND SUBTITLE
Simulation of Air Flow Through a Test Chamber

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)
Gregory K. Ovrebo

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army Research Laboratory
ATTN: AMSRD-ARL-SE-DP
2800 Powder Mill Road
Adelphi, MD 20783-1128

8. PERFORMING ORGANIZATION REPORT NUMBER
ARL-MR-0680

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Research Laboratory
2800 Powder Mill Road
Adelphi, MD 20783-1128

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Computer simulation was used to investigate the flow of forced air through a test chamber used to measure heat dissipated by an inductor. Cosmos FloWorks simulations provide a qualitative picture of the air stream passing through the chamber, as well as calculations of air velocity at the chamber outlet port. These results provide a correction factor for measurements of power dissipation in high-power electric components.

15. SUBJECT TERMS
Simulation, finite element, flow rate

16. Security Classification of:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
U

18. NUMBER OF PAGES
14

19a. NAME OF RESPONSIBLE PERSON
Gregory K. Ovrebo

19b. TELEPHONE NUMBER (Include area code)
(301) 394-0814
Contents

List of Figures iv

1. Introduction 1

2. Model and Simulation Preparation 1

3. Air Flow Simulation 2

4. Results 6

5. Conclusion 7

Distribution List 8
List of Figures

Figure 1. Solid model of a test apparatus which uses an anemometer and air temperature measurements to calculate power dissipation of an inductor inside the chamber.2

Figure 2. Velocity of air leaving the thermo-anemometer chamber, as a function of outlet port diameter. ...3

Figure 3. Sampled air flow trajectories passing through the box. Side view of the center plane...4

Figure 4. Contour plot of air velocity inside the box. Side view of the center plane.5

Figure 5. Laminar flow at the edges of the outlet reduces the effective diameter of the port.6
1. Introduction

The Army Research Laboratory (ARL) is interested in developing high power electronics for a range of Army applications. One aspect of this development effort is investigation of materials and designs which may optimize the operation of high-power inductors, an integral part of high-density power conversion systems. To this end, ARL scientists investigated inductor core designs using two different core materials and three different winding types1.

Power loss in the test inductors was measured with a thermo-anemometer chamber. The inductor was placed inside an insulated chamber and operated as part of a DC-DC boost power-stage test fixture. Power levels were in the range of 5 to 25 kW. Air was forced into the inlet port with an attached blower. Air speed and air temperature were measured at the outlet port with a thermo-anemometer. This data, along with air specific heat and measurements of relative humidity and barometric pressure, were used to calculate air density inside the chamber and total power dissipation by the inductor. However, initial attempts at calculating inductor heating produced results which were anomalously high. It was determined that a simulation of air flow inside the thermo-anemometer chamber might resolve this anomaly.

2. Model and Simulation Preparation

A model of the thermo-anemometer chamber was prepared with SolidWorks modeling software. A view of the model, with its components rendered semi-transparent, is shown in figure 1. The box is 12 inches high, 12 inches wide and 18 inches long. Air flow enters the box through the round opening on the right, 3 inches in diameter, and exits through the port on the left. The exit port is extended with a tube in our model to allow some averaging of air velocity and avoid vertices at the exit, which can be computationally problematic. If we specify the velocity of air entering the chamber, we can calculate the flow properties, like velocity, pressure, and flow rate, through the box to the exit port. We used Cosmos FloWorks, a computational fluid dynamics software package, to perform these simulations.

3. Air Flow Simulation

Our simulation of air flow through the thermo-anemometer chamber began by defining a constant flow of air at 5.1 m/s into the 3-inch diameter inlet port. This simulates the blower attached to the test chamber inlet. The chamber model was meshed in CosmosFloWorks with 48,000 cells. This is somewhat finer than the default mesh, avoiding computational anomalies encountered in preliminary simulation attempts while still keeping run times manageable. The solid model was modified for each run, changing the diameter of the outlet port so we could study the effect of outlet size on the air velocity coming out of the box. Outlet diameter was varied from 2 inches up to 4 inches. A chart of average air velocity at the exit as a function of outlet diameter is shown in figure 2.

The source of the experimenters’ quandary can be seen in this figure. Contrary to what one might assume, the speed of the air leaving the chamber is greater than the speed of the air entering it, even when inlet and outlet ports are the same size. Although the inlet air velocity is
5.1 m/s, the outlet velocity from an identical 3-inch port is 7 m/s. The simulation results can shed some light on what is happening to the air flow inside our chamber.

![Graph showing air velocity as a function of exit diameter](image)

Figure 2. Velocity of air leaving the thermo-anemometer chamber, as a function of outlet port diameter.

Figure 3 is a side view of air flow through the center of the chamber, where the trajectories shown represent sampled air streams inside the box. The colors denote the velocity of the air streams as they pass from the inlet, on the right side of the chamber, to the outlet, on the left side. In this example, the inlet and outlet ports are both 3 inches in diameter. Note how the envelope of the air flow spreads as it travels down the box, and then narrows again at the outlet.
Figure 3. Sampled air flow trajectories passing through the box. Side view of the center plane.

Figure 4 is the same side view of the center plane of the chamber, showing a contour plot of air velocity inside the box. Again we see the spreading of the air stream traveling through the box, narrowing as it reaches the exit. Also note how air speed increases at the outlet in a sort of Bernoulli effect.
Figure 4. Contour plot of air velocity inside the box. Side view of the center plane.

In figure 5 we look at a close-up view of the outlet port of the thermo-anemometer chamber. One factor in the discrepancy between inlet and outlet air speeds is laminar flow at the outlet, where air velocity at the port’s surface is zero, and increases farther from the surface. In the contour plot, this laminar flow is represented by a dark blue region next to the opening. This means that the outlet port’s effective size is smaller than the measured diameter.
4. Results

Our investigators calculated the power P dissipated by the inductor inside the thermoanemometer chamber with the formula\(^2\)

$$P = D_a \cdot A \cdot \nu \cdot C_{p}^1 \cdot \Delta t,$$

where the air density D_a is derived from the formula\(^3\)

$$D_a = \left[\frac{3.4844 \rho - h(2.52t - 20.582)}{t + 273.15} \right].$$

$A = \text{air outlet cross-sectional area},$

$C_{p}^1 = \text{air specific heat with humidity at standard pressure},$

$h = \text{relative humidity},$

\[p = \text{barometric pressure}, \]
\[t = \text{air inlet temperature}, \]
\[\Delta t = \text{air outlet temperature rise}, \]
\[v = \text{air outlet speed}. \]

A correction to \(A \), the air outlet cross-sectional area, had to be made to account for the laminar flow around the surface of the outlet. According to the results of our fluid dynamic calculations performed with Cosmos FloWorks, outlet air velocity equals inlet air velocity in our chamber when the outlet is 3.5” in diameter, compared to the inlet’s 3.0” diameter (see figure 2). This ratio of 3.0/3.5, or 0.857, will correct for the anomaly observed in power measurements due to the properties of air flow in the thermo-anemometer chamber.

5. Conclusion

We were able to resolve an anomaly in the experimenters’ calculations of power dissipation by high power inductors. The analysis of the behavior of air flow inside their experimental apparatus revealed laminar flow around the outlet port of their thermo-anemometer chamber. A correction factor was calculated to account for the effective diameter of the outlet port and correct the calculation of power dissipated by the inductor.

This use of a fluid dynamics computation allowed a quick resolution of a problem which did not lend itself to an analytic solution, and which might have required much more time and resources to be resolved empirically.
Distribution List

ADMNSTR
DEFNS TECHL INFO CTR
ATTN DTIC-OCP (ELECTRONIC COPY)
8725 JOHN J KINGMAN RD STE 0944
FT BELVOIR VA 22060-6218

US ARMY RSRCH LAB
ATTN AMSRD-ARL-CI-OK-TP TECHL LIB T LANDFRIED
BLDG 4600
ABERDEEN PROVING GROUND MD 21005-5066

DIRECTOR
US ARMY RSRCH LAB
ATTN AMSRD-ARL-RO-EV W D BACH
PO BOX 12211
RESEARCH TRIANGLE PARK NC 27709

US ARMY RSRCH LAB
ATTN AMSRD-ARL-CI-OK-T TECHL PUB (2 COPIES)
ATTN AMSRD-ARL-CI-OK-TL TECHL LIB
ATTN AMSRD-ARL-D J M MILLER
ATTN AMSRD-ARL-SE-DP B GEIL
ATTN AMSRD-ARL-SE-DP C SCOZZIE
ATTN AMSRD-ARL-SE-DP D PORSCHE
ATTN AMSRD-ARL-SE-DP D URCIUOLI
ATTN AMSRD-ARL-SE-DP G OVREBO (10 COPIES)
ATTN AMSRD-ARL-SE-DP J HOPKINS
ATTN AMSRD-ARL-SE-DP W TIPTON
ATTN IMNE-ALC-IMS MAIL & RECORDS MGMT
ADELPHI MD 20783-1197