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A Flexible Hypersonic Vehicle Model Developed With Piston Theory

Michael W. Oppenheimer *
Torstens Skujins T
David B. Doman !
Michael A. Bolender #
Air Force Research Laboratory, WPAFB, OH 45433-7531

I. Abstract

For high Mach number flows, M > 4, piston theory has been used to calculate the pressures on the
surfaces of a vehicle. In a two-dimensional inviscid flow, a perpendicular column of fluid stays intact as it
passes over a solid surface. Thus, the pressure at the surface can be calculated assuming the surface were a
piston moving into a column of fluid. In this work, first-order piston theory is used to calculate the forces,
moments, and stability derivatives for longitudinal motion of a hypersonic vehicle. Piston theory predicts a
relationship between the local pressure on a surface and the normal component of fluid velocity produced
by the surface’s motion. The advantage of piston theory over other techniques, such as Prandtl-Meyer flow,
oblique shock, or Newtonian impact theory, is that unsteady aerodynamic effects can be included in the
model. Prandtl-Meyer flow and oblique shock theory are utilized to provide flow properties over the surfaces
of the vehicle. These flow properties are used to determine the steady forces and moments and are also
included in the unsteady flow calculations. Thus, this work utilizes a combination of Prandtl-Meyer flow,
oblique shock, and piston theory to calculate forces and moments. The unsteady effects, considered in this
work, include perturbations in the linear velocities and angular rates, due to rigid body motion. A flexible
vehicle model is developed to take into account the aeroelastic behavior of the vehicle. The vehicle forebody
and aftbody are modelled as cantilever beams fixed at the center-of-gravity. Piston theory is used to account
for the changes in the forces and moments due to the flexing of the vehicle. Piston theory yields an analytical
model for the longitudinal motion of the vehicle, thus allowing design trade studies to be performed while
still providing insight into the physics of the problem.

II. Introduction

In the 1980’s, the National Aerospace Plane (NASP) program commenced, with its goal being a feasibility
study for a single-stage to orbit (SSTO) vehicle, which was reusable and could take off and land horizontally.
The NASP was to be powered by a supersonic combustion ramjet (scramjet) engine. Although this program
was cancelled in the 1990’s, a great deal of knowledge was gained and it spawned future programs, including
the hypersonic systems technology program (HySTP), initiated in late 1994, and the NASA X-43A. The
HySTP’s goal was to transfer the accomplishments of the NASP program to a technology demonstration
program. This program was cancelled in early 1995. The NASA X-43A set new world speed records in 2004,
reaching Mach 6.8 and Mach 9.6 on two separate occasions with a scramjet engine. These flights were the
culmination of NASA’s Hyper-X program, with the objective being to explore alternatives to rocket power
for space access vehicles.
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With renewed interest in space operations worldwide, there is an interest in hypersonic aerodynamics
research. The scramjet engine will likely play a major role in future hypersonic vehicles. Unlike a conventional
turbojet engine, a scramjet engine does not use high speed turbomachinery to compress the air before it
reaches the combustor. Instead, it relies upon the rise in pressure across oblique shock waves located in front
of the inlet. Furthermore, the flow through the entire engine is supersonic in contrast to a ramjet, where the
flow speeds are subsonic through the combustor. On configurations like the NASP and X-43A, the underside
of the airframe must function as the air inlet mechanism and the exhaust nozzle. Therefore, integration of
the airframe and engine are critical to success of a scramjet powered vehicle.

Scramjets could be used as part of a multi-stage launch vehicle that would include multiple propulsion
systems to perform a mission. The factor driving research towards scramjets and away from rockets is cost;
scramjets would substantially lower costs because it is an airbreathing engine. Airbreathing engines don’t
require oxidizer to be carried by the vehicle, hence increasing the payload and reducing the quantity of fuel
carried.

Unsteady aerodynamics are a phenomenon that must be considered in the development and optimization
of future hypersonic vehicles. The combined effects of a slender flexible vehicle travelling at high speeds and
subjected to large forces may lead to significant unsteady aerodynamic effects. Hence, understanding the
concepts and consequences of time-dependent aerodynamic flows is critical to the successful development of
this type of vehicle.

Piston theory is a technique that has been used for years to determine the pressure distributions on an
airfoil /vehicle, when the Mach number is sufficiently high. Lighthill'! discussed the application of piston
theory on oscillating airfoils some 50 years ago. Ashley and Zartarian? discuss piston theory while providing
a number of examples of the application of piston theory to specific problems. More recently, Tarpley>
discussed the computation of stability derivatives for a caret-wing waverider using piston theory, which
requires the analysis of unsteady flow over the vehicle. Piston theory allows the inclusion of unsteady
aerodynamic effects in the model and a closed form solution can be found for these unsteady effects.

In this work, piston theory is applied to a hypothetical 2-dimensional hypersonic vehicle powered with
a scramjet. This work uses first-order piston theory to compute unsteady effects behind shock waves and
expansion fans. A recent study? revealed that this method of computing unsteady aerodynamic effects
delivered highly accurate results when compared to computational fluid dynamics solutions and higher order
piston theory models. This paper builds on previous work® by incorporating a flexible vehicle model and
determining the perturbations to forces and moments due to flexibility.

In Section III, the vehicle analyzed in this work is described, while the steady forces and pressures on the
vehicle’s surfaces are provided in Section IV. The unsteady effects due to the aerodynamic control surfaces
are included in Section V, the total rigid body forces and moments are discussed in Section VI, while the
aeroelastic model is developed in Section VII. Results are provided in Section VIII, conclusions are given in
Section IX, and Appendix A contains detailed calculations for many of the flexible stability derivatives.

III. HSV Model

Figure 1 shows the 2-dimensional hypersonic vehicle considered in this work.® The longitudinal force and
moment analysis is taken as unit depth into the page. The vehicle consists of 4 surfaces: an upper surface
(defined by points cf) and three lower surfaces (defined by points c¢d, gh, and ef). All pertinent lengths and
dimensions are in units of feet and degrees, respectively. The total length of the vehicle is L = 100ft and
the notation for lengths is Ly = length of the forebody, L, = length of the engine nacelle, L, = length of
the aftbody, L. is the length of the elevator, L. is the length of the canard, Z; is the distance from the C.G.
to the front of the vehicle, Z, is the distance from the C.G. to the rear of the vehicle, e, and 2., are the
distances from the C.G. to the midpoint of the elevator in the x and z directions, respectively, T qnarq 1S the
distance from the C.G. to the midpoint of the canard, and h; is the engine height. The vehicle dimensions

2 of 25

American Institute of Aeronautics and Astronautics



L=100

g h

Figure 1. Hypersonic Vehicle.

are
L =100 ft
Ly =47 ft
Lo =33 ft
L, =20 ft
L. =17 ft
L= n (1)
Ty =055 ft
To =45 ft
Telev = 30 ft
Zelev = 3.5 [t
h; =3.25 ft
Teanard = 40 ft
The vehicle angles are
U = 3°
71,1 = 6° (2)
5 = 14.41°

Additionally, the vehicle mass and moment of inertia are

Mass = 300 Slfl;g ] 3)
Tyy = 500,000 L=t
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and the mean aerodynamic chord (¢) and planform area (5) are defined as

c=1L

S =2 @

The goal is to apply piston theory to this 2-dimensional vehicle geometry to determine the pressure
distribution on the surfaces of the vehicle, which, in turn, can be used to evaluate the forces and moments.
The pressure on the face of a piston moving into a column of perfect gas is?

2y
P y—=1V,\" 1
i I 5
Py ( - 2 aoo) 5)

where the subscript ”0o” refers to the steady flow conditions past the surface, V,, is the velocity of the surface
normal to the steady flow, a., is the freestream speed of sound, and P is the surface pressure. Taking the
binomial expansion of Eq. 5, to first order, produces

P 2 -1V, V,
7:1_‘_77777":14_77" (6)

P y—1 2 ax Goo

Multiplying through by P, and using the perfect gas law (P = pRT) and the definition of the speed of
sound (a? = yRT) yields the basic result from first-order linear piston theory

P = Poo + poctooVir (7)

where -y is the ratio of specific heats and R is the gas constant. The infinitesimal force, on an elemental area,
due to the pressure is given by
dF = —PdAn (8)

where dA is a surface element and n is the outward pointing normal. Substituting Eq. 7 into Eq. 8 yields
dF = (—Pso — PoctooVy) dAn (9)

The normal velocity can be computed by taking the dot product of the flow velocity over a surface and the
outward pointing normal for that surface. Hence, Eq. 9 becomes

dF = (=P — Poolioo [V - 1)) dAn (10)

Equation 10 is the basic result upon which this work is based. From this equation, it is seen that in order
to compute the forces acting on a surface, one must determine the properties of the flow past the surface
(properties behind a shock, expansion fan, or freestream), the velocity of the surface relative to the airstream,
V, the outward pointing surface normal, n, and the surface element, dA. The work that follows will develop
these quantities for the upper and lower surfaces of the vehicle, as well as for the control effectors.

IV. Vehicle Surface Pressure Distributions and Forces

The differential forces on the surfaces of the vehicle were computed by Oppenheimer and Doman® and
are repeated below:

dF .t = (=Poy — pesacy {lu+qtanm y (x — Zy)]sinm,y — [w — gz|cos T v }) [sin TLUE — cos TLU];Z:| sec11,udx

(11)

dF.q = (—Pedg — pedea {{u — gqtanm 1 (x — ZTy)]sinmy 1 + [w — gz] cos 1,1 }) |:Sin7'17Lz + cos TLLI%} sec Ty, .dx

(12)
dF g, = (—Pyn — pgnagn {w — qz}) [1]%} dx (13)

dF et = (—Pef — pefacs {— (u+ qres.)sin (mi,u + 72) + (w — qx) cos (11,0 + 72)}) neg sec (11,0 + 72) d
(14)
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where

n.y = —sin(my —I—Tg)i—&—cos (r,u +7'2)1Ac (15)
and
Tef, = [tan (1,u + 72) (x + Zo) — Ltanm y] (16)

where u, w, and ¢ are small perturbations in a steady flight condition of the forward velocity, normal velocity,
and pitch rate, respectively. The steady forces are computed by integrating the steady components of the
differential forces over the corresponding surface. Performing the integrations yields

F.p, = —P.jTgsecTiy sinTLU% - COSTLU];J = cha% + Zcfafc an
. . . . 17
Fef, = —Pegrysecmiy |sinTiui —cosTiuk| = Xeg,t + Zey, b

where Xy, , Z.¢, are the components of the aftbody upper surface force in the x and z directions, respectively,
and X.y,, Zcs, are the components of the forebody upper surface force in the x and z directions. The lower
surface forces are

Feg=—FPaLysect {sin TLL% + cos TLL];'] = Xcdi + chfc

LU COSTLLE ® (18)
th = — gthk = Xghi + Zghk

while on the rear ramp, the vector force due to the external nozzle is

F.r=

L.P.P. P, ) R ) A
al el o 1 e [ : : il = Xe \ Ze i 19
cos (T + 72) (Pe — Poo) n P sin (71,u + 72) ¢ — cos (T1,u + T2) Fit Zes (19)

where Xy and Z.; are the axial and normal force components of the external nozzle force and P, is the
engine exit pressure.

A. Control Surfaces

The control surfaces are an elevator and canard as shown in Fig. 1. Both surfaces are modelled as flat plates
hinged at their midpoints so the entire surface deflects. Positive deflection is defined as trailing edge down.
The x and z positions of the midpoint of the elevator and canard referenced to the C.G. are Tejey, Zeier and
Teanards 0- The canard was added to this vehicle for two reasons. First, the elevator produces a significant
amount of lift and results in a non-minimum phase flight path angle response.” Adding the canard and
forcing it to respond in conjunction with the elevator compensates for the lift produced by the elevator and
reduces the non-minimum phase behavior. Secondly, the canard can be utilized for low speed control and
reduces the takeoff and landing speeds since they produce positive lift in conjunction with a nose up pitching
moment. In this work, the canard is not ganged to the elevator, rather, it is free to move. Hence, the
non-minimum phase flight path angle response is still present. However, this allows the determination of the
steady and unsteady forces and moments due to the canard.

1.  Elevator

The upper and lower forces on the elevator can be computed as

—Teren+ 5= cos S, . R

F., = / [—Peyy — Pey ey {Vey «Ney }] [— sin 0.2 — cos 6ek} sec d.dx (20)
L
—Telew— 5 COSJe
—Terev+ 52 cos e N R
F., = / [—P., — Pepte, { Ve, +1c, }] [Sin el + cos 5614 sec 0.dx (21)
—ZTerew— L cos b,
where
Ve vy, = — (U — q{Zeter + tande ( + Zejey) }) sinde — (w — gx) cos o, (22)
Ve, o0, = (U — q{2eier + tande (x + Zeper)}) sinde + (w — g) cos e (23)
5 of 25
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2. Canard

In order to determine the steady and unsteady forces and moments due to the canard, Eq. 10 must be
evaluated. Hence, the flow properties on the top and bottom surfaces of the canard along with a position
vector, normal vector, and surface element must be determined. For the canard, the flow properties are

If 6. = —a = Freestream
If §. < —a = Shock on top, expansion on bottom (24)
If 6. > —a = Expansion on top, shock on bottom

The position vector from the C.G. to an arbitrary point on the canard is given by

ro.=axt+ [ tand, ( xcanard) + annard] (25)
Lcanard — léc COS(S <z < Zeanard + c COS(S

where Zeqnarq = 0 for this configuration. The outward pointing normal vectors for this surface, relative to
the body axis, are
n., = —sin et — cos Ok

e < (26)
n., =sind.i + cosd.k

and the surface element is
dA. = secé.(1)dx (27)

To compute the forces, moments, and stability derivatives, consider small perturbations, from a steady flight
condition, in the velocities u and w and the pitch rate q. The velocity of a point on the upper and lower
surfaces of the canard, due to these perturbations, is

Ve, = (Ve cosd. + u)
. = (Ve, coséd. + u)

(~Vep sinde +w) k +w x r.

A 28
(=V., sind. +w)k +w x 1, (28)

i+
i+
where V., and V., are the flow velocities on the upper and lower surface of the canard (as determined from

the flow analysis) and w = qj is the angular rate vector. Using Egs. 24 - 28 in Eq. 10 yields the differential
forces due to the canard:

dFCU = [_PCU — Pcy Gcy {_ sin 50 (u +4q [_ tan 6c (l‘ - xcanard) + annard]) — COS 50 (U) - qZ)H N, dAcU

dF., =[—P., — peac,, {sind. (u+ q[—tand. (£ — Teanard) + Zeanard]) + €08 0. (w — qz)} n., dA.,
(29)
The steady forces are computed by integrating the steady component of Eq. 29, hence,

F. = fmc‘”‘”‘fr 7 cos e —-P, (— sin .7 — cos 6015) sec §.dr = P, L.sin 8ot + P., L. cos 601% = XCU% + ZcUlAf

v xcanard_i0035

F. = fm“”“”ﬁ A (Sinéci + cos (5012:) secO.dr = —PF,, L. sin .0 — P., L. cos 6CIA<; = XCL% + ZCLI%

Teanard— 5 COS O¢ er
(30)
The corresponding moments are calculated using M., =r. x F., and M., =r. x F., such that
My, = —ZcanardPey Le €08 0¢ + ZeanardPey Le Sin 6c = —Zeanard Pey Le €0S ¢ (31)

M., = TeanardPe), Le €08 6c — ZeanardPey, Lesin e = TeanardPey, Le €08 de

where the last inequalities in Eq. 31 result from z.qnqrq being zero.

V. Unsteady Control Surface Effects

The unsteady effects due to velocity and rate perturbations on the control surfaces are found using the
unsteady portions of Eqs. 20, 21, and 29.
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A. Elevator Unsteady Effects

The normal force stability derivative due to the elevator is

1 1 1
(Cz,)s, = q“ﬁ/(dF)%w = qo.ﬁ/(dFeu)sz + ﬁ/(dFeﬁzw (32)

Performing the necessary substitutions produces

1 —Tereut 52 cos b ~Teept 52 cos e
(Cz.)s. = —= / —Pey ey, W COS Oedx + / —Pey, Qe W COS O dT (33)
¢ qOOS 71:6“31,7% cos d, 7xelw7% cos O¢
Integrating, letting w =~ Vy,a, and simplifying yields
0Cz _ - (Pey Geyy + Pey ey ) Voo Le cos? 8¢ (34)
Oa 5 qOOS
Using similar analysis, the axial force component becomes
Cx)n = — [@F), = — [@Fe),,+ — [@F.,)
Xw /s, QOOS T—w qOQS eu/x—w QOOS €L /)x—w (35)
0Cx  —(pep ey F Peyey) Voo Le cos O sin de
Oa 5 N QoS
The pitching moment contribution due to w motion is
1
(CMw)ée = q Sc |:/Z(dFeU)x—w +/Z(dFeL)a:—w - /x(dFeU)z—w - /z(dFeL)z—w:|
= 36
<aCM) o (peu Aey; + Per, aeL) (ZelevLe sin 66 Cos 65 - xelevLe COSQ 56) Voo ( )
Oa ) B (oo ST
The normal force increment due to pitch rate is
1
(CZG)Ee = qooS |:/ (dFeU)z—q +/(dF€L)z—q:|
(37)

(8CZ> _ (peU ey, + Per, ae,,) [Le sin 66 COS 65 {Zelev + Zeley tan 66} - xelevLe]
aq e qooS

The final stability derivative for the elevator is the pitching moment increment due to pitch rate, which
becomes

(Cu,)5, = qoolsé [ / 2(dFey ), + / 2(dF.,), , - / (dFe,), 4 — / x(dFeL)Zq} (38)

Performing the required operations yields

aC’M _ (peUan + peLaeL)
dq ) 70 ST

[Le sin d, cos . (tan e {x?lev — zflev} + ZelevZelew {1 — tan? 56})]

+ (Peyy Gy + Pepaer)
gooSC

3 3
(Pey ey + Pey e, ) (tan? s, — 1 L, L,
- —delev 66 - —delev T 66
(oo ST 3 cosd, Telev + 2 €08 el 2 o8

B. Canard Unsteady Effects

(zele'u + Telev tan 68) xele'uLe tan 56 (39)

The normal force stability derivative due to the canard is

1 1
(€25, = —5 [ @Fe).+ —5 [ (@Fe), (10)
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which becomes

0Cz _ (pcu Gey + Pey, cy) (VooLc cos? 6C) (41)
Ja /) s GooS
The axial force increment due to motion in the vertical direction becomes
1 1
(Cx,)s, = qis/(dFCU)sz + qis/(chL)sz
oCx = (pey ey + pepcy) Voo Le cos 6. sin b (42)
Oa 5 N GooS
The pitching moment contribution due to w motion is
1
(C]Ww)éc = oo S |:/Z<dFCU>:cw +/z(dF0L)x7w - /x(dFCU)sz - /m(dFCL)zw:|
> 43
8CM _ (ch Acyr + Per, acL) (_annarch sin 5c COS 5c + xcanarch COSQ 50) Voo ( )
Oa ) o (ooSC
The normal force increment due to pitch rate is
1
(C2)s = —5 [ / (dFey), _, + / (chL)Zq}
(44)

(302 ) o (ch ey + Per, acL) [xcanarch COSQ 6c - annarch sin 5(; COS 50}
aq ¢ QOOS

The final stability derivative for the canard is the pitching moment increment due to pitch rate, which
becomes

¢ GoonC

©un)s = —ge | [# @)yt [2@Re) = [, [owra) | @)

Performing the required operations yields

(80M> _ (pegocy +repacy) {7 sin2 5,03, L3 6)
Sc

3 cosd
Lesin? 5e — Z€ sin® 8¢ cos? 8¢ — 224 qpale cos® do -~ €
dq T Peanard e S %c SR 0¢ €OS™ 0c — Tegpardc €05 9c

qoo SC 12 12 12

VI. Total Forces and Moments - Rigid Body

With the inclusion of the stability derivatives, the thrust, and resulting engine moment,® the total
aerodynamic forces and moments on the vehicle are

Xiotar = Xef; + Xeg, + Xea+ Xgn + Xep + Xep + Xey + Xy + Xey +T+Q<>osaa%01
Ziotal = Zefy + Zefo + Zed + Zgh + Zep + Zep + Zey + Zey + Zey, + qOoSaa%O‘ + qws% 2(11/600
_ _ 48
Miotar = Meg, + Meg, + Mg+ Mgy, + Mey + M, + Me, + My, + M, + Mepgine + qoo558gf o+

_0Cy qcC _(0Cy _(0Cum _(0Cy qc _(0C qc
(oo ST 9q 2V +qOCSc( e >5ea+qooSc< 9a >5Ca+qooSc< B4 LoV + @0 SC 00 LoV

(49)

where Meygine and T' are the moment and thrust produced by the engine. It can be seen that Eqs. 47- 49
do not contain any inlet turning forces/moments that was present in previous work. Here, a reflected shock
from the engine inlet was modelled and performs the flow turning.
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VII. Flexible Effects

Thus far, only unsteady effects due to rigid body motion have been considered. Full scale hypersonic
airbreathing vehicles are expected to be long and slender and thus highly flexible. This structural bending
affects downstream flow resulting in localized changes in surface pressure along the body and thus, should be
incorporated into the model. In this section, the flexible effects are included in the analysis. Piston theory
is still used to determine the pressure distribution on the surfaces of the vehicle and much of the analysis
already presented can be easily adapted to included these additional effects.

A. Flexible Model

In order to develop the aeroelastic model, a few assumptions are made. First, the flexible vehicle is modelled
as two cantilever beams fixed at the c.g. (one for the forebody section of the vehicle and one for the aftbody
section of the vehicle). Second, the beams are assumed to have constant mass density, area, and flexural
rigidity (EI), where EI is chosen to give the desired natural frequency of vibration. Also, it is assumed
that the flexible effects only perturb the surface velocities in the z (normal) direction. This assumption is
justified using the small angle approximation, i.e., the deflection of the tip of the beam is small compared
to the length of the beam. Lastly, it is assumed that the change in angle of attack, as seen by the entire
forebody, is the change in angle of attack as seen by the tip of the vehicle, point (Zf,0) in Fig. 1. Since the
tip experiences the largest deflection, this is a worst-case assumption. This change in angle of attack is used
to compute the flow properties behind the bow shock and those flow properties are assumed constant over
the lower forebody.
The transverse vibrations in the beam satisfy the following partial differential equation:®

0*w(w,t) 0%w(x,t)
EI 4 7 ’
act "o
where w(x,t) describes the position of the beam, relative to the body x-axis, F is Young’s Modulus, [ is the

moment of inertia of the beam cross-section about the y-axis, and m is the mass density of the beam. This
problem is typically solved using separation of variables. Assume

w(z,t) = ®(z)n(t) (51)

Substituting the expression for w(z,t) in Eq. 51 into Eq. 50 and simplifying yields

=0 (50)

EI 9'®(z) 1 9*p(t)
m®(z) ozt q(t) oF (52)

Since the left side of Eq. 52 does not change as time varies, the right side of Eq. 52 must be a constant.
Similarly, since the right side of Eq. 52 does not change as x varies, the left side of Eq. 52 must be a constant.
Let this constant be w?, such that

EI 0'®(z) 1 9n(t) 9

md(z) Oxt :7% oz Y (53)

Utilizing the method of separation of variables, Eq. 53 can be written as two differential equations, one with
respect to position and one with respect to time:

d'®(x) 4
Gt~ B1e@) =0 (54)
8277“) 2
52 +wn(t) =0 (55)
where 3% = “’;—}” The general solution to Eq. 54 is®
®(z) = Cy sin B + Cy cos Bx + Cssinh Sz + C4 cosh Sz (56)

Using the following boundary conditions for the forward beam

d>®(x) d>®(x)

dar le=a; =0 g |o=a, =0 (57)
O(2)]pmo =0 2B =0
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which state that the bending moment and shear force are zero at the free location (x = Zy) and the
displacement and slope are zero at the fixed location (x = 0), along with the modal shape expression,
(Eq. 56), and simplifying results in the frequency equation

cos B¢y cosh By = —1 (58)
Eq. 58 has an infinite number of solutions with the first few given by
B¢ rxy =1.8751,4.6941,7.8548,10.9955,14.1372, . .. (59)

The values of Bf,, r =1,2,3,... in Eq. 59 are called the eigenvalues. Corresponding to these eigenvalues,
the natural modes of the forward beam are®

Qs ,(x) = Ay, [(sinBf,Z5 — sinh By, &) (sin Bz — sinh §f ,2)]

60
+Ay ;- [(cos By, T s + cosh By T f) (cos By rx — cosh By rx)] (60)
where Ay, is a normalizing factor, selected such that
zs
/0 1 ®F . (v)de = 1 (61)
where 7ivs is the mass density of the forebody beam defined as
Mass (1 — =L
iy = Mass (1= ) (62)
T
f
Thus, Ay, becomes
1
Af, = (63)
\/mf |:Af77’P1 + Afﬂ"Pz + Af»TP;;:I
where )
(Sin ﬂf rTf — sinh ﬂf TS_Cf)
Ar, = : : M 64
e . [Myy] (64)
sin B¢, s — sinh B¢ ,Z¢) (cos BfT ¢ + cosh B¢, 2 . _ . _
Afyrp, = ( L2t ! f;f( fr2f rr%s) (sin B¢,,2¢ — sinh ﬁf,rxf)2 (65)
(cos BT + cosh B ,.if)z
Af, = d d M 66
- e M) (60)
and

My = —2cos Bf & sin Bf,, & + sinh 204 Ty, — 4sin B, &y, cosh By, Tr, + 4 cos By Ty sinh B T, (67)
M3y = 2cos By, Ty sin By T, +sinh 28y Ty, —4 cos By, Ty, sinh B , T — 4 sin By &y, cosh B T +405, 21 (68)
For the aft beam, the boundary conditions are

d*®(x) d>®(z)

dz2 |z:§7a =0 dz3 ‘m:a’ca =0 (69)
O(z)omo =0 | =0
and the frequency equation becomes
cos 3,T, cosh 3,T, = —1 (70)
with solutions
BarZq = 1.8751,4.6941, 7.8548,10.9955,14.1372, . .. (71)

The natural modes of the aft beam are

Dy (2) = Agr [(SIn By rTo — sinh B, 1 Za) (sin By rx — sinh G, )]

72
+Aq,r [(co8 Bo.rZq + cosh Bg rZq) (cOS By rx — cosh By 7)) (72)
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and A, , is selected such that

i ha®. . (z)de =1 (73)
and -
iy = Mass 9(61 — f‘l) (74)
Thus, A, becomes
Ao,y = L (75)
\/ it [Aarp, + Aar, + Ay,
where ‘ B . o
Ay, = (Slnﬁa,7'xa4_ﬁ jl:lhﬂa,raf) (Mi.] (76)
Ay, = (sin B4+ Zq — sinh ﬁa,ri‘aﬁ) (c0S Ba,rTa + cosh g rTq) (S0 By To — sinh o)’ (77)
a,r
sy, = (cos ﬁwja;;;f(:Sh ﬁwiza)Q (M) (78)
and 7

Miq = —2¢08 B4,rTq sin By 7 Tq 4+ sinh 28, T4 — 450 B4 1 To cosh By, rTq + 4 €0S Ba,rTq sinh Bg rZq (79)
Ms, = 2¢08 34,7 T Sin By, r T +5inh 20, Tq —4 €08 By rTq sinh B »Tq —48in By T cosh By 1T +480,rTa (80)

B. Forced Response

Let the forcing function in Eq. 50 consist of distributed and concentrated loads so that Eq. 50 can be written

as
4 2
EIa w(z,t) e d*w(x,t)

Oz4 o

where §(z) is the dirac delta function defined as

o) Vife=ua
§(x xj)—{ 0 if a:;éx; } (82)

From the expansion theorem, the solution to Eq. 81 is

= [z, 1) + F(t)o(z — z;) (81)

wy(w,t) = ®p(z)ns,(t) (83)
r=1
for the forebody beam and
we(z,t) = Z Dqr ()14, (1) (84)
r=1

for the aftbody beam where 1y, (t), 14,,(t) are the generalized modal coordinates, for the forebody and
aftbody beams, that satisfy

i () + 2C0wp it () + Wi g (t) = Npp(t)

85
Tla,r (t) + 2Ca,rWa,rMa,r (t) + wz,rna,r(t) = N (t) (85)

Here, Ny ,(t), N, (t) are generalized forces for the 7" mode shape of the forebody/aftbody beam, defined
by®
Ty n
Nyolt) = [ @y + 3 ) 0

j=1

Nao(t) = /O B (2) fala, )z + S B (@) Fa (1)

J=1

(86)
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where n is the number of concentrated loads on the beam. Given the loading on the forebody and aftbody
beams, the generalized forces for the first mode become

zs Ty
Nﬁl(t) = / <I>f71(:17)Pcfdx — / (I)ﬁl(I)Pcddx + éf,l(l’canard) (P(:U — PCL) L,
0 - :EffiLf (87)

Na,l(t) = / (ba,l(x)Pcfdx - / (I)a,l(l')Pefdx + (ba,l(welev) (PeU - PeL) Le
0 Zqa—Lg

These expressions are displayed in Appendix A.

In order to incorporate aeroelastic effects into the model, a few simplifying assumptions are made. First,
the vehicle does not stretch or compress along the x-axis. Second, for small displacements, when the beams
(vehicle) flexes, there is no change in the x direction displacement. With these assumptions, aeroelastic effects
only occur in the z-direction. Additionally, it is assumed that the engine nacelle is rigid. The aeroelastic
effects can be accounted for by taking the time derivative of Egs. 83 and 84

j£:<Df, z)ny,r(t)
Zq)ar nar )

and including this effect in the expressions for the velocities on the upper and lower surfaces, namely Eqgs. 11,
12, and 14. The differential forces on the surfaces become

(83)

dFcf, = (=Peg — pefacy {{u+qtanmi,y (z — Zg)]sin v — [w — gz + g (z,t)] cosTi,u}) sec T yncpde
(89)

dF.s. = (—Pey — pefacy {[u+ qtanty (x — Ty)]sin 1,y — [w — qr + wq(x, )] cos 11,y }) sec 71,y pd
(90)
dF.q = (—Peqg — pedea {{u — qtan i (x — Zy)]sinti 1 + [w — gz + wy(z,t)| cos T, }) sec T pneqdr  (91)

dFep = (—Pef — pefer {— (w4 grey,) sin (m,u + 72) + (w — gz + W (x, 1)) cos (T1,u + T2)}) sec (T1,u + T2) Depdx
(92)

where the upper surface force has been split into forebody and aftbody parts to account for the two beam

structural model. With these differential forces, stability derivatives due to the bending of the vehicle can

be determined. For the normal force on the forebody beam,

1 zf zf
(Cz)wforebody = qOOS [/; (dFCf)Zf’w + /i -~ (dFCd)Z—’U'J‘|

s=Ls
1 Tf
= 75/ —pcfacf’LUCOSTLde-i-/ —PedGedW €O T1, d
qOO 0 ff*Lf

Substituting Eq. 88 into Eq. 93 produces

x

f

(Cz)wfarcbody = -~ S/ —PcfacfZ‘I’f, )17, (t) cos Ty de—|—/ —pcdachq’f, )Ny, (t) cos Ty pdx
r=1 zy—Ly

(94)

which, for the first bending mode becomes

oC Ty Ty
_ zZ _ - / —pefacrPyi1(x) cosTi,udr + / —PedtedPy,1(x) cos i, rdx
i qoS Jo Jzy—Ly
1 —2pc Qe 5 A . _ . _
= { Peflef COSTLU A1 (sinB¢,1Z¢ — sinh Bf17%¢)
GooS Bra (95)

_ Pedlcd €OST1,L A
Bfalqoos
Ped@cd COST1,LAf 1

- 3r1q g l(cosBraZy +cosh BraZy) (—sin By (25 — Ly) + sinh Br.1 (25 — Ly))]

[(sin By1%s — sinh By 1Zy) (cos By1 (T — Ly) + cosh By (Zy — Ly))]
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where Ay is the normalizing factor associated with the first mode. Using the assumption that the flexible
effects only perturb the surface velocities in the z-direction, the axial force stability derivative associated
with the flexible effect becomes

0Cx

: =0 (96)
877f71 forebody

For the pitching moment,

1 Ty Zy
(CM)'Lbforebody = qOOSE |:/0 z (chf)w—w + /i _ z (dFCd)I’Lb‘|

f—Ls

i i (97)
! /If (dF.;) +/If (dF.q)
- z c —w Z Ca)z—w
doo Sé 0 1z Ty—Ly ¢
For the first mode only, this expression is displayed in Appendix A.
For the aftbody beam, the Z direction force due to flexibility is
1 Taq Tq
Cz). = — dF. . dF. . 98
( Z)waft,body qOOS |:/0 ( f)z—w + /xa—La ( f)z—w:| ( )
and this expression is evaluated in Appendix A.
The pitching moment coefficient due to aftbody flexibility is
1 Tq Tq
(CM)warftbody = 000 ST |:/0 z (dFCf)ac—u') + /j L Z (dFef);v—u';:|
‘ (99)

1 Tq Tq
_ dF.;) dF. ;)
45T Uo z(dFef)omu + /xL = ef)”’}

and this expression is evaluated in Appendix A for the first bending mode.
With the inclusion of the flexible stability derivatives, the total aerodynamic forces and moments on the

vehicle are

Xiotal = Xef; + Xef, + Xea + Xgn + Xep + Xep + Xepy + Xey + X, +T 4+ qu%a
Ziotal = Zefy + Zefo + Zed + Zgh + Zef + Zey + Zey + Zey + Zep, + qOoSaaC;ZO‘ + qOOSaa% 2?/600
S S
Miotar = Mey, + Meg, + Meq + Mgn + Meg + Mo, + My, + Moy, + Moy, + Mengine + qOOSEagaM at
qOOS*ang 2(‘1/600 + GooSC (8(%”)66 o+ gso St (a;zw)éc a+ gooSC (%’;‘4)6 2(‘1/ Se (85;4)6 2320
+qooch§ Na,1 + quch US|

(102)

C. Equations of Motion for a Flexible Vehicle

The equations of motion for the flexible vehicle are®
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VT:%(TcosafD)fgsin(Hfa)
a= -1 (=Tsina— L) +Q + 3% cos (0 — «)

mVrp )
Ty Q = Vyijy = Vaija = M
=0 (103)
n - R
keiip + 2Cpweny +°'-’12077f = Ny — \I/f% _ fJTyn
Fala + 2aWafla + wila = No — W, 2L — Zopels
h= Vrsin (60 — «)
where )
Uy = [y a®pa(z)de
kp=14 L
o (104)
Y, = fo * 21 (x)dx
ka =1+ }Ilia

Clearly, the flexible effects are coupled into the pitch rate equation. In addition to this, the bending of the
structure has an effect on the angle of attack of the vehicle. Since engine performance is a function of shock
angle and shock angle is a function of angle of attack, a significant change to the vehicle’s performance can
occur due to structural bending. It is assumed, from the point of view of the bow shock, that the entire
forebody observes the same change in angle of attack as seen at the nose of the vehicle. In other words,
the worst case change in angle of attack is used for the entire forebody. This change in angle of attack is
computed as:

Aa = arctan [® (Zs) 01 (t)] (105)

The control surfaces also see a change in angle of attack, which affects the properties of the flow over the

surfaces. These changes are given by

Adcanard = arctan [ (Zeanara) 17,1 (t)] (106)

Aa.s = arctan [P, (Teiep) Na,1(t)] (107)

so that the total angle of attack seen by the control surfaces is

Qcgnard = O+ AOlcanarcl (108)
Qeley = O + Adigley

The forces due to the control effectors, as given in Egs. 20, 21 and 30 are written in the rigid vehicle’s
body axis frame. However, when the structure bends, these forces are not aligned with the body axis and
therefore, must be rotated back into the body axis frame. This is accomplished using

F., = P., Lcsin (6. + Ac,) i+ P, L cos (de + Acxe) k

) (109)
F., = —P., L.sin (0 + Aae)t — P., Lo cos (0e + Acte) k

and

F., = P, Lesin (0. + Aag) i+ P.,L.cos (6. + Aa.) k

R R 110
F., = —P., Lcsin (6. + Aa.) i — P., L. cos (6. + Aae) k (110)

In terms of the calculation of the moments produced by the controls, the moment arm is also altered by the
flexible effects. For small displacements of the beams relative to their lengths, the new moment arms become

2
Teanard = (\/xzanard - (q)f(wcanard)nﬁl) 7(I)f(xcanard)77f,1>
(111)

Telev = <\/x(23lev + Zglev - (ze + CI)a (xelev) na,1)27 Zelev T CI)a (xelev) 77(1,1)
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VIII. Results

The model has been linearized at M = 8 and at an altitude of 85,000 ft using velocity and flight path
angle as outputs and elevator deflection and total temperature addition in the combustor as inputs. One
point of interest that can be obtained from this simulation is the effect of the unsteady terms on the poles
and zeros of the linearized system. Figure 2 shows a pole/zero map for the linearized rigid body system
when unsteady effects are not included, while Fig. 3 shows the poles and zeros of the rigid body system when
the unsteady effects are included. Clearly, the unsteady terms have a significant effect on the unstable pole
and zero. Inclusion of the unsteady terms makes the system more unstable, while increasing the frequency
of the non-minimum phase zero. The actual pole and zero locations are given in Table 1.

Unsteady OFF Unsteady OFF Unsteady ON Unsteady ON
Poles Zeros Poles Zeros
—0.000137 £ 50.023358 1.8694 —0.000151 + 50.02332 2.64
0.8729 —1.8694 1.125 —2.64
—0.9159 0 —1.216 0
—.00107 N/A —.001027 N/A
Table 1. Poles and Zeros of the Rigid Linearized System.
Pole-Zero Map
0.025 T T T T T T
%
002} =
0.015 =
0.01 ; i
@« 0005} A
< :
E B i s e T R e B s LR O-
(0]
E -0005}
-0.01 .
-0.015 : -
002} !
X
-0.025 1 1 L | 1 1
-2 -1.5 -1 0.5 0 0.5 1 15 2
Real Axis

Figure 2. Poles and Zeros of Linearized Rigid Body System - Unsteady Effects Off.

Now, the flexible effects are included in the vehicle model. Figure 4 shows a pole/zero map for the flexible
vehicle when unsteady effects are not included. Figures 5 and 6 show pole/zero maps when the unsteady
effects are included. The difference here is that the stability derivatives due to 71 and 74,1 are included in
Fig. 6 while they are not in the results shown in Fig. 5. In tabular form, the poles and zeros are shown in
Table 2.

It can be seen that the unsteady effects, computed using piston theory, significantly change the poles and
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0.01 f 2
® 0.005 '\ -1
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< 1
m [
E -0005} :
001+ ; -
0015} i .
002} 3 L
X
-0.025 I I | 1 1
3 2 - 0 1 2 3
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Figure 3. Poles and Zeros of Linearized Rigid Body System - Unsteady Effects On.

All Unsteady OFF
Poles Zeros
—.538 £726.909 | —.538 + 526.904
—.36 + 517.99 —.36 + 517.99
1.23 2.64
—1.32 —2.64
—.00088 0
—.00012 + 5.024 N/A

Table 2. Poles and Zeros of the Flexible Linearized System With All Unsteady Effects Off.

Unsteady On & Unsteady Flex. OFF
Poles Zeros
—.538 + j26.91 —.538 4+ 526.91
—.36 £ 3517.99 —.36 £ 4517.99
1.88 3.88
—2.06 —3.88
—.00086 0
—.00012 + j.024 N/A

Table 3. Poles and Zeros of the Flexible Linearized System With Unsteady Effects On and Flexible Unsteady
Effects Off.
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Unsteady On & Unsteady Flex. ON
Poles Zeros
—.55 +5j26.91 —.56 + j26.89
—.36 +417.99 —.36 + 4j17.99
1.88 3.88
—2.06 —3.88
—.00086 0
—.00012 + 5.024 N/A

Table 4. Poles and Zeros of the Flexible Linearized System With Unsteady Effects On and Flexible Unsteady
Effects On.

Figure 4. Poles and Zeros of Linearized Flexible System - Unsteady Effects Off.
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€3 "’""'""""""“X'""'"""""'"""“'&‘"”“""'""“""*"""""’"‘"""” &

Figure 5. Poles and Zeros of Linearized Flexible System - Unsteady Effects On, Unsteady Flexible Effects Off.

€3 "’""'""""""“X'""'"""""'"""“'&‘"”“""'""“""*"""""’"‘"""” &

Figure 6. Poles and Zeros of Linearized Flexible System - Unsteady Effects On, Unsteady Flexible Effects On.
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zeros of the linearized system. Both the unstable pole and zero of the linearized system move farther to the
right in the s-plane when the unsteady effects are included. Only a slight change in pole and zero locations
is observed when the unsteady effects due to 1 are included.

Figures 7, 8, and 9 show the lift force, drag force, and pitching moment for a one second run of the
nonlinear simulation. Again, it can be seen that the unsteady effects are significant and are worth including
in the nonlinear simulation.

x10° Steady and Unsteady Lift Force vs. Time
. ; ! ; ! 1 ;
: : ' ' : Steady
| e S e S s e Unsteady
B = m— e
- . S bememmmren oot beenmnens .
2 E : :
= e R SEETLTTIDY (LEC T s LT SELTEEE -
s : . ; : :
= : . : : :
o [l ' ' (] "
| R A S s S raeeeneo
5 : s s s s

| N R oo oo foeneenenes oo
e e e s

e T . g e
0 p—=wrm= _",:':': :-.—.-.»..-.-E.-.—.:':’_'_‘:- _‘:; e s o .,: .......... :, ........ -
e i i i i i i
0 0.2 04 0.6 0.8 1 12 14

Time (sec)

Figure 7. Lift Force (lbs).

IX. Conclusions

In this work, piston theory is used to develop a model for the longitudinal dynamics of a 2-dimensional
hypersonic vehicle model. In particular, velocities of flow normal to the surface of the vehicle are used in a
first order piston theory framework to determine the pressures on the surfaces of the vehicle. The pressures
are then integrated over the body to determine the forces acting on the vehicle. Piston theory is useful here
because it allows the inclusion of unsteady aerodynamic effects. Initial analysis has shown that the unsteady
effects are significant.
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A. Flexible Effects

From Eq. 87
Wra® = S [(oin{agaa g} o {pap)) (con {apaag) + com {apaeg) - 2)]
+M [(coa{ﬁfﬁlif} +cosh{5f,1i'f}) (sin{ﬁf’lif} - diIl}l{ﬁf71:Ef})}

Bfa

—sin{pgaap} +sinh{py15,}) (con {B125} —con {81 (35 = Ly)} +cosh {8y 137} — cosn{s1 (2 - £/)})]

+Af,1Pcd [(

Ag1Peq
+
o2 L

cos {By1Fy} +cosh {Bp 15 }) (sin{By17s} —sin {81 (57 — Ly)} —sinn {87125} +sinn {871 (77— Lf)})]

Pra
+ (P“'U - PCL) LeAgn [(sin Bf 1T ¢ — sinh 5f,lif) (sin Bf1%Tcanard — sinh Bf,l‘”canard) + (cos Bf 1% + cosh Bf,l‘if) (cos Bf1%canard — cosh Bf,lzcu,nav-d”
(112)
24, 1P,
Nga() = —t7cf (sin Ba,17a — sinh B, 1%a)
a,l
1 T 1 Zgq — La
+A4,1C1C3 3 sin Bq 1Za — cos B 1Ta — 3 sin (Bu.,l (Zgq — La)) + cos (ﬁa,l (Zgq — La))
a,l a,l a,l a,l

Agq,1C104
+a,7[
Ba,1

)

cos Bg 1Ta — cos (ﬁa,l (T — La))}

—"% cosh B, 17a + sinh 84,170 +

+A44,1C1C3
a,1 fﬁ,l Ba,1

(fa — La) cosh (4,1 (7a — La)) — ﬁ; sinh (Ba,1 (7a — La>)]
a,

+Aa,1C1C4 [

cosh By 1%q — cosh (5a,1 (Tq — La))}
Ba,1

1 zq Zq — La
+Aq,1C2Cg | —5— cos B 17a + sinfg 13 — —5— cos (ﬁa,I (Zq — La)) - sin ([}ml (Zq — La))
a1 a1 a1 Ba,1
Agq 1CaC
D2 [sin 8,170 — sin (Ba,1 (Fa — La))]
Ba,l
—Za 1 (Zaq — La) |
+A4,1C2C3 [ sinh Bg 1@q + —5— cosh By, 1@q + ——— sinh (Ba,1 (Fa — La)) — 5— cosh (Ba,1 (Fa — La))
a1 a1 Ba,1 a1

Aq,1C2Cy [

+ sin 8, 1Zq — sinh (ﬁml (Zq — La))}
Ba,l
+4q,1 (Peyy = Pep ) Le [(sin Ba,1%a — sinh Bq,17a) (sin Ba,1%eiey — 5inh B 17 ety ) + (005 Ba,1%a + cosh Bq,17a) (08 Ba,1%eren — cosh Ba,1%eien )]
(113)
where

C] = sin ﬂa,li'a — Sinhﬂmlfa

Cy = c0s 3,1%4 + cosh 8,12,
P, —P, (114)

C3 =
C4:CS<La_ja)_Pe
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From Eq. 97

oC 2A si t
Mo f1Peflef SMTLU PANTLU [1 —cosBf1% 5 + cos By 1Ty cosh Bf 1Ty — cosh By 1%y — TyBy 1 (sinﬁf,lo’cf - sinhﬁfﬁla’:fﬂ

87.7f,1 5?’111005'5
A 1Ped@cd SIN Ty L tan Ty 1 B . B B
b - [2—cosBraLys+Bra (Zf — L) sinB1 Ly + 2c0s By 135 cosh B 127
/Bf 1QOOSC
Af1pcd@cqasinTy  tanTy g, B . B B . B
L AfLPe 52 P [Bf,1 (Zf — Ly) (sinBg 12 coshBy1 (Tf — Ly) +cosBy1Zsinh B 1 (Tf — Ly))]
£i1
Af1pcdlcqaSinTy tanTy . . B B N
+ fi1Pe ;2 1 SC [fsmﬂf’lmf sinh 3y 1 (:):f — Lf) —cos 3f,1% cosh By 1 (:vf — Lf)}
f,199°
Af1pcdbcqsinTy rtanTy 1, . B B B
+ f,1fe 52 1o SE [smhﬂf’lmf sin B 1 (:vf — Lf) — cosh B 1Z ¢ cos By1 (:Ef — Lf)}
f1

Af1pcdbcdsinTy, tan Ty,

+
/8%1(10055

[=Bsa (25 — Ly) sinh By,1Z 5 cos By (Zp — Ly) — By,1 (Zy — Ly) cosh By 1Zysinfy (T — Ly)]

Af1PcdcaSinTy [ tan Ty 1,
B%lf]ooSE

+ [—ﬂf’l (Iif — Lf) Sinh,@fylLf - COShﬁfylLf}

_Af,lpcdacd sinTy g tanTy LTy
/Bf,lrooSE
Afylpcdacd Si]flleL tanTLLa‘:f

_ 5f e [(cosﬁfylif -‘rCOShﬁf,l:if) (—sin,@f,l (if — Lf) +Sinhﬁf,1 (:ij — Lf))}
, 1400

[(sin Bf,135 —sinh Bf17¢) (cos By,1 (5 — Ly) + cosh By (3 — Ly))]

2Af1pcfacy COSTL U

+
5?71(10056

[1 —cos B 1% + cos By 1Ty cosh By 1Zf — cosh,@ﬁli‘f}

Af1Pcdcd COSTLL

=+ 5 — [2—COSﬁf71Lf+ﬁf’1 (i‘f—Lf) Sin,Bf,lLf+2COSﬁf’1.ffCOShﬁf7153f}
B%,14005¢

A ~dQ dCOS’TLL _ . _ _ _ . _

+ SLALARATBILL (5 (35 — L) (sin By135 cosh By 1 (37 — Ly) + cos By 12y sinh By,1 (3 — Ly))]
BfJQOoSC

Af1Pcdlcd COSTL, L . _ _ _ _

+—f 62 e - [7sm,8f’1xf sinh 3y 1 (xf fo) — cos Bf,1% cosh By 1 (xf fo)}
nyﬂloosc

Af1Pcdlcd COSTL L . . . _ _ _

+—f 02 «- [smhﬁfJIf sin B, 1 (xf fo) — cosh Bf,1%f cos Bf,1 (xf fo)}
ﬂfJQOOSC

Af,lpcdacd COST1,L

+
ﬁ;JQOoSE

[=B¢a (zf — Ly) sinh By,1Zp cos By (Zp — Ly) — By,1 (Tg — Ly) cosh By 1Ty sinBy1 (T — Ly)]

Af 1Pcdcd COSTL L

+
ﬁ%l(IooSE

[75)”,1 (:ff — Lf) Sinh,@f,lLf — COShﬁfylLf}

(115)
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From Eq. 98

OCyz  —2pcfacy cos (Ti,u + 72) A [sin 34,17, — sinh 8,1 %4]
= a, a @ @

37'],171 QDOS/Ba,l
1
_W [(fl.fi + g174 + hl) cos 34,1%q + (flk‘% + g1k + hl) cos (ﬁa,lkl)]
[e%s} a,l
1 _ . _ 2f1k1 + ) 2 _
+m (2f1l‘a + 91) Slnﬂ%lxa — qf;éﬂafl Slnﬁa,ﬂfl + Mf;’gJ (COSﬁaJxa — COSﬁa,lkl)
1 = _ _ _ . 2N _
———— | (f1Z%] 4+ g1%a + h1) cosh Ba1Z4 — (2f1%4 + g1) sinh 84,174 + —5— cosh 34,17,
QOoSﬁa,l a,l a,l i
1 ) 1 . 2f1 ] (116)
Tt (f1k1 +g1k1 + h1) cosh fB4,1k1 — —— (2f1k1 + g1) sinh B4 1k1 + —5— cosh B4 1k1
QOOSﬁCL,l ﬂa,l a,l ]
1 1 . _
t—ar— [(flxi + 10 + h1) sin Ba1 %0 + 7 (2f1%0 + g1) €08 Ba1Ta — 721510 84174
QOOS/Ba,l 611,1 a,l i
1 . _ 1 1 . T
T 4SBer |:(f1k7% + gik1 + hy) sin Ba,1Z4 — B (2f1k1 + g1) cos Ba,1k1 — B 2f1 Slnﬂa,lkl_
1 . _ 1 _ _ 1 . ]
+m [— (fliz + 1%, + h1) sinh 8,124 + B (2f1%q + 1) cosh By 14 — B 2f1 sinh 5a,1$a_
1 . _ 1 . ]
Tt {(flk% +g1k1 + hl) sinh 3, 1%, — (2f1k1 + g1) cosh B 1 k1 — ——2f1sin B, 1K1
QOOS/BCL,]. a,l ﬁa,l i
where
kl =T4 — La

fl = Palq (Sin ﬁa,li'a — sinh ﬁa,l‘fa)
g1 = (sin Ba1Ta — Sinhﬁa,l-fa) (—aapa{Lla — Ta} + aape) (—aapa {La — Ta} + acpa)

h1 = (sin B41%q — sinh B4.1%a) (—pa {La — Ta} + pe) (—aa {La — To} + ae) (1)

Pa = p‘f’gfe
Qg = “o2pte
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From Eq. 99

aC _ 2pepacpAgnsinTg yrant gy |
9Ma,1 py dooSE

BT {1 + cos Bg 1%q cosh By 1Za — cos Bg 1%a — cosh Ba,lia}]
a,l

+2pcfaCan,1 sinTy ytanty y | —Zf

{sin 84,170 — sinh 5a,15a}]

doo ST Ba,1
sin (1,1 + 72) ) _ ) - 382 172 —6 _ B2 135 — 6%a _
Ay (sln Ba,iTa — smhﬁaylwa) S sinfg 130 — g c0s g 17
doo ST 5a,1 BG,I
sin (r1,u + 72) , o _\[3821 @a —La)? 6 _ p2 1 (8a — La)® = 6 (@a — La) _
_ J1Aq 1 (sn\ Ba,1%a — sinh ﬂa’lza) ——————sinf,,1 (@a — La) — 3 cos Ba,1 (Fa — La)
Se B B
doo a,1 a,1

+siu (TLU =+ 72)

1
= J14g 1 (sin Ba,1%a — sinh Baylia) [774 (ﬂ37152 cosh B 1Zq — 353115:3 sinh B, 1Zq + 684,1%q cosh By 1Eq — 6sinh ﬂavli,l):|
doo €

a,l

+sin (TI)U + 7—2)

= J1Aq,1 (50 Ba,17a — sinh Ba,174) *
oo C

1
* {— (831 (3a — La)® cosh a1 (Fa — La) — 362 1 (8a — La)® sinh 84,1 (Fa — La) + 68a,1 (fa — La) c0sh Bq,1 (Fa — La) — 6sinh fq 1 (Ta — La))}

i 2 =2 2 -3 -
sin (71 ¢y + T2 362 132 -6 B2 123 — 634
+7( e ).]1A0_)1 (cos Ba,1%a — coshﬁawlia) —t a cos By 1Eq -~ T ‘; sinf,,1%a
qooS¢ Ba1 Ba
sin (71, + 72) ) L [862, @a-La)? -6 ) B2 | (Fa — La)® = 6 (Ta — La) )
———————J1441 (COSﬁa,lﬂ?a - coshﬁa,lma) ————1——c0sB8q,1 (Za — La) — 3 sin B4 1 (Ta — La)
qoo ST Ba,1 Ba,1
sin (71,0 + 72) i i (g8 3. . 2 2 _ o _ _
+f‘]1“a,l (cosﬁa,lza — cosh Ba,lma) BT (Ba,lwa sinh B4 1%a — ?’Ba,lza cosh B 1%a + 6B4,1%a sinh By 1Tq — 6 cosh Ba,lma)
doo ST a1
sin (77 y + 72
7M11Aa,1 (cos Ba,1Ta — cosh Bq 17a) *
doo SE
* ;1(53 (Za — Lag)3 sinh B, 1 (Fa — La) — 382 | (8q — La)2 cosh By 1 (Fa — La) + 68, 1 (fq — Lg)sinh B, 1 (fa — La) — 6 cosh B, 1 (fq — L ))
54 a,l a a a,l a a a,1 (Ta a a,l a a a,l \Ta a a,l a a S a,l \Ta a
a,l
sin (11,0 + 72) 22a . Banci-2  f2Ga-ta) ] Bt (Fa — La)? — 2 i
+—————F"J2441 5 sin Ba,1%a — — 3 cos Bg 1Ta — ——5 —sin Ba,1 (Ta — La) — — cosBg 1 (Ta — La)
900 5€ Ba1 Ba1 Ba1 Ba1

sin (TLU +72)
e Ja A 1

‘ZooSEﬁayl
* [B2 132 cosh Ba,17a — 28q,1%a 5inh Bq,17a + 2cosh Ba,17a — {B2 1 (Fa — La)? cosh fa 1 (Fa — La) — 28,1 (Fa — La)sinh Bq,1 (Fa — La) + 2cosh Ba,1 (Fa — La)}]

+sin (rl,U + 72)

qoo ST

28q cos Bq,1%a  Bo 172 — 2

2(#a = La)c0s a1 (Fa = La) B2 | (3a — La)? -2
2 3
Ba,l Ba,l

2 3
Ba,l 6(1,1

J2Aq 1 [ sin B 1Za — { sin Bq,1 (Za — La)}:|
sin (71,7 + 72)

2 2 _ _ _ . _
- JaAq,1 [B2 172 sinh Bg 1Ta — 26q,17a cosh Bq 1 Tq + 2sinh fg 174
900 SEy

sin (71, + 72)

2 - 2 . - - - . _
sog8 et [62 1 (Ba — La)?sinh Ba,1 (Fa — La) — 2Ba,1 (Fa — La) cosh Ba,1 (Fa — La) + 2sinh fq 1 (Fa — La)]
900 SEBy |

sin (TI,U —+ 72)

o? J3Aa,1[2 = cosBa,1la + Ba,1 (Ta — La)sin Ba,1La + Ba,1 (Ta — La) {sin Ba,17a cosh Ba,1 (Ta — La) + c0s Bq,17a sinh Ba,1 (Fa — La)}]
doo = C a,1

sin (rLU + 1—2)

coi? J3Aq 1 [2 cos Bg,1%a cosh Bg,18a — sinBq,1%a sinh By 1 (Fa — La) — cos Bq,1%a cosh Bq,1 (Fa — La) +sinBq,1 (Fa — La) sinh ﬁaylia}
doo P C a,l

sin (71,7 + 72)

- J3Aq,1 [~ c0sBa,1 (Fa — La)cosh Ba 170 — Ba,1 (Fa — La) 03 Ba,1 (Fa — La)sinh fq 174
900 SEAg |

+sin (r1,u +72)

sopr  J3fan [~8a,1 (Fa — La)sin Ba,1 (@a — La) cosh By, 1%a — Ba,1 (Fa — La) sinh 84,1 La — cosh 64,1 La
900 SEPG 4

sin (TLU +72)
" J4Ag 1
900 SEG 4
[(sinBa,17a — sinh Bq,17a) (c0s Ba,1 (Ta — La) + cosh By,1 (Fa — La)) + (cos Ba,1%a + cosh B4,17a) (= sinBa,1 (Fa — La) +sinh Ba,1 (Fa — La))]
Pefa COSTl,UAa,l . _ . _ . _ _ _ _ _ . _
+Cf°f—2 [(sln[favlma — sinh [ﬁawlrpa) (Sln[ﬁawlma — Ba,1%a cos Bg,1Ta — Bq,1%a cosh Bg 1%a + smhﬁa’lzaﬂ

900 SCBG
PefacfcosTy yAg, 1 _ B B _ . B . _ B
+%ﬂ27a' [(cosﬁaylza + cosh Ba,lza) (cos Ba,lxa =+ ,60”11& sin Ba,lxa — 50,,1“3(1 slnllﬁmlza + cosh Bu,lzu — 2”

do0SeBy 4

(118)
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Continued from Eq. 99

aC s paaq cos (t1,u + 72) ) B ‘ ) 382 122 —6 ) B2 123 — 62q
- = — Ag,1 (sln Ba,1Ta — s)nh,@aylza) — sin Bg 1%a — —— cos Bq,1%a
9Ma,1 po oo S€ Ba1 Baa
paaq cos (11,U + 72) ) B ) y[3821(Ea —La)® —6 B B2 | (3a — La)® — 6(za — La) ]
- 4a,1 (Smﬁa,ll‘a - smhﬁa,lwa) [4— sin g1 (Ta — La) — 3 cos Bq,1 (Za — Lu)J
qoc SC Ba,1 Ba1
paca cos (r1,u + 72) L ] Lo
+f‘40r11 (smﬁ,,,ylza - s)nhBa’lzn,) T (ﬁaylz cosh Bq,1%a — 33@ 122 sinh B, 1Zq + 684 1%a cosh B, 1Zq — 6sinh B, 1:r:a
doo P C a,l
paaq cos (t1,u + 72) ) ) i )
BN —— P (sm Ba,1%a — sinh ﬁa,wca) *
doo SC
[ 3 3 _ 2 ]
* 5 (821 @a — La)® cosh Ba,1 (Ta — La) — 362 1 (Ta — La)’ sinh Ba,1 (Fa — La) + 6B4,1 (Fa — La) cosh Bq 1 (Fa — La) — 6sinh fa,1 (Ta — La))J
a,l
2 .2 23 _
paaqcos (T1 ¢ + T2 382 (22 —6 B2 — 63q
+#Aa)1 (cos Ba,1a — cosh B4,1%a) “’147“ cosBg 15 — b % 1%a sin By 13a
dooSE Bt 53
paaq cos (t1,u + 72) ) ~\[3821 (@0 —La)? -6 B B2 1 (Fa — La)® — 6 (Ta — La)
S Aa (cosﬁaylma — cosh Ba,lza) —  c0sf4,1 (Fa — La) — 5 sinB4.1 (Fa — La)
dooSC Ba 1 Ba
Paaq cos (TLU +7’2) B _ - 3
+f‘4a’l (cosﬁa’lza — cosh Ba,lma) 54 (Ba lm sinh 84 1%a — Sﬁa lz cosh B 1%a + 6B4,1%a sinh By 1Tq — 6cosh By 1.na
gooSE a1
Paaq COS (Tl)U +72)
- A, 1 (cosﬂa 1Zq — cosh By 1ia) *
7o0 S© ) ) )
“ (83 | (24 — La)® sinh Fa — La) — 382 | (% — Lq)? cosh Za — La) + 6 Fa — Lg)sinh #a — Lg) — 6cosh Fq — L
. (Ba,l (Za — La)” sinh B4 1 (Ta — La) — 36 1 (Ta — La)” cosh By 1 (Ta — La) +6Bq,1 (Ta — La)sinh By 1 (Ta — La) — 6cosh B 1 (Ta — a))
a,1
cos (t1,u + m2) 2Zq - Ba, 152 — 2 - 2(2q — La) . - Ba.1 (Fa — La)? — 2 -
+————F"J5441 5 sin Ba,1Ta — — cos B, 1Ta — ——5 ——sin Ba,1 (Ta — La) — — cosBg 1 (Za — La)
dooSE Baa Ban B Baa

" cos (TLU + 72)
doo SC

2 -2 -~ . . - - 2 . 2 - . . - .
* [ﬁa)lwa cosh B 1Zq — 2B4,1%q sinh B, 1Zq + 2cosh B, 1Fa — {Ba 1 (Fa — La)? cosh Bq.1 (Za — La) — 2B4,1 (Fa — La) sinh Bq 1 (Za — La) + 2 cosh Bq 1 (Za — La)H

JsAg 1%

2Zq cos By 1%a ﬁa 1a‘2 -2

+cos (T17U+72) d
ﬁa,l Ba,l

doo ST

2(2q — La) cos By1 (Ta — La) . B2, (®a — La)?2 — 2
82, 83

a,l

J5Aa,1 [ sin B 1Za — { sin Bq.1 (Za — La)}:|

cos (r1,u + 72)
- J5441 [Ba 1ac sinh By 1%a — 2B4,1%a cosh By 1Zq + 2sinh By 1Ta}
oo ST

cos (TlvU +"2) 2 2 . _ _ _ . _
U541 [62.1 (Ba — La)? sinh Ba1 (B0 — La) — 284,1 (Fa — La) cosh fq 1 (Za — La) + 2sinh B 1 (a — La)]

qoo P C
cos (TIYU +7—2) _ . _ . B _ _ . _
e Jeda [2 = cosBa,1La + Ba,1 (Fa — La)sinBq,1La + Ba,1 (Fa — La) {5in Ba,17a cosh Ba,1 (Ta — La) + c0s Bq,17a sinh Ba,1 (Fa — La) }]

doo o C

cos (r1,u + 72) _ . _ _
" Jeda, [208 Ba,17a cosh Ba 1Ta — sin Bq,1Ta sinh B 1 (Fa — La) — cos B 17a cosh fa 1 (Fa — La) +sinfa 1 (Fa — La)sinh fq 174
doo P C

cos (TI,U +T2) _ _ _ _ . ~

U6 [~ cosBa,1 (Fa — La) cosh Ba,17a — Ba,1 (Ta — La) ¢08 Ba,1 (Fa — La) sinh Bq,17a]

doo P C

cos (TLU +72)
+7

= J6Aa,1 [~Ba,1 (Ta — La)sinBa,1 (Ta — La) cosh Ba,18a — Ba,1 (Fa — La)sinh Ba 1 La — cosh fq 1 La]
doo P C

(119)

where

— = + ==
ana,l 8na,1 P1 8770,,1 P2

(120)

J1 = patamy
Jo = =2kpaaomi + paa {miZa + ma} + {petq + paae) mi
J3 = paaamik? — 2kpaaq {miZa + ma}t — {peaa + pate} mik + {peaq + pate} {miZ, + ma} + peacms
Ji = pata {miZa + ma} k* — {peaq + pate} {miZq + ma}t k + peac {miz, +mo}
J5 = 2kpaaa + (pea + paac)
Jo = paaak® — k (peapate) + peae

— Poc—Pe
pa = F=pt
— Qoo—Qqe
Uq = “=7-

k=1L,— %,
my = tan (Tl,U +T2)

mg = —LtanT
(121)
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