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Abstract

The development of a comprehensive computational fluid dynamics approach for conducting
simulations of projectile penetration into water and dry sand is reported. High resolution upwind
schemes suitable for a fluid dynamic system consisting of gas, liquid, and dispersed solids phases are
derived and are combined with a time-derivative preconditioning strategy for efficient time integration
at all flow speeds. A solids-stress model based on Mohr-Coulomb critical-state theory is used to
account for compaction and deformation of sand during projectile penetration. ~An overset-mesh
framework is also implemented in order to handle projectile relative motion in subsequent work, and
improved phase interface capturing methods are also developed and tested. Results are presented for
two sets of experimental data involving projectile penetration into dry sand. The computational results
are sensitive to the solids-stress model and the drag coefficient predictions are generally lower than
indicated in the experimental data.



1. Background and Objectives

A problem of great interest for naval applications is the water and/or sand entry problem for high-
speed projectiles. Supercavitating projectiles can be used for underwater mine neutralization, beach
and surf zone mine clearance, littoral ASW, and neutralizing combat swimmers. Many current and
possible future systems must deal with a high-speed water entry: RAMICS, VENOM, HYDRA, SEA
SNIPER, JABS, and anti-combat swimmer systems. The water entry phase of flight is interesting and
challenging due to projectile transitioning from flight in air to supercavitating flight through water.
For the beach/surf zone clearance application, projectiles/bombs are designed to enter the water and
sand vertically, so that an axisymmetric approximation to the flowfield may be appropriate if the
projectile is stable. Investigating projectile stability will require a fully three-dimensional approach
with a six-degree of freedom (6-DOF) algorithm. Projectile stability should be a strong function of
supercavity size, shape, and unsteadiness. The supercavity is largely determined by velocity and nose
shap. The nose shape of a penetrator is generally a compromise between lethality and cavity
generation concerns, with minimizing drag in air being a tertiary consideration.

The overall goal of the presented work is to develop the ability to predict velocity and penetration
depths in water and/or sand of a penetrator or bomb after a vertical water entry. The work seeks to
develop new algorithms for simulating the water and sand entry phases of high-speed projectiles. The
ability to accurately predict velocity and penetration depth is critical to lethality of systems that require
a maximum/minimum velocity on impact or a specific sand penetration depth. The current work
develops high-resolution upwinding schemes and time-derivative preconditioning techniques suitable
for a fluid-dynamic system consisting of gas (air or cavitated water), liquid (water), and dispersed solid
(sand) phases.  Such techniques will facilitate sharp capturing of phase interfaces and vortical
structures at all flow speeds and under all states of compressibility, thus enabling high-fidelity
predictions of the forces and moments acting upon high-speed projectiles under transient conditions.

The technical approach combines the air / water two-phase flow Navier-Stokes codes developed by
NSWC-PC and NCSU [1-6] with the dense gas / solid fluidization codes developed at NCSU [7,8] to
yield a unified procedure capable of capturing the detailed physics of projectile penetration into water
and into dry sand. The complete algorithm allows detailed modeling of granular flow effects, such as
solids stresses, and captures phase interfaces as part of the solution. Velocity slip effects, solids
compaction, and cavity bubble formation and collapse are accounted for in the model. The new
algorithm utilizes time-derivative preconditioning as a way of reconciling the widely-varying
characteristic speeds found in this three-phase system, thus enabling efficient integration at all flow
speeds and all states of compressibility. To enable eventual application of the code in six-degree of
freedom simulations, the procedure is embedded within an overset-mesh framework using the
SUGGAR/DIRTLIB [9,10] protocol.  The sections that follow describe the governing equations, the
numerical methods used to solve them, and the results of this investigation, followed by some
concluding remarks.



2. Governing Equations

The governing equations for the three-phase system (fluid (air + water) and sand) may be written in
tensor notation as follows

Fluid phase:
op a(p/a X,) 6(p_/-a/-Yqu-)

vapor mass: G, — =0 1
9 Mor T a ox, .
0 0
fluid mass: 6, — 5 Hesly) St (2)
8r ot ox;
0 Npraru; ;u; =1,
fluid momentum: 6,u,, @ ~+ (p’gt ) Py ,u,,a_,uj‘_/ ir) -a, §—p+p,»a,g,- +Suoms  (3)
X x;
0,1 ap a(pfa H, ) ap a(p,a H -7, W,=4q,) _
fluid energy: 4 07 ot % 61 6x_, (4)

pfafui,fg: . Scncrgy

Solids phase:
0 %+a(pvav) +a(psa~"uj.x)

solids mass: 3 =0 (5)
or ot ax_,
ou, . ou; . arT,

solids momentum: p a s U, M| -a, L J +—L+ P& — Smom (6)

W, 10t T ox; S ox;  Ox i

oT, ou,

solids energy: p.a.C +u, —= (=8 7

gy px s = pi c[ at JsSs axj ] energy ( )

The subscripts v, f, and s represent vapor, fluid, and solids, respectively. The density is denoted by p,
the velocity in coordinate direction i by u, , the volume fraction by « , the vapor mass fraction (relative

to the mass of the fluid phase) by Y,, the pressure by p, the fluid and solid temperatures by 7" and 7.,

3

and the gravitational acceleration vector by g;,. The terms involving %, are associated with the time-
derivative preconditioning method discussed in Section 3. The system is solved for
V=[Y,pu, , Ta.u,T]. Other variables are defined in the next section.

is2%s

2.1. Fluid Closure Relations

Closure of the above system is achieved by applying suitable equations of state for the three phases.
For the fluid phase, the following thermodynamic relations hold:

Amagat’slaw:i= £ * -1 (8)
p/ P‘(P,T) pl(p’T)




Mixture total enthalpy: H, =Y,h (T)+Yh(p,T)+ %(u2 +v +w) 9)

Vapor phase equations of state: p, = p/(RT), h,=h,(T)[11] (10)

Liquid water equations of state (modified Tait equation):

x 18(17 Pu(T))]
(p-101325) ’

p pl\‘ut( )[ it
(11)
h =h(T)+

1

Saturation-state values (subscript ‘sat’) are obtained from [12] and the liquid reference enthalpy is
obtained from [11].

The fluid stress tensor is modeled as
Ty =2H70sSy s
s = l[ Ou, ¢ - ou; s j_l Ouy s 3 (12)
2(0ox;, Ox, ) 20x;,
with the fluid viscosity formulated as
u,=a,u(T)+ou(T). (13}
Here, «,is the volume fraction of the vapor, relative to the fluid volume. The vapor and liquid

viscosities are obtained from [11] and [13], respectively.
2.2. Sand Closure Relations

For the sand (granular) phase, the intrinsic sand density p,is taken to be 2676.605 kg/m’ The solids
stress tensor 7 is defined as
(14)

where the solids viscosity 4 is expressed as a combination of a Newtonian viscosity and a non-

T;=-p6; + 1S

iz

Newtonian Mohr-Coulomb [14-17] viscosity that requires that the frictional stresses exhibit a zero-
order dependence on the fluid strain rate. Considering the solids pressure as the critical-state pressure
leads to the requirement that

p, sin(¢9)

Hy =l + T,
,/S:S|X +eld,

where ¢is the angle of internal friction (taken as zero or 28 degrees, depending on whether solids
shear stresses are included. The strain-rate tensor for the solids phase is given as

(15)

1( Ou. ou . 0
Si : = ul,x i Jss 1 uk s 5’ (]6)
w2\ ox,, ox, 2 ox,,
and the second invariant of the strain-rate tensor is
S : S l.\‘= SlZ,sSQ,S e Sl3.xSl3.x + SZ}.SSZS s Sll \S"" s Sll sS33 s SZ:’..XS33,.V (17)



The term &/ dlz, (e=1x10"d , =0.00240 m) is used to prevent divide-by-zero in uniform regions of

the flow. The solids-stress model can be viewed as the distribution of the solids pressure in different
directions depending on the elements of S, . Thus, it is appropriate to enforce the constraint that

S,
-1< L <1 (18)
JS: S| +eld?
for the non-Newtonian part of the stress tensor. As Mohr-Coulomb — type granular-flow models are
known to be intrinsically unstable at short wavelengths [18], it is necessary to include a Newtonian
viscosity to regularize the solution and to prevent unphysical behavior. We have adopted a simple
model based on a von Neumann stability analysis:

/IS,N = Cx,N Sln(¢)p‘ axasA’ (19)
where Ais a characteristic mesh-cell dimension in a particular coordinate direction, C, , is a model

constant, and a is a sound speed associated with the granular phase. This sound speed is defined as

ai= L 20)
- p, Oa,

Results presented later illustrate the effect of varying the model constant C_ ,, on the predictions.

The solids pressure p must be defined in order to complete the formulation of the solids stress tensor.

The solids pressure is near zero when the particles are in a dilute state but increases rapidly to giga-
Pascal levels as the sand particles are compacted, then fragmented, by the applied load. We have used
two techniques to model the response of dry sand considered in Lockheed-Martin’s experiments in this
study. In the first, we use an approach based on the Cooper-Eaton equation for powder compaction.
[19] The Cooper-Eaton equation relates the solids pressure (identified as the trace of the solids stress
tensor) to the volume fraction and has the general form

~ as =i as 0
&, =00 — 4 exp(-B,/ p)+ Ay XB(-B, /), i
Ay ax — a"v‘o

where «is the solids volume fraction and p_ is the solids pressure. The Cooper-Eaton equation is
valid for solids volume fraction values greater than an initial unloaded valuea, ,. As written above,
the Cooper-Eaton equation is implicit in the solids pressure. To avoid having to solve a non-linear
equation, we have re-written the model as

By = 4, exp(=B,/ p,)

~ s a?O
a, =————=A4 exp(-B,/ p,)[1+
ST p(=B,/p)l 4 oxp(=B, / p.)

§,max

(22)

and have curve-fitted the term in brackets as a fourth-order polynomial:
A, exp(-B,/ p,)
A exp(=B,/ p,)
M)Q] =a,+a,d, +a,d’ +a,a} +asa’l,a, >0.4
A exp(=B,/p,)
This enables an explicit solution for the solids pressure:
B
Ps,c-e1 = & I (24)
In(—=—) ~1n(4,)
g(a,)

gl@,)=[1+ 1=1,&, <0.4
(23)

gla,)=[1+




To extend the Cooper-Eaton equation smoothly beyond the assumed loading condition « =« ,, the

following combined form is used:
dIn(p,c_.lz.-01s)
da

)

Psc-e2 =exp(In(p ¢, |z 2015) — (0.15-@,), &, <0.15

Ps,c-e2 = Ps,C-e, ,&x >0.15

For volume-fraction values less than «, ,, we the Boivin, et al. solids pressure model:

o a.a

K ) s s, max ]

a a, —a

s,max,B s s,max,B

Pss = pscx.B [as + 2as.max.B ln(l -
and then blend between the two to yield the final form for the solids pressure:

1
p.\' = exp{ln(ps,B) + 5[1 + tanh(l Oo(ax =~ as.O ))](ln(ps,(,‘—E,Z) = ln(ps.B ))}

(25)

(26)

(27)

Values for the constants in the Cooper-Eaton model were initially taken from data given for silicon
dioxide in [19] (Model I) and were then least-squares re-fitted to match sand compaction data obtained
by Lockheed-Martin [20] (Model II). These values are shown in Table 1, and the resulting composite

solids-pressure profiles are shown in Figure 1.

Table 1: Parameters for Cooper-Eaton Solids-Pressure Models

Parameter | Model I value Model II value

. varies depending on the | varies depending on the
case case

QA max 0.93 0.93

A, 0.6 0.6528

B, 17.232 (MPa) 67.033 (MPa)

a, -4.1175 -4.1175

a, 32.8372 32.8372

a, -96.1131 -96.1131

a, 121.4415 121.4415

as -55.1670 -55.1670

C.s 1.397 1.397

@, nax B 1.0 1.0

In some of the later calculations, we have used another fitting of the Lockheed-Martin sand
compaction data in an attempt to provide a sharper transition between loaded / unloaded states and

thereby improve drag predictions. This approach is defined by the following:

aS

P, = Cp A2~ Al 1)), > e

sl asl )
p.=0.0, a <a,
and the constants are fitted as follows:

(28)



Table 2: Parameters for Refitted Solids-Pressure Model

Parameter | Model III value

a, 0.580769002438
s 6892700 (Pa)

A 4.3634398407¢-5
B 38.072977270364
;. - 4.41475836547218
Bys 7.14454835369866

Solids pressure predictions from this model are shown in Figure 2.
2.3. Interchange Terms

Momentum transfer between the fluid and solids phases is modeled using classical Stokes / Ergun drag
laws:

Smom,i = pxa,\'cdrag (u_/',i e us.i ) ’ (29)
For a, >0.8, a Stokes model is used:
-2.65

3 Pr&;
Cotng =l 30
drag 4 drv pxdp ( )
with
244, a VI a 7%
Copy =L [1+0.15( 2l Elypesr) - prerdaliF) 19
prad, (31)

C,, =044|7,~V,|, 222l 5 1000

For a, <0.8, an Ergun model is used:

‘ T
c, =L 1502 195, VeVl (32)
drag d2 J
psa./' a, P P

In these expressions, the relative velocity magnitude is given as [V, =V, = \/(u,, —u, )u,, —u,,) .

Energy transfer between the fluid and solids phases is modeled by using a simple relaxation approach:

oT Ou,
pxaxCp.x[ b i

2
P

a7 ox
In this equation, the specific heat for sand (J/kg-K) is curve-fitted as
C,,,s =a, + assz - aﬂsz + as4T; + asST:,
a, =-1.367634x10°
a,, =3.950952
a,, =-4.941694x107
a,, =2.868886x10°
a,=-6.188417x10"°

J

6a
]:Scncrgy :d_skau(T_Tp) (33)

(34)



This curve fit is valid for temperatures between 300 and 1600 K. For temperatures below 300 K, the
specific heat is fixed as 674.7 J/kg-K, and for temperatures above 1600 K, the specific heat is fixed as
1230 J/kg-K. In Eq. (33), k,is the thermal conductivity of the fluid phase, and the Nusselt number is

expressed as a function of the solids voidage and relative velocity as

Nu=(7-10a, +5a;)(1+0.7Re"* Pr'?) + (1.33-2.4a, +1.2a;)Re"" Pr'"’,

V=¥ )d (35)
Rezu, Pr=0.72
Hy

3. Numerfcal Methods

3.1. Eigenvalue Analysis

To arrive at an efficient method for solving the system of equations shown above, we reformulate the
inviscid components of the equation set in a non-conservative form and then add artificial time
derivatives of fluid and solids pressure to the continuity equations for each phase. Writing this system
in a quasi-linear, one-dimensional form for convenience, we have the following:

oV ov

ME s 42 =g, (36)
ot ox
where
yT =[Y,,a,u,u,,p,T] (37)
and
pra; 0 0 0 0 0
0 -p,(1+6a}) 0 0 0 0
0 0 P, 0 0 0
o= B 0 0 pa; 0 o |
aspl, Py 0 0 alp] +0)  ap
pfafh/‘yv 0 0 prau, pra; h,r‘p =y Pf“fhf‘,
Pl 0 0 0 0 0
0 —pSuJ pSaS O 0 O
0 -pa; pau, 0 0 0
A= 0 0 0 prau, a, 0 (38)
afufpf|y“ Pty 0 By a.fufpflp afufpf’T
2
pfa_/ufhf’yv 0 0 P&ty pfafu/hf‘p Ry@ v, h.f’,

The proper specification of the parameters €,andé, should allow control over the variation of the

eigenvalues (characteristic speeds) of the system. The inclusion of the solids energy equation does not

change the eigenvalues and thus it is omitted from the analysis. Also, it should be noted that the

: . g g ; : ;

inclusion of the fluid pressure —a;, 6_p term in the solids momentum equation renders the system non-
X,

1

10



hyperbolic in time and greatly complicates the analysis. As such, this term is considered to be a source

term for purposes of determining the characteristic speeds, which are the eigenvalues of M '4. After

much manipulation, the characteristic polynomial may be written as follows:
2 2

P(A) =l = APty = AN = ) ==L, = D= A) = o] (39)
£ d a6, +1 af, +1" " a’f +1 a’f +1

with

st B (40)
p, Oa,

and

h

aj = st (41)
pfpf‘ph/'r _pf’T(pfhf‘p =1

Let 6, =%—%and 6, =L2——7, where V,, -and V,  are reference velocities for the fluid and
» I;/ as R.s as A

solids phases. With these definitions, the eigenvalues may be found as

1 2 1 2 ) 2
A= u/"uf’z[uf(l+M}:’.f)i\/uf(1_Ml§.f)2 +4VR2.f I, E[“x(l‘*‘M;e,s)i\/“x(l°M§..c)2 +4V,, 1 (42)

VZ VZ
R‘ ~ S .
—zfand M;  =-%. The common practice
.

s

in a preconditioning method of this type [21-23] is to choose
Ve ; =min[max(u;,Uy;),a7]

where the reference Mach numbers are defined as M, ;=

2 . 2 TN 0 (43)
Vi, =min[max(u;,Uy),a; ]
This renders the characteristic speeds well conditioned at all flow speeds. Generalizing this
development to wave propagation in the direction of a normal vectorn , we have

A= ’7/ 'ﬁ’Vf 'ﬁ’%[ﬁf -ﬁ(1+M,§V_/.)_t\/I7_, ‘ﬁ(l_M;.f)z +4VR2.f]’

(44)

7, i 1,4 M3 )2V, 1= M3, ) 477,
It should be noted that one can consider the non-Newtonian part of the granular stress tensor in the

eigenvalue analysis. In this case, the sound speed also has a directional dependence:

2 1 aps - Sin(¢)SijninJ (45)

©opoa,| [sisteld? |

where n, are the elements of the normal vector 7. This definition may be used in the finite-volume

a

upwinding methods discussed next by associating the normal vector with that pointing outward from a
cell face.

3.2. Low Diffusion Flux-Splitting Methods
In this work, we extend upwinding techniques previously developed for isothermal gas-solid flows in

[7,8] to the present multi-phase system. Considering again one-dimensional flow for simplicity, we
first define a ‘numerical speed of sound’ at a cell interface:

11



2 2 2 2
u,(1-M +4V,
5/ 7 e J f( R-fz) R.f (46)
~ 1+ M2,
i 1/2

where the 'z notation indicates the evaluation of Eq. (46) using cell-averaged velocity and sound-speed
data. Other quantities needed in the formulation are Mach numbers at left (L) and right (R) states:
u
M == (47)
arin
and Van Leer / Liou polynomials in Mach number:

1
M, =E(Mi|M D

(48)
B M [>1

Given these basic definitions, the convective and pressure portions of the interface flux are expressed
as:

¢ _ + -
Frip=p0,,U ¢, + P2 U b,

- _{i%(Mi])z, M <1

, (49)

F/I‘J,l/z = P/‘,l/zlp
with

= Ydl’u ’H T’
¥ =[0,0,1,0]"
The split velocities U™ and interface pressure P, ,are defined as follows:

% . Ap+|Ap |
U' = af,l/Z[M(Z).L =Ml ~——7—)];

2p; Vs

-~ = Ap—|Ap |

U =af.l/2[M(2).R+M1/2(1+m)]’ (51)
1 | > e
Py = E(PL * Pr)+¥ E(P =P ), —Pr)+ PrasdVryan(P +P - 1)
where Ap = p, — pp. The function M, ,is given as
1 - + + +
M, ZE(M(Z),L—M(I).L — Mo+ M), (52)
and the Mach number functionals used in the interface pressure definition are given as
1(1xM), |MKl
_[razp, 1v] -
=l s |M >1

Discretization of the solids continuity term and the interface solids pressure follows in a similar
manner. The ‘numerical speed of sound’ for the solids phase is defined as

D1 2 %2 2
[Jus(l M) +4VR_S] (54)

s112

1+ M5,

12



and the interface Mach numbers and Mach-number functionals (Eqgs. (47), (48), and (52)) are
redefined using the solids sound speed a and the solids velocity u, . The convective flux in the solids
continuity equation and the interface solids pressure then become:

c

4 =
Fv.l/z =vaav1U +pvRavRU >

cont it s i L (55)
Fon=8,Y
The split velocities U~ and interface pressure P, , are re-defined as:
- g .+ | Ap,
U'=a, )My, -M,,( _M)]s
zps,Lax,LVR.f.l/Z
U™ =, My+ My (142100, (56)

2pf,Ra.s RVI;\‘ 1/2

1 1. ~ 2 o »
Pf.wz =§(p.v.l, +P.\-,R)+E(P ~PUD, = Pox) ¥ Pirisley ZVR-._/.I,’Z(P + R =1

There are some differences in the split velocity and interface pressure definitions for the fluid and
solids phases. In the fluid-phase forms, the pressure diffusion terms in the continuity equation are
multiplied by &, so that in the limit of compaction to a solid state, the convective fluid flux vanishes.

The solids pressure terms naturally vanish in the limit that « goes to zero, so there is no need to

multiply the pressure diffusion terms in the solids continuity equation again by «,. The interface

pressure definition for the fluid phase does not depend on the volume fraction, as the entire pressure
gradient will vanish as a, goes to zero. For the solids phase, it is necessary that each term in the

interface pressure definition vanish as &, goes to zero, and as such, the velocity diffusion term in Eq.

(56) must be multiplied by ¢, .

3.3. Time Integration Scheme

The three-phase Navier-Stokes system described above is implemented into a version of REACTMB-
MP, a general purpose Navier-Stokes solver for multi-phase, multi-component flows developed at
North Carolina State University. The governing equations are discretized in a cell-centered finite-
volume manner, with the LDFSS formulation described above used for the inviscid fluxes. Slope
limited total-variation diminishing (TVD) variable-extrapolation techniques are used to extend LDFSS
to second-order accuracy for most of the calculations. One set of calculations for water entry uses the
4™ order accurate Piecewise Parabolic Method (PPM) [24] in place of the TVD scheme. Time
integration is facilitated by a planar relaxation sub-iteration procedure which results in second-order
temporal accuracy with sufficient sub-iteration convergence. For steady-state problems, local time-
stepping is used to accelerate convergence. The code is written to handle simply-connected, multi-
block meshes and is parallelized using domain-decomposition / MPI message-passing methods. To
formulate components of the stress tensor at cell interfaces, we require gradients evaluated at the
interfaces. Given a cell interface i+1/2, we first define the vector pointing from cell-centers i to i+1 as

7= (G =2+ D = $)J + (i =2k (57)
then calculate the gradient of any quantity ¢ at the cell interface by

T
¢[¢(¢,)~](¢'*‘ %) (58)

7|7 HIRE
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where
— 1

Gradients at cell centers are calculated using standard Green-Gauss techniques. The splitting of the
gradient vector into a component aligned with 7 and one perpendicular to 7 helps to maintain smooth
solutions.

3.4. Arbitrary Lagrangian-Eulerian (ALE) Formulation

To account for projectile deceleration due to hydrodynamic forces, we have adopted an Arbitrary
Lagrangian-Eulerian (ALE) framework [25-27]. In this, a reference frame attached to the projectile is
allowed to move at speeds dictated by the solution of Newton’s laws of motion:

dx

—2
dt
m, ﬂ = Z F
dt
Integration of these equations at each time step provides the new position of the center of mass of the
projectile (x,), referenced to a datum line fixed at the water-air or sand-air interface, and the new

— u[”

(60)

velocity (u,), which is used as a fixed grid speed in the ALE formulation. Velocity components are

measured with respect to this reference frame. This requires some modifications to the interface fluxes
and Jacobian elements, as discussed in [26] and [27]. Though the ALE formulation generalizes to
three dimensions, only rectilinear deceleration is considered in this paper.

3.5. Overset Mesh Framework

Economical, accurate simulations of the dynamic entry of a projectile into different substrates requires
some means of resolving the flowfield around the body while accounting for the long distances
(relative to the penetrator size) that must be traversed before the projectile stops. Forces and moments
generated on the projectile may result in deviations from the initial path, and it is necessary that the
computational grid follow the motion of the projectile. The overset mesh approach [28,9,10] is one of
the more powerful techniques available to handle such situations. In overset meshing, a background
mesh with coarser spatial resolution is constructed for the entire computational domain. Local meshes
which may move relative to the background mesh are generated around the projectile. Flow solutions
within the background and local meshes are time-advanced in tandem, and the solutions are transferred
among the meshes using interpolation procedures. The recent development of automatic C-language
libraries for facilitating this information transfer [9,10] has greatly simplified the addition of an overset
mesh procedure into computational codes. The SUGGAR code starts with an assembly of overset
meshes, determines which meshes lie inside one another, cuts holes in the overlying meshes, and
determines interpolation stencils for transferring information from one mesh to another. The DiRTLIB
routine uses information from SUGGAR to construct local communication routines that facilitate the
information transfer. The DiRTLIB routines link with the main CFD code in a straightforward
fashion, only requiring such information as the set of flow variables and the array sizes.
Communication (through MPI) is done separately from the normal inter-block communication used in
the code. “Blanked out” regions in a computational domain, corresponding to parts of the flow that are
solved on other meshes, are handled using an IBLANK array, which forces the code not to update the
fluid properties when IBLANK is one. =~ The SUGGAR code is written to be used with meshes that
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generally overlap one another, as opposed to the simply connected, non-overlapping meshes used in
our calculations. A significant amount of time was spent in working with SUGGAR to enable it to
correctly respond to background and local meshes that themselves were composed of non-overlapping
meshes. The solution involves incorporating details of the block-to-block connectivity into
SUGGAR'’s input deck. This is a time-consuming task for meshes with large numbers of blocks, and
SUGGAR'’s format does not account for complex inter-connections among mesh blocks that might
occur in practice. Future work will require the development of software that automatically performs a
translation between our connectivity format and that required by SUGGAR. Figure 3 presents two
overset meshes, one of which uses a set of overlapping meshes for the background mesh and the other
which uses a set of simply-connected meshes.  The topology of the composite mesh is rendered
reasonably well in both cases, but the holes are cut in clearly different ways.

3.6. Sharp Interface Capturing

To account for wave breakage effects during water penetration and for precise estimation of loads
encountered during water cavity inception and collapse, it is necessary that the discretization scheme
capture phase interfaces in as few cells as possible. This can be accomplished by blending the baseline
higher-order scheme (TVD or PPM) with a bounded downwind differencing scheme, such as THINC
[29] or CICSAM [30]. THINC (Tangent of Hyperbola Interface Capturing) uses the tangent hyperbola
function as a model function for a discontinuous volume (or mass) fraction within a mesh cell. The
average volume fraction at cell 7 is defined as

e X - X
g =——— | —[l%ptash{ B(———12 =% Nidx, 61

, Ax,,!,z[ ptmb i S = (61)
where ¢, y, and fare parameters that control the sharpness of the approximation and its connection
with cell-averaged information at neighboring cells. The location of the center of the distribution X is

determined by enforcing the equality in Eq. (61), given the other parameters. Other model functions
can be used — a linear distribution may be represented as

1 el
a=— | —[l-y+2yx]dx,
= fz[ y+2yX]
: (62)

» o X=X,
X = max[0, min[l,——=12

-x1]

where again, X is determined by enforcing the equality in Eq. (62). It is clear that this framework is
directly consistent with TVD or PPM -type interpolation methods in that left- and right-state
information may be obtained easily from the assumed form for the discontinuity within a cell. These
techniques tend to always sharpen gradients, and in some cases, this can lead to unphysical ‘stair-
stepped’ interface profiles and the shedding of spurious pockets of material (known as ‘flotsam’ and
‘jetsam’ in the literature). To avoid this behavior, one can blend the baseline TVD or PPM scheme
with a sharp-interface scheme using a linear weighting procedure. In the CICSAM scheme [30], the
weighting parameter W at a cell interface is a function of the angle between the captured phase

Va-r{z))’ and if the angle

interface and the normal vector to the mesh-cell interface (W =W (l
a

approaches ninety degrees, the method shifts to the sharp-interface capturing strategy. Our tests have
shown that this procedure works well on uniform meshes, but on the highly stretched meshes necessary
to capture viscous layer development on the projectile surfaces, the method leads to oscillations. As
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such, we have implemented an alternative weighting that considers not only the direction of the phase
interface but also the magnitude of the gradient:

Va-n
WYL 63)
|\Va-n|+—
A

where € / A is a cut-off minimum gradient. An advantage of this form is that the sharp-interface
contribution will be diminished as the gradient becomes small, relative to the cutoff, even if the phase
interface is parallel to the cell interface. This should allow a more realistic representation of two-phase
mixing processes that may not be discontinuous at the mesh scale.

3.7. Grid Arrangement

Three projectile configurations are considered in this work. Closeup views of some of the
axisymmetric grids are shown in Figure 4. Configuration I (Figure 4a) is a generic dart shape
representative of those used in beach / surf-zone clearance applications. Configuration II (Figure 4b)
corresponds to one of the ballistic shapes (Round 10) considered in an early investigation of projectile
penetration into dry sand. [31,32] Configuration III (Figure 4c) was used in sand-penetration tests
conducted by Lockheed Martin. [33] Table 3 summarizes the total number of interior mesh cells and
blocks in each grid. Also listed are specifics for two additional renderings of Configuration III — one
three-dimensional and the other axisymmetric with overset meshes (see Figure 3).

Table 3: Grid Configurations and Data

Configuration | cells blocks

I 78973 16

11 48948 28

111 20947 20

I1I-C (3-D) 678034 48

ITI-D (overset) | 34760 (projectile) 29
25032 or 5376 (background)

4. Results
4.1. Water Entry

The first set of results focuses strictly on the entry of an axisymmetric projectile into water. The
granular-flow model is not utilized in these calculations. Figure 5 presents drag and drag coefficient
versus depth for dart entry (Configuration I) into water. A dramatic increase in drag is noted as the
dart first enters the water and a cavity is established. From this point, the drag decreases steadily as a
supercavity is formed. Neaves and Edwards [1] simulated this case using a supercavitation code
developed at NSWC-PC. The results presented are in good agreement with the earlier ones. The use of
a finer grid in the current calculations does result in a narrower region of peak drag, as the water / air
interface is captured more sharply.

Figure 6 shows snapshots of the flowfield about the nose (top sequence) and tail (bottom sequence) for
a dart (Configuration I) undergoing deceleration in water. The right side of each figure is the bulk fluid
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density while the left side is the pressure. Initially, the water is at 420 m/s and the dart is completely
contained within the cavity. As the dart decelerates, the cavity eventually collapses behind the dart and
moves forward along the body. This case illustrates the ability of the ALE formulation to account for
this time-dependent dart response. Figures 7 and 8 present drag coefficient versus time and dart
velocity versus depth. Deviations from analytical results obtained assuming a constant drag coefficient
are noted as the dart velocity decelerates below 80 m/s. An initial decrease in drag coefficient occurs
as the cavity first collapses to the dart trailing edge but the drag coefficient then rises as the back of the
projectile becomes more wetted.

Figure 9 shows an example of the use of sharp-interface capturing methods (Section 3.6) in simulating
vertical entry of a dart into water. The dart geometry and initial speed are that of Configuration III
and the refined projectile mesh [Configuration III-D in Table 3] is used without the background grid.
The ALE formulation is not used. The snapshots compare, from left to right, solutions obtained using
the PPM scheme without interface-sharpening, the THINC scheme (Eq. (61)) and the linear
reconstruction scheme (Eq. (62)). The top set of snapshots shows the liquid water mass fraction, with
the darker contours representing the water. The bottom set of snapshots shows the velocity field
induced in the wake of the projectile. The thin lines represent the 10%, 50%, and 90% contours of
water mass fraction. The solutions obtained using the sharp-interface capturing schemes show more
fine-scale features, including secondary instabilities along the cavity interface that result from vortex
interactions. The appearance of these features may be due to the fact that surface-tension effects are
much better resolved when the sharp-interface capturing methods are used. The wake of the projectile
is broader and more dynamic for the THINC and linear reconstruction methods.

4.2. Sand Entry — Configuration II

Figures 10 and 11 present results for steady flow of a sand /air mixture over the Configuration II
projectile. [32,33] The ALE formulation is not used in this calculation, solids-pressure Model 1 is
used, and the calculation is conducted in a non-time accurate manner using local time stepping.

Conditions correspond to those encountered just after entry into the sand bed (u,= 742 m/s, o =

0.614). A steady solution is sought at these conditions to provide an initial estimate of the drag
coefficient. Figure 10 presents solids voidage contours for two values of the assumed loading voidage
a,, but with the solids shear stress tensor omitted (¢ in Eq. (15) set to 0). The sand is compacted at the

nose of the projectile to a voidage of around 0.825 in both cases, and a large cavity filled with air is
formed as the granular mixture expands around the blunt nose of the projectile. A shock front forms
ahead of the projectile and reflects from the upper wall of the container. This front is associated with
the onset of compaction, which raises the sound speed of the granular material to levels comparable to

the fluid velocity. There is little difference in the solutions for the two choices of &, ,. More substantial

differences are shown in Figure 11, which illustrates the effect of including the solids shear stresses
(with ¢=28 degrees). The bow shock angle is not changed substantially, but the location of the

air/sand interface shifts toward the surface when shear stresses are included. Some striations in the
interface downstream of the end of the projectile are observed. These tend to persist over the iteration
sequence, precluding good steady-state convergence. The inclusion of the shear-stress terms, while not
destabilizing, does not always yield smooth solutions for volume fraction and solids pressure. At the
nose, the solids pressure reaches a maximum value of 5.7e8 Pa for the case with no shear stresses, as
compared with local values of up to 7.8e8 Pa for the case including shear stresses. Figure 12 shows
projectile velocity versus depth and time for the experiment. This data can be regressed to yield an
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effective drag coefficient C4 of 2.02. Table 4 indicates that the calculations predict a value of about
half of the experimental value and that the inclusion of shear-stress terms slightly increases the average
drag coefficient. The drag coefficient including shear stresses does not stabilize at a constant value but
oscillates between values of about 1.13 and 1.35. Due to the formation of the cavity, the drag force is
due almost exclusively to the solids pressure acting on the projectile nose, implying either that more
compaction should occur under these conditions or that the modeled solids pressure is too low for the
amount of compaction that is predicted to occur.
Table 4: Drag Predictions: Configuration II

Configuration Measured Cq4 | Predicted Cyq
Il (a,,=0.614, no solids shear stress) | 2.02 1.050

Il (a,,=0.64, no solids shear stress) | 2.02 1.045

I («,,=0.614, solids shear stress) 2.02 1.13-1.35

4.3. Sand Entry — Configuration III (Initial Results)

Initial results obtained for the Lockheed-Martin dart (Configuration III) are shown in Figures 13-15.
Conditions again correspond to those just after entry into the sand bed (u,= 305 m/s, &, = 0.56). Solids

voidage contours in Figure 13 illustrate the effect of varying the voidage value ( «,,) at which the sand
is assumed to begin elastic/plastic compression. Solids shear stresses are omitted in this case. Regions
of strong compression of the sand, followed by the formation of a cavity filled with air, are indicated
for both cases (a,,= 0.56 and «a ,= 0.6). The onset of strong compression appears to be dictated by the
Mach number based on the solids sound speed (shown in Figure 14). For the case where «a = 0.56,
corresponding to a partially loaded initial state, the solids sound speed is higher in the granular media
and increases further due to compaction. The locations at which the solids velocity becomes lower
than the solids sound speed define the upstream extent of the bow shock located in front of the
projectile. The solids phase is initially unloaded when «, = 0.6, the sound speed is extremely small,

and some compression occurs before the sonic line is reached. The shock front is located closer to the
body and curves more strongly downstream of the nose region.

Figure 15 shows the effect of including the solids shear stress tensor for «,= 0.56. The dominant

effect is to force the sand/air cavity interface closer to the body. This leads to partial “wetting" of the
forebody section with sand and thus to a higher drag coefficient (see Table 5). Figure 16 shows
experimental velocity versus depth data for two cases involving projectile penetration into sand. This
data has been used to extract a drag coefficient of 1.03 for the initial stages of entry. Table 5 shows that
again, the numerical approach underpredicts the drag coefficient. If sand contacts only the nose, then
the predicted drag coefficient is around 0.21. The partially “wetted" case (including shear stress terms)
shown in Figure 15 yields a drag coefficient of 0.472, but the same case with a = 0.6 (initially

unloaded) yields a drag coefficient of only 0.264, as again, a full cavity is formed.

Table S: Drag Predictions: Configuration III (Initial Results)

18



Configuration II1 Measured Cy | Predicted Cq4
a,,=0.56, no solids shear stress | 1.03 0.220
a,,=0.6, no solids shear stress | 1.03 0.213
a,,=0.56, solids shear stress 1.03 0.472
a,,=0.6, solids shear stress 1.03 0.264

4.4. Sand Entry — Configuration III (Later Results)

Much of the work performed after the publication of [34] focused on trying to determine the causes of
the underprediction of the drag coefficient and on developing methods for improving the results. As a
first step, a three-dimensional mesh was generated for one sixth of the Lockheed-Martin dart
configuration (Configuration III-C in Table 3). The fins were included in the computational domain.
Calculations of the three-dimensional flow using the same model as used in Sections 4.2 and 4.3 were
performed with and without the granular shear-stress model. Figure 17 presents a snapshot of solids
voidage contours for these cases. The fins do not penetrate the sand cavity interface in either case. The
rotational flow induced by the fins entrains more sand into the wake of the projectile, and some sand is
collected onto the flat leading edges of the fins. As shown in Table 6, the inclusion of three-
dimensionality does not substantially improve predictions of the drag coefficient. Because of the
expense of the calculations, work on the 3-D configuration was discontinued in order to focus on trade-
off studies performed on the axisymmetric meshes.

The next step involved re-fitting the solids stress model based on Lockheed-Martin sand-compaction
data (Model II in Section 2.2), which was not available prior to the publication of [34]. This change,
along with the addition of a Newtonian regularization term to the solids-stress tensor (Section 2.2) and
a more accurate formulation of the solids stress tensor at cell interfaces, yielded improved results for
the drag coefficient (Table 6). Figure 18 shows contours of solids volume fraction obtained using the
improved solids-stress model. The inclusion of solids shear stress effects forces the sand cavity
interface closer to the body surface. This leads to more ‘wetting’ of the forebody section with sand and
a higher drag coefficient. Even with these improvements, it became clear that only the complete
wetting of the forebody section (up until the maximum cross-sectional area) would lead to a more
correct prediction of the projectile drag coefficient, at least under axisymmetric, steady conditions.

Table 6: Drag Predictions: Configuration III (Later Results)

Configuration III (later results) measured Cq | predicted Cy
a,, =0.56, no solids shear stress 1.03 0.220

a,, =0.56, no solids shear stress (3-D) 1.03 0.215

a,, =0.56 , with solids shear stress (3-D) 1.03 0.360

a,, =0.56, with solids shear stress (original form 1.03 0.472
presented in AIAA Paper 2006-1289)

a,, =0.56 , with solids shear stress (new coding of 1.03 0.668 (average)
solids stress tensor with regularization and with new fit to

solids pressure (Figure 1))
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4.5. Sand Entry — Configuration I1I-D

The latest results obtained for the Lockheed-Martin dart configuration have used a refined mesh
(Configuration III-D) that eliminates the hollowed-out region at the end of the dart. The mesh was
generated using less-severe stretching ratios and more mesh points per block in the hopes that the
elements of the granular stress tensor would be resolved more correctly, thus providing improved
steady state convergence and more accurate results. The latest runs also used the new solids-pressure
model (Model III in Section 2.2), which was designed to produce a larger increase in the sound speed
as one approaches a loaded state while maintaining a good fit to the Lockheed-Martin sand-compaction
data. Several parametric studies were performed, varying such factors as the initial solids loading, the
inclusion or non-inclusion of the direction-dependent sound speed (Eq. (45)) in the upwind method, the
choice of the constant C| , scaling the Newtonian viscosity component of Eq. (15), and the use of a

‘thin layer’ form of the solids-stress tensor that neglects the gradient components parallel to the 7
direction. Table 7 summarizes some of the results of these parametric studies.

Table 7: Parametric Studies Performed on Configuration III-D

Case number a,, Cox directional thin layer form | predicted Cq4 (range)
(Configuration III-D) sound speed

1 0.56 |0.00 no no 0.529-0.543

2 0.56 | 0.00 yes no 0.465-0.469

3 0.56 |0.01 no no 0.557-0.531

4 0.56 |0.10 no no 0.578-0.586

5 0.56 | 1.00 no no 0.747-0.853

6 0.58 | 1.00 no yes 0.740-0.810

Many other combinations of parameters were tried. In general, increasing the initial value of &, toward
the fitted value for the onset of compaction (a ;= 0.580769002438) led to increases in the drag
coefficient, as did increases inC, , . In some cases, however, this response was accompanied by the

destabilization of the cavity wake, initiated by large oscillations in the vicinity of the cavity inception
point. Even when destabilization did not occur, convergence was very poor. A significant effort was
undertaken to understand the causes of convergence degradation. It was found that it was a result,
primarily, of oscillations in the solids properties in the vicinity of the projectile nose but that large drag
terms, caused by a wide disparity in solids and fluid velocities in the projectile wake, also contributed
to the response.  Figure 19 shows a close-up view of solids volume fraction and pressure in the
vicinity of the projectile nose for Case 5. The formation of the cavity is delayed until the maximum-
area point, and the entire forebody of the projectile is ‘wetted’ by the sand.

4.6. Overset Mesh Results — Configuration III-D

As mentioned in Section 3.5, we were able to embed the computational model into an overset-mesh
framework using the SUGGAR/DiIiRTLIB [9,10] utilities. We exercised this capability for a few cases,
focusing primarily on ensuring that the procedures provided the correct information transfer between
the projectile meshes and the background meshes. Figure 20 shows results obtained using SUGGAR /
DiRTLIB for a case where the background meshes were allowed to overlap one another (bottom) and
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for a case when the background meshes do not overlap (top). The solutions correspond to the meshes
shown in Figure 3. The variable plotted is the transverse component of the solids velocity. The cases
were run with different parameters, and close agreement between the solutions is not to be expected.
The contours indicate that information is being passed correctly from one block set to another. The
resolution differences between the background and projectile meshes lead to some smearing of the
waves.

5. Conclusions

The development of a comprehensive three-phase model for simulating projectile penetration into
water and sand has been outlined herein. The approach combines low-diffusion upwinding techniques
valid for multi-phase flows with time-derivative preconditioning methods to ensure efficient, accurate
time evolution at all speeds. The computational model has been embedded into an overset-mesh
framework, which renders it suitable for eventual simulations of six-degree-of-freedom maneuver.
Applications to supercavitating projectile entry into water and subsequent deceleration show good
agreement with prior work and with experimental trends. Applications to situations representative of
initial projectile entry into dry sand indicate that the current approach underpredicts measured drag
coefficients by more than 75% in some cases. The addition of a solids pressure model that provides a
sharper transition to a loaded state upon initial compaction and the inclusion of an ad-hoc Newtonian
contribution to the baseline Mohr-Coulomb granular stress tensor results in better agreement with
experimental data, with the best predictions for the drag coefficient being ~20% lower than the
measurements. These results indicate that the current models for solids-stress (frictional) effects need
to be improved. The assumption of axisymmetric flow may also be overly restrictive, as it is known
that the motion such projectiles may exhibit sinuous and rotational modes accompanied by ‘tail slap’
on the walls of the cavity. Complete six-degree of freedom simulations of dynamic entry would
therefore be required for a more complete analysis.
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Figure 17: Solids volume fraction contours for 3-D simulation of
dry sand flow over the Lockheed-Martin dart (including fins) Left
—no solids shear stress; right — with solids shear stress
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