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Executive Summary

The sea-salt aerosol source function (SSASF) and deposition velocity of sea-salt particles
used in large-scale model s assumes that the source and deposition is uniform over areas large
compared to the horizontal grid spacing of the model. This horizontal grid spacing istypically
oneto 100 kmin length. Sea-salt aerosol is overwhelmingly generated by white caps whose
surface distribution is usually sparse and sporadic with spots of intense particle generation
separated by large areas with no white cap coverage. Most deposition occursin the regions free
of white caps. The analysis presented here uses (several) puff plume models to study the validity
of the underlying assumptions of the horizontally uniform surface source and deposition. The
puff plume solutions are based on the same turbulent diffusion equation as used in the large-scale
models but have high resolution (in all cases an analytical solution). A time series of puff
plumesis averaged to obtain the large-scale source and deposition flux. The process of going
from the flux of particles generated by the individual small-scale events to a meaningful large-
scale average is the subject of this study. A similar problem is encountered in bridging the gap
between the transient deposition flux from a whitecap plume and a meaningful large-scale
deposition velocity appropriate for larger scale models. One of the advantages of considering a
series of puffsisthat the transient behavior of the system asit evolves can be studied. Prior
studies have relied on solutions to the steady-state differential equation.

The analysis demonstrates the remarkabl e difference between (i) the case where
deposition results exclusively from non-gravitational deposition processes at the surface (such as
impaction and Brownian diffusion) and (ii) the case where deposition is solely from gravitational
settling. For the case (i) when deposition is from non-gravitational processes, the effect of
deposition is carried to the interior of the MBL by the gradient (eddy-correlation) flux.
Assuming aMBL isinitially free of aerosol with transition to aterminal equilibrium where
deposition is balanced by the source, the magnitude of the gradient flux, which initialy will be
egual to the source flux, will evolve to an equilibrium state where there is no gradient flux. This
can be contrasted to the case (ii) where gravitational settling is dominant (larger particles). Here
the upward gradient flux is always equal to the source flux (at a given height) and the transient
behavior is governed by the increase of the gravitational flux during the transition to equilibrium
- where the upward gradient (source) flux is equal to the downward deposition flux. The
intermediate case where both the gravitational flux and deposition flux are important is a mixture
of the above two cases,

In Sections 1V and V1, the process of going from the results of a series of puffsto alarge
scale average source (SSASF) is discussed in detail together with the implication of the process
to both (i) the inclusion of a source and deposition velocity in large scale numerical models and
(i) the various measurement techniques from which the SSASF are derived. The relationship
between the puff plume analysis and empirical methods used to determine the SSASF is
discussed in Section V.

Finally an analysis, which assumes large-scale homogeneous conditions but also treats

the transient conditions under the valid assumption that a quasi steady state exists during the
transition, is presented.
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Study of the implications of whitecap intermittency on the uniform
sea-salt aer osol sour ce approximation and deposition velocity

|. Introduction

The primary mechanism for sea-salt aerosol generation is through bubble bursting at the
ocean surface. Air entrained through wave action form bubbles that rise to the surface and burst.
As the bubble penetrates the ocean surface a liquid film is produced, which breaks forming a
number of liquid droplets that partially evaporate to form sea-salt solution or salt crystal aerosol
depending on the relative humidity. As the bubble collapses a water jet emanates from its center.
Asthisjet breaks up, larger droplets are formed and evaporate to produce additional coarse-size
aerosol. The number of film and jet droplets formed per breaking bubble is a function of the
bubble size (see for example, Wu [1992]). Asthe wind speed and sea-state increase, the wind
tears sheets of water off the breaking waves. The breakup of these sheets form (spume) aerosol
of diverse sizesincluding very large particles. These various formation mechanisms have been
studied for decades and the interested reader is referred to Andreas [2002] and the recent review
by Lewis and Schwartz [2004] and references therein for additional background.

The entrainment of air by breaking wave action and subsequent bubble bursting is
associated primarily with the occurrence of white caps, so it is natural to associate the amount of
marine aerosol generation with the frequency of breaking waves or the factional white cap
coverage. Current expressions for the flux of sea-salt aerosol from the ocean surface is given as
afunction of the fractional white cap coverage, which in turnis expressed as a function of wind
speed. Figure 1 shows the percentage of the sea surface covered by white caps as a function of
wind speed for four different expressions (Monahan [1986], Wu [1992] for warm and cold water
and Hanson and Phillips[1999]). It is seen, that while there is wide scatter in the data, less than
0.1% of the sea-surface is covered with white caps at wind speeds of 5 m s, less than 1% at 10
m s* and about 10 % at wind speeds at 20 m s*. The distribution of the coverage is sporadic
with spots of intense particle formation and large areas where there are no whitecaps. A parcel of
air passing over awhite cap will experience a pulse of particles at the surface with upward flux
of particles as turbulence disperses the particles upward. Down wind of the puff, particles will
be deposited back to the surface. The parcel will then encounter additional puffs at a frequency
depending on the fractional white cap coverage. If we consider the puff to be from a1l m? area
of the surface, and the fractional coverage is 1% (value appropriate for a10 m s* wind speed),
then a column of air with 1 m? base will see, on average, one puff every 10 seconds, or one puff
every 100 m).

In aerosol models whose purpose is to ssmulate (average) concentrations of aerosol with
resolution on the scale of a km or greater, the average effect of many whitecaps isformulated in
terms of a uniform surface generation function, and the loss to the surface in terms of some
uniform deposition velocity. The goal of these modelsisto predict the average aerosol
concentration in the MBL at a given point in time so that aerosol effect on other atmospheric
processes, such as EM propagation or cloud microphysics, can be predicted. However there are
other applications, such as moisture and heat transfer and some chemical reaction studies, where
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the average concentration is less important than the total aerosol mass processed through the
MBL.

To illustrate some of the potential problems with the uniform-source assumption consider
the white caps to be puff plumes and consider two cases. (1) thereis negligible loss resulting
from surface deposition during the life time of the particle, and (2) there is significant surface
deposition of particles between whitecap encounters. The first case is applicable to submicron
particles, the second to super-micron particles. In thefirst case particles are conserved, each puff
adds linearly to the concentration in the MBL, and aquasi steady state flux is established while
the MBL concentration slowly builds up with loss occurring occasionally by precipitation
scavenging events or dilution due to exchange with the FT. In this case, the net flux into the
MBL isjust the sum of the flux from all the puffs regardless of how infrequent the whitecaps.
For large particles (i.e., Case (2)), the situation is much different. A single puff produces an
initial upward flux that quickly reverses and all particles eventually get re-deposited at the
surface. An instrument measuring net flux would indicate that the average flux is zero while a
measurement of concentration would indicate some average concentration during the lifetime of
the puff, even if no particles remain suspended at the end of the time. We then have a case where
the average flux is zero but the average concentration is not zero. This latter case is an extreme
example, as additional puffswould usually be encountered before all particles from a prior puff
areremoved. Neverthelessit illustrates an important concept —when there is significant surface
deposition between whitecaps, the deposition diminishes the average effective source flux, i.e.,
the source flux below that cal culated from the source strength without intervening deposition.
This consideration has important consequences on cal culating oceanic source function from
laboratory data on breaking waves for super micron size particles.

In the following analysis various versions of the “puff” plume model will be used to
study the validity of the underlying assumptions of the horizontally uniform, surface source
formulation. The analytical solutions given below for the dispersion of puff plumes are solutions
to the same differential equation used in numerical finite difference schemesin larger scale
meteorological and boundary layer models. However, the grid and time scales used in the
meteorol ogical models are too coarse to capture individua plumes. In fact, the whitecap density
within asingle grid of the meteorological models will be sparse and the average number within a
given grid may be large or small depending on the white cap coverage at thetime. The process
of going from the flux of particles generated by the individual small-scale events to a meaningful
large-scale average is the subject of this study. A similar problem addressed hereis that
encountered in bridging the gap between the transient deposition flux from a whitecap plumeto a
meaningful large-scale deposition velocity appropriate for larger scale models.

We will begin the analysis (Section 11) with the simple case of the Gaussian plume model
with adeltafunction source at time zero (t=0) and zero concentration far from the source,
considering both the case of a perfectly reflecting surface and the case of totally absorbing
surface. We then extend these simple cases to consider the case of the partially absorbing
surface, where the deposition velocity at the surface can be specified. Inthese casesitis
assumed that the gravitational settling velocity is negligible and that deposition results from
Brownian diffusion and impaction to the ocean surface — these results therefore apply only to
submicron size particles. Section 111 then further extends the analysisto look at the case where



the gravitational settling velocity isincluded in the differential equation and dominates the
aerosol surface deposition.

The questions to be addressed are as follows:

1. Isthereavalid way to average the transient flux of particles from individual white
caps which will supply a meaningful uniform surface source function appropriate
for large scale modeling?

2. Andif so, how isthis average to be calculated? We have already pointed out that
for large particles, the average net flux can be zero during the transient life of a
puff while the average concentration over the same period is a positive definite
number.

3. What isthe relationship of various measurement methods of white cap particle
flux to the average source function appropriate for meteorological scale models;
i.e.; how do wave tank measurements, eddy correlation flux measurements, and
equilibrium measurement methods relate to a source function required in larger-
scale models.

4. How does the transient deposition velocity for a plume translate to a deposition
velocity appropriate for numerical models.
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Figure 1. Percentage of whitecap coverage as a function of 10 m wind speed as given by severd
investigators. Monahan et a (1986) in red, Wu (1992) in green (warm) and blue (cold), and
Hanson and Philips (1999) in cyan.



[1. Puff plumeswith no gravitational settling (Cases 1to 4)

Case 1. Gaussian Plume with totally reflecting or totally absor bing surface: eddy diffusivity
K=constant with height, no gravitational settling

The simplest case is that of a Gaussian plume with totally reflecting or absorbing surface
and a constant turbulent diffusion coefficient with height. While these are unrealistic
circumstances, it demonstrates the important physical principlesinvolved in two extreme cases -
one where there is no surface deposition (approximating the behavior of small particles; i.e. no
negligible surface deposition over time periods comparable to the lifetime of the particle), and
anther with atotally absorbing surface combined with a turbulent diffusion coefficient constant
with height. Thislatter case, due to the constant eddy diffusivity extended al the way down to
the surface, results in deposition at the surface comparable to very large particles (tens of nm),
but is unrealistic in that the settling velocity term has not been included in the differential
equation and therefore doesn’t account for settling effects above the surface layer.

We can begin with the assumption that the number concentration n(x,y,z,t) of particles of
agiven size is given by the turbulent diffusion equation

EJ,UE: K, Tn + K ﬂzn+KZﬂzn
Tt >y 1z

: D

where X’ is the coordinate along the direction of the wind velocity u (assumed to be constant
with height), z isthe vertical coordinate, and y the horizontal coordinate perpendicular to the
wind velocity u. Ky, Ky, K, are the eddy diffusion coefficients associated with the three
directions. If welet x=x’-ut, then eg. (1) can be written as

fn °n 1°n °n
Dok Dok L4k L 2
ﬂt X ﬂxz + y ﬂyz + z ﬂzz ( )

and the solution interpreted as the concentration in a Lagrangian column moving with the mean
wind speed u. The solution for an instantaneous source (puff) at x=y=0, and z=h, and zero
concentrationat x=y =¥ and z=¥ at al timeiswell known (for example, see Fuchs[1964]

or Seinfeld [1986]) and given by

1 j-x2 y € 1 1_ @ (z-h)?206, _ a (z+h)? ol
n(x,y,zt)=— — Expl . Y _¥a iapgﬁii Expgﬁgju 3
ap KKt f4KE 4K the apK t 7 KL 5 TR &:

This solution isfor aunit source. The plus sign isfor totally reflective surface (z=0) and the
minus sign for totally absorbing surface. It is convenient to eliminate the x and y dependence by
integrating over the x and y coordinates, in which case the total number N(zt) in alayer dz (i.e.,
particles per unit length) is obtained
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(N(zt) has units of inverse length).

N(zt)=

Thetotal flux (integrated over the x-y plane) at z resulting from asingle puff at hisjust
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The integrated flux flowing through the z-plane at z, between time zero and time t isjust

e .1 € (z- )0, (z+h)? ou
Fl(z,t)—odzzdt—mgeg% R Gga% "t for z>h  (6)

where (a,x) is the incomplete gamma function. Fl(zt) can be viewed as the integrated number
of particles passing through a surface at height z, over atime interval t, resulting from asingle
puff at timet=0. FI(zt) isthusthe number of particles above the z-plane at timet.

The integrated flux through any surface z over all timeisjust
"\ 1+1
Fl(z,¥):d:Zdt=T:],O for z>h (7

For areflective surface the integrated flux from a unit source through any surface is just unity —

given enough time everything flows out the “top” of the domain. For atotally absorbing surface
theintegrated flux iszero a t =¥ ; that which flows upward initially must eventually flow back

down and be removed at the surface.

The total normalized concentration given by Eqg. (4) and the flux given by Eq. (5) are
shown in Figures 2 and 4 for reflecting surface. For areflecting surface the concentration at the
surface isfinite, but the flux is zero at the surface as shown in Figure 4. For atotally absorbing
surface the opposite is true, the concentration at the surface is zero as shown in Figure 3 and the
flux at the surface has some value (Figure 5). Theflux at the surface for a source at height h
requires that the flux at the surface is always downward. But at any point above the source
where will be aninitial upward flux followed by a downward flux at some point after passage of
theinitial puff. Inthe Figures, the value of K is taken to be 1 m s* and the source height is 0.2
m (h=0.2 m).
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Figure 2. Normalized concentration, N(z,t), as function of height for areflecting surface for
times of 10, 20, 50 and 100 s. No particles arelost at the surface during upward
dispersion. The gradient is zero at the surface and K,= 1 m? s™.
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Figure 3. Normalized concentration, N(z,t), vs. height for atotally absorbing surface. Particle
concentration at the surface is zero and particles are removed at the surface at arate given
by the product of the gradient at the surface and the eddy diffusion coefficient. Times of
the profiles shown are 10, 20, 50, and 100 seconds.
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Figure 4. Flux of particles, F(zt), through a plane at height z at 10, 20, 50, and 100 sfor a
reflecting surface (case shown in Figure 2). The flux is everywhere positive indicating
upward flux at al heights.
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Figure 5. Flux of particles, F(zt), through a plane at height z and for times 10, 20, 50, and 100
sfor an absorbing surface (case shown in Figure 3). Negative values of flux indicate
downward flow. Thereisadownward flux near the surface at all times as particles
diffuse back to the surface. Thereisaninitial strong upward flux — the upward flux
diminishes with time and eventually the particles which have been dispersed upward
return to the surface as indicated by the downward flux at all heights at 50 seconds. The

critical height where the flux changes signis z. » /2Kt (assumes z_ > h).



For the absorbing case we can calculate a deposition velocity as afunction of time. The
conventional definition of the deposition velocity isthe ratio of the downward flux at the surface
to the concentration at some reference height.

- F(O,1)

N(z,,t) ®

Vd (Zref ’t) =

If the reference height is at the surface, then vy isinfinite because N(O,t)=0 for atotally
absorbing surface. The deposition velocity for areference height of 10 m calculated from the
above equationsis shown in Figure 6. At long times the deposition velocity is approximately
KJZ:s (0.1 ms™). Thisasymptotic behavior for constant K is discussed in Hoppel et al.
[2005] and occurs when the reference height is well within the diffusion layer as depicted in
Figure 3. The height of 10 mis not in the diffusion boundary layer (region of constant slope)
until well after 100 seconds.
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Figure 6. Deposition velocity for asingle puff as afunction of time for areference height of 10
m (absorbing surface).

The integrated flux from formation (t=0) to timet as given by Equation (6) for asingle
puff is shown in Figure 7 for aheight of 3 m for both the case of reflecting and the totally
absorbing surface.
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Figure 7. Theintegrated flux, Fl(zt), for the reflecting case is shown in red and the absorbing
casein blue. The height for the curves shown is3 m. For the reflecting surface no
particles are lost and the integrated flux goes to unity indicating that essentially all
particles produced by the puff are above 3 m. For the absorbing surface some particles
areinitialy dispersed above 3 meters, but after about 5 seconds, the flux has reversed at 3
meters.

The behavior shown in Figure 7 for the integrated flux in the two extreme casesis
important to understanding the subsequent results. For areflecting surface all the particles from
a puff stay airborne and the flux from each puff is additive, whereas for the absorbing surface the
integrated flux from a single puff reverses after some time, so that the time between puffs
becomes very important in determining the cumulative number of particles which are airborne at
any given time. As discussed later, this behavior is related to whether or not a steady state exists
for a continuous series of puffs (i.e. continuous source).

l.a. Series of puffsfor a Reflecting surface

Whitecaps occur randomly on the sea surface, and to simulate the effect of a series of
Gaussian plumes resulting from whitecaps, a series of equally spaced whitecaps entering the
bottom of an advecting Lagrangian column is considered next. Equation (5) can be summed to
give the instantaneous flux for a number of puffs separated by sometime interval Dt. Figure 8
shows the instantaneous flux at a height of 3 m from a series of 10 puffs separated by 10 sand
introduced at 0.2 meters. Theindividua puffs dominate the signal, the flux is always positive,
and the average flux, after some time, appears to be ailmost constant. This average flux disperses
particles upward, causing a slow build-up of particlesin the atmosphere.
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Figure 8. Instantaneous flux, FS(zt), as function of time at 3 meter for 10 puffs
separated by 10 seconds for areflecting surface. K(z2)=1 m™* s™.

The integrated flux from a number of puffs can be obtained by summing Equation (6)
over a number of puffs entering the column at different times denoted by t,.
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FISzty) isthe integrated flux resulting from M puffs of unit strength introduced at times tn,.

The plus signisfor reflecting surface and the minus sign for atotally absorbing surface. Figure
9 shows the integrated flux for 50 puffs introduced at equal time intervals of 10 (red), 20, 50, and
100 (black) seconds for areflecting surface at a height of 3 meters. For the reflective surface all
flux isupward at all heights and is the same for the same number of puffs (or nearly the same —
the small increase for longer puff intervals seen in Figure 9 is due to the fact that the upward
current from asingle puff continues at a greatly diminished rate with increasing time.) The solid
red line at time 100 seconds corresponds to the integration of the instantaneous flux shownin
Figure 8 over the first 10 puffs.
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Figure 9. Integrated flux FIS(zt) due to 50 puffsintroduced at time intervals of 10
(red), 20 (blue), 30, and 50 seconds for a height of 3 meters and areflecting
surface.

The average upward diffusion (source) flux S(z, MDt) at time MDt is just the slope of the
curvesin Figure 9,

FIS[z,MDt] - FIS[z (M - )Dt] _ FI(z, MDt)
Dt Dt

S (z,MDt) = (10)

Sl isshown in Figure 10 as a function of the number of puffs encountered as opposed to time as
in Figure 9. The solid curves are for puff intervals of 10, 20, 50 and 100 seconds at a height of 2
m. After an initial transient the (average) source is constant. The constancy after an initial
transient indicates the flux isin aquas steady-state during the filling process as discussed by
Hoppel et al. [2005]. The dashed lines give the source flux at 1 and 5 m for the case of puffs
every 20 seconds. The small asymptotic difference is due to the difference in the quasi steady-
state gradient at the different heights. The steady state source flux isjust 1/Dt for a unit puff.
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Figure 10. Thetime average flux S(z,MDx) as function the number of puffsfor puff
intervals of 10, 20, 50, and 100 seconds at 2 meters and a reflecting surface.
Dashed lines show the small differencein flux at 1 m (pink) and 5 m (green) as
compared to that at 2 meters.

Even though the (source) flux is nearly constant with time as shown in Figure 10, the
concentration in the atmosphere above is steadily increasing. The vertical concentration profile
at various times for puff interval of 20 seconds is shown for (50 puffs) 1000 s, 2000 s, 4000 s and
8000 s (400 puffs) in Figure 11.

—— 50 puffs

—— 100 puffs
200 puffs

—— 400 puffs

Height (m)

Concentration (m'l)

Figure 11. Vertical profile of concentration due to 50, 100, 200, and 400 puffs where
the puffs are separated by 20 seconds, for a reflecting surface. K(2=1 m™*s™.
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The above illustration indicates that, in the case of no surface deposition, a discontinuous
source of particlesin the form of Gaussian puffs can be viewed as a constant average source.
Even though the concentration isincreasing, the quasi steady-state is reached where the average
flux, just above the source, is constant even though the concentration in the MBL is steadily
increasing. This conclusion is not surprising and may have been anticipated, just based on
conservation of particles. However, the above example is now contrasted to the case where there
istotal absorption at the surface, and the results are not astrivial. Also, please note that the
vertical profilesin thisillustration are not realistic because, unlike the MBL, the vertical domain
is unbounded.

1.b. Series of puffs—totally absorbing surface

The contrasting behavior shown in Figure 7 for the total integrated flux from a single puff
for the cases of total absorption vs. total reflection indicate that the behavior for absorption at the
surface will be remarkably different than that shown above for areflecting surface. The loss of
particles between puffs influences the total concentration and source flux, and therefore the puff
frequency will play amore complicated role. The instantaneous flux at 2 m, from 10 puffs
separated by 10 seconds, is shown in Figure 12 [calculated from Eq. (5) for a series of puffs].
This can be contrasted to Figure 8, where the flux is always positive and increasing. For
absorption, thereisan initial upward pulse near the puff and then a downward flux more distance
from the puff with diminishing negative flux with time as the plume dissipates.

0.02

0.01 —

0.00 —

Instantaneous Flux (s-1)

-0.01 ‘ ‘ ‘ ‘
0 20 40 60 80 100

Time (s)

Figure 12. Instantaneous flux, F§zt), at 2 m as function of time during the encounter
of the first 10 puffs separated by 10 seconds for atotally absorbing surface.

The integrated flux, FIS(zt), is given by Eqg. (9) and shown in Figure 13 for 50 puffs
where the four curves are for puff intervals of 10, 20, 50, and 100 seconds. Even though the
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instantaneous flux shown in Figure 12 spend more time as adownward flux the net (average)
flux isupward. The negative flux increases (in magnitude) until the concentration at the surface
reaches an average steady-state value (seen later in Figure 15 near the surface); i.e., the
downward fluxes from the most distant puffs are negligible. Compared to the reflecting case the
average fluxes are much smaller since most particles do not stay airborne but are re-deposited on
the surface.

g 04 L —— Dt=10s
g_ — Dt=20s
O 03 Dt=50 s
N —— Di=100's
=)
= 0.2 -
o
(€]
g 0.1
0.0 | | | |

1000 2000 3000 4000 5000
Time (s)

Figure 13. Integrated total flux through the plane at 2 m as a function of time for puff
separations of 10, 20, 50, and 100 seconds, 50 total puffs, and totally absorbing
surface.

Again we will define the average upward (source) flux (at the time of puff M) at 2 m as
the slope of the integrated flux between puffsM and M+1 [Eqg. (10)]. The average upward flux
(effective source) as afunction of the number of puffsis shown in Figure 14, where the curves
are for puff separations of 10, 20, 50, and 100 seconds. The time coordinate for each curve can
be obtained by multiplying the number of puffs by the puff separation. The curvature of the
curvesin Figure 14 is opposite that of Figure 10 for areflective surface because the loss at the
surface, unlike that of areflecting surface, increases as the average concentration above the
surface increases. The curvesin Figure 14 continue to decrease and go to zero as time goes to
infinity, at which time there would be an equilibrium; i.e., the gradient flux above the source
would go to zero with a strong gradient below the source driving al newly injected particles
back to the surface. However, because in this example the vertical domain extends to infinity,
equilibrium is never truly achieved. Thelifetime of particles of the size implied by the
assumption of an absorbing surface with constant eddy diffusion al the way down to the surface
is short, and therefore ignoring the gravitational settling velocity in the differential equation (as
we have done here) is not realistic, as mentioned previously and as we will see in the next
Section I11.
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Figure 14. Upward average flux, S(z,MDx), at 2 m for puff separations of 10, 20, 50, and
100 seconds as a function of the total number of puffs for an absorbing surface.

The ‘filling’ process (i.e., thefilling of the MBL by sea salt particlesinjected at the
surface) is shown in Figure 15, where the concentration profile for puff separation of 20 sis
shown for (25 puffs) 500 s, 1000 s, 2000 s and 10000 s (500 puffs). The totally absorbing
surface requires that the concentration at the surface must be zero. The nearly constant
concentration gradient over the lowest 5 m indicates that the source flux is nearly the same over
the lowest five meters and changes very slowly as the upper atmosphere fills.

Now, even though we have an absorbing surface and have previously discussed the
equivalent deposition velocity for this case, the concept of deposition velocity actually haslittle
meaning here for several reasons. When the surface concentration is zero, as in the case of
perfect absorption, the deposition velocity is infinite when referenced to the surface
concentration. The deposition velocity is changing with time as the gradient at the surfaceis
changing. Inthelimit astime goesto infinity, the concentration gradient above the source
vanishes requiring the gradient below the source to be large enough so that the flux of new
particles (1/Dt) is equal to the deposition flux

Ny, 1 (11)
thus
v, (t=¥) »% for z>h (12)

Making the deposition velocity for all reference heights with z« > h afunction of the source
height.
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Figure 15. Vertical concentration profiles after 25, 50, 100, and 500 puffs for puff separation of
20 seconds for totally absorbing surface.

The case of total absorption at the surface is aso unrealistic in the sense that the turbulent
diffusion coefficient of 1 m? s* is unrealistically large asit extends down to the surface and gives
rise to very high deposition rates. The deposition velocity downwind of a single puff referenced
to 10 m was seen to be greater than 10 cm s™* (Figure 6). This corresponds to afall velocity for
particles greater than 30 nm radius and explains the rapid loss of particles shown in Figure 12.

For the case of areflecting surface we see that the integrated flux (number of particles
suspended) increases linearly with the frequency of the puffs (Figures 9 and 10). That is not the
case for atotally absorbing surface where the time between puffs is an important factor in
determining the upward flux (effective source). This differenceis clearly illustrated by letting the
puff separation be infinitely long. The integrated flux from a single puff (of unit strength) goes
to unity for areflecting surface, whereas the integrated flux for the absorbing surface goes to
zero. This has important implications when deriving the surface source function from
measurements of aerosol production from a single breaking wave, asin awave tank, and
extrapolating the result to source flux for the ocean surface made up of many whitecaps.

Before proceeding to analyzing more complete scenarios, we summarize the various flux
variables defined above. This notation is used in the 6 cases that follow.
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Table 1. Definitions of various flux variables

Symbol Description Units
F(zt) Flux of particles from asingle puff at time 0, through the planeat | s*

height z
Fl(zt) Flux from a single puff through a plane at height z integrated from

timet=0to t=t Dimensionless

Fl(zt) = t(‘j:(z,t)dt

Interpretation: Number of particles above the z-plane resulting
from a puff at time t=0.

FSzMDt) | Flux through a plane at height z at discrete times from a series of
M puffs separated by Dt s

FS(z,MDt) = F(z,mDY)

FISzMDt) | Flux from a series of puffs separated by Dt, integrated over atime
period MDt Dimensionless

FIS(z MDY = & FI(z,mDt) = 8 oF (z.t)dt

Interpretation: Total number of particles above the z-plane at time
MDit resulting from M puffs.

S(zMDt) | Average flux over time Dt at time MDt resulting from a series of M
puffs S
S (z MDY) = FISz MEt] - FISz (M - DOt] _ FI(z, MD)
Dt Dt
Interpretation: The (upward) gradient flux of particlesintegrated
over the horizontal plane at z and at time MDt resulting from M
prior puffs.

To get the average flux per unit areathe flux SI must be associated with the appropriate
area of the ocean surface. Thiswill depend upon the white cap frequency, the area of white water
coverage, and the strength assigned to our (unit) puff. Thiswill be treated in Section IV. Also,
while Sl isthe puff source flux at the source for areflecting surface that is not the case for an
absorbing surface.

To help understand the physical interpretation of the equation for the S(z, ty) [EQ. (10)],
Fl(zMDt) is plotted for seven puff plumes offset by 10 s for the case of perfect reflection in
Figure 10. At any time, FISz,MDt) is the sum or the magnitude of all curves and S(z, ty) isthe
differencein FISover atimeinterval Dt. The sum at time MDt differs from that at (M-1)Dt by the
value of the curve from thefirst puff, Fl(z,MDt). For the case of reflection, if you wait long
enough, this just means that every puff adds the value of one (for unit puff) so that S(z, ty) is
just (Dt)™>. For the case of absorption as shown in Figure 7, F1(z,38 ), becomes zero and the
earliest puffs no longer contribute, FIS no longer change with time and S(z, ty) is therefore zero.
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A steady state can exist only if the memory of the earliest puffsislost. For casesthat do not
contain the fall velocity this means that eventually the gradient above the surface must go to zero
and all new particles are re-deposited on the ground at the same rate at which they are formed.

Integ. Flux, FI(3m,t)

) 20 40 60 80 100
Time (s)

t=MDt
Figure 16. FI(3m,t) for 7 puffs offset by 10 seconds for the perfectly reflecting case. At 70
seconds the sum of the puffsis the same as the sum of the puffs at 60 seconds plus the
contribution of the first puff at 70 seconds.

We now extend the analysis by first looking at two more reflecting surface cases, but first
with the eddy diffusivity set to zero at the surface and increasing linearly with height (Case 2),
and then with the domain capped by letting the eddy diffusivity go to zero at the top of the MBL
(Case 3).

Case 2. Gaussian Plume with K(z)=kz for totally reflecting surface, no gravitational settling
The general solution for a plume downwind of aline source with perfectly reflecting

surface has been given by Huang [1979] for the case when the wind and eddy diffusion
coefficient are given by the following power laws

u(z) =uz” and K(z)=kz" (13)

where the wind is taken along the x-direction. By using arguments similar to those discussed in
connection with Case 1, we can adapt the Huang solution for a line source to a puff plume by

letting, x=ut and p=0 (no wind shear), and by normalizing the source to unity (Q/u=1). The
solution then becomes
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N

(z +ha) 2(m)

11, (

) (14)

wherea =2+ p- n,n =(1- n)/a, z=h isthe height of the source and I, is the modified Bessel
function of order n.

Here we are interested in the linear (n=1) eddy diffusion coefficient, K(z)=kz, which is
generally believed to be the profile which best describes the turbulent mixing in the surface layer

during periods of neutral stability. But before proceeding, we point out that Equation (14) isthe
same as Eq. (4) for aconstant K (n=0). This can be seen using the following identity

|_1(y):\/zw (15)
2 py 2

and completing the squares in the exponents of Eq. (14).

For the case of alinear diffusion profile, n=1, the solution becomes

(z+h)u, &4/zh 0

é-
N(t,2) = Ex A T (16)
t2= pg kB¢ k p
The gradient can be expressed as
.., 0 dJ
NG, 2) 12Exp88 (z+h)(?%/7 a@\/_:_ | a@\/%:u an
1z (k) & k glz : é Kt 20
The flux at any time t, passing through a plane at height z is then given by
F(zt) =- NG9 (18)
e 1z o
The integrated flux passing through a plane at height z between t=0 and t=t isjust
t
FIt,2) =gt 2dt (29)
0

The integrated flux at 1 and 3 m for asingle puff is shown in Figure 17 by the red and black solid
lines where the integrated flux for k =0.16 m s corresponds to that of a10 m s* wind speed
(and neutral stability). The dotted lines are the fluxes at 1 and 3 m for aconstant K of 1 m?s* as
given by Eqg. (6) and shown in Figure 7. In both cases the source is at h=0.2 m. Because of the
small value of mixing near the surface in the linear case it takes longer for the particlesto move
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upward through the plane at z=3 m. However it isimportant to realize that in either case the flux
for the reflecting surface approaches unity after about 100s, so that the form of the turbulent
mixing profile is not very important for small particles where surface deposition is small (i.e., the
well-mixed case). For an absorbing surface we would expect the form of the mixing profile to be
important since alow mixing coefficient near the surface inhibits upward mixing; however, for a
linear profile the only transport mechanism is gradient transport, and there is no mechanism by
which particles can be deposited right at the surface (since K goesto zero). In a subsequent
section gravitational flux will be added to governing equation.

1
X ) _
=) 0.1 z=1 m, Linear K
'-'-_ z=3 m, Linear K
g — — z=1 m, Const K
E 0.01 — — z=3m, ConstK |
0.001 | |
1 10 100 1000
Time (S)

Fgure 17. Theintegrated flux at timet at 1m (red) and 3 m (black) from a single puff at
z=0.2 m for a perfectly reflecting surface. The solid lines are for linearly increasing
diffusion coefficient (K=0.16z) and the dashed lines for constant K=1 m* s™.

S0, these results show that for a reflecting surface (i.e., no surface deposition — small
particles) the shape of the eddy diffusivity in the surface layer of the MBL has little effect on the
cumulative integrated flux from a series of puffs. However, the next section will show that
capping the MBL has an important effect.

Case 3. Plumesin a capped boundary layer, with a reflecting surface and no gravitational
settling

In al the prior cases the vertical domain is unbounded and particles continue to flow
upward indefinitely. However, the MBL is usualy capped by a potential temperature inversion
that effectively traps the sea-salt particlesin the MBL. A more realistic profile for the mixing
coefficient, K(z), which capsthe MBL at aheight H is given by

K (2) = ku.z(1- ﬁ) (20)
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k and u- are the von Karman constant and the friction velocity, respectively. This form of the
diffusion coefficient retains the linear increase in the surface layer, is a maximum in the center of
the MBL, and goes to zero at the top of the MBL. The solution for this form of the eddy
diffusion coefficient is given by Nieuwstadt (1980) in terms of Legendre polynomials, P,(2),
where n isthe order of the polynomial:

Q¢ . 3 a&h 0,2z
N(zt)=—al+Qq (2n+1)Pc—- 1-Pc—- 1—Exp nn+1— (21)
(zt) Hgl a( )P T T U %u
where Q=1 for aunit puff and k=ku-. The flux isfound by term-by-term differentiation
z 9dN(zt)
F(zt) =-kzgl- ———— 22
(20) = -l 2= (22)

Likewise term by term integration from t=0to t=t givesthe integrated flux, FI(z,t), a height z
and timet for asingle puff. Explicitly,

1. ] kt 0
&'Zh odP(x) :1 EX 8 n(n+1) H %

(23)
e H g dz n(n+1)

FI(zt)=- z(1- —)a (2n+1)P8

where x:%-l,and

dP, _ dx dP, _ 2 én{xP(x)- P, (¥}u (20
dz dzdx HE X -1 H

The expression used here for the derivative of the Legendre polynomial can be found in
Abramowitz and Stegun (1964).

The concentration, as afunction of height, from asingle puff in aMBL capped at 100 m
is shown for times of 50, 100, 500 and 1000 seconds in Figure 18. The curve at 1000 seconds
indicates the particles are well mixed over aheight of 100 m. For unit puff, the final result
should be a uniform concentration of 0.01m™.
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Fgure 18. Concentration as function of height at 50, 200, 500, and 1000 seconds for
capped MBL and reflecting surface.

Figure 19 plots S(zt) for 1 to 100 puffs separated by 20 seconds at heights of 2, 10 and
50 meters. At 2 m the upward flux approaches 0.05 (asymptotic limit would be
(0.98)(.05)=.049). Sinceonly half the particles are found above 50 meters the source flux at 50
m would be only .025. The flux at 50 m is much different in the capped case than in the

unbounded case (Case 2). Therefore the height at which you measure the flux and the height of
the MBL will affect the measured flux.
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Figure 19. S(zt) for the capped case at 2, 10 and 50 meters. Puff interval is 20 seconds.
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Twenty terms of the seriesin equation (21) are more than adequate to evaluate N(z,t) and
F(xt). However, the seriesfor Fl(zt) exhibited an oscillation around the mean profile when
plotted as afunction of z. The amplitude of the oscillation decreased and the frequency
increased as the number of termsin the series increased. We carried out the calculation for
Fl(zt) [and S(zt)] using up to 120 terms, at which point the amplitude was very small but still
visible when plotted as afunction of z. The oscillations do not affect Figure 19 because the plot
isafunction of time at fixed z. A similar but less predicable behavior was observed with the
series solution to be described in the next case where we also have an infinite series.

Case 4. Gaussian Plumeswith specified surface deposition, capped boundary layer,
K=constant and no gravitational settling.

In the prior cases we have assumed that the earth’ s surface was either a perfect reflector
or a perfect absorber (with avery unrealistic constant K(2) all the way to the surface). We now
consider the more realistic case where there is partia absorption at the surface determined by
specifying a deposition velocity for surface deposition. Note that thisis not equivalent to
including gravitational settling; thisis only aboundary condition and includes only the effects of
deposition at the surface viaimpaction, Brownian diffusion, etc. Also, asin Case 3, the
boundary layer is now capped by areflecting surface at height H to simulate the finite depth of
the MBL. The solution to the diffusion equation (Eqg. 1) for these boundary conditionsis given
by Seinfeld [1986] and Seinfeld and Pandis [1998]. Following the same procedure as before, the
horizontal dispersion can be separated from the vertical dispersion by separation of variables.
The solution in the x-y plane is the same as in the last section and the solution of the vertical
dispersion of the concentration, N(z,t), from a puff at height h and at time t=0 is given by
Seinfeld [1986] as

N(zt) =28 (12 +b2)cosl ,(H - h)]cosll ,(H - 2)]

) H(l 2 + b2)+ b Exp(- I iKzt) (25)

where h isthe height at which the puff isintroduced and | ,, are given by the roots of

| tan( H)=b (26)

and b=
K

z

The solution satisfies the surface boundary condition

de'\'éz’t)? =v.N(0,1) 27)
e Z g,

where vq4 here is the deposition velocity referenced to the surface concentration. Asthe surface
concentration changes so does the surface gradient, and both have the same time dependence at
the surface, such that the deposition velocity remains constant with time. The surface deposition
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resulting from al mechanisms included in the deposition velocity must be reflected in the surface
gradient as required by the differential equation which allows only for gradient transport. At the
top of the boundary layer the domain is capped by requiring the flux be zero (no concentration
gradient).

In the cal culations to be given here the value of K, is set to 5 m® s?, the sourceis located
at one-half meter (h=0.5 m), the boundary layer is capped at 100 m, and v4is0.0065 ms*, a
deposition velocity roughly equal to that of a5 mm radius particle at wind speeds of about 10 m
s* [Hoppel et al., 2002]. The deposition velocity has both a gravitational settling component of
about 0.004 m s* (sea-salt particles at 80% RH) and an impaction component of about 0.0025 m
s'. We note here that since the gravitational component is large compared to the non-
gravitational component the gravitational settling should be (but is not, as mentioned above)
included in the differential equation. It will be included in the results presented in Section 111.
Particles smaller than 5 mm will generally have deposition velocities that are much smaller. The
value of K;isnominally that found at a height of about 30 m in the MBL for neutral conditions
and wind speeds of about 10 ms™*.

The solution for the vertical profile of concentration from a single puff at 20, 60, 100 and
500 seconds is shown in Figure 20. The number of termsin the sum used here is 50, but less
than 10 is needed to capture the concentration profile. It is seen that the particles are nearly
uniformly distributed after 500 seconds. Since particles cannot penetrate the upper boundary at
H=100 m and loss at the surface is small on the time scales shown, afinite, nearly uniform
concentration is obtained after about 500 seconds. There will be afurther slow decay of the
uniform concentration with time due to surface deposition. The nearly uniform profile during
the decay isindicative of the quas steady state.
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Figure 20. Concentration vs. height with K,=5 m? s, v4=0.0065 m s* and H=100 m at
times of 20, 60, 100 and 500 seconds.
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Equation (25) can be differentiated term by term to give the gradient, as follows:

MN(zt) 512 +b?)cosl ,(H - h)sin[l ,(H - 2)] L
T = 221 H 2 +b))+b Exp( I nKzt) (28)

The vertical profile of the gradient (negative of the flux, -F/K,) resulting from a single puff is
shown in Figure 21 at times of 20, 60, 100 and 500 seconds.
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Figure 21. Concentration gradient vs. height for K,=5 m? s, v4=0.0065 m s* and H=100
m at times of 20, 60, 100, and 500 seconds.

The downward flux (positive values of the gradient) near the surface is very small and
difficult to detect in Figure 21 in comparison to the large upward flux during the first 100
seconds or so. The zero crossing (point where the flux changes direction) is slowly moving
upward with time. The critical height where the flux changes direction is shown in Figure 22
and found numerically by locating the zeros in the concentration gradient, Eq. (28), as afunction
of time. The critical height does not reach 10 m until after 400 seconds. Thisis much slower
than the upward propagation of the crossing point shown in Figure 5 for total absorption. For
total reflection, v4=0, the flux is aways upward. Since the deposition flux is much smaller than
that observed for the case of total absorption, the solutions here more closely resemble that of
reflection than that of total absorption over short time periods. However over longer time
periods the loss to surface deposition is significant.
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Figure 22. The height at which the gradient changes sign (the flux changes direction) vs.
time for Case 4.

As demonstrated in the last section, the instantaneous value of the flux (as demonstrated
in Figures 8 and 12 for total reflection and total absorption) is of little interest since
measurements and parameterizations in numerical models deal only with average values over a
large number of whitecaps. And as also discussed earlier, the total integrated flux per puff,
Fl(zt), is an important function which indicates the length of time for equilibrium to be reached.
For a perfectly reflecting surface we saw that equilibrium is never achieved and the particle
concentration increases indefinitely. Fl(zt) isfound for this case by integrating Equation (28)
from time zero to timet. Term by term integration of Equation (28) over atime interval from
t=0to timet is equivalent to replacing the exponential factor for the time dependence by a new
factor equal to

1
[ 2K

n z

[(Exp(- 12K t)- 1] (29)

For the integrated flux, FI(zt) (a measure of the number of particles above height z), the series
solution converges very slowly and 100 terms in the sum were used. The total integrated flux
from a single puff is shown in Figure 23 over atime period of 3.3 hours at heights of 2, 4, and
10.7 meters. Near the surface nearly all particles are dispersed upward, about 90% cross the 2
meters level at timeslessthen 500 s; less at higher atitudes, as expected because the domain is
capped. At longer timesthere will be a slow decrease in the integrated flux as particles dispersed
above make their way back downward and are re-deposited on the surface at arate dictated by
the specified deposition velocity. After 3 hours more than half the particles have been re-
deposited on the surface. This behavior can be compared, although on different scales, to that
shown in Figure 7. For total reflection, the integrated flux goes to unity indicating that all
particles are forever dispersed upward. For total absorption the particles dispersed upward,
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rapidly resettle to the surface giving zero total flux after a short period of time (also
demonstrated in Figure 7).
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Figure 23. Total Case 4 integrated flux from t=0 to timet, for a single puff through planes
at 2, 4 and 10 m. The dashed lineis 1 minus the deposition flux.

Also shown by the dashed line in Figure 23 is the integrated deposition flux obtained
from

Fl e (O,t) =V, t(‘j\l (O,t)at (30)

where term-by-term integration of N(0,t) can be carried out and is similar to that indicated in Eq.
(29) for the flux. Fl,,(0,t) starts at zero and is unity when all particles are re-deposited. In

Figure 23 we have plotted the quantity, 1.0- Fl,(0,t), by the black dashed line to demonstrate

that the sum of the upward gradient flux measured close to the surface and deposition flux at the
surface is unity - the total source for aunit puff plume. The same will hold for a series of puffsas
will be shown below. While thisis simply a statement of conservation of particles, it has
important consequences in that it demonstrates that a measurement of these two quantities (i.e.,
the (upward) diffusion flux near the ground and the deposition flux via the concentration and the
Vg4 hear the ground) will provide a measure of the source strength. This assumes that the
deposition velocity is known, which unfortunately is often not the case.

In calculating Fl(zt), if too few terms are used in the sum the plot, as a function of
height, exhibits unacceptable oscillations. Asthe number of terms increases, the amplitude of
the oscillations decrease, but what 1ooks like numerical instability develops near and just above
the source. The latter may be due to the accuracy with which the eigenvalues and sum are
calculated. Since the oscillations are seen to be in phase at al times at a given height, they do
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not appear in the temporal plots shown in Figure 23, but as aresult the accuracy of Figure 23 is
somewhat limited by these small oscillations. For the parameters (and software) used in the
calculations, the best accuracy was obtained using about 100 termsin the series.

We now consider this case with a series of puffs. Figure 24 shows particle concentration
as afunction of height, the result of summing Eq. (25) over a series of 100 and 200 puffs with
puff separation of 20 seconds (total time of 2000 and 4000 s). If there were no loss of particles
the average of the vertical profiles over 100 m would be 1 and 2 m™, respectively. Theincrease
in concentration with time decreases as equilibrium is approached and the gradient decreases
with time. (The calculations above were run out to 1000 puffs with 20 second puff separations
and indeed the concentration was seen to approach equilibrium.) There must always be some
gradient during the filling process. At steady state the filling is complete and the gradient must
approach zero at all heights above the source (because of the upper boundary condition which
requires the gradient to be zero). An average gradient below the source at z=h (0.2 minthe
example), sufficiently strong to direct al newly injected particles to the surface, is established.
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Figure 24. Concentration vs. height after a series of 100 and 200 puffs for 20 seconds
puff separation.

The integrated total fluxes, FISzt), from a series of 250 puffs separated by 10, 20 50 and
100 seconds are shown in Figure 25, which can be compared to Figures 9 and 13 for total
reflection and total absorption. At higher puff frequencies the curvesin Figure 25 are nearly the
same as the reflecting case because thereis little depositional loss for the earlier puffs during the
time required for 250 puffsto occur. For the longer puff separation (100 s), the earlier puffs are
dissipating and contributing little to the time integrated flux. With increasing time the integrated
flux approaches a constant value, indicating no (average) gradient flux. The straight dashed lines
indicate the integrated puff source flux and the difference between the total time-integrated flux
and the diffusion flux is the time-integrated deposition flux. The slopes of these lines are the
average flux at that point in time.
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Figure 26. Upward Case 4 average diffusion flux at 2 m for puff separations of 10, 20,
50, and 100 seconds as a function of the total number of puffs.

The time averaged upward diffusion (gradient) flux S(zt) at the 2 m height for puff
separations of 10, 20, 50, and 100 seconds as a function of the total number of puffsis shown in
Figure 26. Over very long times the diffusion flux will continue to decrease and eventually
S(z,t) will go to zero at which time the concentration at the surface will be large enough to sink
all new particles introduced at h, and the concentration gradient will be in accordance with the
boundary condition given by Eq. (27). Above the source the gradient goesto zero. (If you are
measuring the eddy correlation flux it will go to zero above the source!) The dashed horizontal
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lines give the total puff source flux and the difference between the diffusion flux and the total
source flux is the deposition flux (assuming that the diffusion flux is taken sufficiently near, and
above, the source). Theimportant point hereisthat, for the case where thereisonly diffusive
flux allowed, a measurement of the average diffusive flux plus the deposition flux from a
measurement of the concentration [Eq. (30)], the total puff source can be obtained. Or from a
modeling perspective the puff source can be the source from the surface into the lowest cell and
the removal to the surface is the surface concentration times the deposition velocity. The above
isfor the case that there is no appreciable gradient in concentration across the lowest cell.

The time for a puff to decay is a strong function of particle size. Figure 27 shows the total
integrated flux vs. time at 2 m from a single puff for particlesof 1, 5 and 10 mm radius and
indicates the difference in the time required to establish equilibrium. For a1l nm size particle the
deposition velocity is taken to be 0.0002 m s*. This deposition velocity is appropriate for a10 m
s wind speed and is essentially the gravitational settling velocity - the impaction and Brownian
contributions are negligible for 1nm particles at 10 m s* wind speed. The deposition velocity for
a5 mm particleis as given previously, and that of a 10 nm radius particle istaken to be 0.023 m
s* (gravitational and impaction deposition contribute 0.015 and 0.008 m s respectively). For
the well-mixed case the filling time constant can also be estimated from the H/vy. The estimated
time constant for the above three cases are 6 days, 4.2 hr and 1.2 hr, respectively, which agrees
roughly with the decay times shown in Figure 27. It should be remembered, that for ease of
calculation, we have used an unredlistically low MBL height of 100 m. A more typical MBL
height would be 500 to 1000 m and the time constants given above would increase by afactor of
5t010. Sincethetypical lifetime of an aerosol in the MBL is usually assumed to be about 3
days, the surface deposition for particles smaller than about 1 to 2 mm can be neglected. For
larger particles the neglect of gravitational settling within the body of the MBL, as we have done
in this case, is not valid. Inclusion of gravitational settling will be addressed in the next section.
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Figure 27. Decay with time of the integrated flux from a single puff for particle
radiusof 1, 5and 10 mm. z=2 m.

30



Before leaving this case mention should be made of the effect of varying K. Figure 28 showsthe
concentration profile for K=1, 2, and 5 m? s* 60 seconds after aunit puff. Thelarger the value
of K the more rapid is the upward mixing and dilution near the surface. Since the surface
deposition is proportional to the concentration the surface deposition during the initial dispersion
decreases with increasing value of K (the opposite as in the case for conventiona deposition with
flux downward from above). However the particles dispersed to higher altitudes require longer to
redeposit, increasing deposition at longer times. The integrated diffusion flux near the surface
shown in Figure 23 will always be near unity shortly after the puff and eventually decay to zero.
For example, the time integrated flux shown in Figure 23 decreases more rapidly with time over
about the first 3000 seconds, but has about the same value at the end time (12000s) as shown in
the figure when K is decreased from 5to 1 m? s*. Consequently the change in the integrated
flux from a series of puffs shown in Figure 25 is nearly unchanged when K is changed from 5 to
1 m? s, There was a very small decrease in the curve for Dt=10 s (red curve) because the earliest
puffs were still in the state of more rapid surface deposition (still far from equilibrium). The
above observation isimportant because it indicates that while the value of K may be important in
establishing the rate of change for a single puff, it does not play a mgjor role in determining the
long term value for a series of puffs, provided the gravitational settling term is neglected in the
differential equation (small particles). Aswe will see when gravitational settling isincluded
K(z) isimportant in suspending large particles and determining the gravitationally induced
vertical gradient.
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Figure 28. Concentration profile for single puff at 60 sfor K=1, 2, and 5 m* s™.

The analysis given above assumes that the loss of particlesisonly due to surface
deposition. Additional loss of particles will occur as aresult of detrainment of the particlesto
the free troposphere at the top of the MBL, dilution due to subsidence, and loss by precipitation
scavenging. These processes can have alarge effect on the time constant for achieving
equilibrium, especialy at small radii where the deposition velocity issmall. A more rigorous

31



treatment of the filling time constant and the effects of entrainment, subsidence and precipitation
scavenging can be found in Hoppel et al. [2002, Egs. (21), (24) and (26)].

I1. Puff plumeswith gravitational settling of particles (Cases5, 6 and 7)

When the gravitational settling isincluded an additional flux term occurs, and the
differential equation for the z component can be written as

N - T & (Mo, T n) (30)

It ‘HZe 1z 1z

[11. a. Surface boundary condition. A number of investigators [Godson, 1958; Smith, 1962]
suggest that the appropriate surface boundary conditions for Eq. (31) can be written as

7 dN ~
?K(z)Eng” =v,N(0,t) (32)

i foo

where vq is called the deposition velocity. We believe a more general expression for the
boundary condition at the surface is that the net flux at any time is the difference in the gradient
flux and the gravitational settling flux

?K (Z) d_N + A N u
dz H,-

: =Fou(01) (33)

The net flux at the surface is some function of time, but not limited to the same time dependence
asthe concentration. Thereis no reason to suspect that, in general, the time dependencies of the
concentration and concentration gradient will be the same, asimplied by Eq. (32). EQ. (32)
would obviously be valid for the steady state. In the case where K(2)=kz" (n>0), K(0)=0 and vgq
must be vg. However when vg=0, the only flux to the surface isthe gradient flux and it is
legitimate to impose the boundary condition

dN

& Hz : =vyN(0,t) (34)

SK()

This forces the gradient to have the same time dependence as the concentration at the surface,
and was the boundary condition used in Case 4 [Eq. (27)], and for the totally reflective case the
surface gradient is zero. For the totally absorbing case the boundary condition was not a
boundary condition on the flux, but rather the surface concentration was set equal to zero,
leaving the gradient flux to be determined by the solution. { Note. We could let the surface be at
some height z=d or K(z) have someresidual at z=0 (i.e. K(2)=kz+ D) to account for other surface-
loss processes, but that would require a different solution (boundary conditions) than the one we
are discussing.}
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For the case when vy is not zero a surface boundary condition is more difficult to specify,
but we do not accept the convention given by Eq. (32) as the most general case. Aswill be
apparent in what follows the net flux can be downward while the turbulent /gradient flux is
upward opposing the gravitational settling. In other cases, such as total absorption at the surface,
the gradient flux is downward reinforcing the gravitational settling. For Case 6 below, the
solution for alinear eddy diffusion coefficient derived by Rounds [1955] is accepted and is stated
by later authors to be the solution for the flux boundary condition given by Eq. (32) when vg=va.
However, for alinear diffusion coefficient which goesto zero at the surface, both Egs. (32) and
(33) require that vg must equal vq at the surface. Aswe will see, the time dependence of the
concentration and concentration gradient are not the same. It may well be that Eq. (32), in
general, over specifies the allowable boundary conditions by limiting both the concentration and
gradient. For parabolic differential equations with open boundary conditions, specifying both the
gradient and concentration over determines the solution (Morse and Feshbach, 1953, p. 706).

Case 5. Surface puff with constant K, vg>0.

In the prior three cases we have neglected the gravitational settling of the particle. Any
loss of particles at the surface due to settling, in the prior case, was simulated by a deposition
velocity, but no gravitational effects within the body of the boundary layer were included. For
larger particles the downward gravitationally induced flux isimportant as is the gravitationally
induced vertical concentration gradients. The diffusion equation, similar to Eq. (2), for constant
K and constant settling velocity vgqis

In Kxﬂ2n+K ‘Hzn+Kz‘ﬂ +y I
ﬂt ﬂXz y ﬂyz ﬂZZ [¢] ﬂZ

(35

where the horizontal wind speed is taken to be constant and the observer is moving with the
mean wind speed (horizontal advection terms are zero). If the following substitution is made for
nin Eqg. (35)

vt l,J

n(x,y,zt) =w(x,y,zt) Exp. 8 (36)

]

(Frank and Mises[1943]), Eqg. (35) becomes
W_ g Tw g Tw ¢ Tw (37)

ft CTx Ty Tz

Thisisthe same as Equation (2) for which solutions have already been found in Cases 1 and 4.
Asin the prior cases we can separate out the horizontal dispersion and consider only the vertical
dispersion
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N(zt) = W(zt)Exp| §2K : 4K% (38)

where, as before, N(zt) isthe total number of particlesin alayer dz (particles per unit length
obtained by integrating over the x-y plane).

In EQ. (38) w(z,t) can be the solution provided by Eq. (4) for the reflecting or totally
absorbing surface, or Eq. (25) for a partially absorbing surface. In the limit as vy goes to zero, the
solution will the same as before and satisfy the original BCs. Each of the solutions for w(z,t)
will give different surface boundary conditions for N(O,t) than for w(z,t).

For areflecting surface discussed earlier in Case 1 the gradient of the concentration,
Iw(z,t)/ 9z, was zero at the surface. The reflective BC on the gradient of w(zt) leads to the

following BC on the surface gradient of N(zt).

L refl ZtO
@nzhe Y. 4 Cac = by NOY (39)
e Tz g, 2Kzz ' 2K,

The surface gradient is no longer zero because the gradient is now being advected downward by
gravitational settling.

In terms of deposition velocity referenced to the surface concentration, this BC implies

that
adTN(zt)o - V.N@OD) y
v, = e T _a. =S.y =-—2 (40)
N(O,1) 2 T

The gradient flux at the surface is upward and equal to half the downward gravitational flux.
The upward gradient flux at the surface is the result of constant K, at the surface and necessary if
thereis agravitationally induced gradient in particle concentration. The +vy/2 part of the
deposition velocity in Eqg. (40) isthe non-gravitational part of the deposition velocity and is
analogous to the Brownian diffusion deposition in the case when K(z) goesto zero at the surface
—only here the “diffusion” deposition is unreasonably large and the gradient isin a direction to
oppose deposition not encourageit. If K, went to zero at the surface, asit doesin the
atmosphere, then we would expect the deposition velocity referenced to the surface
concentration to be just the settling velocity as given for the equilibrium case by Hoppel et al.
[2005].

The above procedure of deriving the surface boundary condition by assuming the
reflecting case when vg=0 does not follow the usual convention of imposing a boundary
condition and looking for the solution which satisfies that boundary condition. The difficulty in
specifying the boundary condition is undoubtedly related to the boundary conditions allowable
by aparabolic D.E. equation. We cannot specify independently both the concentration and the
gradient. In the case with no gravitational settling, we specified only the concentration or the
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gradient or, asin Eq. (27), arelationship between the two. Here we have specified the gradient as
zero in the limit as vy goesto zero. Once that choice has been made our options have been
exhausted. In the next section where K(2) goes linearly to zero at the surface, only the
gravitational flux is specified at the surface and we need not specify the gradient. Thisis
probably the reason that those (Rounds [1955 ] and Smith [1962]) who have presented a general
solution to the plume equation when K(2)=kz" and vg>0 do not develop the case for n=0 even
though it islogically the first step.

For ssimplicity we consider the case of the reflecting surface with source at the surface
h=0, such that the equation for w(z,t) isfound from Eq. (4) as

P

wW(zt) = ! expae_z*
RN TER TT3Y

(41)

and (after completing the squares in the exponent) we find

(z+vt) 6
4Kt 5

N(zt) = \/p:IL< t exp%e (42)

where vy is now positive downward.
The vertical gradient of N isjust

Nz _ 2z+vi)
1z 4K t

z

N(zt) (43)

The diffusion flux at the surfaceis

ANo _V
F,Ot)=-K&-2 ="
dlff( ) zgﬂz 2

=0

N(0,t) (44)

Thetotal deposition flux is

AN 6 e 0
F.Ot)=-Kc¢c—= -V N(Ot)=¢c=- v N(Ot 45
00 =-KETS -VNOY=E>- v, 2O (45)

Asfound in the more general case [Eq. (40)], the diffusion flux opposes the gravitational force
and decreases the deposition velocity from vy to vy/2 when the deposition velocity is referenced
to the concentration at the surface.

The concentration and vertical gradient are shown in Figures 29 and 30 as functions of

height at 20, 40, 100, and 200 s for K,=1 m? s* and v;=0.0125 m s, afall velocity which
corresponds to a unit density particles with radius of about 10 mm. The total flux
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Fz)=-K,ENEYY | Ny (46)
e 1z g °

crosses zero and is positive very near the surface. The gradient flux is always upward; it isthe

gravitational flux that causes the flux to be downward at the surface. (Only the gradient —
negative of the gradient flux —is shown in Figure 30).
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Figure 29. Vertical profile of concentration at 20, 40, 1000 and 200 seconds for K=1
m?s* and v;=0.0125 m ™,
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Figure 30. The concentration gradient as function of height at 20, 40, 100 and 200
seconds for K;=1 m* s™ and v;=0.0125 m s™.
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The height at which the net flux changes direction, is shown in Figure 31 as a function of
time. For asingle puff it takes about 10 minutes for the flux to be downward at all heights below
7 meters.
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Figure 31. Height at which the flux changes from downward to upward as a function of
timefor K=1m?s" and v;=0.0125 m s™.

Integration of the flux evaluated at the surface from time zero to timet, givesthe error
function. So that the total integrated flux at timetis

¢ / / / 2t 0
FI(0,t) =1- (Fue (O,t)dt =1+ Errg gt - (47
0 z B

where we have written out the two error function terms to indicate that the first error term relates
to the upward “gravitationally-induced” gradient flux and the second accounts for the
gravitational settling term. FI(0,t), the number of particles above the surface, isinitialy unity
and goes to zero when all the particles are re-deposited and is shown by the dashed light blue line
in Figure 32. Also at z=0

Fly, (0,0) = - \%g NI (0,1) (48)

where NI (0,t) isthe time integrated value of the surface concentration.

The above analysisisfor the flux at z=0. The fluxes can be evaluated at any height at
which we wish to calculate the upward and downward fluxes. In some cases it may be of interest
to consider the fluxes at the midpoint of the bottom cell of a numerical model. The net integrated
flux at z=2 m, found by numerical integration of Eq. (46) is shown in Figure 32 by the solid line
for values of the parameters given above. The fact that integrated flux does not reach unity is
due to the gravitational settling of particles so that they do not reach the 2 m level. Also shown
by dotted lines are the integrated gradient flux and integrated gravitational flux (these are, of
course, mathematical terms not real fluxes). The gradient flux opposes the gravitational flux even
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during the dissipation phase. The fact that the integrated gravitational and diffusive fluxes are
greater than unity results from the fact that the particles are, in effect, being re-suspended by the
upward diffusive force at the surface. We have expanded the time scale by using alogarithmic
scale to show that al particles eventually fall out; in this case (open system) that requires over a
day. However in reality many additional white caps will be encountered during that time period.
The integrated depositional flux, found by using a deposition velocity vy/2, is the difference
between the integrated flux (particles above z) and the total number provided by the puff as
indicated by the arrow in Figure 32.

2.0 T T I ]
= —— Total Flux //
N — — Gravitational / /
E 1.5 — — — Diffusive y / —
R — — Total at z=0 e
X -~ /
=) P y.
L 10— ————— - =
o — / /%
Q // ~ Y,
© F
S05- NP
= S
p= ~
//
0.0 ] | |
109 10?1 102 103 104 10°
Time ()

Figure 32. Timeintegrated flux at z=2 m from time zero to timet for v4=0.0125 m stis
shown by the black line and by the grey dashed line for z=0. Red and blue dotted
lines are the integrated gradient and gravitational fluxes at z=2 m.

The integrated values of net flux calculated from Equation (48) summed over 500 puffs
separated by time intervals of 20, 40 and 100 secondsis shown in Figure 33. The integrated net
flux in Figure 33 is shown as afunction of the number of puffs not as function of time. The
differencein the total integrated flux at the end point is due to the loss between puffs, the longer
the interval between puffs the greater isthe loss. (Since these are unit puffs aline with slope of
one (dashed line) would represent no loss.) The integrated flux for 10 s and 100 s puff separation
is about 55% and 22% that for the case where thereisno loss. Thetotal time for 500 puffs
separated by 20 sis 5000 s (~2.8 h) whereas the total time for 500 puffs separated by 100 sis
50,000 s (~14 h). The results shown are a strong function of the particle size, and we emphasize
that the results shown here are for a particle of radius of about 10 mm radius and unit density.
When the curves become horizontal equilibrium has been achieved and the downward
gravitational flux isjust equal to the upward flux provided by the additional puff.
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Figure 33. Timeintegrated flux from 500 puffs separated by 20, 40, and 100 seconds

at z=0.

The average net flux at any point is the slope of the integrated flux plotted as a function of
time (not of m as plotted in Figure 33). The average net flux (between puffs m and m+1) is
shown in Figure 34 as a function of the number of puffs. The decrease in the flux as the time
interval increasesis aresult of the lower frequency of puffs and the surface loss between puffs.
The average (total) flux goesto zero at long times as equilibrium between the upward gradient
flux is balanced by the downward gravitational flux (steady state). Thisis much different than
the Case 4 where the settling velocity was simulated by including it in the deposition velocity but
not included in the differential equation. In both cases the total flux goesto zero at long times
(indicating equilibrium). In this case the total flux goes to zero because the upward gradient flux
eguals the downward gravitational flux. In the former case the flux went to zero because the

gradient flux approached zero.
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Figure 34. Average net flux as afunction of the number of puffsfor puff intervals of
20, 40, and 100 seconds. The horizontal lines are the average flux if there were
no surface deposition for puff intervals of 20 and 40 seconds.

The curvesin Figures 33 and 34 may be better understood in terms of the definitions
givenin Table 1, which may be written here as

150100 = - § (1 0.100) "
and "
somoy=L. FaOM) o v, Ni(o M) 50
Dt Dt 2 Dt

where Sy is just the source strength of aunit puff and at equilibrium Sl goes to zero and the
source strength is obtained from the average concentration NI/Dt between puffsM-1 and M (or at
time MDt).

Figure 35 shows the vertical concentration profile after 50, 200, 400, and 800 puffs where
the puff separation is 40 seconds. The time for 400 and 800 puffsis about 16,000 s (4.4 hrs) and
32,000 s (8.8 hrs) respectively, where the concentrations are about at their equilibrium value,
where the upward gradient flux and downward gravitational fluxes are equal. The time constant
for awell-mixed column of height H to come to equilibrium is estimated in to be about
t =H /v, =100/0.0125 = 8000s, somewhat |ess (but same order of magnitude) as that found
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here. Also shown is the steady-state profile for a uniform surface source, arbitrarily normalized
to 4 at the surface.

2 VzZ0o
N :4.0Expg — (51)
- K &

During the filling process the profiles are in aquas steady state where the shape of the vertical
profile remains nearly constant during the transient filling process.
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Figure 35. Concentration as a function of height after 50, 200, 400, and 800 puffs
separated by 40 s. Corresponding end times of 2000, 8000, 16,000 and 32,000 s
(4.5 hour). Also shown is the shape of the steady-state profile normalize to a
concentration of 4 at the surface.

Unlike Cases 1 and 2 where the only alowable flux is a gradient flux, here the total
integrated flux can be divided into two opposing fluxes. The blue curve in Figure 36 givesthe
integrated upward flux (solid blue line) and the dashed blue line the downward gravitational flux
for puff intervals of 100 seconds. The difference in the two curves corresponds to the bottom
curve of Figure 33; the net flux. Similarly, the red curves correspond to puff intervals of 10
seconds and the difference gives the upper curve of Figure 33. The magnitude of the curves are
considerably larger than for the net flux shown in Figure 33. Thisis consistent with the
integrated flux for a single puff shown in Figure 32.

41



| |

o 800 - —— Fdiff Dt=20 s >
= — — Flgrav20 s P
o .
Q — — Flgrav 100 s G
3 400 - P A
LL Z
2 200 e
E = - __ -

0 =T | |

0 100 200 300 400 500
No. of puffs

Figure 36. Integrated upward flux (solid lines) at the surface for 20 s (red) and 100 s
(blue) puff separations. The dashed lines are the corresponding downward
gravitational fluxes (at z=0).

In large-scale numerical models where the source of particles and deposition are
calculated explicitly within the model, it is appropriate to input the average upward flux as the
source at some average height of the lowest cell and let the model calculate the gravitational
(surface) deposition and exchange with the cells above. Figure 37 shows the time average
upward flux (source) as afunction of the number of puffsfor puff separations of 20, 40, 100 and
200 seconds (time derivative of the solid curvesin Figure 36). The upward flux is nearly
constant after about 40 to 60 minutes. The upward diffusion (source) flux includes the effect of a
“re-suspension” diffusive force which opposes the gravitational deposition. A measurement of
the diffusive flux would include this effect which reduces the effective deposition velocity by
Vg/2. The corresponding loss from that cell due to downward flux would then be vg (not vy/2)
and the average net flux (Figure 34) goes to zero as equilibrium is approached. On the other
hand if there was a measurement of the average diffusion flux and the concentration, the average
source strength of the puffs themselves could be calculated at any point in time by subtracting

N(O,t) », /2 from thediffusion flux. For example, the difference in the solid red curve and the
red dotted linein Figure 37 is N(0,t) xv, / 2. Here the factor vy/2 is related to the fact that vy/2 is

the non-gravitational part of the deposition velocity. The horizontal red dotted line (at 0.05 isthe
effective source strength of the puff (unit puff per 20 second). Thisistrue at any point in time
during the approach to equilibrium. After equilibrium has been achieved, only the concentration
isrequired to obtain the source N(0,¥) »v, / 2, where here the factor vy/2 is related to the fact

that vy/2 isthe gravitational part of the deposition velocity. The analysis hereisall for a height
of z=0 and no adjustment is made for gradients which may exist between the surface and the
center of the lowest cell in amodel. We emphasize thisis different than the usual case where
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K(z) goes to zero at the surface and the deposition velocity isvy asin Hoppel et al. [2002,
2005].
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Figure 37. Average upward diffusive flux at the surface (excluding gravitational flux)
as function of the number of puffswith puff intervals of 20, 40, 100, and 200
seconds. Dotted lines are the source resulting from the sum of the puffs.

If it is assumed that the surface source is uniform, the differential equation for the steady
state can be written as

dN(2) _

K " =-V,N(2) (52

This equation implies that, at equilibrium the deposition velocity is vg, and the solution can be
written as

N(2) = N(0) Exp(% 2) (53)

By contrast, if we have a sufficiently long series of puffs such that thereisan
equilibrium, in an average sense, between the source of particles from the series of puffs and the
gravitational fall out, the net deposition velocity isvg /2 not vq. Asillustrated in Figure 35 the
shape of the vertical profileisthat given by of the equilibrium profile (and not that given by Eq.
(53) with vq replaced by vq /2.) This paradoxical behavior is difficult to understand. However for
apuff or series of puffs no equilibrium solution exists; i.e., an unbounded region can never be
filled. Itisinteresting to note that the effective deposition velocity for the case where there is
both gravitational settling and diffusive transport to a surface from an infinite region above the
surface, initially uniformly filled with particlesis aso vy/2 (Fuchs [1964], pp. 197-198). In this
regard Fuch’s states: “...deposition consists of a diffusive deposition which occursin the
absence of settling and half the sedimentation which would occur in the absence of diffusion.
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This example shows clearly that serious errors may result ...... by ssmply summing the
individual effects of each.”

Since the diffusion at the surface givesrise to a non-gravitational component of the
deposition velocity it istempting to liken it to the non-gravitational part of the deposition
velocity for the conventional case of deposition when the source is from above, where there is
both a gravitational and non-gravitational component, v, resulting from Brownian diffusion and
impaction at the surface expressed as

Fao = (- Vi - v )N, (54)

ep
Thisis not agood analogy because here v, = - vg/2. The negative deposition velocity is actually
aforce which suspends the particles, not a deposition force. However there is an important
similarity, in that, the effect of the non-gravitational boundary flux at the surfaceis carried in the
diffusion flux above the surface.

In summary, this case where the turbulent diffusion coefficient is assumed to be constant
with atitude givesrise to alarge ‘re-suspension force' at the surface for large particles which
does not exist in the atmosphere. This boundary condition effects the diffusive flux throughout
the MBL and would predict alarger diffusive flux than actually exists.

Case 6. Puff plume with gravitational settling of particles, K(z)=cz, source at z=h

Solutions to the turbulent diffusion equation with gravitational settling and turbulent
mixing increasing with height as some power of z are discussed by Rounds [1955], Godson
[1958], and Smith [1962]. While the solutions given are for a continuous line source, the
solution for a puff plume can be obtained by considering the downwind coordinate as the time
coordinate, as discussed earlier. Of particular interest isthe linearly increasing eddy mixing
coefficients given by K(z)=cz For neutrally stable conditionsc =ku. wherek isvon Karman's
constant and u- is the wind-dependent friction velocity. In this case the only deposition at the
surface is that due to gravitational settling. Equation (33) {and, for this case, aso Eq. (32)}
requires the surface deposition velocity to be vq. The boundary condition at the surface (z=0) is
then

L|m|t c zQ
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for any finite value of the surface gradient.

The solution to EQ. (31) with this boundary condition is given by Rounds [1955] (Also
Casev of Smith [1962]). After assuming the wind profile is constant with height and converting
the downwind coordinate to atime coordinate, Rounds solution can be written as

anho é (z+h)u, @Vhzo

N(t,2) = g—:g—— Expe ot u' é ot E (56)




wheren = vy / ¢, histhe height at which the puff isinjected at t=0, and |, (y) is the modified

Bessal function of order n. For particles smaller than 20 mm and wind speeds less than the order
of 10 m s, the order of the Bessel function, n, will be asmall fraction. Asin the prior cases, the
lateral and longitudinal dispersion about the centroid is taken to be Gaussian (K y=constant).
The concentration as a function of height is shown by the solid linesin Figure 38 for time of 20,
50 and 100 seconds; ¢=0.16 m s, v4=1.25x10> m s™ and n=0.079, corresponding roughly to 10
m s wind speed and 10 nm radius particles. The source height is taken to be h=0.2 m.
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Figure 38. Solid curves are concentration as afunction of height at times of 20, 50 and 100
seconds for 10 mm radius particles; dashed lines are for 20 nm radius particles.

The solid lines of Figure 38 can be compared to Figure 29 for constant K (and h=0).
Here the particle concentrations are initially greater near the surface because of the lower
turbulent mixing near the surface but once the particles reach higher altitudes they are rapidly
mixed to even higher altitudes because of the linearly increasing value of the turbulent mixing
coefficient. The dashed lines give the concentration profiles for 20 mm radius particles (vg=0.05
cm s) under the same conditions and illustrates the effect of more severe gravitational settling
on the concentration profile.

At the surface the deposition flux is only due to the gravitational settling and can be
expressed as
vV, Expae—hg ]
& ct i o
@, _O&Ctg
ctG Y +1ig e
C g

F,(0,t) =v,N(t,0) = (57)
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Equation (57) can beintegrated to give the accumulated deposition from time t=0 to t=t when
z=0

@y, ho
FI, () =tc‘,cd (t)c __&C cty (58)
0 B, 0
C g

where G(x, y) is the incomplete gamma function and G(x) is the complete gamma function.
Since G(x,O) =(J(X), al particles eventually get re-deposited on the surface but because mixing
increases indefinitely with height, the time to complete the deposition become unrealistically
long. Intherea atmosphere the MBL is capped at some height. The net integrated source from
t=0 to t=t must include theinitial unit puff source and isgiven by FI(0,t) =1- FI (). FI(O,t)

is shown by the solid linesin Figure 39 for particles of about 4 nm (red), 10 (blue), and 20 m
(black) injected at 0.2 m and where ¢=0.16 (corresponding to about 10 m s* wind speed). As
pointed out earlier the curves give the fraction of the particles which remain suspended at time't.
For comparison, the dashed lines show the net flux for a constant K=1 m? s*. Theinitial
deposition for the linear case is greater because the upward mixing at the injection height is
much less than for a constant K. However at longer times, particles mixed to very high altitudes
by the linearly increasing eddy mixing take much longer to be re-deposited and the curves for
K=constant eventually cross over those for the linear case.

Integ. Flux

0.0 \ o
0 2000 4000 6000 8000
Time (s)

Figure 39. Net integrated flux, FI(zt), as afunction of time for asingle puff. Solid lines are for

linear K(z)=cz, for particleradii of 4 mm (red), 10 mm (blue) and 20 nm. Dashed lines are
for K=1 m?s™.
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The net integrated surface source flux given above is an approximation because the puff
isintroduced at the a height z=h, and the deposition is at z=0. In fact, a surface puff sourceis
incompatible with a K(z) which goesto zero at the surface, because there is no mechanism by
which particles at the surface can be mixed upward from z=0. The net flux at heights above the
surface will consist of both a gradient flux and gravitational flux and any upward gradient flux
will act as the source at the given height. After considerable algebrathe net flux through a plane
at height z isfound to be

2N 5 : ,€ > 1a(y) u :J
- F(t,2 = czQ—9+ VoN=7—-5 T luny/ | U+v, yN(t, 2) (59)
efzg {tﬁezﬂ L,(y) o o
e a b
where yzz“?z.
c

The flux as afunction of time at 2 m height for a source at a height of 0.2 misshownin
Figure 40 by the solid black line for 10 nm radius particles; the solid green and red lines show
the gradient and gravitational components of the flux. There is a strong upward gradient pulse
during the first 20 seconds or so. At longer times the gravitational component dominates. The
dashed lines are for 20 nm radius particles and illustrates the loss resulting from increased
gravitational settling.

0.05

0.04

0.03

0.02

F(t,2)

0.01

= - o

-

/ Tl L

0.00

z
\
\

L1l II]\\\\\\‘I\\\\\llJ‘J\\\\\\lll\\\\\ll\\‘\\\l\llll

'0.01 1 L I L | L 1 L L |

o
(&)
o
—
o
o

150
Time (s)

Figure 40. The black curveisthe flux at 2 meters due to a single puff introduced at 0.2 meters.
The green line is the upward gradient flux and the red line is the downward gravitational
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flux. Solid lines are for 10 mm radius particles and dashed lines are for 20 mm radius
particles.

Figure 41 gives the integration of the flux through the plane at 2 m shown in Figure 40
over agreatly expanded time span for 10 mm radius particles. The integrated total flux (black
curve) isinitially dominated by the upward gradient flux (shown in green) and reaches a
maximum at about 100 seconds, after which, there is a slow decrease driven by gravitational
settling. Beyond several hundred seconds the curves are similar to those shown in Figure 39 on a
linear plot. The maximum integrated flux reaches a value of about 0.7, indicating that about
70% of the 10 mm particles penetrate the 2 m level before settling back to the surface.
Contrasting Figure 41 with 32 shows that the initial pulse at 2 m is delayed because of the much
smaller mixing coefficient below about 5 m for the linear case. However, particlesthat are
dispersed to higher altitudes take an inordinate amount of time to be re-deposited because of the
extremely large mixing coefficients encountered at higher altitudes. The total flux will
eventually go to zero indicating that an equilibrium can exist for a series of puffs where the
gravitational fallout between puffs will equal the input from the additional puff. (Sincethisisan
open system equilibrium will never totally be achieved.) The integrated diffusive flux reaches its
asymptotic value much sooner than does the integrated gravitational flux. Thisis also seen for
constant K in Figure 32.
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Figure 41. Theintegrated flux (integration of the Flux shown in Figure 40) from time zero to
timet for 10 mm radius particles for asingle puff at 2 meters. The solid black curveisthe
total integrated flux and the green and red are the integrated gradient and gravitational
flux respectively. The black curve can be interpreted as the fraction of particles above 2
meters. Compare to Figure 32 for constant K. The dashed black lineisfor particles of 20
nm radius.
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Lastly we need to consider the effects of many puffs on the integrated flux penetrating a
plane at which we wish to define as the height of the source function. Figure 42 illustrates the
increasing concentration as afunction of height for a series of 25, 100, and 400 puffs separated
by 40 seconds. Solid lines are for 10 mm radius particles and dashed lines are for 20 nm radius
particles and illustrates the effect of size on loss and on the vertical profile of the concentration.
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Figure 42. Profile of concentration resulting from 25, 100 and 400 puffs separated by 40

seconds. Solid lines are for 10 mm radius particles and dashed lines are for 20 nm radius
particles.

The integrated flux (as before) is given by

t=nDt

FIS(zMDt) = § FI(znD) =8 ¢F(zt)dt (60)

n=l g

where the integral iswhat is shown in Figure 41. Figure 43 shows FI1Sz,MDt) for a series of 500
puffs separated by 10 (red), 20, 50 and 100 seconds as a function of the number of puffs (total
time is Dt times the number of puffs). Thelossis greater when the time between puffsis greater.
Figure 43 can be compared to Figure 33 for constant K(z). Thelossis greater in Figure 44
especially at shorter time periods; the different in the two figuresis explained by the different
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K(z) employed in the two cases as mentioned above. The broken lines give the gradient and
gravitational components for Dt=100 s and the difference is just the net curve for Dt=100 s.

At =10, 20, 50, 100 seconds

500 T T T T ]
’ (Gradient§
— 400 — -
» - R
£ - 7 .
™ . B ]
5_ r 7 ]
T, 300 Total
2 E 7 — 3
SR z
= 200 7 ]
wn C -7 ]
L T
: .~ (- Gravity)
100 — ///// T .
0:71~/./“’J}/f./m.‘.l\.l,.\.l,.\.H.\..‘.\..‘.\..‘.m.. .

0 50 100 150 200 250 300 350 400 450 500

Number of Puffs

Figure 43. Sum of the integrated puffs as a function of the number of puffsfor Dt = 10, 20, 50
and 100 s. The solid lines are the net flux and the broken lines for the gradient and
gravitational components for Dt=100 s.

The time derivative [EQ. (10)] of the curvesin Figure 43 isthe average flux. Figure 44
givesthe average net flux at 2 m as afunction of the number of puffs. The average net flux will
continue to decrease with time until equilibrium is achieved. The unreasonable slow decrease
seen in Figure 44 is aresult of the linearly increasing diffusivity with height in the unbounded
region above the surface. The horizontal line shows the puff source flux. Since some of the
particles never reach 2 m and since at longer times the particles above are being redeposited, the
number of particles above 2 m (integrated net flux) is smaller than the number introduced by the
puffs.
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Figure 44. The average net flux (s) at 2 m as afunction of the number of puffs for puff
separations of 10, 20, 50, and 100 s.
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Figure 45. The average diffusive flux (s*) at 2 m asafunction of the number of puffs for puff
separations of 10, 20, 50, and 100 s.
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Figure 45 is the average gradient flux at 2 m from a series of puffsat 0.2 m. The upward
diffusive flux reaches a constant value rather quickly asindicated in Figure 41 for a single puff.
The upward flux leadsto afilling of the (infinite) region above 2 m as shown in Figure 42.
Eventually the concentration will build up to the point where the average downward gravitational
flux will equal the upward flux and an equilibrium will be achieved (in this case of an open
system this would take an infinite amount of time). The upward gradient flux can be considered
the source at 2 m; however, it isless than the puff source at 0.2 m. If we had a numerical model
with the center of the lowest cell at 2 m, it would be appropriate to use the gradient source at the
center as the surface source for the lowest height of the model and calculate the removal flux as
the concentration at 2 m times vg. If we knew the puff source we would have to lower the source
at 2 m by about 17% as shown in Figure 45. This amount can be obtained from Figure 45.

We have not considered the important case where we have both gravitational settling and
anon-gravitational deposition (such asimpaction loss) at the surface. However Case 5, where
the constant diffusivity at the surface gives rise to a non-gravitational flux at the surface,
indicates that the relationship between the puff source flux and gradient flux is more involved
than in either case separately.

Case 7. Puff plumewith gravitational settling; K(z2)=cz, MBL capped at z=H, and sour ce at
z=h.

During the preparation of thisreport it became clear that the prior two cases were too
limited to give areasonable representation of a puff plumein the MBL when gravitational
settling was dominant. In Case 5 the constant diffusivity down to the surface givesriseto alarge
re-suspension force which does not exist in the MBL, where the turbulent diffusivity is very
small at the surface. In Case 6, the unbounded domain in the vertical direction, coupled with a
linearly increasing eddy diffusivity, mixes particles to great heights resulting in unreasonably
long times for the particles mixed to higher altitudes to settle out. In the present case, we have
capped the MBL so that thereis no flux of particles through the top of the MBL at z=H.

The six prior cases were extensions of cases found in the literature. The analytical
solution for this case has not, to our knowledge, appeared in the literature. The problemis
identical to that of the prior case except here the MBL is capped and total flux at z=H isforced
by the boundary conditions to be zero. The solution is now an eigenvalue problem and the
solution isin terms of an infinite series of eigenfunctions—in this case, Bessel functions.

In the derivation that follows, the plume isintroduced at a height z=h, the boundary layer
extends to height z=H and the eddy diffusivity K(z) increases linearly throughout the boundary
layer, asin previous cases.

K(z2)=ku.z=cz

Asdiscussed in Section I1.1, we consider only the concentration of particles N(z,t) in alayer dz
after integrating over the horizontal plane. The differential equation can then be written as
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IN(zt) _ TF(z1)

1
1t 2 (61)

where
F(zt) =- cz‘l]”—T- vyN(z1) (62)

and vy is the gravitational settling velocity and taken to be a positive number. Combining (61)
and (62) gives

2
LIN_ TN gean) ™ wheren =% (63)
c Tt 9z Tz ¢

If we make a change of variable z = x> Equation (63) becomes

2
4IN_TN [+n) N (64)
c it X X X
The following substitution can be made to separate the variables
N(x.t) = X X ()T (1) (65)
H 2

If the separation constant is chosento be - s ?/ H , then the solution for the time dependent part
T(t)is

T(t)=T,ExpE o3 19 (66)
e 4H g

The equation for X(X) is

+X—+6—x*-n2xX =0 67
gH (67)

Thisis Bessel’s equation for which the solution is

X(¥)=¢J,[y)+cd, 6Y) (68)
2 .
where we have set y? :X—geé 22
He Hg
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and where J, isthe Bessel function. J, and J_, arelinearly independent solutions provided n

isnot an integer. If nisand integer then J, must bereplaced by Y, , another Bessel (Weber)
function.

The complete solution can then be written as

2 CS'’t
N(xt) =y c, n@wEXg Z (69)

where we have set ¢,=0 because J_,, blows up at z=0 and T, has been incorporated into the
constants.

The diffusion flux is given by

TN c dN
Fiye (zt)=-Ccz—=- — 70
dlff( ) ﬂZ 2ydy ( )

We can use the following relationship
%[x'"\]n (s X)|=x"3.(s x)-nx"J, (s X)=- x"sJ, . X) (72)

to evaluate (70), where the last step uses the recursion relationship for the derivative J. (s x)
found in mathematical handbooks such as Abramowitz and Stegun (1964).

& CS tO

F t— "™s J,.(s y)Expc
Ay y (SY) pe H g

(72)
Since J,,, goesto zero at z=0 the diffusion flux goes to zero and only the gravitational flux
remains by which particles are deposited on the surface.

If we wanted the diffusion flux to go to zero at z=H, we would need to find the values of
s at which J,,,(s y) =0. Thesevalues, s "**, would determine the eigenfunction J, (s, y)

appropriate for the series solution. This Would be the case for a problem with no fall velocity.
Here we need to set the total flux to zero at z=H. Thetotal flux is

Fu(x 1) = 8 %Am@w-%wwﬁy%ﬂm (73)

If the total flux isto be zero at z=H (x=1) at all times, then s must satisfy the following equation



F)=x3,.09- 2 J,(x)=0 (74)
The roots of (74) determine the eigenvalues, s; , and the solution is given by the series

o CSs. tO
N(y,t)=y" aC.Jn(S y) Exp¢ 3
e 4H g

(75)

We have now to determine the ¢’ s from theinitial conditions at t=0. We can represent
our initial condition as a delta function source at height h at timet=0; i.e., Nod (z-h) at t=0.
Rearranging (75), multiplying both sides by y"** xJ, (s j y) and integrating over the interval
0O<z<H (or O<y<1) yields

1

O Nd(y- vo) 3, (s ,y)dy =8 ¢ dyxd, (5, y) =3, (s ,y)dy (76)

0

[y

o

The orthogonality of the Bessel functions depends on the boundary conditions and the interval.
The following relationship can be obtained from Abramowitz and Stegun (1964)

2

2 _l@ o)y
Gua b )byt Bt n o6, tormen (1)

For m1 ntheintegra iszero. The constants aand b are determined by the boundary condition
a z=h (y=1).

al (X)+bxJ (x)=0 (78)

The boundary condition at y=1 is obtained from the bracketed expression in Eq. (73) in terms of
the derivative of the Bessel function as

-2k kil=o (730)

Itisclear from (73b) that in our case, a= n and b=1 (at y=1). Therefore Eq. (76) yields

o = 2Y"Nod, (51%0)
| 3(s)

n

(79)

and
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where Np is a normalization constant determined by the magnitude of the puff.

The diffusion flux can be obtained by differentiation of (81) or (more easily) from Eq. (72).

F i (y't) &y " 08 s,J (s-y0)>d (S-y) @ cs’to
= y C - 3 i¥n d n+1 | xEXp —|: (82)
N G R i) Ean 5

The gravitational flux isjust

Fya =V N(Z, 1) (83)

grav

The integrated diffusion and gravitational fluxes from timet=0totimet are, respectively,

t N A¥ o -1 A A
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To be consistent with our prior cases the normalization constant, N,, must be chosen to give a
unit puff (normalized to one particle per puff). This can be done by integrating Equation (81) or
(82) from the surface to the top of the boundary layer at times short enough that no particles have
been lost to the surface and choosing N, such that the vertically integrated number is unity.
Carrying out the integration at time 0.01 syields values of 1/N, of 8.3 and 6.2 respectively, for
10 and 20 mm radius particles for a source height of 0.2 meters. The normalization constant,
when determined by the procedure above (where we have used a delta function in concentration
rather than a delta function of the flux) depends both upon vy and the source height, h.
Alternatively, the normalization constant can also be obtained by calculating the total
gravitational deposition over al time and choosing N, such that the total integrated deposition is
unity. It was verified that both procedures give the same values of the normalization constant.
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The concentration, N/N,, as calculated from equation 81 for a unit puff and particle radii of 10
and 20 mm is presented in Figure 46 as a function of height for a source height h=0.2m, a
capping inversion H = 100 m, at 20, 50, and 100 seconds, and is comparable to Figure 38 (Case
5, the uncapped solution).
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Figure 46. N for asingle puff plume with gravitational settling of particles and a capped
boundary layer (100 m) at 20, 50, and 100 seconds as cal culated from equation 80, as corrected
by N, as calculated by integrating N/N, at time=0.01 s. Solid lines are for 10 nm particles,
dashed lines for 20 mm particles.

Comparing Figure 46 with Figure 38 shows the vertical profiles of N near the surface to
be almost identical for this case and Case 5 (uncapped BL ), as could be expected for the
relatively short time intervals of 20, 50, and 100 seconds. Figure 49 plots values for Fl, the total
integrated flux, for the same case (h= 0.2) at alevel of 2 m, and is comparable to Figure 41 for
Case 6. The 2 cases appear similar initialy, with peak values of ~0.7 near 100 s, but over time
the capped case presented here shows that all particles are seen to settle out in times on the order
of 2 to 8 hours (10 and 20 mm particles, respectively). Since the total flux does go to zero,
equilibrium is achieved for a series of puffsin the order of hoursin the capped MBL, whereasin
the uncapped MBL (Figure 41) it required days for equilibrium to be reached! Figure 41 suggest
that for 10 mm radius particles, equilibrium may never be achieved in an atmosphere where the
turbulent mixing increases linearly with height.
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Figure 47. Integrated flux for asingle puff as afunction of time for 10 mm (solid lines)
and 20 mm particles. Theintegrated fluxes (black lines) can be interpreted as reaching O at time
of ~30000 s/ 8 hours (10 um) and 7000 s/2 hours (20 um). Compared to Figure 41, where the
total flux (black) approaches zero over much longer times, here having the boundary layer
capped at 100 m produces a much faster decrease with eventual removal of all particles
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Figure 48. Concentration profiles for 25, 100, 400, 800, and 1000 puffs, separated by 40

seconds. Solid lines are for 10 mm radius particles and dashed lines are for 20 mm particles. The
dashed lines for 400 and 800 puffs are overlain by the 1000 puff (blue) line.
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Figure 48 details the concentration profiles for a series of 25, 100, 400, 800, and 1000
puffs occurring regularly at 40 second intervals, and is comparable to Figure 42 for case 6. It
appears that sometime between 800 and 1000 puffs (8-9 hours) a steady state is reached for 10
mm particles (solid lines), where the flux of new particlesis balanced by the gravitational loss at
the surface (as seen by the constant vertical concentration profile), and after only 100 puffs for
the larger 20 mm particles. Figure 49 shows the sum of the integrated fluxes from a series of
puffs (i.e., the total number of particles) at a height of 2 m for 1 to 500 puffs with a Dt of 10, 20,
50, and 100 seconds for 10 mm particles. The dashed lines give the gradient and gravitational
components of the flux for Dt = 100 s.

Figures 50 and 51 show the average diffusive and net fluxes, respectively, for this series
of puffs. Unlike the case 6 results, here for a puff separation of 100 s, the integrated flux nearly
levels off at ~300 puffs, indicating equilibrium, which is also indicated in Figure 51 where the
average net flux approaches zero. Figures 49 — 51 are plotted as the number of puffs. To view
as afunction of time the horizontal axis must be adjusted to account for the different time
intervals.

The average diffusive fluxes depicted in Figure 50 can be considered the source flux to
use as inputs to numerical models that separately calcul ate deposition via gravitational settling.

500[ T R A A A ]
" 400" (Gradient) /,/ ]
E - e ,.“jl
(ap] C e < ’,/' 1
S 300 T E
n - s 7" (-Gravity) -
> r B .
= C .
~ 200 E
) - ]
L C ]
100 =
0’-:""'.".‘|‘ ‘‘‘‘‘ [ [ R 1

0 100 200 300 400 500

Number of Puffs

Figure 49. FIS, the sum of integrated puffsfor 1 to 500 puffsfor Dt of 10 (red), 20 (green), 50
(blue), and 100 (black) seconds at a height of 2 m for a source height of 0.2 m for Case 7.

As seenin Figure 45 for case 6, this flux isless than the flux at the source at 0.2 meters
(shown in the dashed lines) due to surface loss before mixing up to 2 m, and the values are very
similar to those in Case 6. As stated previoudly, the flux values shown in Figure 50 would be
appropriate source fluxes for anumerical model with the center of the lowest cell at 2 m.
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Figure 50. Average diffusiveflux, Sl, at 2 m as afunction of number of puffs and puff
separation of 10 (red), 20 (green), 50 (blue), and 100 (black) seconds for Case 7. Dashed lines
indicate the source flux at the source height of h = 0.2 m.
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Figure 51. Average net flux, S, at 2 m as afunction of number of puffs and for puff separations
of 10 (red), 20 (green), 50 (blue), and 100 (black) seconds for Case 6. Dashed lines indicate the
source flux at the source height of h =0.2 m.
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V. Summary and Interpretation of the puff cases
V. A. Summary of puff plume cases

1. Totally reflecting surface. For the case of areflecting surface the upward flux of particles
from a series of whitecapsisjust the sum of the fluxes due to the individual whitecaps. The
average source flux can then be obtained by time averaging the individual puffs. Even though
the concentration of particles keeps increasing with time, aquas steady state can be defined
during the filling process. Since the deposition loss of submicron particlesis small during their
lifetimes in the atmosphere, the reflecting surface approximation is valid for many applications
where the calculation of the concentration of particlesin the MBL is desired. These small
particles are removed by precipitation scavenging events, detrainment into the free troposphere,
or diluted by subsidence. If the flux per whitecap or unit of white cap areais known from
subsidiary measurements over the ocean or from laboratory measurements, that information can
be applied to the MBL (as discussed further in Section V). The source flux can also be measured
directly by correlation techniques with no appreciable correction for surface deposition. Figure
10 shows the constant source flux, after an initial transient. The source flux is proportional to the
white cap frequency. If the vertical domain is capped, the measured source function will be a
function of height, z, since the volume to be filled above z decreases with height (Figure 19).

The actual profile of K(2) isnot very important - regardless of the profile in the surface layer the
particles rapidly become well mixed (Figure 17).

2. Case of thetotally or partially absorbing surface and no gravitational settling termin the
differential equation. In this case where loss occurs through processes which occur only at the
surface, the only mechanism of transferring particles above the surface is via the gradient flux.
For asingle puff thereis an initial upward flux near the surface, which disperses particles
upward, followed by a period where the gradient reverses direction and the particle flux is
downward at the surface thereafter. We have shown that if there is a continuous series of puffs,
the average flux will be upward at every altitude above the source. However this average flux
will decrease with time as the MBL fills. The increased concentration increases the surface
deposition flux, which will eventually equal the source flux. The average upward source flux is
entirely agradient flux and includes all source and deposition effects occurring at the surface.
Initially the gradient flux will be upward and equal to the puff source strength asin the case of a
totally reflecting surface. Asthe concentration in the MBL builds up the gradient above the
source weakens, decreasing the upward flux, and the gradient below the source strengthens
driving more of the newly injected particles back to the surface. During this transient phase the
ratio of the newly injected particles diffusing upward to those diffusing back to the surface
continues to decrease, but the sum of the upward diffusive flux and the downward deposition
flux is equal to the puff source flux (Figures 25 and 26). Correlation measurements of the flux
(viawind speed and concentration fluctuations) over the ocean measure the gradient flux and
therefore would correspond to the average diffusive flux as we have calculated here; i.e., include
the effects of surface loss. This correlation flux will aso be changing with time and will
eventually go to zero (for capped MBL). Thisfina equilibrium state may never be reached if
other removal mechanisms become important over the lifetime of the particle. Indeed, the only
time equilibrium is expected to be reached in the MBL are for particles where the gravitational
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flux plays a dominant role, as discussed next. While this case is appropriate for the deposition of
many gaseous/ scalar contaminants, it is of very limited applicability to particle deposition.

3. Including gravitational settling in the diffusion equation (cases5 - 7). For particles where the
deposition due to gravitational settling is an important loss mechanism, the gravitational settling
term should be included in the differential equation asin Equation (31). Only in this case can we
obtain equilibrium between the upward (gradient) flux and the downward gravitational flux.
Only in this case do we have a deposition flux which is not contained in the gradient flux. In
Case 5, for simplicity, it was assumed that the turbulent diffusivity was constant with height,
giving rise to an unreadlistically large diffusive effect at the surface that contributed to the
deposition velocity (reducing the deposition velocity for a surface source). Inthe more realistic
Case 7, the turbulent diffusivity goesto zero at the surface and the correct deposition for a
surface source isjust vy, as shown for the equilibrium case in Hoppel et al [2002, 2005], and very
nearly vy in the steady-state (filling) case (Hoppel et al. [2005]). If there are additional |osses at
the surface, in addition to gravitational settling, these must be reflected in the gradient flux. The
reason for thisis, of course, that there is no other mechanism to transmit surface effectsto the
interior of the MBL.

Table 2. Summary of cases

Case| DE includes K(2) Lower boundary | Upper
gravitational condition boundary
settling (vg)
la No Constant Fo=0 Unbounded
Total reflection
1b No Constant n(0)=0 Unbounded
Total absorption
2 No K(2=kz Fo=0 Unbounded
(Linear) Total reflection
3 No ZH Fo=0 Reflective at z=H
K(2) = kzgi- Ho Total reflection Top of BL
e @
4 No Constant Dep. velocity, vq limited | Reflective at z=H
5 Top of BL
F=k&ENQ —yn, | P
edZ 3o
5 Yes Constant Kaejn o _ Vv, N Unbounded
gdz g, 2 °
6 Yes K(2)=kz F,=V,N, Unbounded
(Linear)
7 Yes K(z)=kz F, =V,N, Reflective at z=H
(Linear) Top of BL
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All the cases have limitations. The most realistic cases are Case 4 for small particles (and
Case 3 in the limit of negligible surface deposition), and Case 7 for large particles. For small
particles the particles become well mixed throughout the BL so that the concentration profileis
only weakly dependent on the mixing coefficients, K(z), and the height of the BL becomes
important in confining the particles to the BL. For Case 4, unlike Case 1b, the loss to the surface
can be limited by specifying the deposition velocity, even though K remains constant down to
the surface. The small particle case is similar to the description required by trace gases. By
contrast, large particles require that the gravitational settling be included in the differential
eguation. If the particles are large enough they will fall out before reaching the top of the BL
and the profile of mixing isimportant in determining the gravitationally induced gradient. Case
6 isunrealistic in that it predicts an unreasonably long time to reach equilibrium — aresult of the
linearly increasing diffusivity coupled with unbounded vertical domain. In Case 7, the MBL is
capped and gives a more reasonabl e estimate of equilibrium and the time to reach equilibrium.

Case 5 added settling velocity to the perfectly reflecting case. There we showed that any
solution for a constant K and a gravitational settling velocity could be transformed to a solution
which included a constant settling velocity vy. We developed Case 4 which included a non-
gravitational deposition velocity v, (actually called vq4 in Case 4) and a capped MBL, such that it
also included gravitational settling. We do not have time to present that case here. Sufficeit to
note that since K is constant down to the surface this case suffers from the same defect as Case 5;
namely there is alarge gravitationally induced gradient term at the surface. The deposition
velocity becomes vy=Va+Vy/2 rather than vy/2 asin Case 5 [Eq. (45)].

IV.B. Aninterpretation of the flux resulting from a series of puff plumes

The net integrated source from a series of puffs, discussed in last sections and shown in Figures
10, 14, 19, 26, 34, 37, 44 (45 for the source flux), and 51 (50 for the source flux) is the average
flux at agiven time and at a specific height z, from a series of puffsintegrated over the entire x-y
plane from all the prior plumes, in various degrees of decay. {In going from Eq. (3) to Eqg. (4) we
have integrated over the x-y plane and kept only the vertical variation for agiven puff.} To
tranglate the prior results to source per unit area, more needs to be specified about the horizontal
distribution of white caps and exactly what our puff plumes represent. Real white caps occupy a
finite area, and grow and decay over a number of seconds. Our unit puff plumes occur as adelta
function in time and space. To relate our puff plumes to quantitative values, the unit source
strength must be given a magnitude that represents the source associated with a whitecap of
specified spatial and temporal extent. For example, the strength of the puff could be normalized
to the source strength per square meter of whitecap during its several second lifetime. To
illustrate the connection of the calculations in the last section to average surface fluxes we will
here assume that the white cap frequency, f, (number of white caps per m? per second) is known,
rather than the more usual specification of fraction, W, of the ocean surface covered with white

caps.

For the purpose of visualization, a horizontal grid with the x-direction orientated in the
direction of the wind is constructed as shown in Figure 52. The grid spacing in the direction of
the wind is Dx=uDt and the y-grid spacing is Dy. Now consider the symmetric case where (white
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cap) puffs occur at the midpoint of each fixed grid cell at arate such that an advecting
rectangular column, whose base has the area of agrid cell, receives a puff when the midpoint of
the column passes over the center of agrid cell. The cell length in the x-direction is thus Dx=uDt
where u is the mean wind speed and Dt is the time between puffs as used in calculations given in
the prior sections. The average source flux calculated in the prior sectionsis thus the flux
passing through a horizontal plane at a given height z within the advecting column. Initially the
puff will be contained within the cell boundary, so that the average flux within the cell boundary
isthe flux per area of the cell. Asthe puff disperses, the horizontal boundary of the puff will
extend beyond the boundary of the cell and the flux will be too large if the area of the cell is used
asthe normalizing area. However for the symmetric case shown, the excess flux that is outside
the boundary of the cell in which the given puff occursisjust the amount that enters the cell

from puffs occurring in adjacent cells. Asan example, consider the case where the whitecap
frequency isf=10" m? s, awind speed of 10 m s™, with puffs occurring every 10 seconds; then
Dx=uDt=100 m, resulting in Dy=10 m ( f DtDxDy =1). We have chosen the grid size such that
one puff occurs on average every 10 seconds in the advecting column. The flux Sl(z,t)
calculated in the prior sections for a series of puffs would then be the flux per area associated
with the area of the cell, A;= DxDy = (fDt)* (whichis 1000 m? in the example). Eventually, the
unit puff must be scaled in accordance with the strength of the white cap. The flux per m? within
the grid is given by

S(z.t) = S(zt)

= £ 9 (z Dt (86)

where Dt is the time between puffsand S, as before, is the time averaged total flux (s*) resulting
from a series of puffs separated by time Dt. S (zt)Dt is the number of particles crossing the
horizontal plane within one cell and S(z,t) is the number per unit area per unit time. { The Dt in
Eq. (86) and the Dt used to calculate S must be the same.} Since every cell isthe same, thisflux,
S isasothelarge areaflux. Inthe case of no surface deposition, S isinversely proportional to
Dt so that Sdepends only on f and not on the Dt (except as SI depends on Dt).

While the probability of the highly symmetric case illustrated aboveisinfinitesimal, itis
one redlization of anearly infinite number of realizations, which corresponds to the given value
of whitecap frequency. It is not unreasonable to postul ate that the average of all realizations that
give asingle whitecap frequency will behave similarly with respect to overlapping plumes, as
does the symmetric realization.

The above analysis can only be expressed in terms of white cap coverage, W, if
additional information on the size and duration of the white cap is known. Whitecaps are
assumed to form over aninitial area Ay and then decay with an exponential time constant
t (Monahan et al., 1986), so that the average white water coverage over an arbitrary time interval
Dtisjust
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where the approximation holdsif Dt>>t . From experimental observations an appropriate value
for t isabout 3.5 seconds (Monahan et al., 1986)

A AL
W=—2£= =(AL)f 88
R (Act) (89)
f is the white cap frequency (number per unit area per unit time). In the example of the prior
paragraph, the white cap coverage for awhite cap area of 1 m? would be 0.035%.
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Figure52. Moving columns with base the same as the fixed grid advect with the wind. Moving
columns encounter puffs when they pass over the center of the fixed grids.

The importance of the above illustration is not in the numerical implementation, but in
illustrating that the consequences seen in the series-of-plumes analysis are applicable to the
source function formulation.

The net flux (in units of s* m™) is then given by Eq. (86), which can be expressed as

S(Z,Mm):w: f S (z,MDX)DX = f FI (z,MDt). (89)

g

For areflecting surface, after a significantly long period of time Swill be the source function
and, for puffs of unit strength, isjust equal to the white cap frequency. To be useful we must
have experimental data to assign a magnitude to the puff. Thiswill be discussed later. For an
absorbing surface, after a sufficiently long period of time the net flux will go to zero indicating
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the system has reached a steady state. For the case when v4=0, this requires that the gradient in
concentration be zero above the source. (Below the source there would be a constant gradient
driving the newly formed particles to the surface.) Aswe have seen in Case 4 where vg=0 and
small deposition velocity, the time to reach equilibrium for small particlesis much longer than
the lifetime of the particle and the source approaches that of areflecting surface, FI(z,¥)=1. In
the case of large particles (Case 5-7) where vy isincluded in the differential equation, equilibrium
is reached where the upward diffusion flux is balanced by downward gravitational flux.

Fl (z,¥) can be divided into two parts, an upward diffusion flux and a downward gravitational
flux, asin Figures 50 and 51. Thetotal FI(z¥) will eventually go to zero indicating
equilibrium has been achieved, at which point the upward diffusion flux is balanced by a
downward gravitational flux. In the latter case, when parameterizing the surface sourcein
numerical models, it is useful to consider the upward gradient flux as the source in the lowest

cell of the model and the model calculates the gravitational deposition. In the latter case only the
upward flux would be used in Eg. (89) to calculate the source asin Figure 50.

In terms of the white cap coverage the source function for unit puffs can be written as

S(z,lvlot)=\’v’6'(2'\:'”)><Dt =§8XV %1 (2, MD) (90)

\{ @

Here, if the flux is associated with the flux per unit area of white cap, then Ay.=1. Fl(zt)isa
function which adjusts the flux for the loss resulting from surface deposition and the height at
which you need to apply the flux. Application of these equations when experimental data on the
source strength is known is discussed in Section V.
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V. Implications of the above analysisto the surface sour ce and deposition in
lar ge-scale numerical models

The horizontal grid size used in high-resolution mesoscale and global models range from
several to hundreds of kilometers. Atmospheric processes that occur on the scale less than a
kilometer cannot be resolved by these models, yet processes occurring on the scale of meters
have a magjor effect on large-scale meteorological simulations. Since the meteorological models
cannot resolve these smaller scale influences, the small-scale processes must be parameterized in
the meteorological models. Examples of small-scale phenomenathat must be parameterized are
cloud formation, precipitation, and effects related to the BL turbulence, such as momentum,
moisture and heat transport in the BL. When aerosols are added to large-scale models, similar
parameterizations are required, such as turbulent transport of particlesin the BL, surface
deposition, precipitation scavenging and exchange between the BL and the FT. In order to
supply realistic parameterizations, it is necessary to solve the small-scal e transport problem and
then parameterize the effect for use in large-scale models. Hence micrometeorologists study the
BL dynamics to understand the mechanisms of momentum, moisture and heat transport, and
derive parameterizations that simulate these effects in meteorological models. Likewise,
production of sea-salt aerosol generated by highly localized and intermittent whitecaps and
subsequent dispersion and deposition must be parameterized to obtain a SSASF and deposition
velocity appropriate for the large scale averages required by meteorological models.

Before proceeding with the SectionsV and V1, it is helpful to review key elements of the
derivation of the turbulent diffusion equation used in the prior analysis and used in numerical
models.

V.1. Theturbulent diffusion equation

The conservation equation for a given particle species of concentration n(X,t) isjust

MR- F--R (91)
It

wheretheflux is
J=(v+vg)n- v,nZ- DNn (92)

v isthefluid velocity, v isthe gravitational settling velocity and Vs isthe “dip” velocity, which

accounts for any motion of the particle relative to the fluid, in addition to the gravitational fall
velocity; e.q., inertial effects on the particle resulting from acceleration in the turbulent eddies.
D isthe ordinary diffusion coefficient and Ss and R represent any volume sources and sinks, if
present. The over arrow indicates vector quantitiesand Z isaunit vector in the z-direction.
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Following the standard procedures which can be found in most micrometeorol ogical
textbooks, the variables are represented by atime-average value (in brackets) plus a fluctuation
component denoted by primes

n=<n>+n'

-

V=<V >+ (93)

—_—

V. =<V >+V =V

where the average dlip velocity istaken to be zero. Substituting (93) into (92) and taking the
time average yields

%m (3)=(ss- (R (94)
and

<3> = <\7’ n'> + <\7><ﬂ> - v (myz+ <\§ n'> (95)

The Brownian diffusion term can be neglected except in the molecular sub-layer very near the
surface where it can be included in the deposition velocity. The last term, which represents the
flux due to the correlation of the slip velocity with the particle concentration can be important for
large particles where the aerosol trajectory can deviate from the fluid velocity due to inertial
effects. Here we confine our attention to particles that are sufficiently small that inertial induced
fluxes are negligible.

First order closure is obtained by assuming the turbulent (eddy) diffusion approximation
holds and is given by

<\7’ﬂ'> =-K(x,y,2N<n> (96)

Closure allows the correlation term to be written in terms of the average (bulk) variables without
solving for the fluctuating components. The brackets are thenceforth omitted with the
understanding that all variables are the average values, averaged over sufficient time such that
the averages include the effect of the turbulent fluctuations of al scalesimportant in the BL,
such that the time average of the prime quantitiesis zero. The turbulent diffusion equation is
now Eg. (91) where the flux density is given by

J=vn- K(x,y,2Nn- v,n (97)

The solution for a puff plume is the solution to the diffusion equation with R=0 and
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S=Sd(X- X,t- ) (98)

where the puff occurs at time t, and position X . In keeping with the assumption in the above

statistical averaging, the puff plume cal culated from the turbulent diffusion equation does not
represent any single puff plume but the average of alarge ensemble of puff plumes.

If we wish to view the dispersion of the particles in a coordinate system moving with the
wind velocity v,

—=—+N-nv=N- (K(xyz)Nn+v n)+S R (99)

where Dn/Dt is the change in the coordinate system moving with the wind. In our prior analysis
we assumed that Ky and K, were constants so that the x and y profile of the plume is Gaussian.
Integration over the x-y plane gives the number of particles N (per unit length) in alayer dz. (See
Equations (3) and (4).)

¥ ¥

N(zt) = OO n(x,y,zt)dxdy (100)
and o

DN Na, 1

Erar NCEme A wow

The solution of this equation for a unit puff at timety and position zy, Ss=d(z-2,t-tp), isthe
Green’ s function solution for a given set of boundary conditions.

V.2. Large scale model requirements

The general dynamic equation for aerosols used in large-scale models include terms for
coagulation, condensational growth, etc. (see Fitzgerald et al. (1998)), in addition to the
advection and turbulent mixing of aerosol particles treated here. In larger-scale models, aerosol
particles are advected and mixed according to wind fields and turbulent mixing coefficients
generated within the model, and the particles fall at arate determined by their equilibrium size at
the relative humidity determined by the model (Fitzgerald et al. (1998) and Caffrey et al.
(2006)). The resolution of aerosol propertiesis thus limited to the spatial and temporal
resolution of the large-scale model. The limitations imposed by the lack of resolution of large-
scale models are not severe for some aerosol-modeling applications. Concentrations of highly
dispersed small particles may not vary significantly over the grid size and time step of the large-
scale model far from localized point sources (such as industrial and combustion sources).
However, for large particles the gravitationally induced vertical gradients may be too large to be
resolved by the vertical cell spacing of large-scale models and fallout of large particles may be
significant over asingle horizontal grid spacing. Near localized sources or intermittent sources,
horizontal inhomogeneities can be very pronounced. Since the horizontal concentration
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variations cannot be resolved they must be replaced by an appropriate average value assumed to
be horizontally homogeneous over the horizontal grid spacing. Unlike industrial and combustion
sources, whitecaps are more or less uniformly distributed, in the statistical sense, over the ocean
surface on a horizontal scale comparable to that of the grid spacing of large-scale models.
Inherent in the derivation of a parameterization is the assumption that the effect of small-scale
processes are statistical in nature with averages which are nearly constant over the spatial and
temporal scales of the large-scale model and that the slowly-varying, longer-term trends in the
variables are resolved by the model.

The problem then is to determine how best to average the flux from the intermittent and
sparse whitecap events to generate a SSASF and deposition velocity that can be applied
uniformly over the grid used in large-scale models. This study uses puff plumes to represent the
intermittency and small-scale features of the aerosol plume from awhitecap. The differential
equation used to represent the plume is the same as that used to represent vertical mixing in the
large-scale model. However in the plume we have assumed a certain form of the mixing
coefficients to obtain an analytical solution, whereas in a numerical model these coefficients are
generated internally and not limited to a specified functional form. Numerical models, however,
do assume the coefficients are constant over avertical cell and horizontal grid used in the finite
difference approximation to the differential equation. We have used the puff plumes to represent
the sub-grid intermittent whitecap production of aerosol to show:

Q) that the effect of whitecaps can be averaged to give an average source flux
which can be applied to the large scale problem (existence of a SSASF)

(2 that for no surface deposition the average flux is just the average of al the
individual puffs

3 that this average, near the surface, is approximately constant during the quasi
steady-state as well asfor atrue steady state (which is never obtained in the
boundary layer for small particles)

4) that in the case that the gravitational settling term can be neglected above the
surface but surface deposition isimportant, the vertical gradient will be small
in the surface layer. The upward gradient flux plus the surface deposition
flux is equal to the source flux. Even though the source remains constant, the
ratio of the gradient flux to the deposition flux will change during the
transient state.

(5) For large particles where the gravitational settling isthe only important
component of the deposition flux, vertical gradients near the surface will be
important and the source into the lowest cell must be adjusted (decreased) to
reflect loss bel ow the mean height of the cell. The upward gradient flux will
be constant as the gravitational flux increases. When the downward
gravitational flux equals the upward gradient flux, equilibrium is achieved.
Removal to the surface will just be the concentration in the cell times vy
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(6) The case where both gravitational and non-gravitational deposition are
important there must be a correction for the effect of the non-gravitational
deposition carried by the gradient flux in addition to a decrease resulting from
the gravitationally induced vertical gradient.

While we have analyzed the concentration of particles for a series of puffs over time
periods long compared to the time step in the model and at heights greater than the lowest
vertical cell in order to obtain the average fluxes near the surface, it is not necessary that our puff
solutions represent the real atmosphere over the entire domain. The purpose of a
parameterization is to provide a good approximation for the source and deposition at some
reference height in the lowest cell and then the numerical model cal culates the variables over
time and spatial scales resolved by the numerical model.
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VI. Implicationsfor experimental deter mination of the SSASF

To obtain an actual SSA SF, experimental measurements must be made to relate white cap
aerosol production to the whitecap frequency or whitecap coverage. The most common
measurements from which the SSASF is derived are: (1) laboratory or field measurements of the

aerosol production per unit area of whitecap, (2) direct correlation measurements of <\7n'> from

fluctuation measurements of concentration and vertical velocity, (3) the equilibrium method for
large particles) where the gravitational flux (determined by measuring the concentration) must
equal the upward flux; i.e., SSASF., and (4) the build up of aerosol concentration in air passing
over white caps.

V1. 1 Measurements of aer osol generation by individual white caps

L aboratory measurements of sea-salt aerosol production purport to measure the number
of particles formed per unit area of whitecap, which we here define as P (m?). All particles are
assumed to be counted without any loss to deposition. The area of the white cap is characterized
by aninitial area A, with an exponential decay with time constant t. In Eq. (90) the puff plume
is normalized such that the total flux of particles from asingle puff isunity. The (calibrated)
flux per unit areaisjust source function

SF(0,Dt) = PxA, >6(O,t)=\:—VP><FI (0,t) (102)

We have set z=0 under the assumption that the measurement of P is representative of the surface
production rate. Equation 102 isfor particles of adiscreteradius, r. A differential source flux
can be defined in terms of the number of particles per unit radiusinterval, dr, in which case Eq.
102 becomes

diso.oy) P, x5(0,MDt) = W 9P 1 (0, MDx) (103)
dr dr t dr

dP/dr corresponds to the quantity dE/dr obtained experimentally by Monahan et al. [1986] and
Eq. (103) isjust the expression given by Monahan et al. [1986], except for the additional term,
Fl(zMDt), in Eg. (103). FI(z,MDt) accounts for the fall out of particles between white caps and
adjusts for the height at which one wishes to apply the source function. As shown earlier, for
small particles with negligible deposition velocity, Fl(z,MDt) is unity near the surface, after some
time period as shown in Figure 7 (see also Figure 19 for capped MBL). In the case where there
issignificant surface deposition and Fl(z,MDt) is less than one, a correction must be made for
deposition of the particles formed earlier. 1n the extreme case when Fl(z,MDt)=0, there is no net
flux above the source because equilibrium has been achieved. For this equilibrium condition, two
cases can be distinguished:

(1) When the gravitational settling is negligible compared to surface deposition due to processes
other than gravity, this requires that the average gradient above the source approach zero
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(the MBL isfull, i.e. reached equilibrium) and al new particles are driven to ground by the
large gradient below the source. This equilibrium is never reached in the marine boundary

layer.

(2) For the case where gravitational deposition islarge compared to surface deposition resulting
from other processes, the net flux [FI(z,MDt)] is zero, not because the gradient flux is zero
but because the upward diffusive flux (source flux) is just balanced by a gravitational
deposition flux. The only equilibrium case of importance in the MBL is probably the latter;
i.e., for large sea-salt particles where gravitational settling flux balances the production flux.
Asdiscussed earlier, for modeling large sea-salt particlesit is then useful to define the
source only as the upward diffusion flux (asin Figure 45 and 50) and let the model calculate
the downward gravitational flux.

The validity of the assumption that the laboratory measurement of P measures the
production rate accurately without loss to the walls or surface and that the laboratory generated
white water is representative of real ocean conditions with regard to particle production is not
addressed here.

V1. 2. Direct measurements of the flux using eddy correlation methods.

Under the assumption of first order closure as described in Eg. (96), the measured
correlation flux isjust the diffusion flux. Therefore the spatial and temporal behavior of the
diffusion flux calculated and displayed in the prior analyses corresponds to the measured
correlation flux. Itisalso clear from Figures 8, 12 and 40 that most of the eddy correlation flux
will occur in bursts very near the white cap, and the instrumentation must be able to resolve these
puffsif the correct average diffusion flux isto be resolved. The puffs shown are for “average”
puff plumes, and for some plumes the bursts can be expected to be much shorter than those
shown. It should also be emphasized that the correlation measurement must be specific for sea-
salt aerosol; this may be a problem if there are other species that cannot be distinguished by the
measurement method. From the proceeding analysisit is clear that the diffusion flux and eddy
correlation flux contain the effect of surface deposition dueto al processes except gravitational
deposition. Our discussion can be divided into three regimes: (1) when particle deposition is
negligible during the life time of the particles, (2) when particles are so large that only
gravitational deposition isimportant, and (3) when both gravitational settling and deposition due
to other processes are important.

(1) When particle deposition is negligible during the lifetime of the particle, FI(z,MDt) becomes
unity indicating that particles continue to build up in the MBL and aquasi steady-state filling of
the MBL exists. Plume Case 3 best represents this situation. The average eddy correlation flux
is constant with time and is the source flux. For acapped MBL there will be a height
dependence of the eddy flux asindicated in Figure 19. A rough estimate of the particle radius,
for which deposition can be neglected, can be obtained from the lifetime, H/vy , of the particle
due to deposition, which must be longer than the lifetime of the particle in the MBL due to other
processes; primarily, precipitation scavenging and free troposphere exchange. Taking the height
of the MBL as 1000 m and the deposition velocity referenced to the surface concentration, we
find that particle deposition should be negligible during anominal lifetime of 3 daysif the
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particleis smaller than about 1 nm and the wind speed is less than about 25 m s*. At higher
wind speeds the 1 mm radius limit cited here might have to be lowered.

(2) In the other extreme, for large sea-salt particles, the gravitational flux must be included in the
D.E. and dominates the deposition velocity (at r>20 mm). In this case the net Fl(z,MDt) goes to
zero at times much shorter than the aerosol lifetime due to other loss mechanisms, and the
equilibrium is the result of the balancing of the upward eddy correlation flux by the downward
gravitational flux, which are both constant with time. Thisisillustrated in Figure 47. The eddy
correlation flux can then be considered as the average source flux, but it will decrease with

height because of the significant gravitationally induced gradient. In practice, once equilibrium is
reached it is much easier to determine the flux by measuring the concentration which together
with vg gives the gravitational flux, which isjust equal and opposite the gradient flux.

The time for the steady state to be achieved for various profiles of the diffusion
coefficient can be estimated from Figure 47 for linearly increasing K. A more detailed
discussion with an analytical expression for the time to reach equilibrium can be found in Hoppel
et al. [2002] together with the result of numerical modeling, which establishes the time to reach
equilibriumina500 m MBL for 5 and 10 mm radius particles to be about 30 and 5 hours,
respectively, in reasonable agreement with the results shown in Figure 47 for 10 nm particles
when the difference in MBL heightsis considered. The time about doubles for aMBL height of
1000 m for a5 nm particle, whereas for larger particles, the time becomes less sensitive to the
height of the MBL since gravitational forces confines the particlesto lower levels of the MBL.
The validity of the assumption that the concentration isin equilibrium between production and
gravitational fall out will obviously depend on the particle size and how fast meteorol ogical
conditions (including sea surface whitecap coverage) are changing; an assumption which must be
verified for a specific experiment.

If the only deposition flux isthat dueto vg (requiresr >15 nm for wind speeds of about
25 m s %), then the diffusive source flux reachesiits equilibrium value much faster than the system
asawhole. The slow response of the gravitational flux caused by the slow build up of the
concentration is responsible for the slow system response. Figures 47 and 50 clearly show that
the upward diffusive (source) flux reaches a constant value in arelatively short time so that the
eddy correlation measurement will indicate the source strength even though the system has not
yet reached equilibrium. For particles with radius greater than about 20 nm, the deposition
velocity can be assumed to be entirely that due to vyq. Since the critical radius cited here depends
on the impaction component of the deposition velocity, the critical radius depends on the
strength of turbulence, which in turn is afunction of wind speed.

(3) A big advantage of the above two cases is that ignorance of the non-gravitational deposition
velocity does not effect the result and the diffusive (correlation) flux is the source flux (at the
measured height). In the intermediate cases (1<r<20 mm) where surface processes contribute
significantly to the deposition flux, the gradient flux will be changing with time, even when the
surface conditions remain constant. Here the MBL will usually be in atransient state where the
gradient flux is changing with time and the filling time is comparable to the lifetime of the
aerosol. Under the assumption that deposition mechanisms other than gravitational settling
dominate surface deposition, there will be an initial quasi steady state filling where surface loss
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isnegligible. Asthe concentration builds up, surface deposition increases. Thisincrease in
concentration decreases the net upward flux. Theloss at the surface, if it can be accurately
calculated, plusthe upward gradient flux at the surface will equal the “ surface source’. If the
filling process were to continue to completion then the gradient flux would go to zero and the
deposition flux at the surface would equal the source. If the measured eddy correlation flux were
small, it would be difficult to determine whether or not equilibrium had been achieved or there
was ho source. This asymptotic behavior is different than in the second situation above where
the deposition is due to the gravitational settling and just equal and opposite the diffusion flux.
The scenario just described is for pure non-gravitational deposition; in general, there will be both
anon-gravitational and gravitational component and the situation is more complicated. In
Section V11 we will see that if we can represent the transient case as afamily of steady-state
cases (quasi steady-state process) where we measure both the gradient and concentration, then
the source function can be calculated from the measured flux and concentration.

V1.3 Equilibrium method for determining source function for large particles.

The justification for the equilibrium method is the same as that given in item 2 under VI.
2 where we have shown that for large particles, where gravitational settling dominates the
deposition, the gradient flux at a given height is the source function applicable to that height.
Since the gravitational flux at any height isjust equal and opposite the gradient flux (definition
of equilibrium)

F(2)=-v,N@) =- K@QEN 0= (z) (104)
edz g

Hence, the source function can be obtained by measuring either the concentration or the
eddy flux. Unlike v, the gravitational settling velocity, vg, is well known and does not depend
on meterolological and ocean surface conditions. The concentration of aerosol particles of a
given sizeis amuch easier measurement under ambient conditions than is the eddy correlation
measurement. Therefore, if it can be established that the aerosol particles of agiven (large size)
arein equilibrium, the equilibrium method is probably the most reliable method of determining
the source function.

V1. 4. Defining the Sea-salt aer osol sour ce function (SSASF)

The mechanisms by which sea-salt aerosol are formed and injected into the MBL are
varied and complicated. The mechanisms are as diverse as bursting bubbles at the ocean surface
to spume aerosol blown off the crest of awave. It isdifficult to characterize the height at which
the particleisinjected. The diverse mechanisms are discussed el sewhere (Lewis and Schwartz
[2004]), but it is easy to appreciate the difficulty in characterizing and defining the source
strength and its effective height. Some of the particles, depending on size and method of
injection, will return immediately to the sea surface while still over white water. 1f the source
function is defined as the total number injected exclusive of deposition, then the fraction re-
deposited must be calculated and subtracted from the source. The source strength can also be
defined as the upward flux out of the shallow surface layer (micro layer) in which generation and
deposition occurs. Both methods have advantages under different circumstances. In the puff

75



analysis given in the prior sections, it has been assumed that the particles have been generated at
a height near the surface, z=h; the surface deposition then had to be calculated from aniill
defined deposition velocity. Hoppel et al. [2005] argue that the only relevant source isthe
upward diffusive flux out of the micro layer (z<d) and defines the source as

é ,_.aN ou
S = AK(2)c—F, 105
A 8 ()gdz%m (105)

From the proceeding sections we see this definition works well for small particles where surface
deposition is negligible during the lifetime of the particles (determined by other processes). This
definition also works well for large particles where, at equilibrium, the upward diffusive flux is
the source flux just balancing the downward gravitational flux. The gradient flux also works as
the source flux even when the steady state has not been achieved if deposition isthe result only
of gravitational deposition (Figure 43 and related discussion). Based upon steady-state
arguments, Hoppel et al. (2005) argued { Eq. (8) and related discussion in Hoppel et al. [2005]}
that the upward flux Sy is always the preferred way to define the source function since it avoided
the uncertainties involved in determining the non-gravitational deposition velocity. Their
argument was based on a stationary micro layer (for given meteorological and ocean conditions).
The argument given by Hoppel et al. [2005] isvalid at all sizesif atrue steady state exists, and
this has been the assumption in most prior analyses. However, as we have discussed above,
during transient conditions (e.g.; filling of the MBL) the concentration is changing with time.
Thisis seenin Figure 26 and isimportant at intermediate radii (1 <r < 20 nm) where (1) the
non-gravitational component of the deposition velocity isimportant and (2) particle loss due to
deposition during the particle lifetime isimportant. Under these transient conditions (important
in the intermediate size range), the definition (Eq. 105) may not be the best definition of the
SSASF. During transient filling, we need additional information as discussed in the Case 4
section, and again in Section VII.
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VII. Thequas steady state solution

The quasi steady state is defined by Hoppel et al. (2002, 2005) as atransient state where
the shape of the vertical aerosol profile remains constant during the transient period; i.e., theratio
of the concentrations at any two altitudes is constant. The quasi steady state would be expected
if the turbulent mixing throughout the MBL is fast compared to the temporal change of the
concentration. The quasi steady state is discussed in detail in Hoppel et al. (2002) whereit is
shown both analytically and by numerical modeling to hold in the MBL.

The results cited in the above paragraph were in the context of a uniform surface source
as opposed to the intermittent puff analysis given in earlier sections. However we have seen in
the prior sections that the average profile obtained by summing over a series of puffs gives the
same vertical shape as the equilibrium profile. Thiswas shown in Figure 35 for constant K-
profile and in Figure 42, near the surface, for the linear K profile. Since the Figures 35 and 42
are for open system cases, we would not expect the quasi steady state to hold far above the
surface. For small particlesthereisno vertical gradient and the MBL can be considered well-
mixed at all times.

We have aso seen that when non-gravitational deposition is the only important
deposition mechanism then the gradient flux changes during transient conditions; but, in such a
way that the gradient flux plus the deposition flux equals the total source flux (see Case 4
discussion). We emphasis that thisis not the case with pure gravitational deposition where the
gradient component remains constant and the total deposition flux goesto zero asthe
gravitational flux increases to exactly counter the diffusion flux (see Figures 41-45 and 50-51).

The above observations suggest that in order to define the transient system both the
gradient flux and concentration must be allowed to change in a manner which is consistent with
the constant source and surface boundary conditions. In the following analysis we assume that a
steady state (but non-equilibrium) exists where a constant source, S, near the surface is supplying
particles at a constant rate at height, h. The deposition flux results from both gravitational and
non-gravitational deposition. The partitioning between the upward gradient flux and deposition
flux is determined by the current concentration, which is afree variable that will change slowly
with time. Changing the concentration gives afamily of steady-state curves each of which lies
on atime trgjectory describing the transient behavior.

The following analysis includes analyses contained in unpublished communications with
ChrisFairall in 2004 and material found in Hoppel et al. (2005). Subsequently (February 2007)
the authors of this report had access to and submitted comments on an early version of a
manuscript in preparation (DeLeeuw et al. (2007)). At the time of submission of this report the
final version of that manuscript was not yet available, but it is expected that there is much
overlap between that manuscript and the analysis given here. In the above referenced manuscript
the relevant parts of the manuscript were the work of Chris Fairall, one of several authors.

The one-dimensional steady-state equation for the aerosol concentration n(z) when the
eddy diffusivity isgivenby K(z) =k u.z=c z(k and u- are von Karman’s constant and the
friction velocity) is
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cz$+vgn:- Fy (206)

where F, isthe steady-state flux above the source. In principle the fact that F, isnonzero

requires aremoval mechanism at the top of the MBL. Here we assume that the removal
mechanism is the upward flux into the MBL and, within the concept of the quasi steady state,
can be aslowly varying function of time.

The solution in terms of the concentration at the height of the source, z=his
(207)

It is convenient to define a reference height z, which may be the height at which a measurement
is made or the mid-point of the lowest cell in anumerical model where we wish to evaluate the
fluxes. The concentration at the reference height is given by

n = I:_¥(1:hr - 1) +n, fhr (108)
Vg
where f, = 8‘*—’9 bt (109)
eag
solving for n,
n, = foin, + e (£ 1) (110)
Y

g
If we inject a source of particles S at z=h conservation of flux requires

Fy Vg, =S (112)
where vq, is the deposition velocity for particles at a height h.
The deposition velocity given by Hoppel et al. (2002, 2005) can be written as
vV, +V
Van = Vg—d (112)
1+-2 (1' fdh)
Vg
where v, is the non-gravitational part of the deposition velocity and d is the height of the micro

layer. A more rigorous expression for vy, can be found in (DeLeeuw et al. (2007)).

Solving Eq. (111) for n, gives
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_ S(L- f) +vyn,
fi vy +(1' fie )th

(113)

h

which can be used to eliminate ny, .

The net flux above ( F, ) and below (Fo) the source are then found to be

for S- Vanl,
\Y
frh +ﬂ(1_ frh)

Vg

R, = (114)

- (1' fhr)th S- Vg,
V,
F, = 9 (115)

V
frh +%(1_ frh)

where

Von = % (116)
1+-—= (1 - fdh )

Vg

Equations (114) and (115) sum to S asrequired, and are equations (44) and (43) in Hoppel et al.
(2005). It isclear that the fraction (F/S) going upwards or downward is determined by then; .
The “solution” above is not a unique solution but afamily of solutions. Each solutionisa
steady-state solution with different flux rates, F, (n,) into the domain above the source. Under
the quasi steady state assumption each of solutions above will lie on atime tragjectory of states
during atransitory period. If initially the MBL is particle free n.=0 will givetheinitial flux and
equilibrium will be obtained when n; reaches avalue where F, (n,) =0. If we define acolumn
of base dA extending from the source at h to the top of the MBL denoted by z=H with only
exchange of particles at the base, then the time dependence of the total number of particles, N; in
the column is

dN,
- FdA 117
pralals’ (117)

where N, =dAG(2)dzu dAxH xn (118)

The last step uses the proportionality of N; to the concentration at any given height with time
implied by the quasi steady state assumption. Using Eq. (114) for F, , we can write
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dn(

dAXHd—u f S-v,n)dA (119)

dh” 'h

where we have used Eq. (111) for F, and have also assumed that H>>h. Integration gives

n (1) (120)
where -H
th
When t>>t steady stateis obtained and is, as expected, f S=v,n andF, =0. Inthelimit of
adh ol

large particles Eq. (116) v, » v, and inthelimit of small particles v, =v, /el+ |nt}a%»Va-

For a500 m MBL and 1 mm radius particlest is about 20 days; whereas for 20 mm radius
particlest islessthan 3 hours.

A morerigorous version of the time constant given in Hoppel et. a (2002) can be used

&, e
910 " _qu
hEhe
t=— v (121)
A\ 1- =
Cc

This expressionisgivenin Eq. (21) of Hoppel et a. (2002) and plotted as a function of radiusin
Figure 5 in Hoppel et a. (2002). The time constant (equation 121) is the same as above in the
small particle limit, but in the large particle limit it is independent of H because very large
particles never reach the height H.

At equilibrium Eq. (111) gives

S fhr th fhrlvg nr (122)
Thelast termisfor large particles. For small particles this equilibrium is never achieved. If n;is
increased above that given by the equilibrium value, F, =0, then F, becomes negative
indicating that there is some source above which is overriding the (opposing) surface source and
driving particles to the surface. Herewe interpret F, asthetransient filling flux. However it is
clear that higher in the MBL the (transient) filling flux decreases with height as some of the
upward flux is siphoned off to fill the intermediate region of the MBL as discussed earlier in
connection with Figure 19. For small particles the net flux will almost always be such asto “fill”
not “empty” the MBL because removal processes such as precipitation events, entrainment, and
dilution by large-scale vertical motions occur at a faster rate than does deposition.

80



Equation (114) isfor the net flux the difference of the upward and downward flux. We
now get the expressions for the upward and downward fluxes. We first express n(z) in terms of
Sandn;

- Vy

A

- £, S+vyn, +[S+(vg - th) ]g B
n(z) = (123)

fhrvg + (1 fhr )th
We can now calculate the upward diffusion flux
S+, - Vg n % —

F, (2) =- czaej—”9 by - v &9 - (wn) (124)

e dz g ehra

g S t,)

This gives the eddy correlation flux at any height. The downward flux isjust given by vyn(2)
where n(z) isEq. (123). With alittle algebra it can be seen that even though both the upward
flux and the downward flux depend on z, the net flux is constant with height as required by the
steady state assumption used throughout the analysis. The following identity is satisfied by the
above equations

Far (2) - v,n(2) = Fy where F, isasgivenin Eq. (114). (125)

We can solvefor Sin Eq. (124)

V

S= Fdlff efhr + (1 fhr )LEL&O + (th - Vg )nr (126)
\Y [ph I’

é g

In (124) and (126) the eddy flux measurement, F, , does not have to be at the reference
height. If we do take z to be at the reference height we find

S= Fd,ﬁél+ n(f r1-1)8+(vdh- v, )n, (127)
g V g

g

For large particles v, » v, and

Snig = Fyy fh_rl (128)

We can therefore measure the large particle source by either measuring the eddy correlation
(upward flux) or the concentration at a reference height (downward flux)
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Fo« =-v,n =S (129)

g''r

For small particles, v, <<Vv,,

S,an » Fan +Lﬂ » By +V,N (130)
0]

1- 2&Inc—=
C gdg

where the last expression followsif ¢ >>v,_, which will generally be the case except possibly

for cam winds. We note that in the small particle limit where only the non-gravitational
deposition is important, the non-gravitational part of the deposition modifies the diffusion flux.
Thisis consistent with what was found in the puff analysis given earlier; n, will beincreasing
with time, causing a decrease in Fy¢ asthe MBL ‘fills'.

Itisclear from Eq. (127) (and aso Eqg. (126)) that the source S can be calculated from a
measurement of the diffusive flux and concentration at the reference height provided an accurate
value of the deposition velocity is known. For large particles only one measurement is required.
For particles where vy is negligible, both the diffusive flux and concentration is required (Eq.
(130)). However, in practice, for particleswith r < 1 mm only the flux is required because the
concentration term (deposition) is negligible (over the life span of a particle).

Application of the prior results to calculating the source to, and loss from, the lowest cell
in anumerical model can best be implemented by introducing and removing particles at some
representative average height into the cell, here defined as the reference height. The upward flux
at the reference height isjust the diffusion flux obtained from Eq. (127)

diff — > \Sth ~ Y )nr (131)
1+ % (friwl - 1)

g
where n, at z is known from the prior time step of the calculation. For small and large particles
Eq. (131) reducesto Eq. (130) and Eq. (129) respectively. The (downward) removal from the
lowest cell isthen just n,vg. One might wonder why the apparent deposition velocity hereisjust
Vg. Thereason isthat the effect of the non-gravitational deposition is already included in the
reduced source flux given by Eq. (131). The expressions could be recast, into an equivalent set of
eguations using the two terms of Eq. (114), but then the deposition velocity would appear in
both the effective source term and in a deposition term. We prefer this formulation because
these are the actual upward and downward components of the flux at the reference point in the
cell, the same components of the flux which appear in the differential equation, and the same as
used in calculating the exchange between cells above the surface. Aswe saw in the puff analysis
the effect of the non-gravitational deposition velocity is transmitted by the upward diffusive flux.
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