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Executive Summary 
 
 The sea-salt aerosol source function (SSASF) and deposition velocity of sea-salt particles 
used in large-scale models assumes that the source and deposition is uniform over areas large 
compared to the horizontal grid spacing of the model.  This horizontal grid spacing is typically 
one to 100 km in length.  Sea-salt aerosol is overwhelmingly generated by white caps whose 
surface distribution is usually sparse and sporadic with spots of intense particle generation 
separated by large areas with no white cap coverage.  Most deposition occurs in the regions free 
of white caps.  The analysis presented here uses (several) puff plume models to study the validity 
of the underlying assumptions of the horizontally uniform surface source and deposition.  The 
puff plume solutions are based on the same turbulent diffusion equation as used in the large-scale 
models but have high resolution (in all cases an analytical solution).  A time series of puff 
plumes is averaged to obtain the large-scale source and deposition flux. The process of going 
from the flux of particles generated by the individual small-scale events to a meaningful large-
scale average is the subject of this study.  A similar problem is encountered in bridging the gap 
between the transient deposition flux from a whitecap plume and a meaningful large-scale 
deposition velocity appropriate for larger scale models.  One of the advantages of considering a 
series of puffs is that the transient behavior of the system as it evolves can be studied.  Prior 
studies have relied on solutions to the steady-state differential equation. 
 
 The analysis demonstrates the remarkable difference between (i) the case where 
deposition results exclusively from non-gravitational deposition processes at the surface (such as 
impaction and Brownian diffusion) and (ii) the case where deposition is solely from gravitational 
settling. For the case (i) when deposition is from non-gravitational processes, the effect of 
deposition is carried to the interior of the MBL by the gradient (eddy-correlation) flux.  
Assuming a MBL is initially free of aerosol with transition to a terminal equilibrium where 
deposition is balanced by the source, the magnitude of the gradient flux, which initially will be 
equal to the source flux, will evolve to an equilibrium state where there is no gradient flux. This 
can be contrasted to the case (ii) where gravitational settling is dominant (larger particles).  Here 
the upward gradient flux is always equal to the source flux (at a given height) and the transient 
behavior is governed by the increase of the gravitational flux during the transition to equilibrium 
- where the upward gradient (source) flux is equal to the downward deposition flux. The 
intermediate case where both the gravitational flux and deposition flux are important is a mixture 
of the above two cases. 
 
 In Sections IV and V1, the process of going from the results of a series of puffs to a large 
scale average source (SSASF) is discussed in detail together with the implication of the process 
to both (i) the inclusion of a source and deposition velocity in large scale numerical models and 
(ii) the various measurement techniques from which the SSASF are derived.  The relationship 
between the puff plume analysis and empirical methods used to determine the SSASF is 
discussed in Section IV. 
 

Finally an analysis, which assumes large-scale homogeneous conditions but also treats 
the transient conditions under the valid assumption that a quasi steady state exists during the 
transition, is presented.  

E-1





1 

Study of the implications of whitecap intermittency on the uniform 
sea-salt aerosol source approximation and deposition velocity  
 
I. Introduction 
 

The primary mechanism for sea-salt aerosol generation is through bubble bursting at the 
ocean surface.  Air entrained through wave action form bubbles that rise to the surface and burst.  
As the bubble penetrates the ocean surface a liquid film is produced, which breaks forming a 
number of liquid droplets that partially evaporate to form sea-salt solution or salt crystal aerosol 
depending on the relative humidity.  As the bubble collapses a water jet emanates from its center.  
As this jet breaks up, larger droplets are formed and evaporate to produce additional coarse-size 
aerosol.  The number of film and jet droplets formed per breaking bubble is a function of the 
bubble size (see for example, Wu [1992]).  As the wind speed and sea-state increase, the wind 
tears sheets of water off the breaking waves.  The breakup of these sheets form (spume) aerosol 
of diverse sizes including very large particles.  These various formation mechanisms have been 
studied for decades and the interested reader is referred to Andreas [2002] and the recent review 
by Lewis and Schwartz [2004] and references therein for additional background. 

 
The entrainment of air by breaking wave action and subsequent bubble bursting is 

associated primarily with the occurrence of white caps, so it is natural to associate the amount of 
marine aerosol generation with the frequency of breaking waves or the factional white cap 
coverage.  Current expressions for the flux of sea-salt aerosol from the ocean surface is given as 
a function of the fractional white cap coverage, which in turn is expressed as a function of wind 
speed. Figure 1 shows the percentage of the sea surface covered by white caps as a function of 
wind speed for four different expressions (Monahan [1986], Wu [1992] for warm and cold water 
and Hanson and Phillips [1999]). It is seen, that while there is wide scatter in the data, less than 
0.1% of the sea-surface is covered with white caps at wind speeds of 5 m s-1, less than 1% at 10 
m s-1 and about 10 % at wind speeds at 20 m s-1.  The distribution of the coverage is sporadic 
with spots of intense particle formation and large areas where there are no whitecaps. A parcel of 
air passing over a white cap will experience a pulse of particles at the surface with upward flux 
of particles as turbulence disperses the particles upward.  Down wind of the puff, particles will 
be deposited back to the surface.  The parcel will then encounter additional puffs at a frequency 
depending on the fractional white cap coverage.  If we consider the puff to be from a 1 m2 area 
of the surface, and the fractional coverage is 1% (value appropriate for a 10 m s-1 wind speed), 
then a column of air with 1 m2 base will see, on average, one puff every 10 seconds, or one puff 
every 100 m).  

 
In aerosol models whose purpose is to simulate (average) concentrations of aerosol with 

resolution on the scale of a km or greater, the average effect of many whitecaps is formulated in 
terms of a uniform surface generation function, and the loss to the surface in terms of some 
uniform deposition velocity.  The goal of these models is to predict the average aerosol 
concentration in the MBL at a given point in time so that aerosol effect on other atmospheric 
processes, such as EM propagation or cloud microphysics, can be predicted.  However there are 
other applications, such as moisture and heat transfer and some chemical reaction studies, where 

_______________
Manuscript approved September 5, 2007. 
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the average concentration is less important than the total aerosol mass processed through the 
MBL. 

 
To illustrate some of the potential problems with the uniform-source assumption consider 

the white caps to be puff plumes and consider two cases: (1) there is negligible loss resulting 
from surface deposition during the life time of the particle, and (2) there is significant surface 
deposition of particles between whitecap encounters. The first case is applicable to submicron 
particles, the second to super-micron particles.  In the first case particles are conserved, each puff 
adds linearly to the concentration in the MBL, and a quasi steady state flux is established while 
the MBL concentration slowly builds up with loss occurring occasionally by precipitation 
scavenging events or dilution due to exchange with the FT.  In this case, the net flux into the 
MBL is just the sum of the flux from all the puffs regardless of how infrequent the whitecaps.  
For large particles (i.e., Case (2)), the situation is much different.  A single puff produces an 
initial upward flux that quickly reverses and all particles eventually get re-deposited at the 
surface. An instrument measuring net flux would indicate that the average flux is zero while a 
measurement of concentration would indicate some average concentration during the lifetime of 
the puff, even if no particles remain suspended at the end of the time. We then have a case where 
the average flux is zero but the average concentration is not zero.  This latter case is an extreme 
example, as additional puffs would usually be encountered before all particles from a prior puff 
are removed.  Nevertheless it illustrates an important concept – when there is significant surface 
deposition between whitecaps, the deposition diminishes the average effective source flux, i.e., 
the source flux below that calculated from the source strength without intervening deposition.  
This consideration has important consequences on calculating oceanic source function from 
laboratory data on breaking waves for super micron size particles. 
 
  In the following analysis various versions of the “puff” plume model will be used to 
study the validity of the underlying assumptions of the horizontally uniform, surface source 
formulation. The analytical solutions given below for the dispersion of puff plumes are solutions 
to the same differential equation used in numerical finite difference schemes in larger scale 
meteorological and boundary layer models. However, the grid and time scales used in the 
meteorological models are too coarse to capture individual plumes.  In fact, the whitecap density 
within a single grid of the meteorological models will be sparse and the average number within a 
given grid may be large or small depending on the white cap coverage at the time.  The process 
of going from the flux of particles generated by the individual small-scale events to a meaningful 
large-scale average is the subject of this study.  A similar problem addressed here is that 
encountered in bridging the gap between the transient deposition flux from a whitecap plume to a 
meaningful large-scale deposition velocity appropriate for larger scale models.     
 

We will begin the analysis (Section II) with the simple case of the Gaussian plume model 
with a delta function source at time zero (t=0) and zero concentration far from the source, 
considering both the case of a perfectly reflecting surface and the case of totally absorbing 
surface.  We then extend these simple cases to consider the case of the partially absorbing 
surface, where the deposition velocity at the surface can be specified.  In these cases it is 
assumed that the gravitational settling velocity is negligible and that deposition results from 
Brownian diffusion and impaction to the ocean surface – these results therefore apply only to 
submicron size particles.  Section III then further extends the analysis to look at the case where 
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the gravitational settling velocity is included in the differential equation and dominates the 
aerosol surface deposition. 

 
The questions to be addressed are as follows:  

1. Is there a valid way to average the transient flux of particles from individual white 
caps which will supply a meaningful uniform surface source function appropriate 
for large scale modeling?  

2. And if so, how is this average to be calculated?  We have already pointed out that 
for large particles, the average net flux can be zero during the transient life of a 
puff while the average concentration over the same period is a positive definite 
number.  

3. What is the relationship of various measurement methods of white cap particle 
flux to the average source function appropriate for meteorological scale models; 
i.e.; how do wave tank measurements, eddy correlation flux measurements, and 
equilibrium measurement methods relate to a source function required in larger-
scale models.  

4. How does the transient deposition velocity for a plume translate to a deposition 
velocity appropriate for numerical models. 

 

 
Figure 1. Percentage of whitecap coverage as a function of 10 m wind speed as given by several 
investigators:  Monahan et al (1986) in red, Wu (1992) in green (warm) and blue (cold), and 
Hanson and Philips (1999) in cyan. 
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II. Puff plumes with no gravitational settling (Cases 1 to 4) 
 
Case 1. Gaussian Plume with totally reflecting or totally absorbing surface: eddy diffusivity 
K=constant with height, no gravitational settling  
 
 The simplest case is that of a Gaussian plume with totally reflecting or absorbing surface 
and a constant turbulent diffusion coefficient with height.   While these are unrealistic 
circumstances, it demonstrates the important physical principles involved in two extreme cases - 
one where there is no surface deposition (approximating the behavior of small particles; i.e. no 
negligible surface deposition over time periods comparable to the lifetime of the particle), and 
anther with a totally absorbing surface combined with a turbulent diffusion coefficient constant 
with height.  This latter case, due to the constant eddy diffusivity extended all the way down to 
the surface, results in deposition at the surface comparable to very large particles (tens of µm), 
but is unrealistic in that the settling velocity term has not been included in the differential 
equation and therefore doesn’t account for settling effects above the surface layer. 
 

We can begin with the assumption that the number concentration n(x,y,z,t) of particles of 
a given size is given by the turbulent diffusion equation  
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where x’ is the coordinate along the direction of the wind velocity u (assumed to be constant 
with height), z is the vertical coordinate, and y the horizontal coordinate perpendicular to the 
wind velocity u. Kx, Ky, Kz are the eddy diffusion coefficients associated with the three 
directions.  If we let x=x’-ut, then eq. (1) can be written as  
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and the solution interpreted as the concentration in a Lagrangian column moving with the mean 
wind speed u.  The solution for an instantaneous source (puff) at x=y=0, and z=h, and zero 
concentration at ±∞== yx  and  z= ∞  at all time is well known (for example, see Fuchs [1964] 
or Seinfeld [1986]) and given by 
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This solution is for a unit source. The plus sign is for totally reflective surface (z=0) and the 
minus sign for totally absorbing surface. It is convenient to eliminate the x and y dependence by 
integrating over the x and y coordinates, in which case the total number N(z,t) in a layer dz (i.e., 
particles per unit length) is obtained 
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(N(z,t) has units of inverse length). 

 
The total flux (integrated over the x-y plane) at z resulting from a single puff at h is just 
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 The integrated flux flowing through the z-plane at z, between time zero and time t is just 
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where Γ(a,x) is the incomplete gamma function.  FI(z,t) can be viewed as the integrated number 
of particles passing through a surface at height z, over a time interval t, resulting from a single 
puff at time t=0.  FI(z,t) is thus the number of particles above the z-plane at time t. 
 

The integrated flux through any surface z over all time is just 
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For a reflective surface the integrated flux from a unit source through any surface is just unity – 
given enough time everything flows out the “top” of the domain.  For a totally absorbing surface 
the integrated flux is zero at ∞=t ; that which flows upward initially must eventually flow back 
down and be removed at the surface.  
 

The total normalized concentration given by Eq. (4) and the flux given by Eq. (5) are 
shown in Figures 2 and 4 for reflecting surface.  For a reflecting surface the concentration at the 
surface is finite, but the flux is zero at the surface as shown in Figure 4.  For a totally absorbing 
surface the opposite is true, the concentration at the surface is zero as shown in Figure 3 and the 
flux at the surface has some value (Figure 5).  The flux at the surface for a source at height h 
requires that the flux at the surface is always downward.  But at any point above the source 
where will be an initial upward flux followed by a downward flux at some point after passage of 
the initial puff.  In the Figures, the value of Kz is taken to be 1 m s-1 and the source height is 0.2 
m (h=0.2 m). 
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Figure 2.  Normalized concentration, N(z,t), as function of height for a reflecting surface for 

times of 10, 20, 50 and 100 s.  No particles are lost at the surface during upward 
dispersion.  The gradient is zero at the surface and Kz= 1 m2 s-1. 
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Figure 3.  Normalized concentration, N(z,t), vs. height for a totally absorbing surface.  Particle 

concentration at the surface is zero and particles are removed at the surface at a rate given 
by the product of the gradient at the surface and the eddy diffusion coefficient. Times of 
the profiles shown are 10, 20, 50, and 100 seconds. 
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Figure 4.  Flux of particles, F(z,t), through a plane at height z at 10, 20, 50, and 100 s for a 

reflecting surface (case shown in Figure 2).  The flux is everywhere positive indicating 
upward flux at all heights.   
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   Figure 5.  Flux of particles, F(z,t), through a plane at height z and for times 10, 20, 50, and 100 

s for an absorbing surface (case shown in Figure 3).  Negative values of flux indicate 
downward flow.  There is a downward flux near the surface at all times as particles 
diffuse back to the surface. There is an initial strong upward flux – the upward flux 
diminishes with time and eventually the particles which have been dispersed upward 
return to the surface as indicated by the downward flux at all heights at 50 seconds.  The 
critical height where the flux changes sign is tKz zc 2≈ (assumes hzc > ).   
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 For the absorbing case we can calculate a deposition velocity as a function of time.  The 
conventional definition of the deposition velocity is the ratio of the downward flux at the surface 
to the concentration at some reference height. 
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If the reference height is at the surface, then vd is infinite because N(0,t)=0 for a totally 

absorbing surface. The deposition velocity for a reference height of 10 m calculated from the 
above equations is shown in Figure 6.  At long times the deposition velocity is approximately 
Kz/Zref (=0.1 m s-1).  This asymptotic behavior for constant Kz is discussed in Hoppel et al. 
[2005] and occurs when the reference height is well within the diffusion layer as depicted in 
Figure 3.  The height of 10 m is not in the diffusion boundary layer (region of constant slope) 
until well after 100 seconds. 
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Figure 6.  Deposition velocity for a single puff as a function of time for a reference height of 10 

m (absorbing surface). 
 
 The integrated flux from formation (t=0) to time t as given by Equation (6) for a single 
puff is shown in Figure 7 for a height of 3 m for both the case of reflecting and the totally 
absorbing surface.   
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Figure 7.  The integrated flux, FI(z,t), for the reflecting case is shown in red and the absorbing 
case in blue.  The height for the curves shown is 3 m.  For the reflecting surface no 
particles are lost and the integrated flux goes to unity indicating that essentially all 
particles produced by the puff are above 3 m.  For the absorbing surface some particles 
are initially dispersed above 3 meters, but after about 5 seconds, the flux has reversed at 3 
meters. 

 
 The behavior shown in Figure 7 for the integrated flux in the two extreme cases is 
important to understanding the subsequent results.  For a reflecting surface all the particles from 
a puff stay airborne and the flux from each puff is additive, whereas for the absorbing surface the 
integrated flux from a single puff reverses after some time, so that the time between puffs 
becomes very important in determining the cumulative number of particles which are airborne at 
any given time. As discussed later, this behavior is related to whether or not a steady state exists 
for a continuous series of puffs (i.e. continuous source). 
 
1.a. Series of puffs for a Reflecting surface 
 
 Whitecaps occur randomly on the sea surface, and to simulate the effect of a series of 
Gaussian plumes resulting from whitecaps, a series of equally spaced whitecaps entering the 
bottom of an advecting Lagrangian column is considered next.  Equation (5) can be summed to 
give the instantaneous flux for a number of puffs separated by some time interval ∆t.  Figure 8 
shows the instantaneous flux at a height of 3 m from a series of 10 puffs separated by 10 s and 
introduced at 0.2 meters.  The individual puffs dominate the signal, the flux is always positive, 
and the average flux, after some time, appears to be almost constant.  This average flux disperses 
particles upward, causing a slow build-up of particles in the atmosphere.  
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Figure 8. Instantaneous flux, FS(z,t), as function of time at 3 meter for 10 puffs 
separated by 10 seconds for a reflecting surface. K(z)=1 m-1 s-1. 

 
 The integrated flux from a number of puffs can be obtained by summing Equation (6) 
over a number of puffs entering the column at different times denoted by tm.  
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  for hz >  (9) 

 
FIS(z,tM) is the integrated flux resulting from M puffs of unit strength introduced at times tm.  
The plus sign is for reflecting surface and the minus sign for a totally absorbing surface.  Figure 
9 shows the integrated flux for 50 puffs introduced at equal time intervals of 10 (red), 20, 50, and 
100 (black) seconds for a reflecting surface at a height of 3 meters. For the reflective surface all 
flux is upward at all heights and is the same for the same number of puffs (or nearly the same – 
the small increase for longer puff intervals seen in Figure 9 is due to the fact that the upward 
current from a single puff continues at a greatly diminished rate with increasing time.)  The solid 
red line at time 100 seconds corresponds to the integration of the instantaneous flux shown in 
Figure 8 over the first 10 puffs.  
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Figure 9.  Integrated flux FIS(z,t) due to 50 puffs introduced at time intervals of 10 
(red), 20 (blue), 30, and 50 seconds for a height of 3 meters and a reflecting 
surface. 

 
 The average upward diffusion (source) flux SI(z, M∆t) at time M∆t is just the slope of the 
curves in Figure 9, 
 

t
tMzFI

t
tMzFIStMzFIS

tMzSI
∆

∆
=

∆
∆−−∆

=∆
),(])1(,[],[

),(    (10) 

 
SI is shown in Figure 10 as a function of the number of puffs encountered as opposed to time as 
in Figure 9.  The solid curves are for puff intervals of 10, 20, 50 and 100 seconds at a height of 2 
m.  After an initial transient the (average) source is constant.  The constancy after an initial 
transient indicates the flux is in a quasi steady-state during the filling process as discussed by 
Hoppel et al. [2005].  The dashed lines give the source flux at 1 and 5 m for the case of puffs 
every 20 seconds.  The small asymptotic difference is due to the difference in the quasi steady-
state gradient at the different heights. The steady state source flux is just 1/∆t for a unit puff. 
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Figure 10.  The time average flux SI(z,M∆x) as function the number of puffs for puff 
intervals of 10, 20, 50, and 100 seconds at 2 meters and a reflecting surface.  
Dashed lines show the small difference in flux at 1 m (pink) and 5 m (green) as 
compared to that at 2 meters. 

 
 Even though the (source) flux is nearly constant with time as shown in Figure 10, the 
concentration in the atmosphere above is steadily increasing.  The vertical concentration profile 
at various times for puff interval of 20 seconds is shown for (50 puffs) 1000 s, 2000 s, 4000 s and 
8000 s (400 puffs) in Figure 11. 
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Figure 11.  Vertical profile of concentration due to 50, 100, 200, and 400 puffs where 
the puffs are separated by 20 seconds, for a  reflecting surface.  K(z)=1 m-1 s-1. 
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The above illustration indicates that, in the case of no surface deposition, a discontinuous 
source of particles in the form of Gaussian puffs can be viewed as a constant average source.  
Even though the concentration is increasing, the quasi steady-state is reached where the average 
flux, just above the source, is constant even though the concentration in the MBL is steadily 
increasing.  This conclusion is not surprising and may have been anticipated, just based on 
conservation of particles.  However, the above example is now contrasted to the case where there 
is total absorption at the surface, and the results are not as trivial.  Also, please note that the 
vertical profiles in this illustration are not realistic because, unlike the MBL, the vertical domain 
is unbounded. 

1.b. Series of puffs – totally absorbing surface 
 

The contrasting behavior shown in Figure 7 for the total integrated flux from a single puff 
for the cases of total absorption vs. total reflection indicate that the behavior for absorption at the 
surface will be remarkably different than that shown above for a reflecting surface.  The loss of 
particles between puffs influences the total concentration and source flux, and therefore the puff 
frequency will play a more complicated role.  The instantaneous flux at 2 m, from 10 puffs 
separated by 10 seconds, is shown in Figure 12 [calculated from Eq. (5) for a series of puffs].  
This can be contrasted to Figure 8, where the flux is always positive and increasing.  For 
absorption, there is an initial upward pulse near the puff and then a downward flux more distance 
from the puff with diminishing negative flux with time as the plume dissipates.   
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Figure 12.  Instantaneous flux, FS(z,t), at 2 m as function of time during the encounter 
of the first 10 puffs separated by 10 seconds for a totally absorbing surface. 

 
 The integrated flux, FIS(z,t), is given by Eq. (9) and shown in Figure 13 for 50 puffs 
where the four curves are for puff intervals of 10, 20, 50, and 100 seconds. Even though the 
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instantaneous flux shown in Figure 12 spend more time as a downward flux the net (average) 
flux is upward.  The negative flux increases (in magnitude) until the concentration at the surface 
reaches an average steady-state value (seen later in Figure 15 near the surface); i.e., the 
downward fluxes from the most distant puffs are negligible. Compared to the reflecting case the 
average fluxes are much smaller since most particles do not stay airborne but are re-deposited on 
the surface.   
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Figure 13.  Integrated total flux through the plane at 2 m as a function of time for puff 
separations of 10, 20, 50, and 100 seconds, 50 total puffs, and totally absorbing 
surface. 

 
 Again we will define the average upward (source) flux (at the time of puff M) at 2 m as 
the slope of the integrated flux between puffs M and M+1 [Eq. (10)].  The average upward flux 
(effective source) as a function of the number of puffs is shown in Figure 14, where the curves 
are for puff separations of 10, 20, 50, and 100 seconds.  The time coordinate for each curve can 
be obtained by multiplying the number of puffs by the puff separation.  The curvature of the 
curves in Figure 14 is opposite that of Figure 10 for a reflective surface because the loss at the 
surface, unlike that of a reflecting surface, increases as the average concentration above the 
surface increases. The curves in Figure 14 continue to decrease and go to zero as time goes to 
infinity, at which time there would be an equilibrium; i.e., the gradient flux above the source 
would go to zero with a strong gradient below the source driving all newly injected particles 
back to the surface.  However, because in this example the vertical domain extends to infinity, 
equilibrium is never truly achieved.  The lifetime of particles of the size implied by the 
assumption of an absorbing surface with constant eddy diffusion all the way down to the surface 
is short, and therefore ignoring the gravitational settling velocity in the differential equation (as 
we have done here) is not realistic, as mentioned previously and as we will see in the next 
Section III.  
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Figure 14.  Upward average flux, SI(z,M∆x), at 2 m for puff separations of 10, 20, 50, and 
100 seconds as a function of the total number of puffs for an absorbing surface. 

 
The ‘filling’ process (i.e., the filling of the MBL by sea salt particles injected at the 

surface) is shown in Figure 15, where the concentration profile for puff separation of 20 s is 
shown for (25 puffs) 500 s, 1000 s, 2000 s and 10000 s (500 puffs).  The totally absorbing 
surface requires that the concentration at the surface must be zero.  The nearly constant 
concentration gradient over the lowest 5 m indicates that the source flux is nearly the same over 
the lowest five meters and changes very slowly as the upper atmosphere fills. 
 
 Now, even though we have an absorbing surface and have previously discussed the 
equivalent deposition velocity for this case, the concept of deposition velocity actually has little 
meaning here for several reasons.  When the surface concentration is zero, as in the case of 
perfect absorption, the deposition velocity is infinite when referenced to the surface 
concentration.  The deposition velocity is changing with time as the gradient at the surface is 
changing.  In the limit as time goes to infinity, the concentration gradient above the source 
vanishes requiring the gradient below the source to be large enough so that the flux of new 
particles (1/∆t) is equal to the deposition flux 
 

 
th

hN
K

∆
≈

1)(
          (11) 

thus 

 ( )
h
K

tvd ≈∞=   for z>h      (12) 

Making the deposition velocity for all reference heights with zref > h a function of the source 
height.  
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Figure 15.  Vertical concentration profiles after 25, 50, 100, and 500 puffs for puff separation of 

20 seconds for totally absorbing surface. 
 
 The case of total absorption at the surface is also unrealistic in the sense that the turbulent 
diffusion coefficient of 1 m2 s-1 is unrealistically large as it extends down to the surface and gives 
rise to very high deposition rates.  The deposition velocity downwind of a single puff referenced 
to 10 m was seen to be greater than 10 cm s-1 (Figure 6).   This corresponds to a fall velocity for 
particles greater than 30 µm radius and explains the rapid loss of particles shown in Figure 12. 
  
 For the case of a reflecting surface we see that the integrated flux (number of particles 
suspended) increases linearly with the frequency of the puffs (Figures 9 and 10).  That is not the 
case for a totally absorbing surface where the time between puffs is an important factor in 
determining the upward flux (effective source). This difference is clearly illustrated by letting the 
puff separation be infinitely long.  The integrated flux from a single puff (of unit strength) goes 
to unity for a reflecting surface, whereas the integrated flux for the absorbing surface goes to 
zero.  This has important implications when deriving the surface source function from 
measurements of aerosol production from a single breaking wave, as in a wave tank, and 
extrapolating the result to source flux for the ocean surface made up of many whitecaps.  
 
Before proceeding to analyzing more complete scenarios, we summarize the various flux 
variables defined above.  This notation is used in the 6 cases that follow. 
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Table 1. Definitions of various flux variables 
 
Symbol Description Units 

F(z,t) Flux of particles from a single puff at time 0, through the plane at 
height z 

s-1 

FI(z,τ) Flux from a single puff through a plane at height z integrated from 
time t=0 to t=τ  

           ∫=
τ

τ
0

),(),( dttzFzFI  

Interpretation: Number of particles above the z-plane resulting 
from a puff at time t=0. 

 
Dimensionless 

FS(z,M∆t) Flux through a plane at height z at discrete times from a series of 
M puffs separated by ∆t 

       ∑
=

=

∆=∆
Mm

m

tmzFtMzFS
1

),(),(  

 
s-1 

FIS(z,M∆t) Flux from a series of puffs separated by ∆t, integrated over a time 
period M∆t 

       ∑ ∑∫
=

= =

=∆=∆
Mm

m

M

m

mt

dttzFtmzFItMzFIS
1 0 0

),(),(),(  

Interpretation: Total number of particles above the z-plane at time 
M∆t resulting from M puffs. 

 
Dimensionless 

SI(z,M∆t) Average flux over time ∆t at time M∆t resulting from a series of M 
puffs 

     
t

tMzFI
t

tMzFIStMzFIS
tMzSI

∆
∆

=
∆

∆−−∆
=∆

),(])1(,[],[
),(  

Interpretation: The (upward) gradient flux of particles integrated 
over the horizontal plane at z and at time M∆t resulting from M 
prior puffs.  
 

 
s-1 

 
To get the average flux per unit area the flux SI must be associated with the appropriate 

area of the ocean surface. This will depend upon the white cap frequency, the area of white water 
coverage, and the strength assigned to our (unit) puff.  This will be treated in Section IV.  Also, 
while SI is the puff source flux at the source for a reflecting surface that is not the case for an 
absorbing surface. 
 
 To help understand the physical interpretation of the equation for the SI(z, tM) [Eq. (10)], 
FI(z,M∆t) is plotted  for seven puff plumes offset by 10 s  for the case of perfect reflection in 
Figure 10.  At any time, FIS(z,M∆t) is the sum or the magnitude of all curves and SI(z, tM) is the 
difference in FIS over a time interval ∆t. The sum at time M∆t differs from that at (M-1)∆t by the 
value of the curve from the first puff, FI(z,M∆t). For the case of reflection, if you wait long 
enough, this just means that every puff adds the value of one (for unit puff) so that SI(z, tM) is 
just (∆t)-1.  For the case of absorption as shown in Figure 7, FI(z,8 ), becomes zero and the 
earliest puffs no longer contribute, FIS no longer change with time and SI(z, tM) is therefore zero. 
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A steady state can exist only if the memory of the earliest puffs is lost.  For cases that do not 
contain the fall velocity this means that eventually the gradient above the surface must go to zero 
and all new particles are re-deposited on the ground at the same rate at which they are formed. 
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Figure 16. FI(3m,t) for 7 puffs offset by 10 seconds for the perfectly reflecting case.  At 70 

seconds the sum of the puffs is the same as the sum of the puffs at 60 seconds plus the 
contribution of the first puff at 70 seconds. 

 
 We now extend the analysis by first looking at two more reflecting surface cases, but first 
with the eddy diffusivity set to zero at the surface and increasing linearly with height (Case 2), 
and then with the domain capped by letting the eddy diffusivity go to zero at the top of the MBL 
(Case 3). 
 
Case 2. Gaussian Plume with K(z)=kz for totally reflecting surface, no gravitational settling 
 
 The general solution for a plume downwind of a line source with perfectly reflecting 
surface has been given by Huang [1979] for the case when the wind and eddy diffusion 
coefficient are given by the following power laws 
   
 pzuzu =)(   and  nkzzK =)(         (13) 
 
where the wind is taken along the x-direction. By using arguments similar to those discussed in 
connection with Case 1, we can adapt the Huang solution for a line source to a puff plume by 
letting, tux =  and p=0 (no wind shear), and by normalizing the source to unity ( 1/ =uQ ).  The 
solution then becomes 
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where np −+= 2α , αν /)1( n−= , z=h is the height of the source and Iν is the modified Bessel 
function of order ν.  

 
Here we are interested in the linear (n=1) eddy diffusion coefficient, K(z)=kz, which is 

generally believed to be the profile which best describes the turbulent mixing in the surface layer 
during periods of neutral stability. But before proceeding, we point out that Equation (14) is the 
same as Eq. (4) for a constant K (n=0).  This can be seen using the following identity 
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and completing the squares in the exponents of Eq. (14). 
 
 For the case of a linear diffusion profile, n=1, the solution becomes  
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The gradient can be expressed as  
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The flux at any time t, passing through a plane at height z is then given by 
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The integrated flux passing through a plane at height z between t=0 and t=τ is just 
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The integrated flux at 1 and 3 m for a single puff is shown in Figure 17 by the red and black solid 
lines where the integrated flux for k =0.16 m s-1 corresponds to that of a 10 m s-1 wind speed 
(and neutral stability).  The dotted lines are the fluxes at 1 and 3 m for a constant K of 1 m2 s-1 as 
given by Eq. (6) and shown in Figure 7.  In both cases the source is at h=0.2 m.  Because of the 
small value of mixing near the surface in the linear case it takes longer for the particles to move 
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upward through the plane at z=3 m.  However it is important to realize that in either case the flux 
for the reflecting surface approaches unity after about 100s, so that the form of the turbulent 
mixing profile is not very important for small particles where surface deposition is small (i.e., the 
well-mixed case).  For an absorbing surface we would expect the form of the mixing profile to be 
important since a low mixing coefficient near the surface inhibits upward mixing; however, for a 
linear profile the only transport mechanism is gradient transport, and there is no mechanism by 
which particles can be deposited right at the surface (since K goes to zero).  In a subsequent 
section gravitational flux will be added to governing equation. 

 
 

Fgure 17.  The integrated flux at time τ at 1m (red) and 3 m (black) from a single puff at 
z=0.2 m for a perfectly reflecting surface.  The solid lines are for linearly increasing 
diffusion coefficient (K=0.16z) and the dashed lines for constant K=1 m2 s-1. 

 
 So, these results show that for a reflecting surface (i.e., no surface deposition – small 
particles) the shape of the eddy diffusivity in the surface layer of the MBL has little effect on the 
cumulative integrated flux from a series of puffs.  However, the next section will show that 
capping the MBL has an important effect.  
 
Case 3.  Plumes in a capped boundary layer, with a reflecting surface and no gravitational 
settling 
 

In all the prior cases the vertical domain is unbounded and particles continue to flow 
upward indefinitely.  However, the MBL is usually capped by a potential temperature inversion 
that effectively traps the sea-salt particles in the MBL.  A more realistic profile for the mixing 
coefficient, K(z), which caps the MBL at a height H is given by  
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κ and u* are the von Karman constant and the friction velocity, respectively. This form of the 
diffusion coefficient retains the linear increase in the surface layer, is a maximum in the center of 
the MBL, and goes to zero at the top of the MBL. The solution for this form of the eddy 
diffusion coefficient is given by Nieuwstadt (1980) in terms of Legendre polynomials, Pn(z), 
where n is the order of the polynomial: 
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where Q=1 for a unit puff and k=κu*.  The flux is found by term-by-term differentiation 
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Likewise term by term integration from t=0 to  t=τ gives the integrated flux, FI(z,t), at height z 
and time τ for a single puff.  Explicitly,  
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The expression used here for the derivative of the Legendre polynomial can be found in 
Abramowitz and Stegun (1964).   
 
 The concentration, as a function of height, from a single puff in a MBL capped at 100 m  
is shown for times of 50, 100, 500 and 1000 seconds in Figure 18.  The curve at 1000 seconds 
indicates the particles are well mixed over a height of 100 m.  For unit puff, the final result 
should be a uniform concentration of 0.01m-1.  
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Fgure 18. Concentration as function of height at 50, 200, 500, and 1000 seconds for 
capped MBL and reflecting surface. 

 
Figure 19 plots SI(z,t) for 1 to 100 puffs separated by 20 seconds at heights of 2, 10 and 

50 meters.  At 2 m the upward flux approaches 0.05 (asymptotic limit would be 
(0.98)(.05)=.049).  Since only half the particles are found above 50 meters the source flux at 50 
m would be only .025.  The flux at 50 m is much different in the capped case than in the 
unbounded case (Case 2). Therefore the height at which you measure the flux and the height of 
the MBL will affect the measured flux. 
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 Figure 19.  SI(z,t) for the capped case at 2, 10 and 50 meters. Puff interval is 20 seconds. 
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Twenty terms of the series in equation (21) are more than adequate to evaluate N(z,t) and 
F(x,t).  However, the series for FI(z,t) exhibited an oscillation around the mean profile when 
plotted as a function of z.  The amplitude of the oscillation decreased and the frequency 
increased as the number of terms in the series increased.  We carried out the calculation for 
FI(z,t) [and SI(z,t)] using up to 120 terms, at which point the amplitude was very small but still 
visible when plotted as a function of z. The oscillations do not affect Figure 19 because the plot 
is a function of time at fixed z.  A similar but less predicable behavior was observed with the 
series solution to be described in the next case where we also have an infinite series. 
 
Case 4.  Gaussian Plumes with specified surface deposition, capped boundary layer, 
K=constant and no gravitational settling. 
 
 In the prior cases we have assumed that the earth’s surface was either a perfect reflector 
or a perfect absorber (with a very unrealistic constant K(z) all the way to the surface).  We now 
consider the more realistic case where there is partial absorption at the surface determined by 
specifying a deposition velocity for surface deposition. Note that this is not equivalent to 
including gravitational settling; this is only a boundary condition and includes only the effects of 
deposition at the surface via impaction, Brownian diffusion, etc.  Also, as in Case 3, the 
boundary layer is now capped by a reflecting surface at height H to simulate the finite depth of 
the MBL.  The solution to the diffusion equation (Eq. 1) for these boundary conditions is given 
by Seinfeld [1986] and Seinfeld and Pandis [1998].  Following the same procedure as before, the 
horizontal dispersion can be separated from the vertical dispersion by separation of variables.  
The solution in the x-y plane is the same as in the last section and the solution of the vertical 
dispersion of the concentration, N(z,t), from a puff at height h and at time t=0 is given by 
Seinfeld [1986] as 
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where h is the height at which the puff is introduced and λn are given by the roots of 
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The solution satisfies the surface boundary condition 
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where vd here is the deposition velocity referenced to the surface concentration.  As the surface 
concentration changes so does the surface gradient, and both have the same time dependence at 
the surface, such that the deposition velocity remains constant with time.  The surface deposition 
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resulting from all mechanisms included in the deposition velocity must be reflected in the surface 
gradient as required by the differential equation which allows only for gradient transport. At the 
top of the boundary layer the domain is capped by requiring the flux be zero (no concentration 
gradient). 
 

In the calculations to be given here the value of Kz is set to 5 m2 s-1, the source is located 
at one-half meter (h=0.5 m), the boundary layer is capped at 100 m, and vd is 0.0065 m s-1, a 
deposition velocity roughly equal to that of a 5 µm radius particle at wind speeds of about 10 m 
s-1 [Hoppel et al., 2002].  The deposition velocity has both a gravitational settling component of 
about 0.004 m s-1 (sea-salt particles at 80% RH) and an impaction component of about 0.0025 m 
s-1.  We note here that since the gravitational component is large compared to the non-
gravitational component the gravitational settling should be (but is not, as mentioned above) 
included in the differential equation.  It will be included in the results presented in Section III. 
Particles smaller than 5 µm will generally have deposition velocities that are much smaller.  The 
value of Kz is nominally that found at a height of about 30 m in the MBL for neutral conditions 
and wind speeds of about 10 m s-1.  

 
 The solution for the vertical profile of concentration from a single puff at 20, 60, 100 and 

500 seconds is shown in Figure 20.  The number of terms in the sum used here is 50, but less 
than 10 is needed to capture the concentration profile.  It is seen that the particles are nearly 
uniformly distributed after 500 seconds.  Since particles cannot penetrate the upper boundary at 
H=100 m and loss at the surface is small on the time scales shown, a finite, nearly uniform 
concentration is obtained after about 500 seconds.  There will be a further slow decay of the 
uniform concentration with time due to surface deposition.  The nearly uniform profile during 
the decay is indicative of the quasi steady state. 
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 Figure 20.  Concentration vs. height with Kz=5 m2 s-1, vd=0.0065 m s-1 and H=100 m at 
times of 20, 60, 100 and 500 seconds. 
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Equation (25) can be differentiated term by term to give the gradient, as follows: 
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The vertical profile of the gradient (negative of the flux, -F/Kz) resulting from a single puff is 
shown in Figure 21 at times of 20, 60, 100 and 500 seconds. 
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 Figure 21.  Concentration gradient vs. height for Kz=5 m2 s-1, vd=0.0065 m s-1 and H=100 

m at times of 20, 60, 100, and 500 seconds. 
 

The downward flux (positive values of the gradient) near the surface is very small and 
difficult to detect in Figure 21 in comparison to the large upward flux during the first 100 
seconds or so.  The zero crossing (point where the flux changes direction) is slowly moving 
upward with time.  The critical height where the flux changes direction is shown in Figure 22 
and found numerically by locating the zeros in the concentration gradient, Eq. (28), as a function 
of time.  The critical height does not reach 10 m until after 400 seconds.  This is much slower 
than the upward propagation of the crossing point shown in Figure 5 for total absorption.  For 
total reflection, vd=0, the flux is always upward.  Since the deposition flux is much smaller than 
that observed for the case of total absorption, the solutions here more closely resemble that of 
reflection than that of total absorption over short time periods.  However over longer time 
periods the loss to surface deposition is significant. 
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 Figure 22. The height at which the gradient changes sign (the flux changes direction) vs. 
time for Case 4. 

 
As demonstrated in the last section, the instantaneous value of the flux (as demonstrated 

in Figures 8 and 12 for total reflection and total absorption) is of little interest since 
measurements and parameterizations in numerical models deal only with average values over a 
large number of whitecaps.  And as also discussed earlier, the total integrated flux per puff, 
FI(z,t), is an important function which indicates the length of time for equilibrium to be reached.  
For a perfectly reflecting surface we saw that equilibrium is never achieved and the particle 
concentration increases indefinitely. FI(z,t) is found for this case by integrating Equation (28) 
from time zero to time t.  Term by term integration of Equation (28) over a time interval from 
t=0 to time t is equivalent to replacing the exponential factor for the time dependence by a new 
factor equal to  
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For the integrated flux, FI(z,t) (a measure of the number of particles above height z), the series 
solution converges very slowly and 100 terms in the sum were used. The total integrated flux 
from a single puff is shown in Figure 23 over a time period of 3.3 hours at heights of 2, 4, and 
10.7 meters.  Near the surface nearly all particles are dispersed upward, about 90% cross the 2 
meters level at times less then 500 s; less at higher altitudes, as expected because the domain is 
capped.  At longer times there will be a slow decrease in the integrated flux as particles dispersed 
above make their way back downward and are re-deposited on the surface at a rate dictated by 
the specified deposition velocity.  After 3 hours more than half the particles have been re-
deposited on the surface. This behavior can be compared, although on different scales, to that 
shown in Figure 7.  For total reflection, the integrated flux goes to unity indicating that all 
particles are forever dispersed upward.  For total absorption the particles dispersed upward, 
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rapidly resettle to the surface giving zero total flux after a short period of time (also 
demonstrated in Figure 7). 
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 Figure 23. Total Case 4 integrated flux from t=0 to time t, for a single puff through planes 

at 2, 4 and 10 m. The dashed line is 1 minus the deposition flux. 
 
 Also shown by the dashed line in Figure 23 is the integrated deposition flux obtained 
from 
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where term-by-term integration of N(0,t) can be carried out and is similar to that indicated in Eq. 
(29) for the flux. ( )tFIdep ,0  starts at zero and is unity when all particles are re-deposited.  In 

Figure 23 we have plotted the quantity, ( )tFIdep ,00.1 − , by the black dashed line to demonstrate 
that the sum of the upward gradient flux measured close to the surface and deposition flux at the 
surface is unity - the total source for a unit puff plume. The same will hold for a series of puffs as 
will be shown below. While this is simply a statement of conservation of particles, it has 
important consequences in that it demonstrates that a measurement of these two quantities (i.e., 
the (upward) diffusion flux near the ground and the deposition flux via the concentration and the 
vd near the ground) will provide a measure of the source strength.  This assumes that the 
deposition velocity is known, which unfortunately is often not the case. 
 In calculating FI(z,t), if too few terms are used in the sum the plot, as a function of 
height, exhibits unacceptable oscillations.  As the number of terms increases, the amplitude of 
the oscillations decrease, but what looks like numerical instability develops near and just above 
the source.  The latter may be due to the accuracy with which the eigenvalues and sum are 
calculated.  Since the oscillations are seen to be in phase at all times at a given height, they do 
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not appear in the temporal plots shown in Figure 23, but as a result the accuracy of Figure 23 is 
somewhat limited by these small oscillations.  For the parameters (and software) used in the 
calculations, the best accuracy was obtained using about 100 terms in the series.   
 

We now consider this case with a series of puffs.  Figure 24 shows particle concentration 
as a function of height, the result of summing Eq. (25) over a series of 100 and 200 puffs with 
puff separation of 20 seconds (total time of 2000 and 4000 s).  If there were no loss of particles 
the average of the vertical profiles over 100 m would be 1 and 2 m-1, respectively. The increase 
in concentration with time decreases as equilibrium is approached and the gradient decreases 
with time.  (The calculations above were run out to 1000 puffs with 20 second puff separations 
and indeed the concentration was seen to approach equilibrium.)  There must always be some 
gradient during the filling process. At steady state the filling is complete and the gradient must 
approach zero at all heights above the source (because of the upper boundary condition which 
requires the gradient to be zero).  An average gradient below the source at z=h (0.2 m in the 
example), sufficiently strong to direct all newly injected particles to the surface, is established.   
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 Figure 24.  Concentration vs. height after a series of 100 and 200 puffs for 20 seconds 
puff separation. 

 
The integrated total fluxes, FIS(z,t), from a series of 250 puffs separated by 10, 20 50 and 

100 seconds are shown in Figure 25, which can be compared to Figures 9 and 13 for total 
reflection and total absorption. At higher puff frequencies the curves in Figure 25 are nearly the 
same as the reflecting case because there is little depositional loss for the earlier puffs during the 
time required for 250 puffs to occur.  For the longer puff separation (100 s), the earlier puffs are 
dissipating and contributing little to the time integrated flux. With increasing time the integrated 
flux approaches a constant value, indicating no (average) gradient flux.  The straight dashed lines 
indicate the integrated puff source flux and the difference between the total time-integrated flux 
and the diffusion flux is the time-integrated deposition flux.  The slopes of these lines are the 
average flux at that point in time.   
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 Figure 25.  Integrated Case 4 total flux through the plane at 2 m as a function of 

time for puff separations of 10, 20, 50, and 100 seconds where the total number 
of puffs is 250. 
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 Figure 26. Upward Case 4 average diffusion flux at 2 m for puff separations of 10, 20, 

50, and 100 seconds as a function of the total number of puffs.  
 

The time averaged upward diffusion (gradient) flux SI(z,t) at the 2 m height for puff 
separations of 10, 20, 50, and 100 seconds as a function of the total number of puffs is shown in 
Figure 26. Over very long times the diffusion flux will continue to decrease and eventually 
SI(z,t) will go to zero at which time the concentration at the surface will be large enough to sink 
all new particles introduced at h, and the concentration gradient will be in accordance with the 
boundary condition given by Eq. (27).  Above the source the gradient goes to zero.  (If you are 
measuring the eddy correlation flux it will go to zero above the source!)  The dashed horizontal 
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lines give the total puff source flux and the difference between the diffusion flux and the total 
source flux is the deposition flux (assuming that the diffusion flux is taken sufficiently near, and 
above, the source).  The important point here is that, for the case where there is only diffusive 
flux allowed, a measurement of the average diffusive flux plus the deposition flux from a 
measurement of the concentration [Eq. (30)], the total puff source can be obtained. Or from a 
modeling perspective the puff source can be the source from the surface into the lowest cell and 
the removal to the surface is the surface concentration times the deposition velocity.  The above 
is for the case that there is no appreciable gradient in concentration across the lowest cell.   

 
 The time for a puff to decay is a strong function of particle size. Figure 27 shows the total 
integrated flux vs. time at 2 m from a single puff for particles of 1, 5 and 10 µm radius and 
indicates the difference in the time required to establish equilibrium.  For a 1 µm size particle the 
deposition velocity is taken to be 0.0002 m s-1.  This deposition velocity is appropriate for a 10 m 
s-1 wind speed and is essentially the gravitational settling velocity - the impaction and Brownian 
contributions are negligible for 1µm particles at 10 m s-1 wind speed.  The deposition velocity for 
a 5 µm particle is as given previously, and that of a 10 µm radius particle is taken to be 0.023 m 
s-1 (gravitational and impaction deposition contribute 0.015 and 0.008 m s-1 respectively).  For 
the well-mixed case the filling time constant can also be estimated from the H/vd. The estimated 
time constant for the above three cases are 6 days, 4.2 hr and 1.2 hr, respectively, which agrees 
roughly with the decay times shown in Figure 27.  It should be remembered, that for ease of 
calculation, we have used an unrealistically low MBL height of 100 m.  A more typical MBL 
height would be 500 to 1000 m and the time constants given above would increase by a factor of 
5 to 10.  Since the typical lifetime of an aerosol in the MBL is usually assumed to be about 3 
days, the surface deposition for particles smaller than about 1 to 2 µm can be neglected.  For 
larger particles the neglect of gravitational settling within the body of the MBL, as we have done 
in this case, is not valid. Inclusion of gravitational settling will be addressed in the next section. 
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 Figure 27. Decay with time of the integrated flux from a single puff for particle 

radius of 1, 5 and 10 µm.  z=2 m. 
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Before leaving this case mention should be made of the effect of varying K.  Figure 28 shows the 
concentration profile for K=1, 2, and 5 m2 s-1 60 seconds after a unit puff.  The larger the value 
of K the more rapid is the upward mixing and dilution near the surface.  Since the surface 
deposition is proportional to the concentration the surface deposition during the initial dispersion 
decreases with increasing value of K (the opposite as in the case for conventional deposition with 
flux downward from above). However the particles dispersed to higher altitudes require longer to 
redeposit, increasing deposition at longer times.  The integrated diffusion flux near the surface 
shown in Figure 23 will always be near unity shortly after the puff and eventually decay to zero.  
For example, the time integrated flux shown in Figure 23 decreases more rapidly with time over 
about the first 3000 seconds, but has about the same value at the end time (12000s) as shown in 
the figure when K is decreased from 5 to 1 m2 s-1.  Consequently the change in the integrated 
flux from a series of puffs shown in Figure 25 is nearly unchanged when K is changed from 5 to 
1 m2 s-1. There was a very small decrease in the curve for ∆t=10 s (red curve) because the earliest 
puffs were still in the state of more rapid surface deposition (still far from equilibrium). The 
above observation is important because it indicates that while the value of K may be important in 
establishing the rate of change for a single puff, it does not play a major role in determining the 
long term value for a series of puffs, provided the gravitational settling term is neglected in the 
differential equation (small particles).  As we will see when gravitational settling is included 
K(z) is important in suspending large particles and determining the gravitationally induced 
vertical gradient.   
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 Figure 28.  Concentration profile for single puff at 60 s for K=1, 2, and 5 m2 s-1. 
 
 The analysis given above assumes that the loss of particles is only due to surface 
deposition.  Additional loss of particles will occur as a result of detrainment of the particles to 
the free troposphere at the top of the MBL, dilution due to subsidence, and loss by precipitation 
scavenging.  These processes can have a large effect on the time constant for achieving 
equilibrium, especially at small radii where the deposition velocity is small.  A more rigorous 
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treatment of the filling time constant and the effects of entrainment, subsidence and precipitation 
scavenging can be found in Hoppel et al. [2002, Eqs. (21), (24) and (26)]. 
 
 
III.  Puff plumes with gravitational settling of particles (Cases 5, 6 and 7) 
  

When the gravitational settling is included an additional flux term occurs, and the 
differential equation for the z component can be written as 
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III. a. Surface boundary condition.  A number of investigators [Godson, 1958; Smith, 1962] 
suggest that the appropriate surface boundary conditions for Eq. (31) can be written as  
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where vd is called the deposition velocity.  We believe a more general expression for the 
boundary condition at the surface is that the net flux at any time is the difference in the gradient 
flux and the gravitational settling flux  
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The net flux at the surface is some function of time, but not limited to the same time dependence 
as the concentration.  There is no reason to suspect that, in general, the time dependencies of the 
concentration and concentration gradient will be the same, as implied by Eq. (32).  Eq. (32) 
would obviously be valid for the steady state. In the case where K(z)=kzn (n>0), K(0)=0 and vd 
must be vg. However when vg=0, the only flux to the surface is the gradient flux and it is 
legitimate to impose the boundary condition 
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This forces the gradient to have the same time dependence as the concentration at the surface, 
and was the boundary condition used in Case 4 [Eq. (27)], and for the totally reflective case the 
surface gradient is zero.  For the totally absorbing case the boundary condition was not a 
boundary condition on the flux, but rather the surface concentration was set equal to zero, 
leaving the gradient flux to be determined by the solution. {Note.  We could let the surface be at 
some height z=δ or K(z) have some residual at z=0 (i.e. K(z)=kz+D) to account for other surface-
loss processes, but that would require a different solution (boundary conditions) than the one we 
are discussing.}  
 



33 

 For the case when vg is not zero a surface boundary condition is more difficult to specify, 
but we do not accept the convention given by Eq. (32) as the most general case.  As will be 
apparent in what follows the net flux can be downward while the turbulent /gradient flux is 
upward opposing the gravitational settling.  In other cases, such as total absorption at the surface, 
the gradient flux is downward reinforcing the gravitational settling. For Case 6 below, the 
solution for a linear eddy diffusion coefficient derived by Rounds [1955] is accepted and is stated 
by later authors to be the solution for the flux boundary condition given by Eq. (32) when vg=vd.  
However, for a linear diffusion coefficient which goes to zero at the surface, both Eqs. (32) and 
(33) require that vg must equal vd at the surface.  As we will see, the time dependence of the 
concentration and concentration gradient are not the same.  It may well be that Eq. (32), in 
general, over specifies the allowable boundary conditions by limiting both the concentration and 
gradient.  For parabolic differential equations with open boundary conditions, specifying both the 
gradient and concentration over determines the solution (Morse and Feshbach, 1953, p. 706). 
 
Case 5. Surface puff with constant K, vg>0. 
 
 In the prior three cases we have neglected the gravitational settling of the particle.  Any 
loss of particles at the surface due to settling, in the prior case, was simulated by a deposition 
velocity, but no gravitational effects within the body of the boundary layer were included.  For 
larger particles the downward gravitationally induced flux is important as is the gravitationally 
induced vertical concentration gradients.  The diffusion equation, similar to Eq. (2), for constant 
K and constant settling velocity vg is 
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where the horizontal wind speed is taken to be constant and the observer is moving with the 
mean wind speed (horizontal advection terms are zero).  If the following substitution is made for 
n in Eq. (35) 
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(Frank and Mises [1943]), Eq. (35) becomes 
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This is the same as Equation (2) for which solutions have already been found in Cases 1 and 4. 
As in the prior cases we can separate out the horizontal dispersion and consider only the vertical 
dispersion 
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where, as before, N(z,t) is the total number of particles in a layer dz (particles per unit length 
obtained by integrating over the x-y plane). 
 
 In Eq. (38) w(z,t) can be the solution provided by Eq. (4) for the reflecting or totally 
absorbing surface, or Eq. (25) for a partially absorbing surface. In the limit as vg goes to zero, the 
solution will the same as before and satisfy the original BCs.   Each of the solutions for w(z,t) 
will give different surface boundary conditions for N(0,t) than for w(z,t).   
 

For a reflecting surface discussed earlier in Case 1 the gradient of the concentration, 
ztzw ∂∂ /),( , was zero at the surface.  The reflective BC on the gradient of w(z,t) leads to the 

following BC on the surface gradient of N(z,t).   
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The surface gradient is no longer zero because the gradient is now being advected downward by 
gravitational settling. 
 
 In terms of deposition velocity referenced to the surface concentration, this BC implies 
that 
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The gradient flux at the surface is upward and equal to half the downward gravitational flux.  
The upward gradient flux at the surface is the result of constant Kz at the surface and necessary if 
there is a gravitationally induced gradient in particle concentration. The +vg/2 part of the 
deposition velocity in Eq. (40) is the non-gravitational part of the deposition velocity and is 
analogous to the Brownian diffusion deposition in the case when K(z) goes to zero at the surface 
– only here the “diffusion” deposition is unreasonably large and the gradient is in a direction to 
oppose deposition not encourage it.  If Kz went to zero at the surface, as it does in the 
atmosphere, then we would expect the deposition velocity referenced to the surface 
concentration to be just the settling velocity as given for the equilibrium case by Hoppel et al. 
[2005]. 
 
 The above procedure of deriving the surface boundary condition by assuming the 
reflecting case when vg=0 does not follow the usual convention of imposing a boundary 
condition and looking for the solution which satisfies that boundary condition.  The difficulty in 
specifying the boundary condition is undoubtedly related to the boundary conditions allowable 
by a parabolic D.E. equation.  We cannot specify independently both the concentration and the 
gradient.  In the case with no gravitational settling, we specified only the concentration or the 
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gradient or, as in Eq. (27), a relationship between the two. Here we have specified the gradient as 
zero in the limit as vg goes to zero.  Once that choice has been made our options have been 
exhausted.  In the next section where K(z) goes linearly to zero at the surface, only the 
gravitational flux is specified at the surface and we need not specify the gradient.  This is 
probably the reason that those (Rounds [1955 ] and Smith [1962]) who have presented a general 
solution to the plume equation when K(z)=kzn and vg>0 do not develop the case for n=0 even 
though it is logically the first step. 
 

For simplicity we consider the case of the reflecting surface with source at the surface 
h=0, such that the equation for w(z,t) is found from Eq. (4) as 
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and (after completing the squares in the exponent) we find 
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where vg is now positive downward. 

The vertical gradient of N is just 
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The diffusion flux at the surface is 
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The total deposition flux is 
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As found in the more general case [Eq. (40)], the diffusion flux opposes the gravitational force 
and decreases the deposition velocity from vg to vg/2 when the deposition velocity is referenced 
to the concentration at the surface.  
 
 The concentration and vertical gradient are shown in Figures 29 and 30 as functions of 
height at 20, 40, 100, and 200 s for Kz=1 m2 s-1 and vg=0.0125 m s-1, a fall velocity which 
corresponds to a unit density particles with radius of about 10 µm.  The total flux  
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crosses zero and is positive very near the surface.  The gradient flux is always upward; it is the 
gravitational flux that causes the flux to be downward at the surface.  (Only the gradient – 
negative of the gradient flux – is shown in Figure 30). 
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Figure 29. Vertical profile of concentration at 20, 40, 1000 and 200 seconds for Kz=1 

m2 s-1 and vg=0.0125 m s-1.     
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Figure 30.  The concentration gradient as function of height at 20, 40, 100 and 200 
seconds for Kz=1 m2 s-1 and vg=0.0125 m s-1. 
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 The height at which the net flux changes direction, is shown in Figure 31 as a function of 
time.  For a single puff it takes about 10 minutes for the flux to be downward at all heights below 
7 meters.      
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Figure 31.  Height at which the flux changes from downward to upward as a function of 
time for Kz=1 m2 s-1 and vg=0.0125 m s-1. 

 
 Integration of the flux evaluated at the surface from time zero to time t, gives the error 
function. So that the total integrated flux at time t is  
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where we have written out the two error function terms to indicate that the first error term relates 
to the upward “gravitationally-induced” gradient flux and the second accounts for the 
gravitational settling term.  FI(0,t), the number of particles above the surface, is initially unity 
and goes to zero when all the particles are re-deposited and is shown by the dashed light blue line 
in Figure 32.  Also at z=0 
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where ),0( tNI is the time integrated value of the surface concentration.  
 
 The above analysis is for the flux at z=0. The fluxes can be evaluated at any height at 
which we wish to calculate the upward and downward fluxes.  In some cases it may be of interest 
to consider the fluxes at the midpoint of the bottom cell of a numerical model. The net integrated 
flux at z=2 m, found by numerical integration of Eq. (46) is shown in Figure 32 by the solid line 
for values of the parameters given above.  The fact that integrated flux does not reach unity is 
due to the gravitational settling of particles so that they do not reach the 2 m level.  Also shown 
by dotted lines are the integrated gradient flux and integrated gravitational flux (these are, of 
course, mathematical terms not real fluxes). The gradient flux opposes the gravitational flux even 



38 

during the dissipation phase.  The fact that the integrated gravitational and diffusive fluxes are 
greater than unity results from the fact that the particles are, in effect, being re-suspended by the 
upward diffusive force at the surface.  We have expanded the time scale by using a logarithmic 
scale to show that all particles eventually fall out; in this case (open system) that requires over a 
day.  However in reality many additional white caps will be encountered during that time period. 
The integrated depositional flux, found by using a deposition velocity vg/2, is the difference 
between the integrated flux (particles above z) and the total number provided by the puff as 
indicated by the arrow in Figure 32. 

 

 
   Figure 32.  Time integrated flux at z=2 m from time zero to time t for vg=0.0125 m s-1 is 

shown by the black line and by the grey dashed line for z=0.  Red and blue dotted 
lines are the integrated gradient and gravitational fluxes at z=2 m. 

 
 The integrated values of net flux calculated from Equation (48) summed over 500 puffs 
separated by time intervals of 20, 40 and 100 seconds is shown in Figure 33.  The integrated net 
flux in Figure 33 is shown as a function of the number of puffs not as function of time.  The 
difference in the total integrated flux at the end point is due to the loss between puffs, the longer 
the interval between puffs the greater is the loss. (Since these are unit puffs a line with slope of 
one (dashed line) would represent no loss.) The integrated flux for 10 s and 100 s puff separation 
is about 55% and 22% that for the case where there is no loss.  The total time for 500 puffs 
separated by 20 s is 5000 s (~2.8 h) whereas the total time for 500 puffs separated by 100 s is 
50,000 s (~14 h).  The results shown are a strong function of the particle size, and we emphasize 
that the results shown here are for a particle of radius of about 10 µm radius and unit density.  
When the curves become horizontal equilibrium has been achieved and the downward 
gravitational flux is just equal to the upward flux provided by the additional puff.  
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 Figure 33.  Time integrated flux from 500 puffs separated by 20, 40, and 100 seconds 
   at z=0. 
 
 The average net flux at any point is the slope of the integrated flux plotted as a function of 
time (not of m as plotted in Figure 33). The average net flux (between puffs m and m+1) is 
shown in Figure 34 as a function of the number of puffs.  The decrease in the flux as the time 
interval increases is a result of the lower frequency of puffs and the surface loss between puffs. 
The average (total) flux goes to zero at long times as equilibrium between the upward gradient 
flux is balanced by the downward gravitational flux (steady state).  This is much different than 
the Case 4 where the settling velocity was simulated by including it in the deposition velocity but 
not included in the differential equation.  In both cases the total flux goes to zero at long times 
(indicating equilibrium).  In this case the total flux goes to zero because the upward gradient flux 
equals the downward gravitational flux.  In the former case the flux went to zero because the 
gradient flux approached zero. 
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Figure 34.  Average net flux as a function of the number of puffs for puff intervals of 
20, 40, and 100 seconds.  The horizontal lines are the average flux if there were 
no surface deposition for puff intervals of 20 and 40 seconds.  

 
 The curves in Figures 33 and 34 may be better understood in terms of the definitions 
given in Table 1, which may be written here as 
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where Spuff is just the source strength of a unit puff and at equilibrium SI goes to zero and the 
source strength is obtained from the average concentration NI/∆t between puffs M-1 and M (or at 
time M∆t). 
 
 Figure 35 shows the vertical concentration profile after 50, 200, 400, and 800 puffs where 
the puff separation is 40 seconds.  The time for 400 and 800 puffs is about 16,000 s (4.4 hrs) and 
32,000 s (8.8 hrs) respectively, where the concentrations are about at their equilibrium value, 
where the upward gradient flux and downward gravitational fluxes are equal.  The time constant 
for a well-mixed column of height H to come to equilibrium is estimated in to be about 

svH g 80000125.0/100/ ===τ , somewhat less (but same order of magnitude) as that found 
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here.  Also shown is the steady-state profile for a uniform surface source, arbitrarily normalized 
to 4 at the surface. 
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During the filling process the profiles are in a quasi steady state where the shape of the vertical 
profile remains nearly constant during the transient filling process. 
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Figure 35. Concentration as a function of height after 50, 200, 400, and 800 puffs 
separated by 40 s.  Corresponding end times of 2000, 8000, 16,000 and 32,000 s 
(4.5 hour). Also shown is the shape of the steady-state profile normalize to a 
concentration of 4 at the surface. 

 
 Unlike Cases 1 and 2 where the only allowable flux is a gradient flux, here the total 
integrated flux can be divided into two opposing fluxes.  The blue curve in Figure 36 gives the 
integrated upward flux (solid blue line) and the dashed blue line the downward gravitational flux 
for puff intervals of 100 seconds.  The difference in the two curves corresponds to the bottom 
curve of Figure 33; the net flux.  Similarly, the red curves correspond to puff intervals of 10 
seconds and the difference gives the upper curve of Figure 33.  The magnitude of the curves are 
considerably larger than for the net flux shown in Figure 33.  This is consistent with the 
integrated flux for a single puff shown in Figure 32. 
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Figure 36.  Integrated upward flux (solid lines) at the surface for 20 s (red) and 100 s 

(blue) puff separations.  The dashed lines are the corresponding downward 
gravitational fluxes (at z=0). 

 
 In large-scale numerical models where the source of particles and deposition are 
calculated explicitly within the model, it is appropriate to input the average upward flux as the 
source at some average height of the lowest cell and let the model calculate the gravitational 
(surface) deposition and exchange with the cells above.  Figure 37 shows the time average 
upward flux (source) as a function of the number of puffs for puff separations of 20, 40, 100 and 
200 seconds (time derivative of the solid curves in Figure 36). The upward flux is nearly 
constant after about 40 to 60 minutes. The upward diffusion (source) flux includes the effect of a 
“re-suspension” diffusive force which opposes the gravitational deposition.  A measurement of 
the diffusive flux would include this effect which reduces the effective deposition velocity by 
vg/2.  The corresponding loss from that cell due to downward flux would then be vg (not vg/2) 
and the average net flux (Figure 34) goes to zero as equilibrium is approached.  On the other 
hand if there was a measurement of the average diffusion flux and the concentration, the average 
source strength of the puffs themselves could be calculated at any point in time by subtracting 

2/),0( gvtN ⋅   from the diffusion flux.  For example, the difference in the solid red curve and the 

red dotted line in Figure 37 is 2/),0( gvtN ⋅ . Here the factor vg/2 is related to the fact that vg/2 is 
the non-gravitational part of the deposition velocity. The horizontal red dotted line (at 0.05 is the 
effective source strength of the puff (unit puff  per 20 second).  This is true at any point in time 
during the approach to equilibrium.  After equilibrium has been achieved, only the concentration 
is required to obtain the source 2/),0( gvN ⋅∞ , where here the factor vg/2 is related to the fact 
that vg/2 is the gravitational part of the deposition velocity.  The analysis here is all for a height 
of z=0 and no adjustment is made for gradients which may exist between the surface and the 
center of the lowest cell in a model. We emphasize this is different than the usual case where 
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K(z) goes to zero at the surface and the deposition velocity is vg  as in Hoppel et al. [2002, 
2005]. 
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Figure 37.  Average upward diffusive flux at the surface (excluding gravitational flux) 
as function of the number of puffs with puff intervals of 20, 40, 100, and 200 
seconds.  Dotted lines are the source resulting from the sum of the puffs. 

 
 If it is assumed that the surface source is uniform, the differential equation for the steady 
state can be written as 
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This equation implies that, at equilibrium the deposition velocity is vg, and the solution can be 
written as  
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 By contrast, if we have a sufficiently long series of puffs such that there is an 
equilibrium, in an average sense, between the source of particles from the series of puffs and the 
gravitational fall out, the net deposition velocity is vg /2 not vg.  As illustrated in Figure 35 the 
shape of the vertical profile is that given by of the equilibrium profile (and not that given by Eq. 
(53) with vg replaced by vg /2.) This paradoxical behavior is difficult to understand.  However for 
a puff or series of puffs no equilibrium solution exists; i.e., an unbounded region can never be 
filled.  It is interesting to note that the effective deposition velocity for the case where there is 
both gravitational settling and diffusive transport to a surface from an infinite region above the 
surface, initially uniformly filled with particles is also vg/2 (Fuchs [1964], pp. 197-198).  In this 
regard Fuch’s states: “…deposition consists of a diffusive deposition which occurs in the 
absence of settling and half the sedimentation which would occur in the absence of diffusion.  
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This example shows clearly that serious errors may result …… by simply summing the 
individual effects of each.” 
 
 Since the diffusion at the surface gives rise to a non-gravitational component of the 
deposition velocity it is tempting to liken it to the non-gravitational part of the deposition 
velocity for the conventional case of deposition when the source is from above, where there is 
both a gravitational and non-gravitational component, va, resulting from Brownian diffusion and 
impaction at the surface expressed as  
 
 ( ) 0NvvF gadep −−=            (54) 
 
This is not a good analogy because here va = - vg/2.  The negative deposition velocity is actually 
a force which suspends the particles, not a deposition force.  However there is an important 
similarity, in that, the effect of the non-gravitational boundary flux at the surface is carried in the 
diffusion flux above the surface. 
 
 In summary, this case where the turbulent diffusion coefficient is assumed to be constant 
with altitude gives rise to a large ‘re-suspension force’ at the surface for large particles which 
does not exist in the atmosphere.  This boundary condition effects the diffusive flux throughout 
the MBL and would predict a larger diffusive flux than actually exists.  

 
 
Case 6. Puff plume with gravitational settling of particles; K(z)=χz, source at z=h 
 
 Solutions to the turbulent diffusion equation with gravitational settling and turbulent 
mixing increasing with height as some power of z are discussed by Rounds [1955], Godson 
[1958], and Smith [1962].  While the solutions given are for a continuous line source, the 
solution for a puff plume can be obtained by considering the downwind coordinate as the time 
coordinate, as discussed earlier.  Of particular interest is the linearly increasing eddy mixing 
coefficients given by K(z)=χz.  For neutrally stable conditions *uκχ =  where κ is von Karman’s 
constant and u* is the wind-dependent friction velocity. In this case the only deposition at the 
surface is that due to gravitational settling.  Equation (33) {and, for this case, also Eq. (32)} 
requires the surface deposition velocity to be vg.  The boundary condition at the surface (z=0) is 
then 
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for any finite value of the surface gradient. 
 
 The solution to Eq. (31) with this boundary condition is given by Rounds [1955] (Also 
Case v of Smith [1962]).  After assuming the wind profile is constant with height and converting 
the downwind coordinate to a time coordinate, Rounds solution can be written as 
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where ν = vg / χ, h is the height at which the puff is injected at t=0, and )(yIυ is the modified 
Bessel function of order ν.  For particles smaller than 20 µm and wind speeds less than the order 
of 10 m s-1, the order of the Bessel function, ν, will be a small fraction.  As in the prior cases, the 
lateral and longitudinal dispersion about the centroid is taken to be Gaussian (Kx,y=constant).  
The concentration as a function of height is shown by the solid lines in Figure 38 for time of 20, 
50 and 100 seconds; χ=0.16 m s-1, vg=1.25x10-2 m s-1 and ν=0.079, corresponding roughly to 10 
m s-1 wind speed and 10 µm radius particles.  The source height is taken to be h=0.2 m. 

 
Figure 38.  Solid curves are concentration as a function of height at times of 20, 50 and 100 

seconds for 10 µm radius particles; dashed lines are for 20 µm radius particles.   
 
 The solid lines of Figure 38 can be compared to Figure 29 for constant K (and h=0).  
Here the particle concentrations are initially greater near the surface because of the lower 
turbulent mixing near the surface but once the particles reach higher altitudes they are rapidly 
mixed to even higher altitudes because of the linearly increasing value of the turbulent mixing 
coefficient.  The dashed lines give the concentration profiles for 20 µm radius particles (vg=0.05 
cm s-1) under the same conditions and illustrates the effect of more severe gravitational settling 
on the concentration profile. 
 
 At the surface the deposition flux is only due to the gravitational settling and can be 
expressed as 
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Equation (57) can be integrated to give the accumulated deposition from time t=0 to t=τ when 
z=0 
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where ( )yx,Γ  is the incomplete gamma function and ( )xΓ  is the complete gamma function.  
Since ( ) )(0, xx Γ=Γ , all particles eventually get re-deposited on the surface but because mixing 
increases indefinitely with height, the time to complete the deposition become unrealistically 
long.  In the real atmosphere the MBL is capped at some height.  The net integrated source from 
t=0 to t=τ must include the initial unit puff source and is given by )(1),0( τdFItFI −= .  ),0( tFI  
is shown by the solid lines in Figure 39 for particles of about 4 µm (red), 10 (blue), and 20 µm 
(black) injected at 0.2 m and where χ=0.16 (corresponding to about 10 m s-1 wind speed).  As 
pointed out earlier the curves give the fraction of the particles which remain suspended at time τ.  
For comparison, the dashed lines show the net flux for a constant K=1 m2 s-1.  The initial 
deposition for the linear case is greater because the upward mixing at the injection height is 
much less than for a constant K.  However at longer times, particles mixed to very high altitudes 
by the linearly increasing eddy mixing take much longer to be re-deposited and the curves for 
K=constant eventually cross over those for the linear case. 
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Figure 39.  Net integrated flux, FI(z,t), as a function of time for a single puff.  Solid lines are for 

linear K(z)=χz, for particle radii of 4 µm (red), 10 µm (blue) and 20 µm. Dashed lines are 
for K=1 m2 s-1. 
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 The net integrated surface source flux given above is an approximation because the puff 
is introduced at the a height z=h, and the deposition is at z=0.  In fact, a surface puff source is 
incompatible with a K(z) which goes to zero at the surface, because there is no mechanism by 
which particles at the surface can be mixed upward from z=0.    The net flux at heights above the 
surface will consist of both a gradient flux and gravitational flux and any upward gradient flux 
will act as the source at the given height.  After considerable algebra the net flux through a plane 
at height z is found to be 
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 The flux as a function of time at 2 m height for a source at a height of 0.2 m is shown in 
Figure 40 by the solid black line for 10 µm radius particles; the solid green and red lines show 
the gradient and gravitational components of the flux. There is a strong upward gradient pulse 
during the first 20 seconds or so.  At longer times the gravitational component dominates.  The 
dashed lines are for 20 µm radius particles and illustrates the loss resulting from increased 
gravitational settling. 

 
Figure 40.  The black curve is the flux at 2 meters due to a single puff introduced at 0.2 meters.  

The green line is the upward gradient flux and the red line is the downward gravitational 
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flux.  Solid lines are for 10 µm radius particles and dashed lines are for 20 µm radius 
particles. 

 
Figure 41 gives the integration of the flux through the plane at 2 m shown in Figure 40 

over a greatly expanded time span for 10 µm radius particles.  The integrated total flux (black 
curve) is initially dominated by the upward gradient flux (shown in green) and reaches a 
maximum at about 100 seconds, after which, there is a slow decrease driven by gravitational 
settling.  Beyond several hundred seconds the curves are similar to those shown in Figure 39 on a 
linear plot.  The maximum integrated flux reaches a value of about 0.7, indicating that about 
70% of the 10 µm particles penetrate the 2 m level before settling back to the surface.  
Contrasting Figure 41 with 32 shows that the initial pulse at 2 m is delayed because of the much 
smaller mixing coefficient below about 5 m for the linear case.  However, particles that are 
dispersed to higher altitudes take an inordinate amount of time to be re-deposited because of the 
extremely large mixing coefficients encountered at higher altitudes.  The total flux will 
eventually go to zero indicating that an equilibrium can exist for a series of puffs where the 
gravitational fallout between puffs will equal the input from the additional puff. (Since this is an 
open system equilibrium will never totally be achieved.)  The integrated diffusive flux reaches its 
asymptotic value much sooner than does the integrated gravitational flux.  This is also seen for 
constant K in Figure 32. 

 

 
Figure 41.  The integrated flux (integration of the Flux shown in Figure 40) from time zero to 

time t for 10 µm radius particles for a single puff at 2 meters. The solid black curve is the 
total integrated flux and the green and red are the integrated gradient and gravitational 
flux respectively.  The black curve can be interpreted as the fraction of particles above 2 
meters.  Compare to Figure 32 for constant K.  The dashed black line is for particles of 20 
µm radius. 
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 Lastly we need to consider the effects of many puffs on the integrated flux penetrating a 
plane at which we wish to define as the height of the source function.  Figure 42 illustrates the 
increasing concentration as a function of height for a series of 25, 100, and 400 puffs separated 
by 40 seconds.  Solid lines are for 10 µm radius particles and dashed lines are for 20 µm radius 
particles and illustrates the effect of size on loss and on the vertical profile of the concentration. 
 

 
Figure 42.  Profile of concentration resulting from 25, 100 and 400 puffs separated by 40 

seconds.  Solid lines are for 10 µm radius particles and dashed lines are for 20 µm radius 
particles.  

 
 
 The integrated flux (as before) is given by 
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where the integral is what is shown in Figure 41.  Figure 43 shows FIS(z,M∆t) for a series of 500 
puffs separated by 10 (red), 20, 50 and 100 seconds as a function of the number of puffs (total 
time is ∆t times the number of puffs).  The loss is greater when the time between puffs is greater.  
Figure 43 can be compared to Figure 33 for constant K(z).  The loss is greater in Figure 44 
especially at shorter time periods; the different in the two figures is explained by the different 
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K(z) employed in the two cases as mentioned above.  The broken lines give the gradient and 
gravitational components for ∆t=100 s and the difference is just the net curve for ∆t=100 s. 

 
Figure 43.  Sum of the integrated puffs as a function of the number of puffs for ∆t = 10, 20, 50 

and 100 s.  The solid lines are the net flux and the broken lines for the gradient and 
gravitational components for ∆t=100 s. 

 
 The time derivative [Eq. (10)] of the curves in Figure 43 is the average flux.  Figure 44 
gives the average net flux at 2 m as a function of the number of puffs.  The average net flux will 
continue to decrease with time until equilibrium is achieved.  The unreasonable slow decrease 
seen in Figure 44 is a result of the linearly increasing diffusivity with height in the unbounded 
region above the surface.  The horizontal line shows the puff source flux.  Since some of the 
particles never reach 2 m and since at longer times the particles above are being redeposited, the 
number of particles above 2 m (integrated net flux) is smaller than the number introduced by the 
puffs. 
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Figure 44.  The average net flux (s-1) at 2 m as a function of the number of puffs for puff 

separations of 10, 20, 50, and 100 s. 
 

 
Figure 45.  The average diffusive flux (s-1) at 2 m as a function of the number of puffs for puff 

separations of 10, 20, 50, and 100 s. 
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 Figure 45 is the average gradient flux at 2 m from a series of puffs at 0.2 m.  The upward 
diffusive flux reaches a constant value rather quickly as indicated in Figure 41 for a single puff.  
The upward flux leads to a filling of the (infinite) region above 2 m as shown in Figure 42.  
Eventually the concentration will build up to the point where the average downward gravitational 
flux will equal the upward flux and an equilibrium will be achieved (in this case of an open 
system this would take an infinite amount of time). The upward gradient flux can be considered 
the source at 2 m; however, it is less than the puff source at 0.2 m.  If we had a numerical model 
with the center of the lowest cell at 2 m, it would be appropriate to use the gradient source at the 
center as the surface source for the lowest height of the model and calculate the removal flux as 
the concentration at 2 m times vg. If we knew the puff source we would have to lower the source 
at 2 m by about 17% as shown in Figure 45.  This amount can be obtained from Figure 45. 
 
 We have not considered the important case where we have both gravitational settling and 
a non-gravitational deposition (such as impaction loss) at the surface.  However Case 5, where 
the constant diffusivity at the surface gives rise to a non-gravitational flux at the surface, 
indicates that the relationship between the puff source flux and gradient flux is more involved 
than in either case separately.  
 
Case 7.  Puff plume with gravitational settling; K(z)=χz, MBL capped at z=H, and source at 
z=h. 
 
 During the preparation of this report it became clear that the prior two cases were too 
limited to give a reasonable representation of a puff plume in the MBL when gravitational 
settling was dominant.  In Case 5 the constant diffusivity down to the surface gives rise to a large 
re-suspension force which does not exist in the MBL, where the turbulent diffusivity is very 
small at the surface.  In Case 6, the unbounded domain in the vertical direction, coupled with a 
linearly increasing eddy diffusivity, mixes particles to great heights resulting in unreasonably 
long times for the particles mixed to higher altitudes to settle out.  In the present case, we have 
capped the MBL so that there is no flux of particles through the top of the MBL at z=H.   
 
 The six prior cases were extensions of cases found in the literature.  The analytical 
solution for this case has not, to our knowledge, appeared in the literature.  The problem is 
identical to that of the prior case except here the MBL is capped and total flux at z=H is forced 
by the boundary conditions to be zero.  The solution is now an eigenvalue problem and the 
solution is in terms of an infinite series of eigenfunctions – in this case, Bessel functions.  
 

In the derivation that follows, the plume is introduced at a height z=h, the boundary layer 
extends to height z=H and the eddy diffusivity K(z) increases linearly throughout the boundary 
layer, as in previous cases: 
 
 zzuzK χκ == *)(   
 
As discussed in Section II.1, we consider only the concentration of particles N(z,t) in a layer dz 
after integrating over the horizontal plane. The differential equation can then be written as  
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and vg is the gravitational settling velocity and taken to be a positive number. Combining (61) 
and (62) gives 
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If we make a change of variable 2xz =  Equation (63) becomes 
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The following substitution can be made to separate the variables 
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If the separation constant is chosen to be H/2σ− , then the solution for the time dependent part 
T(t) is 
 

 





 −

=
H

t
ExpTtT

4
)(

2

0

χσ
      (66) 

 
The equation for X(x) is 
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This is Bessel’s equation for which the solution is  
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and where νJ  is the Bessel function.  νJ  and ν−J  are linearly independent solutions provided ν 
is not an integer.  If ν is and integer then ν−J  must be replaced by νY , another Bessel (Weber) 
function. 
 
The complete solution can then be written as 
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where we have set c2=0 because ν−J  blows up at z=0 and T0 has been incorporated into the 
constants.   
 
 The diffusion flux is given by 
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We can use the following relationship 
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to evaluate (70), where the last step uses the recursion relationship for the derivative ( )xJ σν

'  
found in mathematical handbooks such as Abramowitz and Stegun (1964). 
 

 





 −

⋅= +

+−

H
t

ExpyJytyFdiff 4
)(

2
),(

2

1

1 χσ
σσ

χ
ν

ν      (72) 

 
Since 1+νJ  goes to zero at z=0 the diffusion flux goes to zero and only the gravitational flux 
remains by which particles are deposited on the surface. 
 
 If we wanted the diffusion flux to go to zero at z=H, we would need to find the values of 
σ at which 0)(1 =+ yJ σν .  These values, 1+νσ i , would determine the eigenfunction ( )yJ iσν  
appropriate for the series solution. This would be the case for a problem with no fall velocity.  
Here we need to set the total flux to zero at z=H.  The total flux is 
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If the total flux is to be zero at z=H (x=1) at all times, then σ must satisfy the following equation 
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The roots of (74) determine the eigenvalues, σi , and the solution is given by the series 
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 We have now to determine the ci’s from the initial conditions at t=0. We can represent 
our initial condition as a delta function source at height h at time t=0; i.e., N0 δ (z-h) at t=0.  
Rearranging (75), multiplying both sides by ( )yJy jσν

ν ⋅+1  and integrating over the interval 
0<z<H (or 0<y<1) yields 
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The orthogonality of the Bessel functions depends on the boundary conditions and the interval.  
The following relationship can be obtained from Abramowitz and Stegun (1964)   
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For nm ≠ the integral is zero.  The constants a and b are determined by the boundary condition 
at z=h (y=1).   
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The boundary condition at y=1 is obtained from the bracketed expression in Eq. (73) in terms of 
the derivative of the Bessel function as 
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It is clear from (73b) that in our case, a= ν and b=1 (at y=1).  Therefore Eq. (76) yields 
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and 
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or, in terms of the variable z 
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where N0 is a normalization constant determined by the magnitude of the puff. 
 
The diffusion flux can be obtained by differentiation of (81) or (more easily) from Eq. (72). 
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The gravitational flux is just 
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The integrated diffusion and gravitational fluxes from time t=0 to time τ are, respectively, 
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     To be consistent with our prior cases the normalization constant, No, must be chosen to give a 
unit puff (normalized to one particle per puff).  This can be done by integrating Equation (81) or 
(82) from the surface to the top of the boundary layer at times short enough that no particles have 
been lost to the surface and choosing No such that the vertically integrated number is unity.  
Carrying out the integration at time 0.01 s yields values of 1/No of 8.3 and 6.2 respectively, for 
10 and 20 µm radius particles for a source height of 0.2 meters.  The normalization constant, 
when determined by the procedure above (where we have used a delta function in concentration 
rather than a delta function of the flux) depends both upon vg and the source height, h.  
Alternatively, the normalization constant can also be obtained by calculating the total 
gravitational deposition over all time and choosing No such that the total integrated deposition is 
unity.  It was verified that both procedures give the same values of the normalization constant. 
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The concentration, N/No, as calculated from equation 81 for a unit puff and particle radii of 10 
and 20 µm is presented in Figure 46 as a function of height for a source height h = 0.2 m, a 
capping inversion H = 100 m, at 20, 50, and 100 seconds, and is comparable to Figure 38 (Case 
5, the uncapped solution). 
 

 
Figure 46.  N for a single puff plume with gravitational settling of particles and a capped 
boundary layer (100 m) at 20, 50, and 100 seconds as calculated from equation 80, as corrected 
by No as calculated by integrating N/No at time = 0.01 s.  Solid lines are for 10 µm particles, 
dashed lines for 20 µm particles. 
 

Comparing Figure 46 with Figure 38 shows the vertical profiles of N near the surface to 
be almost identical for this case and Case 5 (uncapped BL), as could be expected for the 
relatively short time intervals of 20, 50, and 100 seconds.  Figure 49 plots values for FI, the total 
integrated flux, for the same case (h = 0.2 ) at a level of 2 m, and is comparable to Figure 41 for 
Case 6.  The 2 cases appear similar initially, with peak values of ~0.7 near 100 s, but over time 
the capped case presented here shows that all particles are seen to settle out in times on the order 
of 2 to 8 hours (10 and 20 µm particles, respectively).  Since the total flux does go to zero, 
equilibrium is achieved for a series of puffs in the order of hours in the capped MBL, whereas in 
the uncapped MBL (Figure 41) it required days for equilibrium to be reached!  Figure 41 suggest 
that for 10 µm radius particles, equilibrium may never be achieved in an atmosphere where the 
turbulent mixing increases linearly with height. 
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Figure 47.  Integrated flux for a single puff as a function of time for 10 µm (solid lines) 
and 20 µm particles.  The integrated fluxes (black lines) can be interpreted as reaching 0 at time 
of ~30000 s / 8 hours (10 um) and 7000 s/2 hours (20 um).  Compared to Figure 41, where the 
total flux (black) approaches zero over much longer times, here having the boundary layer 
capped at 100 m produces a much faster decrease with eventual removal of all particles  

 

Figure 48.  Concentration profiles for 25, 100, 400, 800, and 1000 puffs, separated by 40 
seconds. Solid lines are for 10 µm radius particles and dashed lines are for 20 µm particles. The 
dashed lines for 400 and 800 puffs are overlain by the 1000 puff (blue) line. 
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Figure 48 details the concentration profiles for a series of 25, 100, 400, 800, and 1000 
puffs occurring regularly at 40 second intervals, and is comparable to Figure 42 for case 6.  It 
appears that sometime between 800 and 1000 puffs (8-9 hours) a steady state is reached for 10 
µm particles (solid lines), where the flux of new particles is balanced by the gravitational loss at 
the surface (as seen by the constant vertical concentration profile), and after only 100 puffs for 
the larger 20 µm particles.  Figure 49 shows the sum of the integrated fluxes from a series of 
puffs (i.e., the total number of particles) at a height of 2 m for 1 to 500 puffs with a ∆t of 10, 20, 
50, and 100 seconds for 10 µm particles.  The dashed lines give the gradient and gravitational 
components of the flux for ∆t = 100 s. 

 
Figures 50 and 51 show the average diffusive and net fluxes, respectively, for this series 

of puffs.  Unlike the case 6 results, here for a puff separation of 100 s, the integrated flux nearly 
levels off at ~300 puffs, indicating equilibrium, which is also indicated in Figure 51 where the 
average net flux approaches zero.  Figures 49 – 51 are plotted as the number of puffs.  To view 
as a function of time the horizontal axis must be adjusted to account for the different time 
intervals. 

 
The average diffusive fluxes depicted in Figure 50 can be considered the source flux to 

use as inputs to numerical models that separately calculate deposition via gravitational settling.   
 

Figure 49.  FIS, the sum of integrated puffs for 1 to 500 puffs for ∆t of 10 (red), 20 (green), 50 
(blue), and 100 (black) seconds at a height of 2 m for a source height of 0.2 m for Case 7.   
 

As seen in Figure 45 for case 6, this flux is less than the flux at the source at 0.2 meters 
(shown in the dashed lines) due to surface loss before mixing up to 2 m, and the values are very 
similar to those in Case 6.   As stated previously, the flux values shown in Figure 50 would be 
appropriate source fluxes for a numerical model with the center of the lowest cell at 2 m. 
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Figure 50.  Average diffusive flux, SI, at 2 m as a function of number of puffs and puff 
separation of 10 (red), 20 (green), 50 (blue), and 100 (black) seconds for Case 7.  Dashed lines 
indicate the source flux at the source height of h = 0.2 m. 

 

Figure 51. Average net flux, SI, at 2 m as a function of number of puffs and for puff separations 
of 10 (red), 20 (green), 50 (blue), and 100 (black) seconds for Case 6.  Dashed lines indicate the 
source flux at the source height of h = 0.2 m. 
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IV. Summary and Interpretation of the puff cases 
 
IV. A. Summary of puff plume cases 
 
1. Totally reflecting surface.  For the case of a reflecting surface the upward flux of particles 
from a series of whitecaps is just the sum of the fluxes due to the individual whitecaps.  The 
average source flux can then be obtained by time averaging the individual puffs.  Even though 
the concentration of particles keeps increasing with time, a quasi steady state can be defined 
during the filling process.  Since the deposition loss of submicron particles is small during their 
lifetimes in the atmosphere, the reflecting surface approximation is valid for many applications 
where the calculation of the concentration of particles in the MBL is desired. These small 
particles are removed by precipitation scavenging events, detrainment into the free troposphere, 
or diluted by subsidence.  If the flux per whitecap or unit of white cap area is known from 
subsidiary measurements over the ocean or from laboratory measurements, that information can 
be applied to the MBL (as discussed further in Section V).  The source flux can also be measured 
directly by correlation techniques with no appreciable correction for surface deposition.  Figure 
10 shows the constant source flux, after an initial transient.  The source flux is proportional to the 
white cap frequency.  If the vertical domain is capped, the measured source function will be a 
function of height, z, since the volume to be filled above z decreases with height (Figure 19).  
The actual profile of K(z) is not very important - regardless of the profile in the surface layer the 
particles rapidly become well mixed (Figure 17). 
 
2. Case of the totally or partially absorbing surface and no gravitational settling term in the 
differential equation.  In this case where loss occurs through processes which occur only at the 
surface, the only mechanism of transferring particles above the surface is via the gradient flux.  
For a single puff there is an initial upward flux near the surface, which disperses particles 
upward, followed by a period where the gradient reverses direction and the particle flux is 
downward at the surface thereafter. We have shown that if there is a continuous series of puffs, 
the average flux will be upward at every altitude above the source.  However this average flux 
will decrease with time as the MBL fills.  The increased concentration increases the surface 
deposition flux, which will eventually equal the source flux.  The average upward source flux is 
entirely a gradient flux and includes all source and deposition effects occurring at the surface. 
Initially the gradient flux will be upward and equal to the puff source strength as in the case of a 
totally reflecting surface.  As the concentration in the MBL builds up the gradient above the 
source weakens, decreasing the upward flux, and the gradient below the source strengthens 
driving more of the newly injected particles back to the surface. During this transient phase the 
ratio of the newly injected particles diffusing upward to those diffusing back to the surface 
continues to decrease, but the sum of the upward diffusive flux and the downward deposition 
flux is equal to the puff source flux (Figures 25 and 26).  Correlation measurements of the flux 
(via wind speed and concentration fluctuations) over the ocean measure the gradient flux and 
therefore would correspond to the average diffusive flux as we have calculated here; i.e., include 
the effects of surface loss. This correlation flux will also be changing with time and will 
eventually go to zero (for capped MBL).   This final equilibrium state may never be reached if 
other removal mechanisms become important over the lifetime of the particle. Indeed, the only 
time equilibrium is expected to be reached in the MBL are for particles where the gravitational 
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flux plays a dominant role, as discussed next.  While this case is appropriate for the deposition of 
many gaseous / scalar contaminants, it is of very limited applicability to particle deposition. 
 
3.  Including gravitational settling in the diffusion equation (cases 5 - 7). For particles where the 
deposition due to gravitational settling is an important loss mechanism, the gravitational settling 
term should be included in the differential equation as in Equation (31). Only in this case can we 
obtain equilibrium between the upward (gradient) flux and the downward gravitational flux. 
Only in this case do we have a deposition flux which is not contained in the gradient flux.  In 
Case 5, for simplicity, it was assumed that the turbulent diffusivity was constant with height, 
giving rise to an unrealistically large diffusive effect at the surface that contributed to the 
deposition velocity (reducing the deposition velocity for a surface source).  In the more realistic 
Case 7, the turbulent diffusivity goes to zero at the surface and the correct deposition for a 
surface source is just vg, as shown for the equilibrium case in Hoppel et al [2002, 2005], and very 
nearly vg in the steady-state (filling) case (Hoppel et al. [2005]).  If there are additional losses at 
the surface, in addition to gravitational settling, these must be reflected in the gradient flux.  The 
reason for this is, of course, that there is no other mechanism to transmit surface effects to the 
interior of the MBL. 
 
Table 2. Summary of cases 
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 All the cases have limitations.  The most realistic cases are Case 4 for small particles (and 
Case 3 in the limit of negligible surface deposition), and Case 7 for large particles.  For small 
particles the particles become well mixed throughout the BL so that the concentration profile is 
only weakly dependent on the mixing coefficients, K(z), and the height of the BL becomes 
important in confining the particles to the BL. For Case 4, unlike Case 1b, the loss to the surface 
can be limited by specifying the deposition velocity, even though K remains constant down to 
the surface. The small particle case is similar to the description required by trace gases. By 
contrast, large particles require that the gravitational settling be included in the differential 
equation.  If the particles are large enough they will fall out before reaching the top of the BL 
and the profile of mixing is important in determining the gravitationally induced gradient.  Case 
6 is unrealistic in that it predicts an unreasonably long time to reach equilibrium – a result of the 
linearly increasing diffusivity coupled with unbounded vertical domain.  In Case 7, the MBL is 
capped and gives a more reasonable estimate of equilibrium and the time to reach equilibrium. 
 
 Case 5 added settling velocity to the perfectly reflecting case.  There we showed that any 
solution for a constant K and a gravitational settling velocity could be transformed to a solution 
which included a constant settling velocity vg.  We developed Case 4 which included a non-
gravitational deposition velocity va (actually called vd in Case 4) and a capped MBL, such that it 
also included gravitational settling.  We do not have time to present that case here.  Suffice it to 
note that since K is constant down to the surface this case suffers from the same defect as Case 5; 
namely there is a large gravitationally induced gradient term at the surface.  The deposition 
velocity becomes vd=va+vg/2 rather than vg/2 as in Case 5 [Eq. (45)].   
 
  
IV. B.  An interpretation of the flux resulting from a series of puff plumes 
  
The net integrated source from a series of puffs, discussed in last sections and shown in Figures 
10, 14, 19, 26, 34, 37, 44 (45 for the source flux), and 51 (50 for the source flux) is the average 
flux at a given time and at a specific height z, from a series of puffs integrated over the entire x-y 
plane from all the prior plumes, in various degrees of decay. {In going from Eq. (3) to Eq. (4) we 
have integrated over the x-y plane and kept only the vertical variation for a given puff.}  To 
translate the prior results to source per unit area, more needs to be specified about the horizontal 
distribution of white caps and exactly what our puff plumes represent.  Real white caps occupy a 
finite area, and grow and decay over a number of seconds.  Our unit puff plumes occur as a delta 
function in time and space.  To relate our puff plumes to quantitative values, the unit source 
strength must be given a magnitude that represents the source associated with a whitecap of 
specified spatial and temporal extent.  For example, the strength of the puff could be normalized 
to the source strength per square meter of whitecap during its several second lifetime.  To 
illustrate the connection of the calculations in the last section to average surface fluxes we will 
here assume that the white cap frequency, f, (number of white caps per m2 per second) is known, 
rather than the more usual specification of fraction, W, of the ocean surface covered with white 
caps. 

 
For the purpose of visualization, a horizontal grid with the x-direction orientated in the 

direction of the wind is constructed as shown in Figure 52.  The grid spacing in the direction of 
the wind is ∆x=u∆t and the y-grid spacing is ∆y.  Now consider the symmetric case where (white 
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cap) puffs occur at the midpoint of each fixed grid cell at a rate such that an advecting 
rectangular column, whose base has the area of a grid cell, receives a puff when the midpoint of 
the column passes over the center of a grid cell.  The cell length in the x-direction is thus ∆x=u∆t 
where u is the mean wind speed and ∆t is the time between puffs as used in calculations given in 
the prior sections.  The average source flux calculated in the prior sections is thus the flux 
passing through a horizontal plane at a given height z within the advecting column. Initially the 
puff will be contained within the cell boundary, so that the average flux within the cell boundary 
is the flux per area of the cell.  As the puff disperses, the horizontal boundary of the puff will 
extend beyond the boundary of the cell and the flux will be too large if the area of the cell is used 
as the normalizing area.  However for the symmetric case shown, the excess flux that is outside 
the boundary of the cell in which the given puff occurs is just the amount that enters the cell 
from puffs occurring in adjacent cells.  As an example, consider the case where the whitecap 
frequency is f=10-4 m-2 s-1, a wind speed of 10 m s-1, with puffs occurring every 10 seconds; then 
∆x=u∆t=100 m, resulting in ∆y=10 m ( 1=∆∆∆ yxtf ). We have chosen the grid size such that 
one puff occurs on average every 10 seconds in the advecting column.  The flux SI(z,t) 
calculated in the prior sections for a series of puffs would then be the flux per area associated 
with the area of the cell, Ag= 1)( −∆=∆∆ tfyx  (which is 1000 m2 in the example). Eventually, the 
unit puff must be scaled in accordance with the strength of the white cap.  The flux per m2 within 
the grid is given by  
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where ∆t is the time between puffs and SI, as before, is the time averaged total flux (s-1) resulting 
from a series of puffs separated by time ∆t.   SI(z,t)∆t is the number of particles crossing the 
horizontal plane within one cell and S(z,t) is the number per unit area per unit time. {The ∆t in 
Eq. (86) and the ∆t used to calculate S must be the same.}  Since every cell is the same, this flux, 
S, is also the large area flux.  In the case of no surface deposition, SI is inversely proportional to 
∆t so that S depends only on f and not on the ∆t (except as SI depends on ∆t).  

 
While the probability of the highly symmetric case illustrated above is infinitesimal, it is 

one realization of a nearly infinite number of realizations, which corresponds to the given value 
of whitecap frequency. It is not unreasonable to postulate that the average of all realizations that 
give a single whitecap frequency will behave similarly with respect to overlapping plumes, as 
does the symmetric realization. 

 
The above analysis can only be expressed in terms of white cap coverage, W, if 

additional information on the size and duration of the white cap is known. Whitecaps are 
assumed to form over an initial area Awc and then decay with an exponential time constant 
τ (Monahan et al., 1986), so that the average white water coverage over an arbitrary time interval 
∆t is just 

 

t
At

t
A

A wcwc
ave ∆

≅













 ∆−

−
∆

=
τ

τ
τ

exp1        (87) 



65 

where the approximation holds if ∆t>>τ .  From experimental observations an appropriate value 
for τ is about 3.5 seconds (Monahan et al., 1986) 
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f is the white cap frequency (number per unit area per unit time). In the example of the prior 
paragraph, the white cap coverage for a white cap area of 1 m2 would be 0.035%. 
 

 
Figure 52.    Moving columns with base the same as the fixed grid advect with the wind.  Moving 

columns encounter puffs when they pass over the center of the fixed grids. 
 

The importance of the above illustration is not in the numerical implementation, but in 
illustrating that the consequences seen in the series-of-plumes analysis are applicable to the 
source function formulation. 
 
 The net flux (in units of s-1 m-2) is then given by Eq. (86), which can be expressed as 
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For a reflecting surface, after a significantly long period of time S will be the source function 
and, for puffs of unit strength, is just equal to the white cap frequency.  To be useful we must 
have experimental data to assign a magnitude to the puff.  This will be discussed later.  For an 
absorbing surface, after a sufficiently long period of time the net flux will go to zero indicating 
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the system has reached a steady state.  For the case when vg=0, this requires that the gradient in 
concentration be zero above the source. (Below the source there would be a constant gradient 
driving the newly formed particles to the surface.)   As we have seen in Case 4 where vg=0 and 
small deposition velocity, the time to reach equilibrium for small particles is much longer than 
the lifetime of the particle and the source approaches that of a reflecting surface, 1),( =∞zFI .  In 
the case of large particles (Case 5-7) where vg is included in the differential equation, equilibrium 
is reached where the upward diffusion flux is balanced by downward gravitational flux. 

),( ∞zFI can be divided into two parts, an upward diffusion flux and a downward gravitational 
flux, as in Figures 50 and 51.  The total ),( ∞zFI  will eventually go to zero indicating 
equilibrium has been achieved, at which point the upward diffusion flux is balanced by a 
downward gravitational flux. In the latter case, when parameterizing the surface source in 
numerical models, it is useful to consider the upward gradient flux as the source in the lowest 
cell of the model and the model calculates the gravitational deposition. In the latter case only the 
upward flux would be used in Eq. (89) to calculate the source as in Figure 50. 
 
 In terms of the white cap coverage the source function for unit puffs can be written as 
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Here, if the flux is associated with the flux per unit area of white cap, then Awc=1.  FI(z,t) is a 
function which adjusts the flux for the loss resulting from surface deposition and the height at 
which you need to apply the flux. Application of these equations when experimental data on the 
source strength is known is discussed in Section V.  
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V.  Implications of the above analysis to the surface source and deposition in 
large-scale numerical models  
 
 The horizontal grid size used in high-resolution mesoscale and global models range from 
several to hundreds of kilometers.  Atmospheric processes that occur on the scale less than a 
kilometer cannot be resolved by these models, yet processes occurring on the scale of meters 
have a major effect on large-scale meteorological simulations.  Since the meteorological models 
cannot resolve these smaller scale influences, the small-scale processes must be parameterized in 
the meteorological models.  Examples of small-scale phenomena that must be parameterized are 
cloud formation, precipitation, and effects related to the BL turbulence, such as momentum, 
moisture and heat transport in the BL.  When aerosols are added to large-scale models, similar 
parameterizations are required, such as turbulent transport of particles in the BL, surface 
deposition, precipitation scavenging and exchange between the BL and the FT.  In order to 
supply realistic parameterizations, it is necessary to solve the small-scale transport problem and 
then parameterize the effect for use in large-scale models.  Hence micrometeorologists study the 
BL dynamics to understand the mechanisms of momentum, moisture and heat transport, and 
derive parameterizations that simulate these effects in meteorological models.  Likewise, 
production of sea-salt aerosol generated by highly localized and intermittent whitecaps and 
subsequent dispersion and deposition must be parameterized to obtain a SSASF and deposition 
velocity appropriate for the large scale averages required by meteorological models.  
 

Before proceeding with the Sections V and VI, it is helpful to review key elements of the 
derivation of the turbulent diffusion equation used in the prior analysis and used in numerical 
models. 
 
V.1. The turbulent diffusion equation 
 

The conservation equation for a given particle species of concentration ),( txn
r

 is just 
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where the flux is  
 
 nDznvnsvvJ g ∇−−+= ˆ)(        (92) 
 
v  is the fluid velocity, gv is the gravitational settling velocity and sv  is the “slip” velocity, which 
accounts for any motion of the particle relative to the fluid, in addition to the gravitational fall 
velocity; e.g., inertial effects on the particle resulting from acceleration in the turbulent eddies.  
D is the ordinary diffusion coefficient and Ss and R represent any volume sources and sinks, if 
present.  The over arrow indicates vector quantities and ẑ is a unit vector in the z-direction. 
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Following the standard procedures which can be found in most micrometeorological 
textbooks, the variables are represented by a time-average value (in brackets) plus a fluctuation 
component denoted by primes 
 
 'nnn +>=<  
 

'vvv +>=<          (93) 
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where the average slip velocity is taken to be zero.  Substituting (93) into (92) and taking the 
time average yields 
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and 
 

 ''ˆ'' nsvznvnvnvJ g +−+=      (95) 

 
The Brownian diffusion term can be neglected except in the molecular sub-layer very near the 
surface where it can be included in the deposition velocity.  The last term, which represents the 
flux due to the correlation of the slip velocity with the particle concentration can be important for 
large particles where the aerosol trajectory can deviate from the fluid velocity due to inertial 
effects.  Here we confine our attention to particles that are sufficiently small that inertial induced 
fluxes are negligible. 
 

First order closure is obtained by assuming the turbulent (eddy) diffusion approximation 
holds and is given by  
 

 ><∇−= nzyxKnv ),,(''        (96) 

 
Closure allows the correlation term to be written in terms of the average (bulk) variables without 
solving for the fluctuating components.  The brackets are thenceforth omitted with the 
understanding that all variables are the average values, averaged over sufficient time such that 
the averages include the effect of the turbulent fluctuations of all scales important in the BL, 
such that the time average of the prime quantities is zero.  The turbulent diffusion equation is 
now Eq. (91) where the flux density is given by 
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       (97) 
 
The solution for a puff plume is the solution to the diffusion equation with R=0 and  
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 ),( 000 ttxxSSs −−= vr
δ        (98) 

 
where the puff occurs at time to and position 0xv .  In keeping with the assumption in the above 
statistical averaging, the puff plume calculated from the turbulent diffusion equation does not 
represent any single puff plume but the average of a large ensemble of puff plumes.  
 

If we wish to view the dispersion of the particles in a coordinate system moving with the 
wind velocity vv , 
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where Dn/Dt is the change in the coordinate system moving with the wind.  In our prior analysis 
we assumed that Kx and Ky were constants so that the x and y profile of the plume is Gaussian.  
Integration over the x-y plane gives the number of particles N (per unit length) in a layer dz. (See 
Equations (3) and (4).) 
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and  
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The solution of this equation for a unit puff at time t0 and position z0, Ss=δ(z-z0,t-t0), is the 
Green’s function solution for a given set of boundary conditions. 
 
V.2. Large scale model requirements 
 
 The general dynamic equation for aerosols used in large-scale models include terms for 
coagulation, condensational growth, etc. (see Fitzgerald et al. (1998)), in addition to the 
advection and turbulent mixing of aerosol particles treated here.  In larger-scale models, aerosol 
particles are advected and mixed according to wind fields and turbulent mixing coefficients 
generated within the model, and the particles fall at a rate determined by their equilibrium size at 
the relative humidity determined by the model (Fitzgerald et al. (1998) and Caffrey et al. 
(2006)).  The resolution of aerosol properties is thus limited to the spatial and temporal 
resolution of the large-scale model.  The limitations imposed by the lack of resolution of large-
scale models are not severe for some aerosol-modeling applications.  Concentrations of highly 
dispersed small particles may not vary significantly over the grid size and time step of the large-
scale model far from localized point sources (such as industrial and combustion sources). 
However, for large particles the gravitationally induced vertical gradients may be too large to be 
resolved by the vertical cell spacing of large-scale models and fallout of large particles may be 
significant over a single horizontal grid spacing. Near localized sources or intermittent sources, 
horizontal inhomogeneities can be very pronounced.  Since the horizontal concentration 
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variations cannot be resolved they must be replaced by an appropriate average value assumed to 
be horizontally homogeneous over the horizontal grid spacing.  Unlike industrial and combustion 
sources, whitecaps are more or less uniformly distributed, in the statistical sense, over the ocean 
surface on a horizontal scale comparable to that of the grid spacing of large-scale models. 
Inherent in the derivation of a parameterization is the assumption that the effect of small-scale 
processes are statistical in nature with averages which are nearly constant over the spatial and 
temporal scales of the large-scale model and that the slowly-varying, longer-term trends in the 
variables are resolved by the model. 
 

The problem then is to determine how best to average the flux from the intermittent and 
sparse whitecap events to generate a SSASF and deposition velocity that can be applied 
uniformly over the grid used in large-scale models.  This study uses puff plumes to represent the 
intermittency and small-scale features of the aerosol plume from a whitecap.  The differential 
equation used to represent the plume is the same as that used to represent vertical mixing in the 
large-scale model.  However in the plume we have assumed a certain form of the mixing 
coefficients to obtain an analytical solution, whereas in a numerical model these coefficients are 
generated internally and not limited to a specified functional form.  Numerical models, however, 
do assume the coefficients are constant over a vertical cell and horizontal grid used in the finite 
difference approximation to the differential equation.  We have used the puff plumes to represent 
the sub-grid intermittent whitecap production of aerosol to show: 

 
(1) that the effect of whitecaps can be averaged to give an average source flux 

which can be applied to the large scale problem (existence of a SSASF) 
 
(2) that for no surface deposition the average flux is just the average of all the 

individual puffs 
 

(3) that this average, near the surface, is approximately constant during the quasi 
steady-state as well as for a true steady state (which is never obtained in the 
boundary layer for small particles) 

 
(4) that in the case that the gravitational settling term can be neglected above the 

surface but surface deposition is important, the vertical gradient will be small 
in the surface layer.  The upward gradient flux plus the surface deposition 
flux is equal to the source flux.  Even though the source remains constant, the 
ratio of the gradient flux to the deposition flux will change during the 
transient state.   

 
(5) For large particles where the gravitational settling is the only important 

component of the deposition flux, vertical gradients near the surface will be 
important and the source into the lowest cell must be adjusted (decreased) to 
reflect loss below the mean height of the cell.  The upward gradient flux will 
be constant as the gravitational flux increases.  When the downward 
gravitational flux equals the upward gradient flux, equilibrium is achieved.  
Removal to the surface will just be the concentration in the cell times vg.  
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(6) The case where both gravitational and non-gravitational deposition are 
important there must be a correction for the effect of the non-gravitational 
deposition carried by the gradient flux in addition to a decrease resulting from 
the gravitationally induced vertical gradient. 

 
While we have analyzed the concentration of particles for a series of puffs over time 

periods long compared to the time step in the model and at heights greater than the lowest 
vertical cell in order to obtain the average fluxes near the surface, it is not necessary that our puff 
solutions represent the real atmosphere over the entire domain.  The purpose of a 
parameterization is to provide a good approximation for the source and deposition at some 
reference height in the lowest cell and then the numerical model calculates the variables over 
time and spatial scales resolved by the numerical model.  
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VI.  Implications for experimental determination of the SSASF 
 
 To obtain an actual SSASF, experimental measurements must be made to relate white cap 
aerosol production to the whitecap frequency or whitecap coverage.  The most common 
measurements from which the SSASF is derived are: (1) laboratory or field measurements of the 

aerosol production per unit area of whitecap, (2) direct correlation measurements of ''nv  from 

fluctuation measurements of concentration and vertical velocity, (3) the equilibrium method for 
large particles) where the gravitational flux (determined by measuring the concentration) must 
equal the upward flux; i.e., SSASF., and (4) the build up of aerosol concentration in air passing 
over white caps.  
 
VI. 1 Measurements of aerosol generation by individual white caps  
 

Laboratory measurements of sea-salt aerosol production purport to measure the number 
of particles formed per unit area of whitecap, which we here define as P (m-2).  All particles are 
assumed to be counted without any loss to deposition. The area of the white cap is characterized 
by an initial area Awc with an exponential decay with time constant τ.  In Eq. (90) the puff plume 
is normalized such that the total flux of particles from a single puff is unity.  The (calibrated) 
flux per unit area is just source function 
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We have set z=0 under the assumption that the measurement of P is representative of the surface 
production rate. Equation 102 is for particles of a discrete radius, r.  A differential source flux 
can be defined in terms of the number of particles per unit radius interval, dr, in which case Eq. 
102 becomes 
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dP/dr corresponds to the quantity dE/dr obtained experimentally by Monahan et al. [1986] and 
Eq. (103) is just the expression given by Monahan et al. [1986], except for the additional term, 
FI(z,M∆t), in Eq. (103).  FI(z,M∆t) accounts for the fall out of particles between white caps and 
adjusts for the height at which one wishes to apply the source function.  As shown earlier, for 
small particles with negligible deposition velocity, FI(z,M∆t) is unity near the surface, after some 
time period as shown in Figure 7 (see also Figure 19 for capped MBL).  In the case where there 
is significant surface deposition and FI(z,M∆t) is less than one, a correction must be made for 
deposition of the particles formed earlier.  In the extreme case when FI(z,M∆t)=0, there is no net 
flux above the source because equilibrium has been achieved. For this equilibrium condition, two 
cases can be distinguished: 
 
(1) When the gravitational settling is negligible compared to surface deposition due to processes 

other than gravity, this requires that the average gradient above the source approach zero 
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(the MBL is full, i.e. reached equilibrium) and all new particles are driven to ground by the 
large gradient below the source.  This equilibrium is never reached in the marine boundary 
layer. 

 
(2) For the case where gravitational deposition is large compared to surface deposition resulting 

from other processes, the net flux [FI(z,M∆t)] is zero, not because the gradient flux is zero 
but because the upward diffusive flux (source flux) is just balanced by a gravitational 
deposition flux.  The only equilibrium case of importance in the MBL is probably the latter; 
i.e., for large sea-salt particles where gravitational settling flux balances the production flux. 
As discussed earlier, for modeling large sea-salt particles it is then useful to define the 
source only as the upward diffusion flux (as in Figure 45 and 50) and let the model calculate 
the downward gravitational flux. 

 
 The validity of the assumption that the laboratory measurement of P measures the 
production rate accurately without loss to the walls or surface and that the laboratory generated 
white water is representative of real ocean conditions with regard to particle production is not 
addressed here. 
 
VI. 2.  Direct measurements of the flux using eddy correlation methods. 
 
 Under the assumption of first order closure as described in Eq. (96), the measured 
correlation flux is just the diffusion flux.  Therefore the spatial and temporal behavior of the 
diffusion flux calculated and displayed in the prior analyses corresponds to the measured 
correlation flux.  It is also clear from Figures 8, 12 and 40 that most of the eddy correlation flux 
will occur in bursts very near the white cap, and the instrumentation must be able to resolve these 
puffs if the correct average diffusion flux is to be resolved.  The puffs shown are for “average” 
puff plumes, and for some plumes the bursts can be expected to be much shorter than those 
shown.  It should also be emphasized that the correlation measurement must be specific for sea-
salt aerosol; this may be a problem if there are other species that cannot be distinguished by the 
measurement method.  From the proceeding analysis it is clear that the diffusion flux and eddy 
correlation flux contain the effect of surface deposition due to all processes except gravitational 
deposition. Our discussion can be divided into three regimes: (1) when particle deposition is 
negligible during the life time of the particles, (2) when particles are so large that only 
gravitational deposition is important, and (3) when both gravitational settling and deposition due 
to other processes are important.  

 
(1) When particle deposition is negligible during the lifetime of the particle, FI(z,M∆t) becomes 
unity indicating that particles continue to build up in the MBL and a quasi steady-state filling of 
the MBL exists.  Plume Case 3 best represents this situation.  The average eddy correlation flux 
is constant with time and is the source flux.  For a capped MBL there will be a height 
dependence of the eddy flux as indicated in Figure 19.  A rough estimate of the particle radius, 
for which deposition can be neglected, can be obtained from the lifetime, H/vd , of the particle 
due to deposition, which must be longer than the lifetime of the particle in the MBL due to other 
processes; primarily, precipitation scavenging and free troposphere exchange.  Taking the height 
of the MBL as 1000 m and the deposition velocity referenced to the surface concentration, we 
find that particle deposition should be negligible during a nominal lifetime of 3 days if the 
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particle is smaller than about 1 µm and the wind speed is less than about 25 m s-1.  At higher 
wind speeds the 1 µm radius limit cited here might have to be lowered.  

 
(2) In the other extreme, for large sea-salt particles, the gravitational flux must be included in the 
D.E. and dominates the deposition velocity (at r>20 µm).  In this case the net FI(z,M∆t) goes to 
zero at times much shorter than the aerosol lifetime due to other loss mechanisms, and the 
equilibrium is the result of the balancing of the upward eddy correlation flux by the downward 
gravitational flux, which are both constant with time.  This is illustrated in Figure 47.  The eddy 
correlation flux can then be considered as the average source flux, but it will decrease with 
height because of the significant gravitationally induced gradient. In practice, once equilibrium is 
reached it is much easier to determine the flux by measuring the concentration which together 
with vg gives the gravitational flux, which is just equal and opposite the gradient flux. 
 

The time for the steady state to be achieved for various profiles of the diffusion 
coefficient can be estimated from Figure 47 for linearly increasing K.  A more detailed 
discussion with an analytical expression for the time to reach equilibrium can be found in Hoppel 
et al. [2002] together with the result of numerical modeling, which establishes the time to reach 
equilibrium in a 500 m MBL for 5 and 10 µm radius particles to be about 30 and 5 hours, 
respectively, in reasonable agreement with the results shown in Figure 47 for 10 µm particles 
when the difference in MBL heights is considered.  The time about doubles for a MBL height of 
1000 m for a 5 µm particle, whereas for larger particles, the time becomes less sensitive to the 
height of the MBL since gravitational forces confines the particles to lower levels of the MBL.  
The validity of the assumption that the concentration is in equilibrium between production and 
gravitational fall out will obviously depend on the particle size and how fast meteorological 
conditions (including sea surface whitecap coverage) are changing; an assumption which must be 
verified for a specific experiment. 

 
If the only deposition flux is that due to vg (requires r >15 µm for wind speeds of about 

25 m s-1), then the diffusive source flux reaches its equilibrium value much faster than the system 
as a whole.  The slow response of the gravitational flux caused by the slow build up of the 
concentration is responsible for the slow system response.  Figures 47 and 50 clearly show that 
the upward diffusive (source) flux reaches a constant value in a relatively short time so that the 
eddy correlation measurement will indicate the source strength even though the system has not 
yet reached equilibrium. For particles with radius greater than about 20 µm, the deposition 
velocity can be assumed to be entirely that due to vg.  Since the critical radius cited here depends 
on the impaction component of the deposition velocity, the critical radius depends on the 
strength of turbulence, which in turn is a function of wind speed. 

  
(3) A big advantage of the above two cases is that ignorance of the non-gravitational deposition 
velocity does not effect the result and the diffusive (correlation) flux is the source flux (at the 
measured height).  In the intermediate cases (1<r<20 µm) where surface processes contribute 
significantly to the deposition flux, the gradient flux will be changing with time, even when the 
surface conditions remain constant.  Here the MBL will usually be in a transient state where the 
gradient flux is changing with time and the filling time is comparable to the lifetime of the 
aerosol.  Under the assumption that deposition mechanisms other than gravitational settling 
dominate surface deposition, there will be an initial quasi steady state filling where surface loss 
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is negligible.  As the concentration builds up, surface deposition increases.  This increase in 
concentration decreases the net upward flux.  The loss at the surface, if it can be accurately 
calculated, plus the upward gradient flux at the surface will equal the “surface source”.  If the 
filling process were to continue to completion then the gradient flux would go to zero and the 
deposition flux at the surface would equal the source. If the measured eddy correlation flux were 
small, it would be difficult to determine whether or not equilibrium had been achieved or there 
was no source.  This asymptotic behavior is different than in the second situation above where 
the deposition is due to the gravitational settling and just equal and opposite the diffusion flux.  
The scenario just described is for pure non-gravitational deposition; in general, there will be both 
a non-gravitational and gravitational component and the situation is more complicated.  In 
Section VII we will see that if we can represent the transient case as a family of steady-state 
cases (quasi steady-state process) where we measure both the gradient and concentration, then 
the source function can be calculated from the measured flux and concentration.  
 
VI. 3  Equilibrium method for determining source function for large particles. 
 
 The justification for the equilibrium method is the same as that given in item 2 under VI. 
2 where we have shown that for large particles, where gravitational settling dominates the 
deposition, the gradient flux at a given height is the source function applicable to that height.  
Since the gravitational flux at any height is just equal and opposite the gradient flux (definition 
of equilibrium) 
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 Hence, the source function can be obtained by measuring either the concentration or the 
eddy flux.  Unlike va, the gravitational settling velocity, vg, is well known and does not depend 
on meterolological and ocean surface conditions. The concentration of aerosol particles of a 
given size is a much easier measurement under ambient conditions than is the eddy correlation 
measurement.  Therefore, if it can be established that the aerosol particles of a given (large size) 
are in equilibrium, the equilibrium method is probably the most reliable method of determining 
the source function. 
 
VI. 4. Defining the Sea-salt aerosol source function (SSASF) 
 

The mechanisms by which sea-salt aerosol are formed and injected into the MBL are 
varied and complicated.  The mechanisms are as diverse as bursting bubbles at the ocean surface 
to spume aerosol blown off the crest of a wave.  It is difficult to characterize the height at which 
the particle is injected.  The diverse mechanisms are discussed elsewhere (Lewis and Schwartz 
[2004]), but it is easy to appreciate the difficulty in characterizing and defining the source 
strength and its effective height. Some of the particles, depending on size and method of 
injection, will return immediately to the sea surface while still over white water.  If the source 
function is defined as the total number injected exclusive of deposition, then the fraction re-
deposited must be calculated and subtracted from the source. The source strength can also be 
defined as the upward flux out of the shallow surface layer (micro layer) in which generation and 
deposition occurs.  Both methods have advantages under different circumstances. In the puff 
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analysis given in the prior sections, it has been assumed that the particles have been generated at 
a height near the surface, z=h; the surface deposition then had to be calculated from an ill 
defined deposition velocity.  Hoppel et al. [2005] argue that the only relevant source is the 
upward diffusive flux out of the micro layer (z<δ) and defines the source as  
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From the proceeding sections we see this definition works well for small particles where surface 
deposition is negligible during the lifetime of the particles (determined by other processes).  This 
definition also works well for large particles where, at equilibrium, the upward diffusive flux is 
the source flux just balancing the downward gravitational flux. The gradient flux also works as 
the source flux even when the steady state has not been achieved if deposition is the result only 
of gravitational deposition (Figure 43 and related discussion).   Based upon steady-state 
arguments, Hoppel et al. (2005) argued {Eq. (8) and related discussion in Hoppel et al. [2005]} 
that the upward flux Sδ is always the preferred way to define the source function since it avoided 
the uncertainties involved in determining the non-gravitational deposition velocity.  Their 
argument was based on a stationary micro layer (for given meteorological and ocean conditions).  
The argument given by Hoppel et al. [2005] is valid at all sizes if a true steady state exists, and 
this has been the assumption in most prior analyses.  However, as we have discussed above, 
during transient conditions (e.g.; filling of the MBL) the concentration is changing with time.  
This is seen in Figure 26 and is important at intermediate radii (1 < r < 20 µm) where (1) the 
non-gravitational component of the deposition velocity is important and (2) particle loss due to 
deposition during the particle lifetime is important.  Under these transient conditions (important 
in the intermediate size range), the definition (Eq. 105) may not be the best definition of the 
SSASF.  During transient filling, we need additional information as discussed in the Case 4 
section, and again in Section VII. 
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VII.  The quasi steady state solution 
 
 The quasi steady state is defined by Hoppel et al. (2002, 2005) as a transient state where 
the shape of the vertical aerosol profile remains constant during the transient period; i.e., the ratio 
of the concentrations at any two altitudes  is constant.  The quasi steady state would be expected 
if the turbulent mixing throughout the MBL is fast compared to the temporal change of the 
concentration.  The quasi steady state is discussed in detail in Hoppel et al. (2002) where it is 
shown both analytically and by numerical modeling to hold in the MBL.  
 
 The results cited in the above paragraph were in the context of a uniform surface source 
as opposed to the intermittent puff analysis given in earlier sections.  However we have seen in 
the prior sections that the average profile obtained by summing over a series of puffs gives the 
same vertical shape as the equilibrium profile.  This was shown in Figure 35 for constant K-
profile and in Figure 42, near the surface, for the linear K profile.  Since the Figures 35 and 42 
are for open system cases, we would not expect the quasi steady state to hold far above the 
surface.  For small particles there is no vertical gradient and the MBL can be considered well-
mixed at all times.   
 
 We have also seen that when non-gravitational deposition is the only important 
deposition mechanism then the gradient flux changes during transient conditions; but, in such a 
way that the gradient flux plus the deposition flux equals the total source flux (see Case 4 
discussion).  We emphasis that this is not the case with pure gravitational deposition where the 
gradient component remains constant and the total deposition flux goes to zero as the 
gravitational flux increases to exactly counter the diffusion flux (see Figures 41-45 and 50-51). 
 
 The above observations suggest that in order to define the transient system both the 
gradient flux and concentration must be allowed to change in a manner which is consistent with 
the constant source and surface boundary conditions.  In the following analysis we assume that a 
steady state (but non-equilibrium) exists where a constant source, S, near the surface is supplying 
particles at a constant rate at height, h.  The deposition flux results from both gravitational and 
non-gravitational deposition. The partitioning between the upward gradient flux and deposition 
flux is determined by the current concentration, which is a free variable that will change slowly 
with time.  Changing the concentration gives a family of steady-state curves each of which lies 
on a time trajectory describing the transient behavior. 
 
 The following analysis includes analyses contained in unpublished communications with 
Chris Fairall in 2004 and material found in Hoppel et al. (2005).  Subsequently (February 2007) 
the authors of this report had access to and submitted comments on an early version of a 
manuscript in preparation (DeLeeuw et al. (2007)).  At the time of submission of this report the 
final version of that manuscript was not yet available, but it is expected that there is much 
overlap between that manuscript and the analysis given here.  In the above referenced manuscript 
the relevant parts of the manuscript were the work of Chris Fairall, one of several authors.  
 
 The one-dimensional steady-state equation for the aerosol concentration n(z) when the 
eddy diffusivity  is given by zzuzK χκ == *)( (κ and u* are von Karman’s constant and the 
friction velocity) is 
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where ∞F  is the steady-state flux above the source. In principle the fact that ∞F  is nonzero 
requires a removal mechanism at the top of the MBL.  Here we assume that the removal 
mechanism is the upward flux into the MBL and, within the concept of the quasi steady state, 
can be a slowly varying function of time. 
 
The solution in terms of the concentration at the height of the source, z=h is 
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It is convenient to define a reference height zr which may be the height at which a measurement 
is made or the mid-point of the lowest cell in a numerical model where we wish to evaluate the 
fluxes.  The concentration at the reference height is given by 
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solving for nh 
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If we inject a source of particles S at z=h conservation of flux requires 
 
 SnvF hdh =+∞         (111)  
 
where vdh is the deposition velocity for particles at a height h. 
 
The deposition velocity given by Hoppel et al. (2002, 2005) can be written as 
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where va is the non-gravitational part of the deposition velocity and δ is the height of the micro 
layer.  A more rigorous expression for vdh can be found in (DeLeeuw et al. (2007)). 
 
 Solving Eq. (111) for nh gives 
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which can be used to eliminate nh . 
 
The net flux above ( ∞F ) and below (F0) the source are then found to be 
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where 
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Equations (114) and (115) sum to S as required, and are equations (44) and (43) in Hoppel et al. 
(2005).  It is clear that the fraction (F/S) going upwards or downward is determined by the nr .  
The “solution” above is not a unique solution but a family of solutions.  Each solution is a 
steady-state solution with different flux rates, )( rnF∞  into the domain above the source.  Under 
the quasi steady state assumption each of solutions above will lie on a time trajectory of states 
during a transitory period.  If initially the MBL is particle free nr=0 will give the initial flux and 
equilibrium will be obtained when nr  reaches a value where 0)( =∞ rnF .  If we define a column 
of base dA extending from the source at h to the top of the MBL denoted by z=H with only 
exchange of particles at the base, then the time dependence of the total number of particles, Nt  in 
the column is  
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           where  r
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The last step uses the proportionality of Nt to the concentration at any given height with time 
implied by the quasi steady state assumption. Using Eq. (114) for ∞F , we can write 
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where we have used Eq. (111) for ∞F  and have also assumed that H>>h. Integration gives  
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where   
dhv

H
=τ           

When t>>τ steady state is obtained and is, as expected, hdhhr nvSf = and 0=∞F .  In the limit of 

large particles Eq. (116)  gdh vv ≈ , and in the limit of small particles a
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For a 500 m MBL and 1 µm radius particles τ is about 20 days; whereas for 20 µm radius 
particles τ is less than 3 hours.  
 
 A more rigorous version of the time constant given in Hoppel et. al (2002) can be used 
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This expression is given in Eq. (21) of Hoppel et al. (2002) and plotted as a function of radius in 
Figure 5 in Hoppel et al. (2002). The time constant (equation 121) is the same as above in the 
small particle limit, but in the large particle limit it is independent of H because very large 
particles never reach the height H. 
 

At equilibrium Eq. (111) gives 
 
 rghrrdhhr nvfnvfS 11 −− ==        (122) 
  
The last term is for large particles.  For small particles this equilibrium is never achieved.  If nr is 
increased above that given by the equilibrium value, 0=∞F , then ∞F  becomes negative 
indicating that there is some source above which is overriding the (opposing) surface source and 
driving particles to the surface.  Here we interpret ∞F  as the transient filling flux. However it is 
clear that higher in the MBL the (transient) filling flux decreases with height as some of the 
upward flux is siphoned off to fill the intermediate region of the MBL as discussed earlier in 
connection with Figure 19.  For small particles the net flux will almost always be such as to “fill” 
not “empty” the MBL because removal processes such as precipitation events, entrainment, and 
dilution by large-scale vertical motions occur at a faster rate than does deposition. 
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 Equation (114) is for the net flux the difference of the upward and downward flux.  We 
now get the expressions for the upward and downward fluxes.  We first express n(z) in terms of 
S and nr  
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We can now calculate the upward diffusion flux 
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This gives the eddy correlation flux at any height.  The downward flux is just given by vgn(z) 
where n(z) is Eq. (123).  With a little algebra it can be seen that even though both the upward 
flux and the downward flux depend on z, the net flux is constant with height as required by the 
steady state assumption used throughout the analysis. The following identity is satisfied by the 
above equations 
 
 ∞=− FznvzF gdiff )()(   where ∞F  is as given in Eq. (114).            (125) 
 
We can solve for S in Eq. (124) 
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 In (124) and (126) the eddy flux measurement, diffF , does not have to be at the reference 
height.  If we do take z to be at the reference height we find 
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For large particles gdh vv ≈ , and  
 
 1−= hrdiffbig fFS           (128) 
 
We can therefore measure the large particle source by either measuring the eddy correlation 
(upward flux) or the concentration at a reference height (downward flux) 
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For small particles, ag vv << , 
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where the last expression follows if  av>>χ , which will generally be the case except possibly 
for calm winds. We note that in the small particle limit where only the non-gravitational 
deposition is important, the non-gravitational part of the deposition modifies the diffusion flux.  
This is consistent with what was found in the puff analysis given earlier; nr will be increasing 
with time, causing a decrease in Fdiff as the MBL ‘fills’. 
 

It is clear from Eq. (127) (and also Eq. (126)) that the source S can be calculated from a 
measurement of the diffusive flux and concentration at the reference height provided an accurate 
value of the deposition velocity is known. For large particles only one measurement is required.  
For particles where vg is negligible, both the diffusive flux and concentration is required (Eq. 
(130)).  However, in practice, for particles with r < 1 µm only the flux is required because the 
concentration term (deposition) is negligible (over the life span of a particle). 
 
 Application of the prior results to calculating the source to, and loss from, the lowest cell 
in a numerical model can best be implemented by introducing and removing particles at some 
representative average height into the cell, here defined as the reference height. The upward flux 
at the reference height is just the diffusion flux obtained from Eq. (127) 
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where nr at zr is known from the prior time step of the calculation.  For small and large particles 
Eq. (131) reduces to Eq. (130) and Eq. (129) respectively.  The (downward) removal from the 
lowest cell is then just nrvg.  One might wonder why the apparent deposition velocity here is just 
vg.  The reason is that the effect of the non-gravitational deposition is already included in the 
reduced source flux given by Eq. (131). The expressions could be recast, into an equivalent set of 
equations using the two terms of  Eq. (114), but then the deposition velocity would appear in 
both the effective source term and in a deposition term.  We prefer this formulation because 
these are the actual upward and downward components of the flux at the reference point in the 
cell, the same components of the flux which appear in the differential equation, and the same as 
used in calculating the exchange between cells above the surface.  As we saw in the puff analysis 
the effect of the non-gravitational deposition velocity is transmitted by the upward diffusive flux.  
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