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ABSTRACT 

Algorithms are an essential part of Operations Research (OR) methodology.  

Therefore, the efficiency of the algorithms must be a consideration.  However, traditional 

approaches to assessing algorithm efficiency do not always captured the real-world trade-

offs involved.  This thesis explored the use of a new measure of algorithm efficiency, 

robustness, and contrasted it with the traditional “big-O” analysis.  Sorting algorithms 

were used to illustrate the trade-offs.   

The use of Dr. Genichi Taguchi’s robust design techniques allowed us to take into 

account the impact of factors which would be uncontrollable in the real world, by 

measuring how those factors affect the consistency of the results.  These factors, which 

are treated separately by big-O analysis, are incorporated as an integral part of robust 

analysis.  The hypothesis was that robustness is potentially a more useful description of 

algorithm performance than the more traditional big-O analyses.   

The results of experimentation supported this hypothesis.  Where big-O analysis 

only considers the average performance, robustness integrates the average performance 

and the consistency of performance.  Most importantly, the robust analysis we performed 

yielded results that are consistent with actual usage—practitioners prefer quicksort over 

heap sort, despite the fact that under big-O analysis heap sort dominates quicksort.   
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EXECUTIVE SUMMARY 

Algorithms are essential to our ability to solve problems with computing.  In 

many cases several different algorithms yield correct results, but the amount of time 

required to derive those results can vary by orders of magnitude.  The factors that affect 

the algorithm’s run-time can be complex, and often are not known at implementation 

time—consider the situation of somebody who has to compile a software library, with no 

knowledge of how the library’s functions may be used in the future.  Analysts need a way 

to quantify run-time performance so they can choose between different algorithms.  One 

measure that’s widely used is the “big-O” notation.  It expresses the amount of work for a 

given algorithm as being proportional to a bounding function, independent of 

implementation details such as the choice of computer hardware, operating system, 

programming language, compiler, etc.  Despite its widespread use, big-O notation does 

not always yield results that are consistent with what knowledgeable programmers 

choose to do in practice. 

In this thesis, we propose “robustness” as an alternate measure of algorithmic 

performance.  Robustness measures overall performance in terms of a “loss function,” 

which incorporates both average performance and consistency of performance into a 

single measure—smaller loss means better overall performance.  With robustness, we are 

willing to trade off a small amount of the average performance for greater consistency 

across a broad range of inputs, particularly when those inputs are outside of our control. 

We tested our theories on sorting algorithms—one of the best-studied areas in the 

field of computer science. The use of experimental design techniques allowed us to 

measure the impact of factors that would be uncontrollable in the real world, by 

measuring how those factors affect the loss. 

The robust analysis yielded results that are consistent with actual usage:  

practitioners prefer quicksort over heap sort, despite the fact that under big-O analysis,  

 

 



 xvi

heap sort dominates quicksort.  Robust analysis captures this real-world preference.  

Quicksort, with a reasonable choice of pivot, yields the lowest loss of all the sorts  

we considered. 
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I. INTRODUCTION 

A. BACKGROUND AND BIG “O” NOTATION 

 Algorithms are an essential part of Operations Research (OR) methodology.  In 

many cases, a given problem can theoretically be solved by more than one algorithm.  

Therefore, OR analysts need to be aware of the efficiency of the algorithms under 

consideration as, in practice, the choice of algorithm can mean the difference between 

being able to solve a problem in a timely fashion or not.  However, traditional approaches 

to assessing algorithm efficiency do not always capture the real-world trade-offs 

involved.  In this thesis, we will explore the use of a new measure of algorithm 

efficiency, and contrast it with “big O” analysis, one of the most widely used analysis 

techniques.  We will illustrate our points with sorting algorithms, arguably one of the best 

understood and most analyzed topics within the field of computer science. 

Sorting algorithms are one of the most commonly used classes of algorithms 

employed in computers today.  These algorithms arrange data by means of some well-

defined ordering property, such as lexicographic ordering (for strings) or cardinality (for 

numerical data).  The efficiency of any search is significantly enhanced through the use 

of sorting. 

When we consider the complexity of an algorithm, we are usually concerned with 

properties such as the running time, or the amount of memory or intermediate storage 

required.  This thesis will focus exclusively on running time T, but the reader should bear 

in mind that any other measure of interest could be used instead.  T is determined by 

many factors, including: 

• the number of elements to be processed; 

• the choice of algorithm; 

• the specific computing platform (combination of hardware and operating 

system) used; 

• other tasks which may be active on the system; 

• choice of programming language; 
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• choice of compiler; and 

• the exact distribution of the input data. 

Consider the position of somebody who needs to implement a software library to do 

sorting.  When comparing sorting algorithms, the speed or run time is usually the top 

consideration, but other factors may be of interest, including: 

• versatility in handling various data types; 

• consistency of performance; 

• memory requirements; 

• length and complexity of code; and 

• stability. 

No single sorting algorithm is superior in all categories (Ring, 2003).  With the exception 

of the choice of algorithm, most of the factors that determine the actual run time are 

outside of the individual’s control. 

In practice, it is virtually impossible to directly predict T.  Instead, algorithm 

analysts have chosen to assume that the run time is dominated by some factor N (usually 

the number of elements to be processed) and tried to express T(N) as being proportional 

to some function of N. 

The idea of proportionality is formalized by O-notation, often referred to as  

“big O notation,” which is defined as follows.  We say that a function T(N) is in O(g(N)) 

when there exist positive constants k and N', such that 0 <= T(N) <= kg(N) for all  

N >= N'.  The values of k and N' must be fixed for the function T() and must not depend 

on N (Black, 2004).  For example, N2 + 3N + 6 is O(N2), since N2 + 3N + 6 < 2N2 for all  

N > 10.  O-notation ignores lower order terms and constants, and expresses the resource 

requirements in terms of the dominant highest order term.  Table 1 shows some common 

computing tasks, with their associated complexity and common naming conventions. 
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Example Name Notation 
Determining if a number is even 
or odd Constant O(1) 

Finding a particular item in a 
sorted list of length N using a 
binary search algorithm 

Logarithmic O(log N) 

Finding a particular item in an 
unsorted list of length N by 
searching sequentially until it is 
found 

Linear O(N) 

Sorting a list of length N with an 
efficient general-purpose 
algorithm such as Heap Sort or 
Merge Sort 

N log N O(N log N) 

Sorting a list of length N with a 
less efficient general-purpose sort 
such as insertion sort; the worst-
case performance of QuickSort  

Quadratic O(N2) 

Table 1.   Examples of O-notation. 

 

O-notation provides a proportional upper bound for the running time of an 

algorithm.  That upper bound can be extremely loose.  For example, if an algorithm has 

T(N) in O(N2), you can see from the definition that it is also in O(N3), O(N4), O(N5), and 

so on.  By convention, we try to express the lowest upper bound possible when using  

O-notation. 

A related concept is Theta notation, where Θ(g(N)) denotes that kg(N) is the 

largest lower bound we can determine for T(N) for some value k and all N > N'.  When 

the upper and lower bounds are the same, we can describe T(N) using Omega notation, 

Ω().  We say that T(N) is in Ω(g(N)) when T(N) is in both O(g(N)) and Θ(g(N)).  

Rigorously determining the bounding functions is challenging for many algorithms, so 

Omega notation is used much less frequently than O-notation. 

Algorithm analysis is cognizant of the fact that T(N) may still depend heavily on 

factors such as the initial distribution of the input data.  The impact of such factors is not 

captured directly by big-O analysis—instead, what is done in practice is to analyze best-, 

worst-, and expected-performance as three separate big-O analyses.  More recently, 
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Sleator (1985) has proposed amortized analysis as an alternative to separate case 

analyses.  Amortized analysis finds the average running time per operation over a worst-

case sequence of operations.  It differs from average-case performance in that probability  

is not involved; amortized analysis guarantees the time per operation over a worst-case 

scenario.  It combines aspects of the worst-case and average-case analysis, which 

provides a measure of algorithmic efficiency that is more robust than average-case 

analysis and more realistic than worst-case analysis (Sleator and Tarjan, 1985).  

However, due to its complexity it is much less common in actual use than big-O analysis. 

B. SORTING ALGORITHMS 

 In this paper, we will discuss and compare five specific classes of sorting 

algorithms:  Insertion Sort, Shell Sort, QuickSort, Merge Sort, and Heap Sort.  Sorting 

algorithms can be evaluated in terms of several criteria, including:  run-time (best, worst, 

and typical); stability (whether the original order of data is preserved in the case of ties); 

external memory requirements; and complexity (how difficult is it to correctly implement 

the algorithm).  Table 2 is a comparison, based on these criteria, of the five classes of 

sorting algorithms that we will be analyzing. 

 

Sorting 
Algorithm 

Average 
Running 

Time 

Worst 
Running 

Time 
Stability Data Types Complexity 

Insertion O(N2) O(N2) Stable All Very Low 

Shell 
O(N (log N)2) 

O(N1.25) O(N (log N)2) Not Stable All Low 
Quick O(N log N) O(N2) Not Stable All High 
Heap O(N log N) O(N log N) Not Stable All Medium 

Merge O(N log N) O(N log N) Stable All Medium 

Table 2.   Performance characteristics of several sorting algorithms. 

 

Insertion sort considers the elements one at a time, inserting each element in its 

proper place among those elements already positioned.  It is simple, flexible, and stable, 

and it is fast for small sets of data.  It has average- and worst-case performances of 

O(N2).  The number of comparisons and exchanges used are about (N2)/4 and (N2)/8, 



 5

respectively, on average, and twice as many in the worst case.  However, its best-case 

performance is O(N)—insertion sort is linear for sorted or “almost sorted” data 

(Sedgewick, 1990, pp. 103-104). 

 Shell sort is a simple extension of insertion sort, which gains in efficiency by 

allowing exchanges of elements that are initially far apart.  It does this by  

insertion-sorting every ith element of the set using insertion sort, then repeating the 

process using smaller i values until i = 1.  Shell sort never does more than N3/2 

comparisons (Sedgewick, 1990, p. 111) and with careful selection for the sequence of i’s 

can do substantially better.  It is also notoriously difficult to find tight bounds for  

shell sort, and the existence of a sequence of i’s yielding O(N log N) performance is an 

unresolved research question. 

 Quicksort is the name given to a family of algorithms that partitions the data into 

two subsets relative to a designated value called the pivot.  All the elements less than or 

equal to the pivot value are placed in the first subset, while all elements larger than the 

pivot are placed in the second.  This can be done “in place” by scanning from the front of 

the set until an element larger than the pivot is encountered, then from the rear until an 

element less than or equal to the pivot is found, and then exchanging the two.  The 

process is repeated from where the two exchanged elements were found, until the two 

searches collide somewhere in the middle, at which time the pivot is placed at that point.  

The operation is repeated for each subset, until the subsets each have only one element in 

what is frequently called a divide-and-conquer strategy.  There are several variants of 

quicksort, which vary in the details of how the pivot is selected at each stage and how the 

search and exchange is accomplished.  In practice, the quicksort family is among the 

fastest of sorting algorithms for average performance, but poor choices for the pivot can 

yield unbalanced partitions and lead to very slow worst-case performance.  Three 

common methods of picking the pivot are:  1) pick the first element in the set; 2) pick the 

median of the first, last, and middle elements in the set; and 3) pick the pivot randomly 

from the set (Sedgewick, 1990, p. 126).  The second of these is fairly effective at 

avoiding the worst-case scenario in which each subset of size N is subdivided into subsets 

of size 1 and size N–1.  Most implementations of quicksort are not stable.  Quicksort has 
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best- and average-case running times that are O(N log N), and uses O(1) additional 

storage for manipulating the data.  However, when the worst-case scenario described 

above occurs, it has O(N2) running time.  On average, quicksort is faster than heap sort or 

merge sort, but its worst-case run time of O(N2) makes it unattractive to a risk-averse 

user. 

Heap sort constructs a binary heap from the initial data set.  A heap can be 

defined recursively as a partially ordered binary tree, where the root node of the tree is 

greater than or equal to all values stored in its two sub-trees, which are also heaps.  Thus, 

the root of any sub-tree within the heap is equal to the largest value in that sub-tree, and 

the root of the heap is equal to the largest element in the set.  Heap sort then removes 

each root value from the heap successively, rebuilding the remaining data as a valid heap 

after each removal.  It is not a stable sort, because the heap structure reorders its elements 

to establish or maintain the heap property.  Its best-, worst-, and average-case 

performances are all O(N log N).  However, in practice, its average performance is as 

much as twice as slow as quicksort.  Like quicksort, it uses O(1) additional storage for 

manipulating the data.  Its performance is completely insensitive to the initial distribution 

of the input data. 

Merge sort, like quicksort, is based on a divide-and-conquer strategy.  First, the 

data are broken down into two (nearly) equal portions, to be sorted independently of each 

other.  These two subsets are then broken down into two further subsets, and so on, until 

the subsets each have only one element that, trivially, is a sorted set. The two sorted 

halves are then merged into a larger sorted sequence.  The merging is repeated back up 

the recursive chain until all the (now sorted) elements are again a sorted set.  Merge sort 

has a best-, worst-, and average-case performance that are all O(N log N).  In practice, it 

has the second-best average run time, with quite good speed on “almost sorted” data.  It is 

stable.  The main drawback of merge sort is its need for additional storage, which makes 

it less suitable for “in memory” sorting.  Merge sort requires O(N) additional storage for 

intermediate operations. 
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C. ROBUST ANALYSIS 

Dr. Genichi Taguchi pioneered a robust design methodology that greatly 

improves quality planning and engineering productivity (Taguchi, 1987).  By considering 

so-called noise factors (such as manufacturing variation and component deterioration) 

that are uncontrollable or controllable only at prohibitive cost, and the cost of failure in 

the field, robust design helps ensure customer satisfaction.  Robust design focuses on 

improving the fundamental function of the product or process by seeking consistency of 

performance, in addition to reasonable expected performance.  One tool for assessing 

robustness is the use of a loss function, which is used to quantify the loss incurred by the 

user due to deviation from target performance.  There are many possible loss functions—

we will use quadratic loss, which squares the deviations from the target performance 

level.  Quadratic loss is tolerant of small deviations, but penalizes large deviations 

heavily.  It is also analytically convenient, because under expectation the quadratic loss 

decomposes into the square of the difference between expected performance and target 

performance, plus the variance of the performance.  Expected performance and variance 

are both easy to estimate, and can be analyzed separately or pooled to estimate the  

loss function. 

Robust design is a great way to analyze complex systems because it is flexible 

and efficient, the solutions are realistic by design, and it facilitates continuous 

improvement.  It is flexible since it can be adapted to study systems that are analytical, 

physical, or simulated.  It is efficient because the “sampling plans can be chosen to keep 

the data requirements or the analysts’ time and effort low.”  The solutions are kept 

realistic by design since the “suggested system configurations have been shown to behave 

well over a broad range of adverse conditions.”  It also facilitates continuous 

improvement by indicating the important causes of system loss, and guides the efforts for 

system optimization and improvement by conveying hidden costs to the decision makers 

(Sanchez, 2000). 
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D. RESEARCH GOALS 

 Someone considering which sorting algorithm to implement for a library must 

consider the variety of contexts in which that algorithm may be used.  Average-case 

performance may not be the appropriate criterion to use.  Many analysts are influenced 

by the worst-case performance when comparing algorithms.  For instance, quicksort has 

an average-case performance that is O(N log N), but its worst-case performance is O(N2).  

Alternatively, heap sort has both average- and worst-case performances that are  

O(N log N).  If the decision were based solely on big-O analysis, heap sort should be 

preferable to quicksort since they have the same measure for average-case performance 

and heap sort’s worst-case performance dominates quicksort’s.  However, in practice, 

people prefer quicksort, which is probably more widely used than any other (Sedgewick, 

1990, p. 115).  Big-O analysis must be overlooking some important aspect of 

performance.  In this thesis, we propose robust design’s loss functions as an alternate 

measure of algorithm performance, one which we think confirms that people are making 

a rational and correct decision in picking quicksort over heap sort. 
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II. ROBUSTNESS 

A. ROBUST DESIGN 

What is robust design?  It is a process intended to identify “good” systems by 

seeking configurations that exhibit both desirable mean performance and consistency.  A 

robust system “must be relatively insensitive to uncontrollable sources of variation 

present in the system’s environment.”  “Taguchi found that it was often more costly to 

control the cause of manufacturing variation than to make the process insensitive to these 

variations, and through the use of simple experimental designs and loss functions” was 

often able to greatly improve product performance by building in quality (Sanchez, 

2000).  Robust design can be thought of as a process of system optimization, where the 

“best” answer is not overly sensitive to small changes in the system inputs.  In this thesis, 

the goal is to evaluate several popular sorting algorithms and identify those that are 

robust to uncontrollable factors such as the distribution of inputs. 

 Experimental design techniques can be used to observe how the expected value of 

the performance measure varies across several different system configurations.  System 

configurations result from changing the settings of some or all of the parameters in the 

system.  Statistical models based on designed experiments can provide more information 

about the system than can be obtained by the analysis of a few alternatives.  The 

statistical model describes the relationship between the outcomes, usually called Y, and 

the input variables, denoted as Xs.  A statistical model is a function that can be estimated 

given an experimental design and the corresponding responses, Y = f(X), where X is the 

vector of inputs.  The importance of the statistical model is that it allows the investigation 

to focus on the important factors that affect the research.  These factors are classified as 

controllable factors (sometimes called parameter design factors or simply parameters) or 

uncontrollable factors (also called noise factors). All factors can be controlled to a large 

extent in a laboratory or simulation experiment, so controllability is based on real-world 

system capabilities.  Noise factors are those factors that cannot be controlled or can be 

controlled only at prohibitive cost. 
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Robust design incorporates the identifiable noise factors into the experimental 

design, e.g., by crossing a controllable factors design matrix with the uncontrollable 

factors design matrix.  The output measures of interest from each configuration in the 

parameter space are then summarized across the noise factor space, to determine the 

parameter levels that result in the smallest loss.  Quadratic loss is measured by combining 

the squared deviation from the target value with the estimated variance over the noise 

factor space for each parameter configuration. 

B. ELAPSED TIME FUNCTION 

System runtime is the performance characteristic that we are concerned with.  

Elapsed time will denote the actual “clock” runtime of the sorting algorithm.  We want to 

know what the mean and the variance of the elapsed time is for each configuration.  The 

Elapsed time function, T(), is represented as T(N, ρ, p, sort) where: 

 N denotes the size of the array or the number of elements in it; 

ρ denotes the degree of randomness in the array (preordered to reverse 

ordered and completely random); 

p denotes the platform type and operating system combination (Intel 

compatible hardware, Windows XP/Mac OS X); and 

sort denotes the sorting algorithm to be used (Insertion, Shell, Quicksort, Heap, 

or Merge). 

Of these four factors, one is controllable and three are uncontrollable.  The sort 

factor is controllable since that is the choice that the real-world analyst is making.  The N 

and ρ are continuous uncontrollable factors because the data sets to be sorted in  

real-world usage could come from anywhere, may or may not have some degree of 

preordering, and can be of any size ranging from a handful to millions of elements.  The 

p factor is a discrete uncontrollable factor, as it is distinct to the machine and operating 

system where an arbitrary user may be using the sorting library. 

Given that N and ρ are continuous variables, an experimental design for 

continuous factors can be used.  The p is categorical, with two values for this thesis:  MS 

Windows or Mac OS X operating systems running on Intel compatible hardware. 
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C. QUADRATIC LOSS FUNCTION 

We will use a general formula of a quadratic loss function to conduct our analysis 

of the sorting algorithms.  Let T(X) denote the elapsed time observed for a vector of 

factor settings X.  Let τ denote the target value of Y, and L(T(X)) denote the loss 

function.  Assuming no loss will be incurred when T achieves the ideal state, the 

quadratic loss function can be written as: 

L(T(X)) = c * [T(X) – τ]2. 

Then the expected loss function (where expectation is taken over the uncontrollable 

factors) is: 

E(loss) = c * [σ2 + (µ – τ)2]. 

The quadratic loss function has been used in a variety of other settings,  

e.g., minimizing mean squared error (MSE) loss in the basis of linear regression.  Small 

deviations from the target value τ will have little impact on the loss, and large deviations 

from τ will result in very large losses.  We need to consider the mean and variability of 

the response, jointly. 

According to Taguchi, c is a scaling constant used to convert losses into monetary 

units to facilitate comparisons of systems with different capital costs. Taguchi’s “loss to 

society” includes the cost to the end-users of the product.  The expected loss is the 

expected value of the monetary losses that an arbitrary user of the product is likely to 

suffer during the product’s life span due to performance variation (Taguchi and Wu, 

1980).  In this model, it is not easy to define the monetary losses, so c is set to equal 1; it 

has no impact on the equation and can, therefore, be removed so analysis will focus on 

the relative performance of the sort algorithms. For this thesis, we will call Taguchi’s 

“loss to society” a “loss of efficiency.”  The loss of efficiency would be the delays and 

indeterminable cost to the user if the system is unavailable or it takes an excessively long 

time to get the results.  Such costs could be incurred, for example, by missing deadlines. 

To construct an actual loss function, we must specify the target value τ.  Ideally 

we would like a sorting algorithm to work instantaneously, i.e., τ = 0.  This immediately 

gives us a problem, though.  We know that T(N) is an increasing function of N for all of 

our sorting algorithms, so the deviation from target portion of the loss function would 
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yield increasing loss through no fault of the algorithm.  This can be overcome, however, 

by using a well known theoretical property of sorting algorithms—all general purpose 

sorting algorithms are in Θ(N log N).  If we scale T(N) by dividing it by N log N, all  

O(N log N) sorts will be ranked by their actual relative performance, and sorts that have 

O(T(N)) > N log N will exhibit correspondingly poorer performance as measured by 

quadratic loss.  The resulting quadratic loss function is: 

loss = [(T(X) / (N log N)) – τ]2. 

Since our target value is zero, this simplifies to 

loss = [T(X) / (N log N)]2. 
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III. ALGORITHM DEVELOPMENT 

A. DEVELOPMENT 

 The five classes of sorting algorithms discussed in Chapter I were implemented in 

the Java programming language (Sun Microsystems, Inc., 2006).  The implementations 

were straightforward translations of the C versions found in Sedgewick (1990).  

Sedgewick’s original versions were specifically written to sort integers.  Our 

implementations use Java’s Comparable and Comparator interfaces in order to conform 

to Java common usage, and thus can sort sets of arbitrary objects.  We also implemented 

six variants of the core algorithms for Shell sort, quicksort, merge sort, and heap sort.  

Source code for all 11 variants can be found in Appendix A.  Each variant is described 

briefly below. 

Shell sort’s performance is strongly dependent on the choice of a sequence of 

“stagger distances” that determine which interleaved subsets of the data will be insertion 

sorted.  Sedgewick’s Shell sort uses stagger values s1 = 1, si = 3si-1 + 1 for i > 1 (see 

Appendix A.11).  A variant of Shell sort (see Appendix A.10) was implemented based on 

Fibonacci numbers, excluding the first occurrence of 1, i.e., {1, 2, 3, 5, 8, 13,…}. 

Implementing quicksort requires the programmer to choose a pivot value, which 

is used to partition the data into two subsets as described in Chapter I.  Sedgewick’s 

quicksort (see Appendix A.8) selects the element in the middle of the set as the pivot.  

Our first variant of quicksort (see Appendix A.7) uses the median-of-three method, which 

picks the median of the first, last, and middle elements in the set.  Our second variant (see 

Appendix A.9), which we designated as QuickSortNaive, simply picks the first element 

of the set as the pivot. 

Heap sort works by constructing a binary heap from the initial data set, as 

described in Chapter I.  Sedgewick’s heap sort (see Appendix A.1) starts by building a 

min-first heap from the rear of the data set.  It then swaps the smallest heap element with 

the last heap location, excludes that last location from the heap, and reestablishes the 

heap property.  This process is repeated, removing one element at each iteration, until the 
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heap is empty.  Our first variant (see Appendix A.3) starts by building a max-first heap 

from the front of the data set.  It then swaps the largest heap element with the last heap 

location, excludes that last location from the heap, and reestablishes the heap property.  

As before, the process is repeated until the heap is empty.  The second variation of heap 

sort (see Appendix A.2) inserts each element into an instance of Java’s PriorityQueue 

class, which implements a skew-heap.  The elements are then removed from the skew-

heap in min-first order and placed back into the original set. 

Sedgewick’s implementation of merge sort (see Appendix A.6) creates two 

partitions whose sizes differ by no more than one, and recursively sorts them into 

temporary additional storage.  Both partitions are stored together, with the second 

partition’s data stored in reverse order so that the largest element in either partition acts 

as a sentinel value for both partitions.  After they have been sorted, the two partitions are 

recombined via a merge operation that repeatedly removes the minimum element of the 

two sets and copies it back into the original set.  The variant (see Appendix A.5) sorts the 

two partitions in place, and then merges the results into temporary storage.  The resulting 

sorted set is then simply copied back into the original location. 

B. DESIGN POINTS 

The program controlling the experiments needs input for two noise factors—the 

size of the array to be sorted (n) and the degree of randomness of the elements within the 

array (ρ)—to generate a new array for each experimental configuration.  The range of n is 

100 to 1,000,000 elements.  The input to the program was log10(N), i.e., 2 for log10(100) 

and 6 for log10(1,000,000).  The range of ρ is –1 to 1, where a value –1 generates a 

perfectly reverse ordered array and a value of 1 generates a perfectly ordered array.  The 

ordering algorithm is based on work by Knuth (2005). 

 The Simulation Experiments and Efficient Designs (SEED) Center 

<http://harvest.nps.edu> at NPS has a mission statement that reads:  “Advance the 

collaborative development and use of simulation and efficient designs to provide decision 

makers with timely insights on complex systems and operations.”  One of the most 

widely used designs for computational experiments at the SEED Center and elsewhere is 

the Latin Hypercube (LH) design.  LH designs allow the analyst to efficiently vary many 
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factors simultaneously.  We will be using one of a special class of LH called the 

Orthogonal Latin Hypercube (OLH) design, created by Ang (2006). This design allows 

the analyst to investigate up to 512 variables in only 1,025 experiments.  Precursors to 

these designs include those of Ye (1998), who did the original development of OLHs, and 

Cioppa (2002), who was able to further Ye’s work by creating Nearly Orthogonal Latin 

Hypercubes (NOLHs) with improved space-filling properties (see also Cioppa and Lucas, 

2007).   

We used a 257 level for the two continuous noise factors log10(N) and ρ, and 

augmented it with four extreme points: {(2, –1), (2, 1), (6, -1), (6, 1)}.  These extreme 

points were identified as particularly important based on observations made during 

preliminary runs.  The program had difficulty completing some of the sorting operations 

at these extreme points.  QuickSortNaive uses the first element encountered as a pivot, 

which caused the program to crash at ρ = –1 or ρ = 1, since both values produce 106 

levels of recursion.  This exceeds the Java Virtual Machine’s stack depth.  The Insertion 

Sort algorithm took a prohibitive amount of time to run a single experiment with 106 

elements except when ρ = 1, where insertion sort becomes O(N). 

 To study the impact of the platform, we used an Apple MacBook Pro laptop 

computer with an Intel chipset and both the Microsoft Windows XP (SP2) and Mac OS X 

operating systems installed.  This allowed a comparison of two operating systems on 

identical hardware to study any impact the OS might have on algorithm performance.  

The computer was disconnected from the internet to minimize external influences. 

C. REPLICATIONS 

Variations in the elapsed time when sorting the exact same data were noted from 

replication to replication during early testing.  Therefore, the program uses a blocked 

design for replications to help distinguish between within- and between-vector variations.  

For each design point, seven different vectors of inputs are generated.  Each vector is 

sorted five times. 

 The 11 sorting algorithms are categorical. The parameter design with these 11 

levels is crossed with the augmented noise factor design matrix with  
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261 design points, for a total of 2,871 design points.  Each of these 2,871 design points 

was replicated 35 times, yielding 100,485 runs per platform.  Since two platforms were 

used, the total design specified 200,970 experiments. 
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IV. RESULTS AND ANALYSIS 

A. RESULTS 

Based on Ang’s finely gridded design with 257 design points and four extreme 

points, we initiated 35 replications for 261 design points for each of the 11 algorithms.  

Figures 1 and 2 display the distribution of the observations by algorithm and the actual 

count breakdown for each algorithm, respectively.  Shortfalls are due to the issues 

discussed at the end of Chapter III.  These caused difficulties with two of the quicksort 

variants and the insertion sort algorithm.  We were able to complete 189,595 replications 

of the planned 200,970, which was sufficient to conduct a meaningful analysis.  

Appendix B contains three-dimensional plots showing scaled runtime versus log10(N) and 

ρ, which confirm the known big-O characteristics of the various sorting algorithms.  

These results came from an orthogonal, finely gridded design that is not a space-filling 

design. The finely gridded design is obvious in the “X” designs that are obvious in the 

plots in Appendix B.  Nonetheless, the design provided us with a variety of 

configurations that were identically tested against all the algorithms. 

 

HeapSortComp

HeapSortDumb
HeapSortSanchez

InsertionSortSedgew ick

MergeSortComp

MergeSortSedgew ick

QuickSortMedian

QuickSortMidPivot
QuickSortNaive

ShellSortFib

ShellSortSedgew ick

 Level Count
ShellSortSedgewick 18,270
ShellSortFib 18,270
QuickSortNaive 18,130
QuickSortMidPivot 18,270
QuickSortMedian 18,200
MergeSortSedgewick 18,270
MergeSortComp 18,270
InsertionSortSedgewick 7,105
HeapSortSanchez 18,270
HeapSortDumb 18,270
HeapSortComp 18,270
Total 189,595  

Figure 1.   Observation distribution. 
 

Figure 2.   Observation counts. 
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We began by using the design points on the Microsoft Windows platform. The 

InsertionSortSedgewick algorithm did not complete 58 configuration design points, due 

to the algorithm requiring prohibitively large run times as log10(N) increased to greater 

than five. The data from the 7,105 replications that had been completed for this algorithm 

represented adequate proof that the insertion sort algorithm was indeed O(N2).  This 

supported the well-known and well-documented fact that insertion sort is extremely slow 

when the number of elements to be sorted becomes very large. So, we decided to cut 

these design points out of the 261 configuration design points on the Microsoft Windows 

platform for this algorithm, and decided not to include the InsertionSortSedgewick 

algorithm during the Mac OS X platform runs. 

Prior to discontinuing the effort of testing the InsertionSortSedgewick algorithm, 

we were able to complete several design points with log10(N) greater than five.  Each of 

these replications took as much as 178 seconds to complete.  The algorithm with the next 

worst average performance, the ShellSortFib, took less than 3.5 seconds to complete each 

replication.  The three-dimensional plots provided in Appendix B show that when n is 

small, say 100 or less, insertion sort performs very well.  However, as n gets bigger, the 

time it takes to sort a set of elements becomes very large. 

Additionally, we observed that 18 of the 189,595 observations were extreme 

outliers, between 6 and 20 times larger than any other value for their respective 

algorithms.  A comparison was done to the other replicates with same design point (N, ρ, 

sort) as the outliers.  The other replicates were relatively consistent among themselves.  

We had anticipated this might occur, given the flaws associated with the methodology of 

measuring elapsed time, and set the number of replications intentionally high to 

accommodate this possibility.  This allowed us to exclude the 18 extreme outliers listed 

in Table 3 from the analysis without compromising the results. 
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algorithm log_n p_rho scaled time
HeapSortComp 2.875 -0.5546 2.41E-06
HeapSortComp 2.0625 -0.9608 1.37E-05
HeapSortDumb 2.03125 -0.9765 2.87E-05
HeapSortDumb 2.04688 0.98428 7.99E-06
HeapSortSanchez 2.65625 -0.664 2.41E-06
HeapSortSanchez 2.67188 0.67181 3.60E-06
HeapSortSanchez 2 1 6.72E-06
HeapSortSanchez 2 1 6.59E-06
MergeSortComp 3.8125 -0.0859 1.83E-06
MergeSortComp 3.79688 0.10936 1.99E-06
MergeSortComp 2.57813 0.71868 3.02E-06
MergeSortComp 2.53125 -0.7265 8.80E-06
MergeSortComp 2.54688 0.7343 2.16E-06
MergeSortSedgewick 2.45313 0.78117 8.52E-06
QuickSortMedian 2.21875 -0.8827 3.82E-06
ShellSortFib 2.42188 0.7968 8.40E-06
ShellSortFib 2.39063 0.81242 8.94E-06
ShellSortFib 2.35938 0.82804 4.89E-06

Observations Excluded From Analysis

 

Table 3.   This table lists the 18 extreme outlier values that were inconsistent with the 
outcomes of other replicate of the same design points T(N, ρ , sort). 

B. ANALYSIS 

Recall that we decided to use quadratic loss, which squares the deviations from 

the target performance level for our analysis.  To estimate the loss, we first converted the 

elapsed time T(N, ρ, p, sort) to scaled time for each observation: 

scaled time = T(N, ρ, p, sort) / (N log N). 

This was then converted to loss: 

loss = [scaled time]2. 

Since E[loss] = [variance + mean2] when the target value is zero (as in our case), we were 

able to create a simple estimator of expected loss for each of our sorting algorithms by 

calculating both the sample variance and the squared sample mean, and summing them.  

Averaging was performed across both the noise factors and the replications. 
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Table 4 summarizes the resultant sample mean, sample variance, and estimated 

expected loss for each algorithm.  Our analysis focuses on the loss, which incorporates 

the average and the consistency of performance.  Therefore, Table 4 is arranged to show 

greatest to smallest loss.  The insertion sort’s loss was much greater than that of any other 

algorithm by four orders of magnitude.  In fact, the results for InsertionSortSedgewick 

are underestimated since they omitted the very worst performances.  This was due to the 

exclusion of the algorithm from the runs with the largest N values.  For that reason, the 

insertion sort will be omitted from further comparative analysis. 

 

Algorithm N Rows Mean Variance Loss Relative Loss
InsertionSortSedgewick 7,105 2.51E-05 1.78E-09 2.41E-09 105,240.17
ShellSortFib 18,267 3.08E-07 3.48E-14 1.30E-13 5.68
HeapSortDumb 18,268 2.38E-07 5.94E-14 1.16E-13 5.07
QuickSortNaive 18,130 1.45E-07 4.44E-14 6.53E-14 2.85
HeapSortSanchez 18,266 2.07E-07 1.50E-14 5.79E-14 2.53
MergeSortSedgewick 18,269 1.67E-07 2.25E-14 5.05E-14 2.21
ShellSortSedgewick 18,270 1.93E-07 9.64E-15 4.68E-14 2.04
QuickSortMidPivot 18,270 1.29E-07 2.98E-14 4.63E-14 2.02
HeapSortComp 18,268 1.80E-07 9.72E-15 4.22E-14 1.84
MergeSortComp 18,265 1.58E-07 9.99E-15 3.49E-14 1.52
QuickSortMedian 18,199 1.32E-07 5.53E-15 2.29E-14 1.00  

Table 4.   Scaled time loss from largest to smallest, by sorting algorithm. 

 

From Table 4, it can be seen that the variant of Sedgewick’s Shell sort 

implemented based on Fibonacci numbers had a much greater loss than the Sedgewick’s 

original sequence of stagger distances.  While there are other methods of creating the 

sequence of stagger distances, Sedgewick’s sequence yields an expected loss 

performance which is better than that of the naive quicksort, two of the heap sorts, and 

one of the merge sorts.  ShellsortSedgewick’s loss was competitive with quicksort using 

the midpoint as pivot.  The Relative Loss column in Table 4 shows how the other 

algorithms compared to the QuickSortMedian. 
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Sedgewick’s heap sort, HeapSortComp, which started by building a min-first heap 

from the rear of the data set, incurred the smallest loss out of the three heap sort 

algorithms, and it was third out of all the algorithms developed in the system.  Our first 

variant, HeapSortSanchez, which started by building a max-first heap from the front of 

the data set, had the second smallest loss out of the heap sorts.  The second variant of 

heap sort, HeapSortDumb, was the worst of the heap sorts and suffered the third largest 

loss of any of the algorithms. Sedgewick’s heap sort not only had the lowest loss of the 

three, it also had the best average time and consistency; it should be implemented as the 

first choice if a heap sort is used.  

Sedgewick’s merge sort, MergeSortSedgewick, which created two partitions and 

sorted them into temporary additional storage using recursion on each partition, had a 

loss that was 30 percent greater than that of its variant.  The variant, MergeSortComp, 

which sorted the two partitions in place and then merged the results into temporary 

storage, had the second lowest loss of all the algorithms.  While MergeSortComp’s 

average was only slightly lower than that of MergeSortSedgewick, it was much more 

consistent in its performance, resulting in a smaller loss. 

Sedgewick’s quicksort, QuickSortMidPivot, that selected the element in the 

middle of the set as the pivot, incurred a loss that was nearly double that of our first 

variant, QuickSortMedian.  QuickSortMedian uses the median-of-three method, which 

picks the median of the first, last, and middle elements in the set.  It had the smallest loss 

of all the sorting algorithms, including the best heap or merge sorts.  Our second variant, 

QuickSortNaive, simply picks the first element of the set as the pivot.  It had one of the 

largest resultant losses, but still had a lower loss than that of HeapSortDumb. 

As discussed in Chapter I, big-O analysis suggests that an analyst should use the 

heap sort algorithm in preference to quicksort.  Heap sort’s best-, average- and worst-case 

performance are all O(N log N)—quicksort does no better for best- and average-case, and 

does worse for worst-case.  Looking at Table 4, it is obvious that when measured by 

expected loss, all three of the quicksort algorithms perform better than any of the heap 

sort algorithms.  The median-of-three version of quicksort performed better than any of 

the other algorithms we tested, when measured by expected loss.  It is well known that 
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quicksort is faster than heap sort in the average case (Sedgewick, 1990).  While the 

median-of-three quicksort, QuickSortMedian, did not have the “best” average scaled 

time, its performance was so consistent over a broad range of situations that its smaller 

variance yielded the smallest loss of all the algorithms in our experiment.  This is a 

significant demonstration of the concept of robustness—the analyst includes the 

consistency of performance as a measure of overall performance.  Where big-O analysis 

only considers the average performance, robustness pools the average performance and 

the consistency of performance in the loss function. 

An unexpected result was how well the ShellSortSedgewick algorithm performed.  

It ranks as having the fifth smallest loss, it was competitive with QuickSortMidPivot and 

MergeSortSedgewick, and its loss was smaller than two of the three heap sorts.  This is 

surprising since big-O analysis states that any Shell sort should be significantly worse 

than a heap, merge, or quick sort.  The ShellSortSedgewick sample had the fifth worst 

average performance, but was second in its consistency of performance.  This 

demonstrates that the Shell sort is, in practice, quite a reliable sorting algorithm.  From 

the plots in Appendix B, it can be seen that the Shell sort algorithms perform extremely 

well for smaller values of N, even when reverse ordered. 

These results are summarized using boxplots in Figure 3.  Recall that boxplots 

show the minimum, lower quartile, median, upper quartile, and maximum in a concise 

graphical form (Devore, 2004).  Figure 3 shows parallel boxplots of the ten algorithms 

we studied.  (Insertion sort was excluded to avoid distorting the scale of comparison, 

since its performance is orders of magnitude worse than all of the other algorithms.)  

Parallel boxplots allow us to do side-by-side comparisons of the different algorithms.  

Included on the boxplots are the mean diamonds.  The mean diamond shows the sample 

mean of the data as a vertical bar within the diamond, while the points of the diamond 

indicate the range of a 95 percent confidence interval.  Due to the large number of 

observations for each algorithm, the mean diamonds tend to be very tight.  The dashed 

oval on the boxplots encompasses the three mean diamonds for the heap sort algorithms.  

The dotted oval encompasses the three mean diamonds for the quicksort algorithms. 
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Table 5 shows the numerical values of the scaled time median, and the upper and 

lower quartiles that correspond to the boxplots in Figure 3.  It also shows the minimum 

and maximum sample values for each algorithm.  Table 5 was provided for numerical 

support to the visual statistical view of Figure 3. 
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Figure 3.   Parallel boxplots for comparison of sorting algorithm scaled time. 
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Quartiles 
Level Minimum 25% (Lower) Median 75% (Upper) Maximum 

HeapSortComp 1.10E-07 1.32E-07 1.40E-07 1.88E-07 1.57E-06 
HeapSortDumb 1.35E-07 1.51E-07 1.64E-07 2.56E-07 5.25E-06 
HeapSortSanchez 1.15E-07 1.43E-07 1.55E-07 2.27E-07 1.59E-06 
MergeSortComp 8.69E-08 1.26E-07 1.30E-07 1.51E-07 2.33E-06 
MergeSortSedgewick 1.11E-07 1.33E-07 1.40E-07 1.56E-07 6.46E-06 
QuickSortMedian 6.69E-08 1.02E-07 1.07E-07 1.37E-07 1.49E-06 
QuickSortMidPivot 6.41E-08 9.78E-08 1.03E-07 1.19E-07 3.87E-06 
QuickSortNaive 8.40E-08 9.88E-08 1.06E-07 1.35E-07 3.44E-06 
ShellSortFib 9.50E-08 1.77E-07 2.34E-07 3.77E-07 1.47E-06 
ShellSortSedgewick 3.50E-08 1.22E-07 1.57E-07 2.37E-07 8.78E-07 

Table 5.   Quartiles. 

 

Figure 3 supports our earlier discussion.  The parallel boxplots give an indication 

of the distribution and variability of the outcomes for each algorithm.  It is clear from the 

length of the boxplots that the outcomes of the three quicksort algorithms are much more 

consistent, or densely packed, with much smaller variability than the heap sort 

algorithms.  All of the algorithms are skewed to the right, indicating that their scaled run 

times are concentrated to the left side of the plot.  However, the long tails show how 

outcomes can be spread out, indicating variability in the outcomes.  This occurs due to 

the testing of the full noise factor design matrix where n and ρ are varied to cover the 

spectrum of possible combinations of these factors.  Typically, when n is large and ρ 

close to 1 or –1, the algorithms perform at their worst. 
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V. CONCLUSIONS 

A. SUMMARY 

 Big-O notation was created because of a need to compare different algorithms in a 

platform- and implementation-independent manner.  Despite its widespread use, big-O 

analysis has some significant shortcomings, and we have observed that actual usage 

sometimes differs from what big-O analysis would seem to indicate as the preferred 

algorithm.  We have proposed robustness as an alternate method of comparing the 

performance of different algorithms.  Our experiments used the speed of various sorting 

algorithms as a basis for comparison.  Robustness measures performance using a loss 

function, which incorporates both the average performance and the consistency of that 

performance in the presence of uncontrollable factors. 

We studied 11 different sorting algorithms using an orthogonal, finely gridded, 

experimental design to ensure systematic sampling over a broad range of settings for the 

noise factors.  The use of robust design techniques allows us to take into account the 

impact of factors that would be uncontrollable in the real world, by measuring how those 

factors affect the consistency of the results.  Factors that are treated as a basis for separate 

analysis in the big-O world view are incorporated as an integral part of robust analysis. 

B. CONCLUSIONS 

Our hypothesis was that robustness is potentially a more useful description of 

algorithm performance than the more traditional big-O analyses.  The experiments we 

have done support this hypothesis.  While big-O analysis focuses on the best-, average-, 

and worst-case performance of the algorithms as three separate analyses, the robust 

analysis integrates these in the form of a distribution of circumstances to be  

sampled over. 

Most importantly, the robust analysis we performed yielded results that are 

consistent with actual usage—practitioners prefer quicksort over heap sort, despite the 

fact that under big-O analysis heap sort dominates quicksort.  Robust analysis captures 

this real-world preference—quicksort, with a reasonable choice of pivot, yields the 
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lowest loss of all the sorts we considered.  In fact, this variant of quicksort, and one of the 

merge sorts, outperformed all three varieties of heap sort. 

C. FUTURE RESEARCH 

Recommendations for future research in the testing of the sorting algorithms 

would include investigating the impact of other programming languages, different 

compilers, and a broader variety of platforms.  It would also be interesting to see the 

impact of the experimental design on the analysis.  We used Ang’s design, but Cioppa’s 

NOLHs may do a better job of space-filling, and could therefore yield further insights in 

some circumstances. 

Another potential avenue for exploration is the application of robust analysis to 

other important algorithms.  Two possibilities are simulation event scheduling 

mechanisms or optimization algorithms. 
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APPENDIX A. JAVA PROGRAMMING LANGUAGE  
SOURCE CODE 

A.1 HeapSortComp 
 
/* 
 * File: HeapSortComp 
 * Created on Jul 18, 2007 
 */ 
package oa.musselman.thesis; 
 
import java.util.Comparator; 
 
/** 
 * @author Mark Allen Weiss  
 * Revised - 07/17/07 - rdm 
 */ 
/* 
 * Heap sort constructs a binary heap from the initial data set. A heap can be 
 * defined recursively as a partially ordered binary tree, where the root node 
 * of the tree is greater than or equal to all values stored in its two 
 * sub-trees, which are also heaps. Thus, the root of any sub-tree within the 
 * heap is equal to the largest value in that sub-tree, and the root of the heap 
 * is equal to the largest element in the set. Heap sort then removes each root 
 * value from the heap successively, rebuilding the remaining data as a valid 
 * heap after each removal. It is not a stable sort, because the heap structure 
 * reorders its elements to establish or maintain the heap property. Its best-, 
 * worst-, and average-case performances are all O(N log N). However, in 
 * practice, its average performance is as much as twice as slow as quicksort. 
 * Like quicksort, it uses O(1) additional storage for manipulating the data. 
 * Its performance is completely insensitive to the initial distribution of the 
 * input data. 
 *  
 * Sedgewick’s heap starts by building a min-first heap from the rear of the 
 * data set. It then swaps the smallest heap element with the last heap 
 * location, excludes that last location from the heap, and reestablishes the 
 * heap property. This process is repeated, removing one element on each 
 * iteration, until the heap is empty. 
 */ 
public class HeapSortComp<T> implements Sorter<T> { 
 public void sort(Comparable<? super T>[] data) { 
  for (int i = data.length / 2; i >= 0; i--) 
   percDown(data, i, data.length); 
  for (int i = data.length - 1; i > 0; i--) { 
   Swapper.swap(data, 0, i); 
   percDown(data, 0, i); 
  } 
 } 
 private void percDown(Comparable<? super T>[] data, int i, int n) { 
  int child; 
  Comparable<? super T> tmp; 
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  for (tmp = data[i]; leftChild(i) < n; i = child) { 
   child = leftChild(i); 
   if (child != n - 1 
     && data[child].compareTo((T) data[child + 1]) < 0) 
    child++; 
   if (tmp.compareTo((T) data[child]) < 0) 
    data[i] = data[child]; 
   else 
    break; 
  } 
  data[i] = tmp; 
 } 
} 
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A.2 HeapSortDumb 
 
/* 
 * File: HeapSortDumb 
 * Created on Jul 18, 2007 
 */ 
package oa.musselman.thesis; 
 
import java.util.Comparator; 
import java.util.PriorityQueue; 
 
/** 
 * @author pjs 
 */ 
 
/* 
 * This variation of heap sort inserts each element into an instance of Java’s PriorityQueue class,  
 * which implements a skew-heap.  The elements are then removed from the skew-heap in min-  
 * first order and placed back into the original set. 
 */ 
public class HeapSortDumb<T> implements Sorter<T> { 
 
 public void sort(Comparable<? super T>[] data) { 
  PriorityQueue<Comparable<? super T>> pq = new 
PriorityQueue<Comparable<? super T>>( 
    data.length); 
  for (Comparable<? super T> element : data) 
   pq.add(element); 
  for (int i = 0; !pq.isEmpty(); ++i) 
   data[i] = pq.poll(); 
 } 
} 
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A.3 HeapSortSanchez 
 
/* 
 * File: HeapSortSanchez 
 * Created on Jul 18, 2007 
 */ 
package oa.musselman.thesis; 
 
import java.util.Comparator; 
 
/** 
 * @author pjs 
 * Revised - 07/17/07 - rdm 
 */ 
/* 
 * This sort isn't the fastest, but it's a very reliable performer. It is 
 * an O(nlogn) sort for both average and worst case. The bad news is that 
 * it's also O(nlogn) for already sorted data! It works by building a Heap 
 * data structure, which is a partially ordered binary tree which can be 
 * easily maintained in an array. The heap has the property that at each 
 * vertex, the value stored is at least as large as all values in the 
 * subtree for which the vertex is root. Thus, the largest element the 
 * data set is in location 0, which is the root of the whole tree. This 
 * maximum value gets swapped with the last location, the data set is made 
 * smaller by one (which excludes the max from consideration), and the 
 * remaining data are re-heaped. This brings the max of the remainder to 
 * location 0. The process is repeated until there's only one element in 
 * the heap. At this point, all the values which have been swapped out of 
 * the heap are sorted. 
 *  
 * This is a completely iterative version. 
 *  
 * Author: Paul Sanchez, Indalo Software You may freely copy, distribute 
 * and reuse the code in this example. The author disclaims any warranty 
 * of any kind, expressed or implied, as to its fitness for any particular 
 * use. 
 */ 
 
public class HeapSortSanchez<T> implements Sorter<T> { 
 
   @SuppressWarnings("unchecked") 
   public void sort(Comparable<? super T>[] data) { 
  
      int currentSize; 
      int numElements = data.length; 
      int i, current; 
      int bigChild; 
      int child1, child2; 
 
      currentSize = numElements; 
      /* First we convert the array to a heap */ 
      for (i = (numElements >> 1) - 1; i >= 0; --i) { 
         for (current = i;; current = bigChild) { 
            child1 = (current << 1) + 1; 
            child2 = child1 + 1; 
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            if (child1 >= numElements) 
               break; 
            else if (child2 >= numElements) 
               bigChild = child1; 
            else if (data[child1].compareTo((T) data[child2]) < 0) 
               bigChild = child2; 
            else 
               bigChild = child1; 
            if (data[bigChild].compareTo((T) data[current]) < 0) 
               break; 
            Swapper.swap(data, current, bigChild); 
         } 
      } 
      /* Then we repeatedly swap the max out and reheap the rest */ 
      while (currentSize-- > 1) { 
         Swapper.swap(data, currentSize, 0); 
         for (current = 0;; current = bigChild) { 
            child1 = (current << 1) + 1; 
            child2 = child1 + 1; 
            if (child1 >= currentSize) 
               break; 
            else if (child2 >= currentSize) 
               bigChild = child1; 
            else if (data[child1].compareTo((T) data[child2]) < 0) 
               bigChild = child2; 
            else 
               bigChild = child1; 
            if (data[bigChild].compareTo((T) data[current]) < 0) 
               break; 
            Swapper.swap(data, current, bigChild); 
         } 
      } 
   } 
} 
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A.4 InsertionSortSedgewick 
 
/* 
 * File: InsertionSortSedgewick 
 * Created on Jul 16, 2007 
 */ 
package oa.musselman.thesis; 
 
/** 
 * @author Sedgewick  
 * Revised - 07/17/07 - rdm  
 */ 
/* 
 * Insertion sort considers the elements one at a time, inserting each element 
 * in its proper place among those elements already positioned. 
 */ 
import java.util.Comparator; 
 
public class InsertionSortSedgewick<T> implements Sorter<T> { 
 public void sort(Comparable<? super T>[] data) { 
  is(data); 
 } 
  
 @SuppressWarnings("unchecked") 
 private void is(Comparable<? super T>[] data) { 
  for (int i = 1; i < data.length; i++) { 
   Comparable<? super T> tmp = data[i]; 
   for (int j = i; j > 0 && tmp.compareTo((T) data[j - 1]) < 0; j--) { 
    data[j] = data[j - 1]; 
    data[j - 1] = tmp; 
   } 
  } 
 } 
} 
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A.5 MergeSortComp 
 
/* 
 * File: MergeSortComp 
 * Created on Jul 16, 2007 
 */ 
package oa.musselman.thesis; 
 
import java.util.Comparator; 
 
/** 
 * @author Mark Allen Weiss  
 * Revised - 07/18/07 - rdm 
 */ 
/* 
 * Merge sort, like quicksort, is based on a divide-and-conquer strategy. First, 
 * the data are broken down into two (nearly) equal portions, to be sorted 
 * independently of each other. These two subsets are then broken down into two 
 * further subsets, and so on, until the subsets each have only one element 
 * that, trivially, is a sorted set. The two sorted halves are then merged into 
 * a larger sorted sequence. The merging is repeated back up the recursive chain 
 * until all the (now sorted) elements are again a sorted set. Merge sort has a 
 * best-, worst-, and average-case performance that are all O(N log N). In 
 * practice, it has the second-best average run time, with quite good speed on 
 * “almost sorted” data. It is stable. The main drawback of merge sort is its 
 * need for additional storage, which makes it less suitable for “in memory” 
 * sorting, is that merge sort requires O(N) additional storage for intermediate 
 * operations. 
 *  
 * This variant sorts the two partitions ”in-place,” then merges the results 
 * into temporary storage. The resulting sorted set is then simply copied back 
 * into the original location. 
 */ 
public class MergeSortComp<T> implements Sorter<T> { 
 @SuppressWarnings("unchecked") 
 private static Comparable[] tmpArray; 
 
 public void sort(Comparable<? super T>[] data) { 
  tmpArray = new Comparable[data.length]; 
  ms(data, 0, data.length - 1); 
 } 
 
 private void ms(Comparable<? super T>[] data, int left, int right) { 
 
  if (left < right) { 
   int middle = (left + right) / 2; 
 
   ms(data, left, middle); 
   ms(data, middle + 1, right); 
   merge(data, left, middle + 1, right); 
  } 
 } 
 
 @SuppressWarnings("unchecked") 
 private void merge(Comparable<? super T>[] data, int leftPos, int rightPos, 
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   int rightEnd) { 
  int leftEnd = rightPos - 1; 
  int tmpPos = leftPos; 
  int numElements = rightEnd - leftPos + 1; 
 
  // Main loop 
  while (leftPos <= leftEnd && rightPos <= rightEnd) 
   if (data[leftPos].compareTo((T) data[rightPos]) <= 0) 
    tmpArray[tmpPos++] = data[leftPos++]; 
   else 
    tmpArray[tmpPos++] = data[rightPos++]; 
 
  while (leftPos <= leftEnd) 
   // Copy rest of first half 
   tmpArray[tmpPos++] = data[leftPos++]; 
 
  while (rightPos <= rightEnd) 
   // Copy rest of right half 
   tmpArray[tmpPos++] = data[rightPos++]; 
 
  // Copy tmpArray back 
  for (int i = 0; i < numElements; i++, rightEnd--) 
   data[rightEnd] = tmpArray[rightEnd]; 
 
 } 
} 



 35

A.6 MergeSortSedgewick 
 
/* 
 * File: MergeSortSedgewick 
 * Created on Jul 16, 2007 
 */ 
package oa.musselman.thesis; 
 
import java.util.Comparator; 
 
/** 
 * @author Sedgewick  
 * Revised - 07/20/07 - rdm 
 */ 
/* 
 * Merge sort, like quicksort, is based on a divide-and-conquer strategy. First, 
 * the data are broken down into two (nearly) equal portions, to be sorted 
 * independently of each other. These two subsets are then broken down into two 
 * further subsets, and so on, until the subsets each have only one element 
 * that, trivially, is a sorted set. The two sorted halves are then merged into 
 * a larger sorted sequence. The merging is repeated back up the recursive chain 
 * until all the (now sorted) elements are again a sorted set. Merge sort has a 
 * best-, worst-, and average-case performance that are all O(N log N). In 
 * practice, it has the second-best average run time, with quite good speed on 
 * “almost sorted” data. It is stable. The main drawback of merge sort is its 
 * need for additional storage, which makes it less suitable for “in memory” 
 * sorting, is that merge sort requires O(N) additional storage for intermediate 
 * operations. 
 *  
 * Sedgewick’s implementation of merge creates two partitions whose sizes differ 
 * by no more than one, and sorts them into temporary additional storage using 
 * recursion on each partition. The second partition’s data are stored in reverse 
 * order, so that the largest element in either partition acts as a sentinel 
 * value for both partitions. After they’ve been sorted, the two partitions are 
 * recombined via a merge operation that repeatedly removes the minimum element 
 * of the two sets and copies it back into the original set. 
 */ 
public class MergeSortSedgewick<T> implements Sorter<T> { 
 @SuppressWarnings("unchecked") 
 private static Comparable[] b; 
 
 public void sort(Comparable<? super T>[] data) { 
 
  b = new Comparable[data.length]; 
  ms(data, 0, data.length - 1); 
 } 
 
 private void ms(Comparable<? super T>[] data, int left, int right) { 
 
  if (right > left) { 
   int middle = (left + right) / 2; 
 
   ms(data, left, middle); 
   ms(data, middle + 1, right); 
   merge(data, left, middle, right); 
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  } 
 } 
 
 @SuppressWarnings("unchecked") 
 private void merge(Comparable<? super T>[] data, int left, int middle, 
   int right) { 
  // base case: second sublist is empty 
  if (middle + 1 > right) 
   return; 
 
  // copy a[l..m] to b[l..m] 
  for (int i = left; i < middle + 1; i++) { 
   b[i] = data[i]; 
  } 
  // copy a[m+1..r] to b[m+1..r] in reverse order 
  for (int i = middle + 1; i < right + 1; i++) { 
   b[i] = data[right + middle + 1 - i]; 
  } 
  // merge b[l..m] with b[m+1..r] to a[l..r] 
  int k = left; 
  int j = right; // pointer wandering from outside inward 
  for (int i = left; i < right + 1; i++) { 
   if (b[k].compareTo(b[j]) > 0) { 
    data[i] = b[j--]; 
   } else { 
    data[i] = b[k++]; 
   } 
  } 
 } 
} 



 37

A. 7 QuickSortMedian 
 
/* 
 * File: QuickSortMedian 
 * Created on Jul 16, 2007 
 */ 
package oa.musselman.thesis; 
 
import java.util.Comparator; 
 
/** 
 * @author pjs, modified by rdm 
 */ 
/* 
 * QuickSort is the name given to a family of algorithms that 
 * partitions the data into two subsets relative to a designated value  
 * called the pivot. All the elements less than or equal to the 
 * pivot value are placed in the first subset, while all elements 
 * larger than the pivot are placed in the second. This can be done 
 * “in-place” by scanning from the front of the set until an 
 * element larger than the pivot is encountered, then from the rear  
 * until an element less than or equal to the pivot is found, and then    
 * exchanging the two. The process is repeated from where the two  
 * exchanged elements were found, until the two searches collide  
 * somewhere in the middle, at which time the pivot is placed at that     
 * point. The operation is repeated for each subset, until the 
 * subsets each have only one element in what is frequently called a 
 * divide-and-conquer strategy. 
 *  
 * This variant of quicksort uses the median-of-three method, which  
 * picks the median of the first, last and middle elements in the set. 
 */ 
 
public class QuickSortMedian<T> implements Sorter<T> { 
 
 @Override 
 public void sort(Comparable<? super T>[] data) { 
  qs(data, 0, data.length - 1); 
 } 
 
 /* 
  * This function is similar to the qsort function on page 110 of K&R. 
             * it performs the quicksort algorithm on the contents of array v. 
             */ 
 private void qs(Comparable<? super T>[] data, int left, int right) { 
  if (left >= right) 
   return; 
  Swapper.swap(data, left, median(data, left, (left + right) / 2, right)); 

// create 
  int last = left; 
  for (int i = left + 1; i <= right; i++) 
   if (data[i].compareTo((T) data[left]) < 0) 
    Swapper.swap(data, ++last, i); 
  Swapper.swap(data, left, last); 
  qs(data, left, last - 1); 
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  qs(data, last + 1, right); 
 } 
 
 private int median(Comparable<? super T>[] data, int i, int j, int k) { 
  if (((data[i].compareTo((T) data[j]) < 0) && (data[j] 
    .compareTo((T) data[k]) < 0)) 
    || ((data[k].compareTo((T) data[j]) < 0) && (data[j] 
      .compareTo((T) data[i]) < 0))) { 
   return j; 
  } else if ((data[i].compareTo((T) data[k]) < 0 && data[k] 
    .compareTo((T) data[j]) < 0) 
    || (data[j].compareTo((T) data[k]) < 0 && data[k] 
      .compareTo((T) data[i]) < 0)) { 
   return k; 
  } else { 
   return i; 
  } 
 } 
} 
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A. 8 QuickSortMidPivot 
 
/* 
 * File: QuickSortMidPivot 
 * Created on Jul 16, 2007 
 */ 
package oa.musselman.thesis; 
import java.util.Comparator; 
 
/** 
 * @author pjs 
 */ 
 
/* 
 * QuickSort is the name given to a family of algorithms that partitions the 
 * data into two subsets relative to a designated value called the pivot. All 
 * the elements less than or equal to the pivot value are placed in the first 
 * subset, while all elements larger than the pivot are placed in the second. 
 * This can be done “in-place” by scanning from the front of the set until an 
 * element larger than the pivot is encountered, then from the rear until an 
 * element less than or equal to the pivot is found, and then exchanging the 
 * two. The process is repeated from where the two exchanged elements were 
 * found, until the two searches collide somewhere in the middle, at which time 
 * the pivot is placed at that point. The operation is repeated for each subset, 
 * until the subsets each have only one element in what is frequently called a 
 * divide-and-conquer strategy. 
 *  
 * This variant of quicksort uses the median-of-three method, which picks the 
 * median of the first, last and middle elements in the set. 
 */ 
public class QuickSortMidPivot<T> implements Sorter<T> { 
 @Override 
 public void sort(Comparable<? super T>[] data) { 
  qs(data, 0, data.length - 1); 
 } 
 /* This function is similar to the qsort function on page 110 of K&R. it 
  * performs the quicksort algorithm on the contents of array v. 
  */ 
 @SuppressWarnings("unchecked") 
 private void qs(Comparable<? super T>[] data, int left, int right) { 
  if (left >= right) 
   return; 
  Swapper.swap(data, left, (left + right) / 2); 
  int last = left; 
  for (int i = left + 1; i <= right; i++) 
   if (data[i].compareTo((T) data[left]) < 0) 
    Swapper.swap(data, ++last, i); 
  Swapper.swap(data, left, last); 
  qs(data, left, last - 1); 
  qs(data, last + 1, right); 
 } 
} 
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A. 9 QuickSortNaive 
 
/* 
 * File: QuickSortNaive 
 * Created on Jul 16, 2007 
 */ 
package oa.musselman.thesis; 
import java.util.Comparator; 
 
/** 
 * @author pjs 
 */ 
 
/* 
 * QuickSort is the name given to a family of algorithms that partitions the 
 * data into two subsets relative to a designated value called the pivot. All 
 * the elements less than or equal to the pivot value are placed in the first 
 * subset, while all elements larger than the pivot are placed in the second. 
 * This can be done “in-place” by scanning from the front of the set until an 
 * element larger than the pivot is encountered, then from the rear until an 
 * element less than or equal to the pivot is found, and then exchanging the 
 * two. The process is repeated from where the two exchanged elements were 
 * found, until the two searches collide somewhere in the middle, at which time 
 * the pivot is placed at that point. The operation is repeated for each subset, 
 * until the subsets each have only one element in what is frequently called a 
 * divide-and-conquer strategy. 
 *  
 * This variant, which is designated as “quicksort-naïve,” simply picks the 
 * first element of the set as the pivot. 
 */ 
public class QuickSortNaive<T> implements Sorter<T> { 
 @Override 
 public void sort(Comparable<? super T>[] data) { 
  qs(data, 0, data.length - 1); 
 } 
 
 /* 
  * This function is similar to the qsort function on page 110 of K&R. it 
  * performs the quicksort algorithm on the contents of array v. 
  */ 
 private void qs(Comparable<? super T>[] data, int left, int right) { 
  if (left >= right) 
   return; 
  int last = left; 
  for (int i = left + 1; i <= right; i++) 
   if (data[i].compareTo((T) data[left]) < 0) 
    Swapper.swap(data, ++last, i); 
  Swapper.swap(data, left, last); 
  qs(data, left, last - 1); 
  qs(data, last + 1, right); 
 } 
} 
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A. 10 ShellSortFib 
 
/* 
 * File: ShellSortFib 
 * Created on Jul 16, 2007 
 */ 
package oa.musselman.thesis; 
 
import java.util.Comparator; 
 
/** 
 * @author pjs  
 * Revised 07/17/07 - rdm 
 */ 
/* 
 * Shell sort’s performance is strongly dependent upon the choice of a      
 * sequence of “stagger distances,” which determine which interleaved 
 * subsets of the data will be insertion sorted. This is a variant of 
 * Shell sort was implemented based on Fibonacci numbers, excluding 
 * the first occurrence of 1, i.e., {1, 2, 3, 5, 8, 13,…} 
 */ 
 
public class ShellSortFib<T> implements Sorter<T> { 
 
 private static final int gap[] = { 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 
1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 
832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 
63245986, 102334155, 165580141, 267914296, 433494437, 701408733, 1134903170, 
1836311903 }; 
 
 public void sort(Comparable<? super T>[] data) { 
  int i = 0; 
  int j; 
  // Comparable<? super T> tmp; 
  Comparable<? super T> tmp; 
  while (gap[i] < data.length) 
   ++i; 
  for (; i >= 0; --i) { 

for (int current = gap[i] - 1; current < data.length; 
  ++current) { 

    tmp = data[current]; 
    j = current; 
    while (j >= gap[i] && data[j –  
      gap[i]].compareTo((T) tmp) > 0) { 
     data[j] = data[j - gap[i]]; 
     j -= gap[i]; 
    } 
    data[j] = tmp; 
   } 
  } 
 } 
} 
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A. 11 ShellSortSedgewick 
 
/* 
 * File: ShellSortSedgewick 
 * Created on Jul 16, 2007 
 */ 
package oa.musselman.thesis; 
 
import java.util.Comparator; 
/** 
 * @author pjs  
 * Revised 07/17/07 - rdm 
 */ 
/* 
 * Shell sort’s performance is strongly dependent upon the choice of a     
 * sequence of “stagger distances,” which determine which interleaved 
 * subsets of the data will be insertion sorted. Sedgewick’s Shell sort  
 * uses stagger values s1 = 1,si = 3si-1 + 1 for i > 1. 
 */ 
public class ShellSortSedgewick<T> implements Sorter<T> { 
   public void sort(Comparable<? super T>[] data) { 
  int gap; 
  int j; 
                        Comparable<? super T> tmp; 
  for (gap = 1; gap < data.length/9; gap = 3*gap +1);  
  for ( ; gap > 0; gap /= 3){ 
                               for (int current = gap - 1; current < data.length;  
                                        ++current) { 
    tmp = data[current]; 
    j = current; 
    while (j >= gap && data[j - gap].compareTo((T) 
                                                               tmp) > 0){ 
     data[j] = data[j - gap]; 
     j -= gap; 
    }  data[j] = tmp; 
   } 
  } 
 }  
} 
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A. 12 GenerateTimings 
 
/* 
 * File: GenerateTimings 
 * Created on Jul 16, 2007 
 */ 
package oa.musselman.thesis; 
 
import or.utils.Timer; 
 
/** 
 * @author pjs 
 */ 
public class GenerateTimings { 
 
 private static final boolean DEBUG = false; 
 
 private static int[] unsorted; 
 
 public static void main(String[] args) { 
  Sorter[] s = { 
 
   new HeapSortComp<Integer>(), 
   new HeapSortDumb<Integer>(), 
   new HeapSortSanchez<Integer>(), 
   new MergeSortComp<Integer>(), 
   new MergeSortSedgewick<Integer>(), 
   new ShellSortFib<Integer>(), 
   new ShellSortSedgewick<Integer>(), 
   new QuickSortMidPivot<Integer>(), 
   new QuickSortMedian<Integer>(), 
   new QuickSortNaive<Integer>(), 
   new InsertionSortSedgewick<Integer>() 
   }; 
  // add new method here 
  Timer t = new Timer(); 
  double timing; 
  String algorithm; 
 
  // Parameter extraction 
  int n = 1000000; 
  double logn = 6.0; // Added for ease or graphing and representation 
  double rho = 0.0; 
  int replicationsWithin = 10; 
  int replicationsBetween = 7; 
  if (args.length > 0) { 
   logn = Double.parseDouble(args[0]); // Change to Double to use log_n 
   n = (int) Math.pow(10, logn); // "n" needs to be an integer 
   rho = Double.parseDouble(args[1]); 
   replicationsWithin = Integer.parseInt(args[2]);  

// Generate same vector to be sorted 
  
   replicationsBetween = Integer.parseInt(args[3]);  
                                               // Generate new vector to be sorted 
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  } 
  // Array generation 
  // This for outer loop allows for the production of more than vector for 
  // each configuration of n and rho.  Between vectors. 
  System.out.println("algorithm\tlog_n\tp_rho\twithin\tbetween\ttime"); 
  for (int k = 1; k <= replicationsBetween; ++k) { 
   unsorted = PermutationGenerator.generate(n, rho); 
   Integer[] data = new Integer[unsorted.length]; 
 
   for (int i = 0; i < s.length; ++i) { 
    algorithm = s[i].getClass().getSimpleName(); 
    // This for inner loop allows for the production of he same 
    // vector for each configuration of n and rho.  Within a vector. 
    for (int j = 1; j <= replicationsWithin; ++j) { 
     dataCopy(data); 
     t.resetTimer(); 
     s[i].sort(data); 
     timing = t.elapsedTime(); 
     if (DEBUG) { 
      for (int x : data) 
       System.out.print(x + " ");  
                                       System.out.println(); 
     } 
     System.out.println(algorithm + "\t " + logn + "\t " + rho 
       + "\t " + j + "\t " + k + "\t " + timing); 
    } 
   } 
  } 
 } 
 
 private static void dataCopy(Integer[] d) { 
  for (int j = 0; j < unsorted.length; ++j) 
   d[j] = new Integer(unsorted[j]); 
 
 } 
} 
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A. 13 PermutationGenerator 
 
/* 
 * File: PermutationGenerator 
 * Created on May 15, 2007 
 */ 
package oa.musselman.thesis; 
/** 
 * @author pjs 
 */ 
import java.util.Arrays; 
import java.util.Random; 
import umontreal.iro.lecuyer.probdist.NormalDist; 
 
public class PermutationGenerator { 
   private static Random r = new Random(); 
   private static int counter; 
    
   private static class NormQuantiles implements Comparable<NormQuantiles> { 
      private int index; 
      private double z; 
 
      public NormQuantiles(double rho, int n) { 
         super(); 
         index = ++counter; 
         z = (rho * NormalDist.inverseF01((index - 0.5) / n)) 
            + (Math.sqrt(1.0 - rho*rho) * r.nextGaussian()); 
      } 
 
      public int compareTo(NormQuantiles arg0) { 
         if (z < arg0.z) return -1; 
         if (z > arg0.z) return 1; 
         return 0; 
      } 
       
      public int getIndex() { 
         return index; 
      } 
   } 
    
   public static int[] generate(int setSize, double rho) { 
      counter = 0; 
      NormQuantiles[] bvn = new NormQuantiles[setSize]; 
      int[] result = new int[setSize]; 
      for (int i = 0; i < bvn.length; ++i) 
         bvn[i] = new NormQuantiles(rho, setSize); 
      Arrays.sort(bvn); 
      for(int i = 0; i < bvn.length; ++i) 
         result[i] = bvn[i].getIndex(); 
      return result; 
   } 
 
   /** 
    * @param args 
    */ 
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   public static void main(String[] args) { 
      if (args.length == 2) { 
         int n = Integer.parseInt(args[0]); 
         double rho = Double.parseDouble(args[1]); 
         // double[] rhoValues = { 0.0, -1.0, 1.0, -0.7, 0.7, -0.9, 0.9 }; 
         // for (double rho : rhoValues) { 
            // System.out.println("Rho = " + rho); 
            for (int i : generate(n, rho)) 
               System.out.println(i + " "); 
            // System.out.println("\n"); 
         // } 
      } else { 
         System.err.println("Must supply two args: n and rho.\n"); 
         System.err.println("N is the number of values to generate, rho"); 
         System.err.println("is the measure of randomness (-1 to 1, where"); 
         System.err.println("-1 is reverse non-random, 0 is completely"); 
         System.err.println("random, and 1 is forward order non-random)."); 
      } 
   } 
} 
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A. 14  Sorter 
 
/* 
 * File: Sorter 
 * Created on Jul 16, 2007 
 */ 
package oa.musselman.thesis; 
 
import java.util.Comparator; 
/** 
 * @author pjs 
 */ 
public interface Sorter<T> { 
      public void sort(Comparable<? super T>[] data); 
      public void sort(T[] data, Comparator<? super T> c); 
} 
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A. 15  Swapper 
 
/* File: Swapper 
 * Created on Jul 16, 2007 
 */ 
package oa.musselman.thesis; 
/** 
 * @author pjs 
 */ 
public class Swapper {   
   protected static void swap(byte[] data, int i, int j) { 
      byte tmp = data[i]; 
      data[i] = data[j]; 
      data[j] = tmp; 
   } 
    
   protected static void swap(char[] data, int i, int j) { 
      char tmp = data[i]; 
      data[i] = data[j]; 
      data[j] = tmp; 
   } 
    
   protected static void swap(int[] data, int i, int j) { 
      int tmp = data[i]; 
      data[i] = data[j]; 
      data[j] = tmp; 
   } 
    
   protected static void swap(long[] data, int i, int j) { 
      long tmp = data[i]; 
      data[i] = data[j]; 
      data[j] = tmp; 
   } 
    
   protected static void swap(float[] data, int i, int j) { 
      float tmp = data[i]; 
      data[i] = data[j]; 
      data[j] = tmp; 
   } 
    
   protected static void swap(double[] data, int i, int j j) { 
      double tmp = data[i]; 
      data[i] = data[j]; 
      data[j] = tmp; 
   } 
 
   protected static void swap(Object[] data, int i, int j) { 
      Object tmp = data[i]; 
      data[i] = data[j]; 
      data[j] = tmp; 
   } 
} 
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APPENDIX B. THREE-DIMENSIONAL PLOTS 

 This appendix contains three-dimensional plots of the 11 algorithms, which show 

the scaled run time versus log10(N) and ρ.  Figures 4–14 demonstrate how the 

uncontrollable factors, log10(N) and ρ, affect the run-time of the different sorting 

algorithms.  These results came from an orthogonal, finely gridded design; this is the 

reason that they produced an “X” in the plots.  This is not a space-filling design.  

Nonetheless, the design provided us with a variety of configurations that were identically 

tested against all the algorithms.  The black dots are the outcomes generated with the 

Microsoft Windows operating system.  The red diamonds are the outcomes generated 

with the Mac OS X operating system.  As discussed in Chapter II, all runs were made on 

one Intel-compatible platform with both operating systems installed on it.  Notice how 

the two sets of outcomes are relatively consistent.  The only exception is the 

InsertionSortSedgewick plot (Figure 4)—it only has outcomes from the Microsoft 

Windows operating system.   
 

 

Figure 4.   InsertSortSedgewick:  Notice how the scaled time increases as N increases  
on O(N2). 
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Figure 5.   HeapSortComp:  Notice that the largest times are where N is relatively small.  
Heap sort does not handle small “almost ordered” sets well. 

 

Figure 6.   HeapSortDumb:  Notice that the largest times are where N is relatively small.  
Heap sort does not handle small “almost ordered” sets well. 
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Figure 7.   HeapSortSanchez:  Notice that the largest times are where N is relatively small.  
There is significant variance. 

 

Figure 8.   MergeSortComp:  Does better at larger N, but suffers from a great deal  
of variance. 
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Figure 9.   MergeSortSedgewick:  Scaled time scale stretched to allow comparison with 
MergeSortComp due to numerous larger runtimes. 

 

Figure 10.   QuickSortMedian:  Shows some degree of variability at small N, as ρ approaches 
–1 and 1. 
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Figure 11.   QuickSortMidPivot:  Fairly consistent performance at large N, and actually runs 
faster near ρ = –1 and 1. Greater variability for small N as ρ approaches –1 and 1. 

 

Figure 12.   QuickSortNaive:  The scaled time is fairly consistent, except at large N 
approaching ρ = –1, this is quicksort’s worst-case. 
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Figure 13.   ShellSortFib:  Shell sort does well at small N, and when randomly ordered.  
Notice that the scaled time increases as ρ approaches –1 and 1, but drops off sharply at  

–1 and 1. 

 

Figure 14.   ShellSortSedgewick:  Shell sort does well at small N, and when randomly 
ordered.  Notice that the scaled time increases as ρ approaches –1 and 1, but drops off 
sharply at –1 and 1.  ShellSortSedgewick is as much as twice as fast as ShellSortFib. 
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