
NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

DESIGN AND IMPLEMENTATION OF A MOBILE PHONE
LOCATOR USING SOFTWARE DEFINED RADIO

by

Ian Paul Larsen

September 2007

Thesis Advisor: Frank E. Kragh
Second Reader: R. Clark Robertson

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704­0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202­4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704­0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

SEP 07
3. REPORT TYPE AND DATES COVERED

Master’s Thesis
4. TITLE AND SUBTITLE Design and Implementation of a Mobile Phone
Locator Using Software Defined Radio
6. AUTHOR(S) Ian Paul Larsen

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943­5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This thesis presents an approach for generating, detecting, and decoding a Global System for Mobile Communications

(GSM) signal using software defined radio and commodity computer hardware. Using software designed by the GNU free­
software project as a base, standard GSM packets were transmitted and received over the air, and their arrival times detected. A
method is provided to use software analysis of multiple receivers to locate an emitter based on the information received by the
software radio. Results and accuracy analysis as well as limitations are shown based on initial testing. Complete implementation
source code is provided in the appendices.

14. SUBJECT TERMS GSM, software defined radio, geolocation, mobile phone, time difference of
arrival

15. NUMBER OF
PAGES

116
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540­01­280­5500 Standard Form 298 (Rev. 2­89)

Prescribed by ANSI Std. 239­18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

DESIGN AND IMPLEMENTATION OF A MOBILE
PHONE LOCATOR USING SOFTWARE DEFINED

RADIO

Ian Paul Larsen
Lieutenant, United States Navy

B.S., United States Naval Academy, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

September 2007

Author: Ian Paul Larsen

Approved by: Frank E. Kragh
Thesis Advisor

R. Clark Robertson
Second Reader

Jeffrey B. Knorr
Chairman, Department of Electrical and Computer Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

This thesis presents an approach for generating, detecting, and decoding a

Global System for Mobile communications (GSM) signal using software defined ra-

dio and commodity computer hardware. Using software designed by the GNU free-

software project as a base, standard GSM packets were transmitted and received over

the air and their arrival times detected. A method is provided to use software analysis

of multiple receivers to locate an emitter based on the information received by the

software radio. Results and accuracy as well as limitations are shown based on initial

testing. Complete implementation source code is provided in the appendices.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

EXECUTIVE SUMMARY

Because of the rapid growth in the capability of general purpose commodity

computers, many applications that traditionally are implemented only by special-

purpose analog and digital circuitry are finding a new home in software. The advan-

tages of software over hardware implementations can be many, including increased

flexibility, accuracy, decreased cost and size, and improved performance. One partic-

ularly interesting application for communications engineers is software radio.

Software radio promises to be a leap forward in the capability and flexibility of

traditional radio systems. Not only can a single software radio receive multiple types

of signals on demand, but it can be configured to receive a wide range of frequencies,

or even multiple frequencies at the same time. Additionally, a software radio is easily

upgradeable, so the per-unit and maintenance costs of developing multiple software

radio applications decrease as hardware is reused. Finally, the software in a software

radio can easily be upgraded, keeping existing equipment up-to-date without having

to upgrade the hardware.

But what is a software radio? Ideally, a software radio is nothing more than an

analog-to-digital converter (ADC) attached to an antenna that digitizes the received

signal which is then demodulated and processed entirely in software. Practically,

the ideal software radio is not a very capable machine with present limitations in

ADCs. Since most interesting radio signals have a much higher frequency than can

be accurately digitized by today’s ADCs, a real-world software radio will have some

sort of radio-frequency (RF) front end that converts the frequency of interest to some

intermediate frequency (IF).

One such device is a relatively inexpensive device called the Universal Software

Radio Peripheral (USRP). The USRP consists of a motherboard which performs the

analog-to-digital conversion of analog IF signals and interfaces with a personal com-

puter and various daughter-boards which are responsible for converting various RF

vii

frequencies to IF and sending that analog IF signal to the motherboard. This makes

the USRP extremely flexible, as different daughter-boards can be used depending on

the frequency of interest. A side benefit is that most of the important functional-

ity can implemented in a single motherboard, making the multiple daughter-boards

inexpensive devices.

A signal that is particularly interesting is that used by mobile phones that

comply with the Global Systems for Mobile communication (GSM) standard. Used

globally, it is the most popular standard for mobile phones. It has a number of features

that make receiving the signal challenging for a software radio, such as time-division

multiplexing combined with slow frequency-hopping. However, the GSM standard is

freely available and, as such, anyone with the ability and inclination to implement

the standard in software can produce a conforming GSM software radio.

One of the primary problems in Information Warfare (IW) and signals intel-

ligence is finding the location of the emitter of a signal. There are many methods

to accomplish this task with various accuracy and complexity. One such method is

to use multiple receivers in different locations and to measure the difference in time

between when the signal was received at one receiver compared with another. This

is called time-difference-of-arrival (TDOA) and has been successfully implemented in

the past in hardware.

This thesis examines the feasibility of implementing a system for locating an

emitter of a GSM signal using the TDOA method with software radio and the USRP.

In order to accomplish this, the objectives of this research were as follows:

• Generate a typical packet of GSM traffic that is as close to mathematically
perfect as possible.

• Transmit the GSM packet using software radio.

• Receive the GSM packet using software radio.

• Partially demodulate the GSM packet in software.

• Determine the time-of-arrival of the GSM packet.

viii

• Perform a statistical analysis of the feasibility of performing geolocation with
software radio.

These objectives were all completed with varying degrees of success due to

limitations in software radio itself, the performance of general purpose computer

hardware, and time.

The generation of the GSM signal in software was performed after careful

analysis of the GSM specification, with special attention paid to the accuracy of the

signal. Once the signal had been generated, it was sent repeatedly using the GNU

Radio software and the USRP, so that the timing of the signal could be measured by

the receiver.

A receiver was implemented in software that would take data from the USRP

and demodulate it to the point where the arrival time could be measured. Partial

demodulation of the digital data in the signal was sufficient for the arrival time

measurement, so complete demodulation was not implemented. Subsequent to the

demodulation, a software correlator was used to compare the received data with an

ideal target sample in order to determine (within the accuracy of one digital sample)

when the signal was received. This time data was checked against the known time of

transmission and analyzed for accuracy.

The research found that implementing a TDOA software radio system is en-

tirely feasible. However, significant portions of the implementation must make use of

faster hardware like field-programmable gate arrays (FPGA) in order to perform the

calculations in real-time. Precision of the location calculation using general purpose

hardware and the USRP was on the range of 35-100 meters, with the accuracy being

± 35-100 meters more than 90% of the time. Precision and accuracy were heavily

dependent on the speed of the personal computer involved in the reception of the

signal.

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

DISCLAIMER

The computer source code in the Appendices is supplied on an “as is” basis,

with no warranties of any kind. The author bears no responsibility for any conse-

quences of using these programs.

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

TABLE OF CONTENTS

I. INTRODUCTION . 1

A. BACKGROUND . 1

B. OBJECTIVE AND APPROACH 2

C. RELATED WORK . 3

D. THESIS ORGANIZATION . 3

II. ANALYSIS . 5

A. GLOBAL SYSTEM FOR MOBILE COMMUNICATION 5

1. GSM Bursts . 5

2. GSM Frequency-Hopping 7

3. GSM Channel Definition 8

B. GSM MODULATION . 9

1. Differential Encoding . 10

2. GMSK Filtering . 10

C. THE UNIVERSAL SOFTWARE RADIO PERIPHERAL 12

1. Receive Capabilities . 12

2. Transmit Capabilities . 16

3. Data Transfer Capabilities 17

D. SIGNAL DETECTION . 18

1. Correlator . 18

E. GEOLOCATION . 19

1. Requirements . 19

2. Precision . 20

3. Limitations and Workarounds 20

F. CONCLUSION . 22

III. IMPLEMENTATION . 23

A. GMSK SIGNAL GENERATION 23

xiii

1. GMSK Filter Implementation 23

2. Determining the Sample Rate 24

3. Baseband Signal Generation 25

4. Application of a GMSK Filter 27

B. GMSK DECODING . 29

1. FM Demodulation . 29

2. Determining Sample Rate 31

3. Generating Target Sequence 32

4. Correlation . 32

5. Storage Requirements . 33

C. CONCLUSION . 34

IV. EXPERIMENTATION . 35

A. SET UP . 35

B. TRANSMISSION . 36

C. RECEPTION . 36

1. Initial Results . 36

2. Signal-to-Noise Ratio . 38

D. CORRELATION . 39

1. Algorithm . 39

2. Results . 41

3. Software Radio Limitations 43

E. LOCATING THE EMITTER 44

F. CONCLUSION . 47

V. CONCLUSION . 49

A. CONCLUSIONS . 49

B. RECOMMENDATIONS . 49

APPENDIX A. CORRELATION DATA 51

xiv

APPENDIX B. UNDERSTANDING COMMON LISP EXAMPLES 55

1. S-EXPRESSIONS . 55

APPENDIX C. GMSK.LISP . 59

APPENDIX D. TRANSMIT.PY . 65

APPENDIX E. RECEIVE.PY . 67

APPENDIX F. RECEIVE2.PY . 69

APPENDIX G. FM DEMOD.PL . 71

APPENDIX H. CORRELATOR.CPP 75

APPENDIX I. STATISTICS.PL . 81

APPENDIX J. DISTANCE.LISP . 83

LIST OF REFERENCES . 87

INITIAL DISTRIBUTION LIST . 89

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

LIST OF FIGURES

Figure 1. Illustration of a frequency-hopping GSM channel. 9

Figure 2. Illustration of aliasing due to down-sampling. 16

Figure 3. Complex FM baseband signal from −10 to 10 Hz. 27

Figure 4. GSM access burst. 28

Figure 5. Gaussian filtered GSM access burst synchronization sequence. . 28

Figure 6. Modulated access burst, I and Q channels. 29

Figure 7. Two successive FM samples. 30

Figure 8. Target GSM synchronization sequence. 33

Figure 9. Demodulated GMSK signal, no power measuring. 37

Figure 10. Demodulated GMSK signal, repeated bursts. 38

Figure 11. Demodulated GMSK signal, single burst. 39

Figure 12. Result of correlation with target sequence. 40

Figure 13. Algorithmic jitter in correlator. 41

Figure 14. Histogram of sample errors based on 5101 data points. 41

Figure 15. Emitter location with one-meter precision. 46

Figure 16. Emitter location with 37-meter precision. 47

xvii

THIS PAGE INTENTIONALLY LEFT BLANK

xviii

LIST OF TABLES

Table 1. Fields of a GSM access burst. 6

Table 2. Access burst synchronization sequences. 8

Table 3. Transmitting computer settings. 35

Table 4. Receiving computer settings. 35

Table 5. Correlation output data. 42

Table 6. Correlation statistics for six second reception. 42

xix

THIS PAGE INTENTIONALLY LEFT BLANK

xx

TABLE OF ACRONYMS

NPS Naval Postgraduate School
GSM Global System for Mobile communication
USRP Universal Software Radio Peripheral

IW Information Warfare
TDOA Time-Difference-of-Arrival
FPGA Field Programmable Gate Array
DSP Digital Signal Processor
CPU Central Processing Unit
PC Personal Computer

JTRS Joint Tactical Radio System
SCA Software Communication Architecture

OSSIE Open Source SCA Implementation::Embedded
ADC Analog-to-Digital Converter
DAC Digital-to-Analog Converter
DDC Digital Down-Converter
GNU Gnu’s Not Unix
IF Intermediate Frequency
RF Radio Frequency
FM Frequency Modulation

GMSK Gaussian Minimum-Shift Keying
PGA Programmable Gain Amplifier
CIC Casaded Integrator-Comb
USN Universal Serial Bus
NCO Numerically Controlled Oscillator
SNR Signal to Noise Ratio

xxi

THIS PAGE INTENTIONALLY LEFT BLANK

xxii

ACKNOWLEDGMENTS

I would like to thank the faculty members of the Naval Postgraduate School

for their assistance with this thesis, many of whom went above and beyond the call

of duty to assist me with my research, particularly my thesis adviser, Professor Frank

Kragh, Donna Miller, Bob Broadston, Jeff Knight, and my second reader Professor

Clark Robertson.

Also thank you to the members of the OSSIE team at Virginia Tech and the

members of the GNU Radio project, both for producing the excellent software that

made my research possible and for providing answers and guidance for my technical

questions.

My sincerest thanks go to my wife Valarie who spent many long days at home

taking excellent care of my two beautiful daughters Amelia and Evangeline while I

was at school. Without her patience, help, and lunch deliveries this would not have

been possible.

xxiii

THIS PAGE INTENTIONALLY LEFT BLANK

xxiv

I. INTRODUCTION

A. BACKGROUND

Software defined radio, a relatively new field, promises to be a leap forward in

the capability and flexibility of traditional radio systems. Instead of producing com-

plex and inflexible analog hardware, a software radio tries to accomplish the same task

in the digital domain using reconfigurable hardware such as field programmable gate

arrays (FPGA), digital signal processors (DSP), or even general purpose processors

such as those found in a personal computer. Although there are many advantages to

processing radio signals in software, such as ease of manufacture and maintenance, the

performance of software components, particularly the flexible general purpose proces-

sors, are just beginning to become powerful enough to handle the extraordinarily high

data rates required for some applications. [1]

One particularly demanding application of a radio receiver is geolocation, or

finding the location of the emitter of a signal based on the characteristics of the re-

ceived signal. Performing geolocation with any reasonable degree of accuracy requires

extremely sensitive and well-tuned equipment that can measure very small variations

in receive time and frequency. [2]

But what is software defined radio, exactly? The term encompasses a lot of

technologies and techniques, so an example of an ideal software defined radio will give

the clearest understanding of what software radio is in general. An ideal software radio

is an antenna attached directly to an analog-to-digital converter (ADC) that samples

the signal coming in from the antenna. All subsequent demodulation, processing and

decoding of the signal are done by software in the discrete digital domain. [1]

For various reasons, not the least of which is that the hardware required for

an ideal software defined radio would be costly, practical software radios vary slightly

from the ideal, whether by including special purpose hardware to perform demodu-

lation or an analog radio-frequency (RF) front-end that converts the high radio fre-

1

quency signal to an intermediate frequency that is more easily sampled by an ADC.

This allows the system to trade some flexibility for performance and practicality. [1]

Before this research was done, there was some doubt as to the ability of low-

cost, consumer-grade hardware to perform geolocation using software defined radio

and no hard data on how accurate it could be in practice. This research performs a

theoretical analysis of how accurate such software should be, and experimental results

show how well the theory corresponds to reality in practice.

B. OBJECTIVE AND APPROACH

The objectives of this research were to:

• Generate a typical packet of GSM traffic that is as close to mathematically
perfect as possible.

• Transmit the GSM packet using software radio.

• Receive the GSM packet using software radio.

• Partially demodulate the GSM packet in software.

• Determine the time of arrival of the GSM packet.

• Perform an analysis of the feasibility of performing geolocation with software
radio.

To accomplish these objectives, it was necessary to calculate a discrete time

signal prior to any transmission. Next, software and the USRP were used to send

and receive the previously calculated and stored signal in real time and store the raw

incoming data on the receiving computer. Finally, the raw data was analyzed by

additional software to demodulate the signal and determine its time-of-arrival.

A number of different computer languages were used depending on the specific

purpose of the software component. A Common Lisp environment called CLISP was

chosen for the generation of the signal due to its native support of complex numbers,

2

high degree of mathematical precision, and ability to concisely implement mathemat-

ical algorithms. The GNU Radio free software project provided the libraries neces-

sary to communicate directly with the USRP with very little overhead, and various

scripts were written with the Perl computer language to perform the demodulation of

a frequency modulated signal and handle translation of binary data into a readable

textual representation that the gnuplot plotting program could then show graphically

for further analysis.

C. RELATED WORK

The GNU Radio project is an open-source software defined radio project that

manages the design of the Universal Software Radio Peripheral and the low-level

libraries used for its operation, as well as a relatively high-level software radio com-

ponent system. Some of the GNU Radio software was used in this thesis.

The Open Source SCA Implementation Embedded (OSSIE) project is another

open-source software defined radio project that focuses on compatibility with the

Joint Tactical Radio System (JTRS) Software Communications Architecture (SCA).

It provides a number of useful and educational tools for development and analysis of

software radios.

Recently, many students at the Naval Postgraduate School (NPS) have writ-

ten theses on either software defined radio or geolocation, including software radio

designs for various standards such as Interim Standard 95B (IS-95B) and Institute

of Electrical and Electronics Engineers (IEEE) 802.16 and 802.11a, software radio

designs for general binary frequency shift keyed signals, and geolocation using the

complex ambiguity function [3, 4, 5, 6, 7, 8].

D. THESIS ORGANIZATION

The body of this thesis is divided into four chapters in order to indicate the

level of technical detail. Chapter II focuses on general information about software

3

radio and GSM signals, and then discusses in specific theoretical detail how GSM and

software radio work. Chapter III shows how the mathematical analysis can be put

into practice by discussing the specific algorithms used to allow the software radio to

transmit and receive a Gaussian minimum-shift-keyed (GMSK) signal. Chapter IV

shows the results of that implementation, with graphs of the actual received signal

and an analysis of the accuracy with which it was detected.

4

II. ANALYSIS

A. GLOBAL SYSTEM FOR MOBILE COMMUNICATION

The Global System for Mobile communication (GSM) is a worldwide standard

for mobile telephone communication. Receiving a typical GSM signal presents many

challenges due to the nature of the signal. In order to allow many simultaneous users,

GSM uses a combination of time-division multiple access (TDMA), frequency-division

multiple access (FDMA), and slow frequency-hopping. [9]

With TDMA, a channel is divided into time slots and a single recurring time

slot is assigned to each user. Users transmit and receive in rapid succession, so

the illusion is created that transmission and reception are occurring simultaneously.

With FDMA, the total bandwidth available to a GSM provider is divided into many

frequency bands so that multiple time-division multiplexed channels can be used

simultaneously on different frequency bands. [9]

While this all seems simple enough, channels are not specified to use a given

frequency on a permanent basis. Instead, GSM uses a form of slow frequency-hopping

that means that the frequency for a user’s channel will change for different time

slots. In effect, this means a transmitting user will transmit on one frequency for the

duration of a time slot, then change frequency according to a specified sequence and

transmit during the next time slot. The same system is used for reception and is

explained in greater detail below. [9]

1. GSM Bursts

GSM uses a TDMA scheme for allowing multiple users access to a single fre-

quency band. For a given frequency that is allocated in this manner, there are eight

time slots that may be dedicated to individual users. These eight time slots compose

a TDMA frame. [9: p. 215]

The basic unit of transmission in GSM is the burst. A burst is a transmission

that occurs within a single time slot at a specific frequency [9]. The length of a

5

burst in bits is typically 147 (not including some number of guard bits that are not

transmitted), however, there are shorter bursts of 87 bits that have a specific function

[10]. The duration of the time slot in bits is 156.25, which allows for a short guard

period to reduce interference with bursts starting in the next time slot [10].

There are many different types of GSM bursts, and each has a different in-

formation content depending on the purpose of the burst [10]. A normal burst is

defined by the specification to carry voice and other data [10]. An access burst occurs

whenever the mobile user must gain access to the network, such as when the phone

is turned on, a call or text message is sent or received, or the user’s location changes

[9]. We are particularly interested in the access burst in this thesis due to the reasons

for which it occurs and the specific physical properties of the burst.

a. GSM Access Burst

An access burst in GSM is 156.25 bits in length, including a guard

period of 68.25 bits in which no transmission occurs [10]. The GSM standard defines

the format of the access burst shown in Table 1 [10].

Table 1. Fields of a GSM access burst.

Bit Number Length of Field (in bits) Contents of field

0-7 8 extended tail bits

8-48 41 synchronization sequence

49-84 36 encrypted bits

85-87 3 tail bits

88-156 68.25 guard period

6

b. Guard Period

The guard period is the portion of each GSM burst which is provided to

give the transmitter sufficient time to attenuate the transmitted signal. This period

is provided to allow for the fact that the beginning or ending of a transmission cannot

occur instantaneously, so the transient effect of the transmitter ramping up and down

occurs during this time. [10]

c. Tail Bits and Synchronization Sequence

The tail bits are defined for each burst and are specific to that burst.

In the case of an access burst, the first eight tail bits are as follows [10]:

Extended tail bits 0,0,1,1,1,0,1,0

The synchronization (or training) sequence is a specified sequence of

bits that is used to recognize that a particular burst is received. In the case of the

access burst, this is a 41 bit sequence starting at bit 8. The GSM specification gives

three possible training sequences that can be used in an access burst, a primary and

two alternates. These training sequences are shown in Table 2. [10] For the purposes

of testing in this thesis, training sequence 0 is used exclusively. Since the bits are

encoded using differential encoding, the last bit of the extended tail bits is needed to

determine the first bit of the synchronization sequence.

2. GSM Frequency-Hopping

In addition to TDMA, GSM spreads transmissions among multiple frequencies.

In this way, many more than eight simultaneous users can be supported. [9]

7

Table 2. Access burst synchronization sequences.

Sequence Number Sequence

0 0,1,0,0,1,0,1,1,0,1,1,1,1,1,1,1,1,0,0,1,
1,0,0,1,1,0,1,0,1,0,1,0,0,0,1,1,1,1,0,0,0

1 0,1,0,1,0,1,0,0,1,1,1,1,1,0,0,0,1,0,0,0,
0,1,1,0,0,0,1,0,1,1,1,1,0,0,1,0,0,1,1,0,1

2 1,1,1,0,1,1,1,1,0,0,1,0,0,1,1,1,0,1,0,1,
0,1,1,0,0,0,0,0,1,1,0,1,1,0,1,1,1,0,1,1,1

GSM employs a technique called slow frequency-hopping in order to increase

security and reliability. Slow frequency-hopping is different from fast frequency-

hopping in that one or more full channel symbols are transmitted during a single

hop dwell. With GSM an entire burst is transmitted before the frequency is changed.

[9: p. 219]

While the frequency-hopping in GSM is comparatively slow, it still presents

a problem for reception in software radio, since either the center frequency must be

changed rapidly in order to keep up with the frequency-hopping or the entire GSM

bandwidth must be captured in order to pick out the channel of interest.

3. GSM Channel Definition

A GSM burst is defined by both the time slot in which it occurs (eight time

slots numbered 0-7) and the frequency at which it occurs. Since the frequency-hopping

follows a specified pattern, a channel is defined by its time slot and frequency-hopping

sequence. Figure 1 shows a pictorial representation of bursts occurring over time at

different frequencies, where each colored box represents a burst.

8

Figure 1. Illustration of a frequency-hopping GSM channel.

a. GSM Control Channels

The GSM specification distinguishes between traffic channels, which

carry voice and other data, and control channels which are used to gain access to the

traffic channels [10]. Also, the initial bursts that occur to gain access to control chan-

nels do not make use of frequency-hopping, simplifying the detection and decoding of

control traffic [11]. For this reason, this research focuses on the bursts that are used

to access a GSM network.

B. GSM MODULATION

The following section describes the physical layer modulation in the GSM sys-

tem. This does not include any discussion of higher level layer coding and interleaving,

both of which exist in GSM, but are beyond the scope of this thesis.

The GSM system uses differential encoding of data bits and GMSK as its

modulation scheme.

9

1. Differential Encoding

According to the GSM specification covering physical layer modulation, before

data bits are modulated, they are encoded using differential encoding as follows [12]:

d̂i = di ⊕ di−1 where ⊕ denotes modulo 2 addition. (2.1)

The input to the differential encoder described in 2.1 is specified to consist of

a series of zeros and ones. However, the output of the differential encoder is ±1, so

the signal must be level-shifted as follows [12]:

αi = 1 − 2d̂i (2.2)

The output of the differential encoder is αi, which is a differentially encoded

polar signal.

2. GMSK Filtering

The binary data to be modulated using GMSK can be represented as a series

of polar, differentially encoded impulses, as follows [12]:

∞
∑

i=0

αiδ(t − iTb) (2.3)

This set of impulses is convolved with a function g(t), the impulse response of

a Gaussian-shaped filter, to give the GMSK waveform [12]:

g(t) = h(t) ∗ rect

(

t

Tb

)

(2.4)

where the function rect(x) is the rectangular function with an area of one and a width

of one bit duration [12] and is defined by

rect

(

t

Tb

)

=
1

Tb

for |t| <
Tb

2
(2.5)

rect

(

t

Tb

)

= 0 otherwise (2.6)

10

Tb in Equation (2.5) is the bit duration, which is 6
1625×103 seconds, or approxi-

mately 3.69 microseconds [12]. h(t) is a Gaussian impulse response:

h(t) =
exp

(

−t2

2δ2T 2

b

)

√
2πδTb

(2.7)

where δ is defined to be inversely proportional to the bandwidth-time product [12]:

δ =

√

ln(2)

2πBTb

and BTb = 0.3 (2.8)

BTb (also called the bandwidth-time product) is the product of the the 3 dB band-

width of the filter and the bit duration and is a constant (0.3 in the case of GSM).

This affects the amount of inter-symbol interference in the GMSK signal. The 0.3

chosen for GSM is a compromise between error rate and spectral efficiency. [13: p.

319]

11

C. THE UNIVERSAL SOFTWARE RADIO PERIPHERAL

The Universal Software Radio Peripheral (USRP) is a hardware device that

makes reception and transmission of radio waves with consumer-grade, personal com-

puter equipment possible. It consists of a motherboard containing various ADCs,

digital-to-analog (DAC) converters, an FPGA, and slots for a number of daughter-

boards, which determine the range of frequencies the board can send or receive. The

USRP connects to the computer via a high-speed Universal Serial Bus (USB) port.

[14]

1. Receive Capabilities

a. Analog-to-digital Conversion

The frequency band of the analog signals coming into the USRP moth-

erboard is determined by the specific daughter-board that is used with the USRP.

The daughter-board is responsible for providing the separated I and Q channels of the

complex signal to the motherboard and possibly for converting the received real signal

at RF to a complex signal at an intermediate frequency (IF). Some daughter-boards

perform no conversion, so as to be useful with a variety of low frequency signals.

The particular board used for this research, however, did perform conversion, so the

analysis of its operation follows. [14]

The signal at the antenna of the daughter-board can be described as

the signal r(t), which has a carrier of frequency fRF modulated by amplitude A(t)

and phase θ(t):

r(t) = A(t) cos (2πfRF + θ(t)) (2.9)

12

After the daughter-board performs frequency conversion and filtering

to remove unwanted aliasing, the resulting complex signal analytic signal, S(t) =

Si(t) + jSq(t), can be described by

Si(t) = A(t) cos (2πfIF + θ(t)) (2.10)

Sq(t) = A(t) sin (2πfIF + θ(t)) (2.11)

The preceding signals are then sampled by the ADCs after an optional

amplification stage using a Programmable Gain Amplifier (PGA) on the USRP moth-

erboard, which provides a gain of up to 20 dB. The USRP contains four 12-bit ADCs

(each is dedicated to the I or Q samples of one of two possible channels) each running

at 64×106 samples/s, giving a theoretical upper frequency limit (for the intermediate

frequency) of 32 MHz before artifacts due to aliasing are introduced. Note that two

separate ADCs are required to convert the complex signal to a digital representation.

The resulting sampled data is

Si[n] = Si(nTs) (2.12)

Sq[n] = Sq(nTs) (2.13)

where Ts is the sample interval, n = 0, 1, 2, ... is discrete time, and Si[n] and Sq[n] are

the resulting in-phase and quadrature samples, respectively. [14]

13

b. Conversion to Baseband

After translation into the digital domain, the samples are processed by

firmware on the FPGA. Each pair of incoming I and Q samples are treated as a single

complex analytic sample Si[n] + jSq[n] by the multiplication algorithm in the FPGA

which performs a complex multiplication resulting in a set of complex samples at

baseband I[n] + jQ[n] and given by [14]

S[n] = Si[n] + jSq[n] (Complex Analytic Signal)

= A(nTs) [cos(2πfIFnTs + θ(nTS)) + j sin(2πfIF (nTs) + θ(nTs))]

= A(nTs)e
j2πfIF (nTs)+θ(nTs) (2.14)

I[n] + jQ[n] = S[n]e−j2πfIF (nTs)

= A(nTs)e
θ(nTs) (Complex Envelope) (2.15)

I[n] and Q[n] are the outputs of the first stage of the FPGA. Low-pass

filtering is accomplished in the next stage in addition to decimation [14]. Decimation

reduces the effective sample rate and, therefore, the signal bandwidth. Filtering is

required because decimation itself will introduce aliasing if the decimation rate is

large enough[15: p. 235].

c. Aliasing

Aliasing occurs because frequencies which differ by a multiple of the

sampling rate are indistinguishable from each other after sampling [15: p. 11]. To

illustrate this mathematically, the angular frequency Ω0 and the angular digital fre-

quency ω0 are defined as:

Ω0 = 2πF0 =
2π

T0
(2.16)

ω0 = Ω0Ts = 2π
F0

Fs

radians (2.17)

14

where F0 is the frequency of interest of the continuous time signal and Fs is the

sampling frequency. The digital frequency is shown to be dependent on the sampling

frequency, which is an important distinction. Because decimation effectively lowers

the sampling frequency Fs, the digital frequency that corresponds to a frequency F0

changes proportionally. [15]

One other important property of digital frequency is that any frequency

ω1 and another frequency ω2 are indistinguishable from each other in the discrete

domain provided that ω2 = ω1 + k2π, where k is any integer. This is why frequencies

above the Nyquist rate are indistinguishable from frequencies below it and is the basis

for understanding aliasing. Notice that the Nyquist frequency, which is defined as

one-half the sample rate, corresponds to an angular digital frequency of π. Therefore,

a discrete time signal’s bandwidth must exist entirely between −π and π in order for

aliasing not to occur. [15]

Figure 2 is an illustration of the effect of aliasing when the sampling

frequency Fs is not large enough to separate the bandwidth of the target signal from

its aliases, or repeated images, elsewhere in the frequency domain. The top graph is

an example of a discrete time signal that does not exhibit any aliasing. The bottom

graph is a representation of what happens if the same sampled signal is decimated such

that π is less than ω1, the digital bandwidth of the original discrete time signal. This

shows significant interference around the upper and lower portions of the baseband

signal. Effectively, this requires that in addition to a decimation stage, a low pass

filter must be used in order to prevent aliasing. The FPGA on the USRP includes

a Cascaded Integrator-Comb (CIC) filter, which performs the low-pass filtering and

decimation at a high speed. [14]

15

Figure 2. Illustration of aliasing due to down-sampling.

d. Decimation

The primary reason decimation is done is to reduce the data rate of

the signal that the USRP transmits to the computer. Since the data rate of the USB

connection is limited, not every sample can be sent without overflowing the USRP’s

buffer, so the decimation rate must be set appropriately to limit the signal data rate

to a level that the USB connection can handle. [14]

All data is sent to the computer from the USRP in the form of 16-bit

signed integers. The in-phase channel data is multiplexed with the Q channel data.

In other words, the data stream always consists of an I channel integer followed by a

Q channel integer. [14]

2. Transmit Capabilities

The USRP’s transmit capability is similar to its receive capability. For the

most part, transmission is simply the reverse operation of reception, with a few minor

differences.

16

The data to be transmitted is sent to the USRP over the USB connection.

This data is then interpolated at a specified rate, which may be set programatically.

Interpolation, like decimation, introduces aliasing into the signal, so the signal must

be filtered afterward [15: p. 248]. Next, the signal is multiplied by a sinusoid at the

intermediate frequency, converted to analog by the digital-to-analog converter (DAC)

at a rate of 128× 106 samples/s, with the resulting signal sent to the daughter-board

for transmission [14]. The 128 × 106 sample/second DAC rate gives us a maximum

intermediate frequency of 64MHz [14]. However, the maximum allowable intermediate

frequency is limited to 44 MHz by the USRP software to make up-sampling and

filtering practical [14, 16].

According to the USRP documentation, the required sample rate sent over the

USB connection is

RUSB =
FDAC

Rinterp

× channels (2.18)

where FDAC is the sample frequency of the DAC, Rinterp is the interpolation rate, and

channels is the number of simultaneous data signals being transmitted [16]. This

sample rate is measured in terms of individual 16-bit integers being sent over the

USB wire. This rate is important when generating the baseband signal, both in

determining the rate at which to sample the ideal baseband signal and in providing

the maximum rate across the USB connection to create a more accurate output signal.

3. Data Transfer Capabilities

The theoretical maximum transfer rate of the USB 2.0 connection that the

USRP uses to transfer data is 480 Mbit/sec, but in practice the maximum is found to

be about 32 MB/sec, or 256Mbit/sec [14]. Each complex sample consists of a 16-bit

17

signed integer for the I and the Q channels, totaling 32 bits per complex sample [14].

Therefore, the maximum sample rate coming in to (or going out of) the computer’s

USB port is

Rs = 256 × 106 bits

s
× 1

32

sample

bits
= 8 × 106samples

s
(2.19)

This allows the calculation of the minimum sample interval

Ts =
1

8 × 106

s

samples
= 125 ns (2.20)

This minimum sample interval is used later to calculate the precision of performing

geolocation using digital samples.

D. SIGNAL DETECTION

1. Correlator

Determining that the signal of interest has been received is a matter of correlat-

ing the incoming signal with the known training sequence that has been modulated

with GMSK. The sampling frequency associated with this known sequence should

match the sampling frequency of the data coming in over the USB link.

Let the signal of interest be sampled signal X and the incoming sampled signal

be signal Y . From the USRP, X will be a multiplexed complex signal with 16-bit I

and Q samples, respectively. In hardware, we normally perform separate convolutions

on the I and Q channels and sum the result [17: p. 232]. Theoretically this is

not necessary in software, however, since we can construct an identical multiplexed

complex signal and correlate against that. Unfortunately, test results show that

other factors prevent this straightforward approach from working easily and will be

discussed in Chapter IV.

Correlation consists of performing a non-time-reversed convolution between X

and Y . In the discrete domain, we may define the correlation at a certain time t as

follows, assuming the input X is the same length as the target signal Y

C =

n−1
∑

i=0

XiYi (2.21)

18

where n is the number of samples contained in the signal of interest. If the signals X

and Y match exactly, the magnitude of C is large and a spike occurs in the graph of

C over time.

However, since we are receiving the signal continuously, Y does not simply

consist of only n samples but may be arbitrarily long. Because of this, we must keep

shifting the samples in Y by one, such that Y1 becomes the new Y0, Y2 becomes the

new Y1, and so forth. The output of the correlator at each iteration is checked to see

if its value is above a threshold, at which point we can be reasonably certain that the

target signal has been received. Additionally, the maximum value of the correlator

output that is above the threshold allows us to determine the exact time that the

signal was received to the nearest sampling interval. [17]

E. GEOLOCATION

Location of an emitter in this system is done by measuring the time differ-

ence of arrival between identical listening posts. This requires at least two posts to

calculate the distance from either post and at least three to perform an accurate

triangulation. [2]

1. Requirements

In the case of only two listening posts on either side of an emitter, the emitter

can be located on a hyperbolic curve between the two posts. The hyperbolic curve is a

representation of all points where the signed difference of the distance between either

post (focus) and the emitter is a constant. This constant is equal to the distance

traveled by light between the time the signal is first detected (at one post) and the

time it is detected at the second post.[2: p. 174]

Using only two posts, an accurate measurement of distance can be made, but

the emitter can still only be said to be located anywhere on a hyperbolic curve that

is infinitely long.

19

By using another listening post, two more such curves can be found. Ideally,

the intersection of these curves occurs at the exact location of the emitter. Accuracy

and precision can be increased by using more receivers. Since any single curve is

dependent on the time difference between exactly two receivers, the number of unique

curves N that can be plotted based on the number of listening posts L is

N =
L(L − 1)

2
(2.22)

2. Precision

Because the USB 2.0 link is the bottleneck for data transfer into the computer

and the precision of the geolocation directly depends on the sample interval, the

maximum precision can be calculated. From Equation (2.20), the minimum sample

interval is 125 nanoseconds. In that time, an RF signal will travel a distance

Ds = Tsc = (125 × 10−9)s × (3 × 108)
m

s
= 37.5 m (2.23)

3. Limitations and Workarounds

Although four listening posts provide six curves and improved accuracy, calcu-

lation of the points on each curve and the intersection of those points, particularly in

the presence of measurement error, is computationally intensive. Additionally, even

the slightest measurement error means that the hyperbolic curves have no simulta-

neous solution or point where every curve intersects. Also, the nature of hyperbolic

equations imparts a floating-point inaccuracy to computer calculations dependent

on which part of the curve the emitter is actually located. Finally, calculation of a

hyperbolic curve involves trigonometric functions which are not practical for heavy

real-time usage, even with modern hardware. Therefore, another approach is needed.

a. Graphical Method

The most obvious method is to use graphical analysis to show the likely

position of the emitter. To illustrate this method, we assume there exist four listening

posts located in a square configuration on a Cartesian coordinate system at points

20

(0,0), (0,1000), (1000,0), and (1000,1000). This creates a 1000 × 1000 grid between

the posts. This grid can be superimposed on any two dimensional surface with grid

coordinates translated to map coordinates, latitudes and longitudes, etc.

The emitter can be found by calculating the likelihood of it being lo-

cated at any coordinate on the grid based on the time differences of arrival between

the listening posts. Since the output of the algorithm is a two-dimensional matrix of

probabilities, the output is easily represented as a computer graphic. This method is

used to simulate finding the location of the emitter in Chapter IV.

b. Lookup Table Method

The complexity and run-time of the location calculation can be reduced

even further. Ideally, the result of the calculation is a coordinate on the computed

grid based on a series of time-differences-of-arrival. Note that each point P on the

grid ideally maps to a unique set of time-differences between three listening posts:

Pij maps to [τ01, τ02, τ12] (2.24)

where τab is the time-difference-of-arrival between two listening posts a and b. There-

fore, the calculation of the ideal time differences of each point on the grid can be

done prior to the deployment of the system. Then the identification of the most

likely location of an emitter can be reduced to a table lookup/interpolation of the

time differences, which could happen in real time. The only limitation is the stor-

age space required to hold such a table and the fact that movement of the receivers

requires a table update. As such, the lookup table approach is not practical for a

system in which the receivers are mobile.

21

F. CONCLUSION

We have examined the mathematical theory behind generation, transmission,

reception, and detection of the time of arrival of a GSM access burst in this chapter.

Also discussed were the theoretical limitations of the accuracy and precision of a

software radio. What remains is the translation of that theory into actual algorithms

that can be used in software. The translation is challenging because continuous time

signals are generated in discrete time for transmission. The following chapter focuses

on overcoming those challenges.

22

III. IMPLEMENTATION

A. GMSK SIGNAL GENERATION

1. GMSK Filter Implementation

The GMSK definition in Chapter II must be used to generate a GMSK signal.

However, the GMSK signal is defined in the continuous time domain and must be

converted to the discrete domain before it can be used. There are two rates to be

concerned with when performing this conversion: the GMSK bit rate, Rb = 1/Tb; and

the sampling rate that is used to convert the continuous GMSK signal to the discrete

domain.

Equation (2.1) through Equation (2.8) suggest that a series of impulses repre-

senting the data bits should be convolved with the defined impulse response function,

which itself contains a convolution:

x(t) =

∞
∑

i=0

αiδ(t − iTb) ∗
[

h(t) ∗ rect

(

t

Tb

)]

(3.1)

where ∗ implies convolution. The result x(t) is the signal which subsequently fre-

quency modulates the signal carrier. Because convolution is an associative and com-

mutative operation [18], we can rewrite the process as

x(t) =

[

∞
∑

i=0

αiδ(t − iTb) ∗ rect

(

t

Tb

)

]

∗ h(t) (3.2)

= b(t) ∗ h(t) (3.3)

Instead of performing two convolutions on the continuous data and then sam-

pling that, we can simply perform a discrete convolution on a discrete function h[k]

and a discrete series of rectangular pulses b[k]. The functions h[k] and b[k] are equal

to the sampled continuous h(t) and b(t), respectively, and are given by

h[k] = h(nTs) (3.4)

b[k] = b(nTs) (3.5)

23

where Ts is equal to some sample time. The rectangular pulses in b[k] represent

the data-bearing impulses already convolved with the discrete rect[x] function and,

therefore, look like

(1, 1, 1, 1, 1,−1,−1,−1,−1,−1, ...) if αi = [1, −1, ...] (3.6)

The above is equivalent to sampling the input data b(t) at some rate Rs = n/Tb,

where n = 5, and the time difference between the successive bits 1 and −1 is Tb. In

other words, each sample represents Tb/n seconds. The result is achieved simply by

repeating the input data bits n times, which saves significant computation time and

is less complex to implement than performing multiple convolutions.

2. Determining the Sample Rate

Before generating a discrete-time GMSK signal, the appropriate sample rate

must be determined. The required sample rate for transmission is determined solely

by the configuration of the USRP, which expects samples at a rate dependent on the

number of channels used, the frequency of the DAC, and the interpolation rate.

The DAC frequency on the USRP is constant at a rate of 128 × 106 complex

samples/s. The GMSK generation function generates pairs of 16-bit integers where

each pair represents one complex sample. The only variable is the interpolation rate.

This is a design decision. A lower interpolation rate results in a more accurate signal,

while a higher one requires less bandwidth from the USB link. Since the USRP in

our case is dedicated to transmitting a signal, we can use all of the USB bandwidth

if necessary.

Equation (2.19) shows that the maximum USB bandwidth is 8× 106 complex

samples/s. Substituting this into Equation (2.18), along with the constants already

mentioned, we get an interpolation rate of 32, which is the lowest acceptable inter-

polation rate that does not saturate the USB connection.

24

Since signal accuracy is important for this experiment, the minimum interpo-

lation rate of 32 is used. Thus, the complex sample rate can be calculated, (keeping in

mind that a complex sample consists of two 16-bit samples for the I and Q channels):

Rstx
=

128 × 106

32
= 4 × 106 samples

s
(3.7)

Tstx
=

1

Rstx

= 2.5 × 10−7s (3.8)

Rstx
is the minimum required sample rate for our discrete generated signal. Note that

any integer multiple nRstx
works equally well – we simply have to select every nth

sample to send to the USRP. However, there is another rate to consider, and that is

the GMSK bit rate of Rb = 1625 × 103/6 (bits/second) [12]. We have seen that it

is very convenient if the sample rate used is some integer multiple of the GMSK bit

rate. So we now have two different rates that we would like to have as factors of the

overall sample rate, and we need to find integers n0 and n1 such that:

n0Rstx
= n1Rb (3.9)

n0

n1

=
Rb

Rstx

=
1625 × 103

6(4 × 106)
=

13

96
(3.10)

The overall sample rate Rs that we would like to use is 13(4×106) or 192(1625×103/6),

both of which are equal to 52 × 106. This ensures that no interpolation has to be

done when calculating samples for either the GMSK bit rate or the USB sample rate.

3. Baseband Signal Generation

To understand how the baseband signal is generated, a review of the source

code is helpful. The Common Lisp code generates a complex baseband frequency

modulated signal, one sample at a time. It keeps track of the phase angle of the last

sample using the phase-angle variable. The reset function is called to set the phase

angle to zero. The signal is generated by calling the modfm function repeatedly, with

the interval between the samples and the instantaneous frequency as arguments.

25

The modfm function calculates the new phase angle based on the old phase

angle and the phase change that is calculated based on the new frequency and the

sample interval. A complex number is returned that represents the complex amplitude

of the current sample. The preceding is accomplished by the code:

;;; fm signal

(let ((phase-angle 0))

(defun reset ()

(setf phase-angle 0))

(defun modfm (sample-duration freq)

(let ((phase-inc (* 360 sample-duration freq))) ;;in degrees

(setf phase-angle (+ phase-angle phase-inc))

(exp (* j (radian phase-angle))))))

The preceding code implements the mathematical function

modfm(θp, Tstx
, F∆) = ej(θp+(Tstx×F∆)) (3.11)

where θp is the phase angle calculated from the previous sample, Tstx
is the sample

duration, and F∆ is the instantaneous frequency to be encoded. The result is a

complex vector which can be separated into I and Q samples for transmission.

This function, in combination with another function that performs a linear

translation of voltage to frequency, is called a numerically controlled oscillator (NCO).

It takes a normalized input voltage and produces a complex baseband FM signal as

its output. One of the most desirable features of an NCO is that it generates a signal

that is as close to mathematically perfect as possible and the output does not vary

with temperature or other factors that affect an analog voltage controlled oscillator.

This is why it is practical to generate the GMSK signal with a simple algorithm

instead of modeling the more complex analog circuits in software [1].

Figure 3 shows an example of the output of this NCO algorithm where the

instantaneous frequency starts at −10 Hz and slowly increases to 10 Hz.

26

-1

-0.5

 0

 0.5

 1

 1.5

 0 500 1000 1500 2000

A
m

pl
itu

de

Samples

I
Q

Figure 3. Complex FM baseband signal from −10 to 10 Hz.

4. Application of a GMSK Filter

Once we can frequency modulate a baseband signal, we must calculate the

modulating signal, which is the GMSK filtered bit stream. The bit stream used was

the first synchronization sequence specified by the GSM specification [10: p. 21]. The

result of generating the bit-stream such that it is equivalent to a GSM bit-stream at

the previously calculated sample rate Rs from Equation (3.9) is shown in Figure 4.

After filtering using the Gaussian filter, the result is the modulating wave

shown in Figure 5.

This modulating wave is decimated by a factor of n0 = 13 so that the resulting

sample rate matches the target sample rate of the USRP USB connection, 2 × 106.

It is then used to modulate a complex baseband signal with the same sampling rate.

Thus, when the baseband signal is interpolated by the USRP at an interpolation rate

of 32, the samples match exactly the USRP’s DAC rate of 128 × 106 samples/s.

At this point, the complex data shown in Figure 6 is ready to be sent to the

USRP. The computer program used to send the data is listed in Appendix D.

27

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 2000 4000 6000 8000 10000 12000 14000 16000

A
m

pl
itu

de

Samples (52 x 10^6 samples/second)

Access Burst Bits

Figure 4. GSM access burst.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 200 400 600 800 1000 1200

A
m

pl
itu

de

Samples (4 x 10^6 samples/second)

Access Burst, Filtered Bits

Figure 5. Gaussian filtered GSM access burst synchronization sequence.

28

-30000

-20000

-10000

 0

 10000

 20000

 30000

 2600 2800 3000 3200 3400 3600 3800 4000 4200

A
m

pl
itu

de

Samples

I
Q

Figure 6. Modulated access burst, I and Q channels.

B. GMSK DECODING

Since a GMSK signal is essentially a frequency modulated signal, demodulation

of GMSK using FM demodulation techniques is straightforward and produces good

results [13: p. 320].

1. FM Demodulation

The only data coming in from the USRP are the I and Q samples. Because we

can set the decimation rate and know the sample rate of the ADC, we also know the

time between samples. The instantaneous frequency of the incoming signal must be

found and converted to the amplitude of the modulating signal in order to perform

an FM demodulation.

The instantaneous frequency cannot be found exactly for any particular sam-

ple, but the change in phase between two successive samples can. This change in

phase divided by the time between samples gives a close approximation of the fre-

quency of the signal between those two samples [13]. Figure 7 illustrates how this

is done. It shows two FM samples on the complex plane, with the angle θ between

them being the difference in phase.

29

Figure 7. Two successive FM samples.

The instantaneous frequency can be calculated using two sequential samples

without using the computationally expensive (and possibly inaccurate) arctan func-

tion. The instantaneous frequency is

Fi =
dθ

dt
(3.12)

If we let

k(t) =
q(t)

i(t)
(3.13)

30

and

θ(t) = arctan (k(t)) (3.14)

then taking the derivative of Equation (3.13), we get

dk

dt
=

idq

dt
− q di

dt

i2
(3.15)

Computing the derivative of Equation (3.14), we get

dθ

dt
=

1

1 + (k)2

dk

dt

=
1

1 +
(

q

i

)2

idq

dt
− q di

dt

i2

=
idq

dt
− q di

dt

i2 + q2
(3.16)

which is equal to the instantaneous frequency. In the discrete domain, di/dt and

dq/dt can be calculated by dividing (q[x] − q[x − 1]) and (i[x] − i[x − 1]) each by

the sample duration. The results here are consistent with the result of the discussion

found in [19].

2. Determining Sample Rate

Ideally, we want to be able to use the lowest possible decimation rate when

receiving to get the most accurate results possible. According to Equation (2.19),

the maximum sample rate the USB connection can handle is 8× 106 samples/s. This

corresponds to a decimation rate of eight, since the ADCs in the USRP operate at a

rate of 64 × 106 samples/s, as shown by

RUSB =
RADC

Rdecim

(3.17)

where

Rdecim =
64 × 106

8 × 106
= 8 (3.18)

where RUSB is the data rate limit of the USB connection, and RADC is the rate of

the USRP’s ADC.

31

However, initial testing showed that over longer data collection runs, the rate

at which the data could be transferred to the hard disk from memory became a

limiting factor. Since a single buffer overrun means that samples are lost and the

time of arrival calculation is incorrect, the decimation rate must be set high enough

to ensure all data can be copied to the hard disk for the entire collection without any

overruns. Testing indicated that a decimation rate of 16 produced a rare overrun,

and a decimation rate of 32 was high enough so that no overruns occurred. For

the purposes of the following illustration of the demodulation process, however, a

decimation rate of 16 was used as it was the best compromise between performance

and precision.

A decimation rate of 16 gives the incoming sample rate for the received signal:

RsRx
=

64 × 106

Rdecim

=
64 × 106

16
= 4 × 106samples

s
(3.19)

3. Generating Target Sequence

In order to detect the GSM training sequence, we need to generate that se-

quence at the RsRx
sample rate. This was done exactly the same way as for the

transmission signal by generating a baseband FM signal as in section (A.4). The

difference here is that the further steps of modulating a carrier signal were not taken,

since our received signal is frequency demodulated prior to correlation. The results

of this calculation are, therefore, the same as those of the intermediate step in the

generation of the transmission signal, shown in Figure 5.

4. Correlation

In order to perform the correlation, the incoming signal samples must be mul-

tiplied by the target signal samples. An array of the target samples is created in

order to perform the multiplication and summation as in Equation (2.21). The target

sequence is simply the training sequence portion of the access burst shown in Figure

5. These target samples are placed in the array in non-reversed time order such that

32

the oldest samples (in time) occupy the lowest array address (leftmost) as in Figure

8. This way, the oldest incoming samples match with the oldest target samples and

the newest with the newest. Note that this method requires filling an input mem-

ory buffer from low to high addresses in order to perform the correlation. For some

specific hardware, it might be faster to reverse the target sequence in time.

-1

-0.5

 0

 0.5

 1

 0 100 200 300 400 500 600

A
m

pl
itu

de

Samples (4 x 10^6 samples/second)

Target sequence

Figure 8. Target GSM synchronization sequence.

5. Storage Requirements

The volume of data coming in from the USRP is quite large, so a very large

amount of permanent storage is required to capture data for analysis. Recall from

Equation (3.18) that data comes in at 8 × 106 samples/s when using a decimation

rate of eight. Since each complex sample consists of four bytes of data (two bytes

each for I and Q), we can calculate the minimum amount of storage required for a

certain amount of recording time from

Disk space =

(

4
bytes

sample

) (

8 × 106samples

s

)

(

60
s

min

)

(3.20)

= 1.92 × 109 bytes

min

33

Equation (3.20) shows that with a decimation rate of eight, a minute of record-

ing takes up nearly two gigabytes of hard disk space. With the typical size of com-

modity hard drives today being 80-100 gigabytes, it would take under an hour to

completely fill the disk. Obviously, doubling the decimation rate would halve this re-

quirement, at the expense of geolocation precision. However, subsequent processing

of the data might increase the amount of storage needed. This is the case with the

GNU Radio tools, which store each complex sample as a pair of four byte floating

point values for a total of eight bytes per complex sample.

The storage requirements make it necessary to either do real-time or near-real

time processing of the data or to offload the data regularly to make room for new

collection.

C. CONCLUSION

This chapter discussed all of the implementation details that are necessary for

constructing a software radio based on the mathematical theory discussed in Chapter

II. What follows are the results of putting this implementation to the test, using two

computers each connected to a separate USRP, one to perform the signal generation

and transmission, and the other to receive the signal and perform the partial demod-

ulation and detection of the time-of-arrival. The following chapter also includes an

analysis of the actual accuracy and precision of the system as a whole.

34

IV. EXPERIMENTATION

Now that the theory and implementation has been discussed, a set of real-

world results helps to understand how well the implementation works in practice and

how feasible a software radio locator actually is using commodity hardware. The

experiment conducted uses two laptop computers, two USRPs with daughter-boards

that allow transmission and reception at 900 GHz, and some customized software

discussed in Chapter III.

A. SET UP

For the experiment, two computers were used, each attached to its own USRP.

They were configured according to the parameters listed in Tables 3 and 4. The two

USRPs were set on a desk next to each other, with the antenna of each about one

foot apart.

Table 3. Transmitting computer settings.

DAC Rate 128 × 106samples/s

Interpolation Rate 32

Sample Rate 4 × 106samples/s

File Size 16384 bytes = 4096 Complex Samples
(16 I bits followed by 16 Q bits)

Table 4. Receiving computer settings.

ADC Rate 64 × 106samples/s

Interpolation Rate 16

Sample Rate 4 × 106samples/s

File Size Variable, depending on amount of time receiving.

35

B. TRANSMISSION

The transmitted signal samples for the GSM access burst were calculated in

accordance with the procedure outlined in previous chapters and stored in a 16384

byte file. This file size allows for 4096 complex samples. Since the burst itself only

takes 665 samples, the file was padded with samples of zero amplitude so that trans-

mission essentially pauses for a 3431-sample time period when not sending the access

burst. A small program was written with the GNU Radio software to send the con-

tents of the file repeatedly until the operator hit the Enter key on the keyboard. In

effect, the same access burst signal was sent repeatedly, every 4096 samples.

C. RECEPTION

For reception, the GNU Radio software was used to read the multiplexed I

and Q samples from the USRP and immediately write them to a file. No further

processing was done to the samples at this stage.

After the reception was complete, demodulation was performed on the raw I

and Q samples by a separate program, listed in Appendix G. It should be noted that

the demodulation was not done in real time. The GNU Radio software does have the

capability to demodulate FM signals in real time. This was tested and does indeed

work. However, as discussed below, additional flexibility in the FM demodulation

was needed, so a separate program was used instead.

1. Initial Results

The first FM demodulation, shown in Figure 9, shows a significant amount of

power when no signal is being transmitted. In fact, the noise is significantly more

powerful than the signal after being FM demodulated. This is to be expected, since

the white noise has large random variations in instantaneous frequency, but this

problem had to be solved.

36

-15

-10

-5

 0

 5

 10

 260000 262000 264000 266000 268000 270000

A
m

pl
itu

de

Samples

FM Signal

Figure 9. Demodulated GMSK signal, no power measuring.

Since the carrier frequency is only present when the GMSK signal is being

transmitted, a standard FM demodulator is not sufficient for an accurate demodula-

tion and detection of the signal. What is needed is an additional component of the

FM demodulator that measures the power of the I and Q channels for each sample

to detect the presence of a signal, in which case the FM demodulator is turned on.

Otherwise, no demodulation occurs and the white noise passes through unchanged.

After implementing the power detection component, the results show a signif-

icantly better signal-to-noise ratio (SNR) after demodulation. However, large tran-

sients occur at the edge of the access burst bits, caused by finding the instantaneous

frequency of the first signal sample with respect to the noise sample immediately

preceding it. For this reason, a limiter was added to the FM demodulator to cut off

these large spikes in amplitude. Figure 10 shows the result, with the bursts in red

being repeated regularly. Notice how the I and Q channels vary from burst to burst.

This is due to a slight frequency mismatch between the USRP’s center frequency

37

and the frequency of the carrier. Although this does not affect the FM demodulated

signal very much, the fact that a non-zero frequency component has been introduced

into the I and Q channels means that correlating against the raw I and Q data is not

possible.

-100000

-50000

 0

 50000

 100000

 125000 130000 135000 140000 145000 150000 155000 160000

A
m

pl
itu

de

Samples (4 x 10^6 samples/sec)

Demodulated FM
I Channel

Q Channel

Figure 10. Demodulated GMSK signal, repeated bursts.

Figure 11 shows a magnified view of a single burst with the I and Q channels

superimposed on it. This gives a much better idea of what the signal actually looks

like upon reception.

2. Signal-to-Noise Ratio

The signal power and noise power of the incoming I and Q channels were

measured while performing the demodulation and the SNR was found to be 29.3 dB.

This was found by calculating the average signal-plus-noise power (PSNavg
) and the

average noise power (PNavg
) during the demodulation and using

SNR = 10 log10

(

PSNavg
− PNavg

PNavg

)

(4.1)

38

-100000

-50000

 0

 50000

 100000

 90200 90400 90600 90800 91000 91200 91400 91600

A
m

pl
itu

de

Samples (4 x 10^6 samples/second)

Demodulated FM
I Channel

Q Channel

Figure 11. Demodulated GMSK signal, single burst.

D. CORRELATION

Correlation was done after reception using the C++ program listed in Ap-

pendix H. This program takes the previously calculated portion of the access burst

training sequence (not the entire access burst) shown in Figure 8 and the incoming

signal, which consisted of multiple repeated access bursts transmitted every 1.024

milliseconds, or every 4096 samples, at the rate of 4 × 106 samples/s.

1. Algorithm

Since correlation shows a sharp peak when the target matches the incoming

signal, the algorithm stored the index of the sample of each local maximum above

a certain threshold and compared those indexes to calculate the number of samples

between each maximum. The threshold was used because, otherwise, all local maxima

would be seen as peak values, and we only wanted the peaks that actually represented

a signal match.

39

-6e+06

-4e+06

-2e+06

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 90000 95000 100000 105000 110000 115000

Correlation Result

Figure 12. Result of correlation with target sequence.

This correlation algorithm, although fairly simple to implement and easy to

understand, has an inherent inaccuracy that can be expected to cause an error of a

single sample. This happens when the maximum value of the correlation is nearly

centered between two samples, so that the two peak values above the threshold have

nearly equal magnitude. In other words, if the sampling rate were twice as high,

neither of the samples at the lower sampling rate would be the maximum, but the

sample in between would be. Figure 13 illustrates this error.

The inherent inaccuracy of the algorithm, coupled with a small error from

noise, only accounts for occasional errors of ±1 sample. Testing showed that the

maximum error was much greater, so it was apparent that other factors such as

channel noise play a much larger role in the error than the algorithm, so no effort was

made to increase the algorithm’s accuracy.

40

Figure 13. Algorithmic jitter in correlator.

2. Results

A sample of the results for a 0.1 s reception is shown in Table 5. Complete

results for the same 0.1 s reception are shown in Appendix A. Statistics based on

result data from a much longer six second reception (which is too large to reproduce

in this thesis) are shown in Table 6 and Figure 14.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-6 -4 -2 0 2 4 6

P
ro

ba
bi

lit
y

Number of Samples Off From Actual

Histogram

Figure 14. Histogram of sample errors based on 5101 data points.

41

Table 5. Correlation output data.

Sample Number of Samples Between
Maxima

Mean Number of Samples
Between Maxima

Error

8396 4098 4098 -2
12492 4096 4097 0
16587 4095 4096.33 1
20683 4096 4096.25 0
24779 4096 4096.2 0
28875 4096 4096.17 0
32972 4097 4096.29 -1
37069 4097 4096.38 -1
41163 4094 4096.11 2
45258 4095 4096 1
...
241867 4096 4096.02 0
245964 4097 4096.03 -1
250059 4095 4096.02 1
254156 4097 4096.03 -1
258252 4096 4096.03 0

The results are encouraging in that the mean number of samples is extremely

close to the actual value. Also, the mean error is much lower than one, so given

enough sample data, this algorithm is very likely to produce an accurate result. As

shown in the graph of the experimental histogram in Figure 14, the vast majority of

estimates of the time-of-arrival are within one or two samples of the actual value.

Table 6. Correlation statistics for six second reception.

Number of Maxima Found, Rejecting Outliers 5101

Mean Number of Samples between Maxima 4095.995

Mean Error 5.293 × 10−3

Error Variance (σ2
err) 1.14739

Error Standard Deviation (σerr) 1.07212

42

Additionally, the error in this experiment is actually not as bad as the data

shows. An error in arrival time of one or two samples not only causes an error in

the measurement of time between the arriving burst and the previous burst, but also

between the the arriving burst and the burst immediately following it. Essentially,

this means that any single measurement error will show up as two measurement errors

in the data. There is no way to fix this, however, since we cannot be certain about

the accuracy of any single measurement. It is enough to note that the measured error

in the data is actually an upper bound.

3. Software Radio Limitations

A number of limitations of software radio became apparent during the test

runs. Some of these limitations are inherent to software radio, while others are merely

a matter of not having a powerful enough hardware configuration to accomplish cer-

tain tasks. The latter type of limitations would vanish with more expensive hardware

or with hardware that has a similar cost to the hardware used here but that is designed

with a focus on performance rather than flexibility.

a. Hard Drive Throughput

The most glaring limitation was the speed of the computer’s storage

mechanism compared to the incoming data rate of the USRP. It became apparent

that the hard drive write speed was a limiting factor in the time it took to process

the information coming in from the USRP. Short sub-second test runs resulted in

no overflow of data, but runs of longer than a second resulted in the USRP’s buffer

overflowing whenever data was being written to the hard drive. This means that

chunks of data of indeterminate size were lost whenever the operating system could

not write data to the hard drive fast enough. Obviously, if one were dependent on

timing the incoming signal based on the number of samples received (which we were),

a buffer overflow is catastrophic. This is why it was necessary to reject the outliers

when doing the statistical analysis of the accuracy of the correlation.

43

b. Processing Speed

The next limitation, which the test data does not show, is that the

processing speed of a general-purpose CPU is not fast enough to perform the FM

demodulation and correlation in real time. Although the correlator.cpp program

used to perform the correlation was not highly optimized for this problem, its run

time still gives us a good idea of the scale of the problem. For a 0.1 second reception,

the correlation took over two seconds to perform, a factor of 20. Only a cluster of the

fastest general purpose CPUs can keep up with the incoming data rate in this case.

Reduction of the decimation rate from 16 to eight or lower in order to get a more

accurate result compounds this problem.

Until general-purpose CPU speeds become much faster, the real-time

FM demodulation and correlation portion of the software radio is much more effec-

tively performed by a special-purpose processor, high performance DSP, or FPGA.

c. USB Data Rate

The USB data rate, although theoretically able to provide up to 8×106

samples/s, worked much better with a decimation rate of 16, which corresponds to

an incoming rate of 4 × 106 complex samples/second. A decimation rate of eight

was found to result in too many buffer overflows to be usable for estimating the

time-of-arrival. Even if the system were capable of handling a decimation rate of

eight, not having to do decimation at all would mean a much greater potential to

accurately determine arrival time. A software radio receiver that used a higher data

rate connection, like Gigabit Ethernet or PCI, would be capable of providing a higher

data rate. Again, this would likely result in hardware that is more expensive and less

flexible than the USRP, so this limitation should be seen as a trade-off.

E. LOCATING THE EMITTER

Unfortunately, the precision achieved using the USRP did not allow testing

using multiple USRPs as receivers to see how accurately they could locate an emitter.

44

Using a decimation rate that would allow for no buffer overflows, the emitter would

have been out of range of the receiver before a difference in time-of-arrival could be

detected. Instead, a simulation was conducted using the experimentally determined

precision as a guide.

Suppose that three receivers were stationed at the corners of a 1000 × 1000

space grid. The spaces can represent any distance, so meters were chosen since they

give a good range to measure the accuracy graphically. Figure 15 shows these three

receivers and an emitter located at point (200, 300) on the grid, with an assumed

precision of 1 m. Notice how the three calculated curves for the time-difference-

of-arrival intersect at a single point. This represents a very accurate and precise

measurement that would be possible if the sampling rate of the USRP were four

times higher (256 × 106 samples/s) and no decimation were used. The precision can

be verified using Equation (2.23) where Ts = 1/256 × 106 samples/s. This is not

currently possible with the USRP.

45

Figure 15. Emitter location with one-meter precision.

Figure 16 shows a much more realistic simulation with a 37 meter precision,

the highest possible precision for the USRP using a decimation rate of eight, as

shown in Section (E.2) of Chapter II. The darker colored bars indicate the region

where the emitter could be located if no errors in the amount of samples were made,

which occurs with a probability of 0.41 according to experimental data. The slightly

lighter color indicates an error of one sample (0.44 probability), and the lightest color

indicates an error of two samples (0.13). In effect, the darkest color band represents

46

the inherent 37 meter imprecision of the system based on Equation (2.23) and each

successively lighter color band around it represents another 37 meter (or single sample)

imprecision. Based on the experimental histogram shown in Figure 14, the emitter

would be located within the intersection of the colored curves more than 98% of the

time.

Figure 16. Emitter location with 37-meter precision.

F. CONCLUSION

At this point, the implementation of the software radio has been tested and

has shown to be reasonably precise, such that it could be used in applications where

pinpoint accuracy is not required. This chapter has shown that minor modifications

to the hardware specifications could result in a much greater accuracy and precision

47

using the same algorithms. The following chapter discusses the conclusions that can

be taken from this research and the possible directions future research could take.

48

V. CONCLUSION

A. CONCLUSIONS

This research has shown that performing geolocation of a GSM signal using

software defined radio is possible, and even accurate, with some caveats. The USRP

is a very low-cost device that was designed for flexibility rather than performance

but has the potential to perform a geolocation with an 80 meter radius in over 98

percent of the test cases. This is certainly good enough for applications where pinpoint

accuracy is not required. The accuracy and precision can be much greater with minor

changes in hardware.

The most important limitation is the slow speed of general-purpose hardware

that necessitates performing the analysis of received data in non-real time, which

creates other limitations having to do with lack of fast storage space, processing power,

etc. This points to the need to push more functionality out from software and onto

the hardware, which would reduce the flexibility. However, by using reconfigurable,

programmable hardware like FGPAs, most of the benefits of software radio would be

retained while still gaining the performance required for real-time operation.

B. RECOMMENDATIONS

Time constraints precluded taking the next step in improving this system,

which would be to alter the code on the USRP’s FPGA to perform the correlation

of the target signal with the received data in hardware instead of in software. That

way, the USRP could simply send the number of samples and the correlation data

instead of sending the raw samples to the computer for processing. Additionally, since

the FPGA performs the decimation of the signal by default, this could be changed

such that no decimation occurred prior to the correlation. This would allow for an

accuracy of about 5 meters using only the USRP.

49

The idea of performing correlation of the I and Q signals without performing

the FM demodulation could work if either an RF front-end were developed that could

exactly match the carrier frequency and phase or if the phase and frequency error

between the carrier and the receiver were to be corrected in software. Correction of

the phase and frequency of the received I and Q signals in software may turn out to be

more computationally expensive than simply doing the FM demodulation. However,

time constraints prevent exploration of this more fully.

Finally, the USRP is not the only hardware platform that can be used to im-

plement a software radio. The algorithms and software developed in this thesis could

be used nearly unchanged with more powerful hardware to get much better results.

Specifically, an RF front-end and antenna developed specifically for the reception of

GSM signals would likely perform much better for the reception of that signal than

the USRP daughter-board designed with a range of signals in mind.

50

APPENDIX A. CORRELATION DATA

Sample Number of Samples Between

Maxima

Mean Number of Samples

Between Maxima

Error

8396 4098 4098 -2

12492 4096 4097 0

16587 4095 4096.33 1

20683 4096 4096.25 0

24779 4096 4096.2 0

28875 4096 4096.17 0

32972 4097 4096.29 -1

37069 4097 4096.38 -1

41163 4094 4096.11 2

45258 4095 4096 1

49356 4098 4096.18 -2

53451 4095 4096.08 1

57548 4097 4096.15 -1

61644 4096 4096.14 0

65740 4096 4096.13 0

69835 4095 4096.06 1

73931 4096 4096.06 0

78027 4096 4096.06 0

82123 4096 4096.05 0

86219 4096 4096.05 0

90314 4095 4096 1

94410 4096 4096 0

98506 4096 4096 0

102607 4101 4096.21 -5

51

106697 4090 4095.96 6

110795 4098 4096.04 -2

114891 4096 4096.04 0

118987 4096 4096.04 0

123084 4097 4096.07 -1

127179 4095 4096.03 1

131275 4096 4096.03 0

135372 4097 4096.06 -1

139467 4095 4096.03 1

143563 4096 4096.03 0

147660 4097 4096.06 -1

151755 4095 4096.03 1

155849 4094 4095.97 2

159947 4098 4096.03 -2

164042 4095 4096 1

168139 4097 4096.02 -1

172235 4096 4096.02 0

176331 4096 4096.02 0

180427 4096 4096.02 0

184523 4096 4096.02 0

188620 4097 4096.04 -1

192715 4095 4096.02 1

196811 4096 4096.02 0

200907 4096 4096.02 0

205003 4096 4096.02 0

209097 4094 4095.98 2

213196 4099 4096.04 -3

217291 4095 4096.02 1

52

221387 4096 4096.02 0

225482 4095 4096 1

229579 4097 4096.02 -1

233675 4096 4096.02 0

237771 4096 4096.02 0

241867 4096 4096.02 0

245964 4097 4096.03 -1

250059 4095 4096.02 1

254156 4097 4096.03 -1

258252 4096 4096.03 0

53

THIS PAGE INTENTIONALLY LEFT BLANK

54

APPENDIX B. UNDERSTANDING COMMON

LISP EXAMPLES

Many of the code examples in this thesis are written in Common Lisp. Com-

mon Lisp has several advantages for non-real-time software radio applications, in-

cluding native support of complex numbers, support for rational numbers that don’t

introduce floating point error, and a very concise syntax that makes algorithms easy

to understand, once you understand how Lisp works. This very short introduction to

Common Lisp is intended to provide a good enough background so that the examples

included in this thesis are clear.

1. S-EXPRESSIONS

Lisp programs are composed of called s-expressions, which take the following

form:

(function argument0 argument1 ...)

An s-expression consists of a pair of parenthesis, a function, and any required

arguments to that function following the function name. A classic example may

remind you of a reverse Polish notation calculator. Here is a list of expressions

followed by the result of evaluating them:

(+ 20 22) => 42

(* 2 3 4) => 24

(- 9 8) => 1

S-expressions may be nested, so that the result of one expression can be used

as the argument to another:

(+ 20 (* 11 2)) => 42

55

For the most part, Lisp programs consist of a series of nested s-expressions

that are evaluated sequentially. The result of a Lisp program (or function) is the

value returned by the final s-expression.

Lisp has quite a few built-in functions, but wouldn’t be very useful unless

you could define your own. This is done using what is called a special form in Lisp,

specifically the special form defun. Suppose we want a function that takes a single

argument and adds 3 to it:

(defun add3 (x)

(+ x 3))

The first part of the defun form is the word defun, which indicates that we’re

defining a function. The second item is the name of the function. The third part

is a list of arguments, enclosed in parentheses. The reason defun is called a special

form is because the argument list is not evaluated, as an s-expression would be. It’s

treated differently. The last part of the defun form is called the body, and consists of

a series of s-expressions, the last of which produces the result of the function.

The argument list contains a symbol used to represent the value that will be

passed into add3 when it is called. The final (and only) s-expression in the add3

defun is (+ x 3), so the add3 function will return this value as its result:

(add3 4) => 7

Just as in most other programming languages, in Lisp it may become necessary

to define local variables, which are variables which only have meaning within the scope

of the function. This is done with another special form, called let:

(defun add-stuff (x)

(let ((y 4)

(z 5))

(+ x 3)))

56

Let works just like the mathematical term, in that it assigns a value to a symbol

(or multiple symbols.) That assignment exists everywhere inside the parentheses that

began the let form, so this is valid syntax:

(let ((a 0))

(defun get-a ()

a)

(defun set-a (x)

(setf a x)))

The preceding code defined two functions that had access to the a symbol,

get-a and set-a. Executing (set-a 4) followed by (get-a) would return the value

4.

Since everything in Common Lisp is an s-expression, the preceding covered just

about all that is necessary to know about the syntax of Common Lisp to understand

the code included in this thesis.

57

THIS PAGE INTENTIONALLY LEFT BLANK

58

APPENDIX C. GMSK.LISP

;;

;; ;;

;; File: gmsk.lisp ;;

;; Author: Ian Larsen ;;

;; Description: Functions for generating and ;;

;; modulating a digital gmsk signal. ;;

;; ;;

;;

;; Define j as a complex number

(defparameter j #C(0 1))

;; Converts degrees to radians

(defun radian (x)

(/ (* x pi) 180))

;; FM Modulator

;; Calculates a complex number based on the

;; phase angle of the last sample, the sample interval,

;; and the sampling frequency.

;; The reset function sets the phase angle to zero.

(let ((phase-angle 0))

(defun reset ()

(setf phase-angle 0))

(defun modfm (sample-duration freq)

(let ((phase-inc (* 360 sample-duration freq))) ;;in degrees

(setf phase-angle (+ phase-angle phase-inc))

(exp (* j (radian phase-angle))))))

;; This function generates the Gaussian shaped impulse response

;; specified by the GSM spec. To avoid division by zero errors,

;; we generate the positive side and mirror it to the negative.

;; This is also more efficient.

(defun impulse-response (Tb tm-seq)

59

(let* ((delta (/ (sqrt (log 2)) (* 2 pi 0.3)))

(response (map ’array

(lambda (tm)

(/

(exp (/

(* -1 (expt tm 2))

(* 2 (expt delta 2) (expt Tb 2))))

(* (sqrt (* 2 pi)) delta Tb)))

tm-seq)))

(concatenate ’array

(reverse response)

response)))

;; Takes a stream of bits and outputs a differentially

;; encoded stream of the same length. The optional last

;; parameter allows us to specify what the state of the

;; prior encoded bit should be. It defaults to 1, in

;; compliance with the GSM spec, which states the differential

;; encoder’s state at the start of encoding should be as if

;; a series of 1’s had just been encoded.

(defun diff-encoder (bits &optional (last 1))

(let ((p last))

(map ’array (lambda (x)

(let ((d (logxor x p)))

(setf p x)

(- 1 (* 2 d))))

bits)))

;; Takes a list of bits and returns the same bitstream,

;; with the bits repeating n times.

;; This is how we generate rectangular symbols from impulses.

(defun make-bitstream (bits n)

(let ((result #()))

(map nil (lambda (x)

(setf result

(concatenate

’array

result

(make-array n :initial-element x))))

(diff-encoder bits))

60

result))

;; Make a sequence of numbers, starting with starnum,

;; and incrementing by increment. Defaults to 1 as the

;; increment. Similar to Matlab’s linspace function.

(defun make-seq (startnum length &optional (increment 1))

(let ((a (make-array length :initial-element startnum)))

(map ’array (let ((acc (- increment)))

(lambda (y)

(setf acc (+ acc increment))

(+ y acc)))

a)))

;; Generate the gmsk Gaussian filter based on values

;; in the GSM spec.

(defun gsm-gmsk (sample-interval)

(let* ((Tb 6/1625000) ;; bit duration

(BTb 0.3) ;; bandwidth time product

(B (/ BTb Tb))

(filter-length

(* 2 (/ Tb sample-interval)))) ;;should be an integer

(format t "Filter length: ~a~%" filter-length)

(impulse-response

Tb (make-seq 0 filter-length sample-interval))))

;; This will take an array of numbers, find the

;; absolute maximum, and divide all numbers by that.

;; This is a linear scaling normalization.

(defun normalize (l)

(let ((max (abs (reduce (lambda (a b)

(if (> (abs a) (abs b))

(abs a)

(abs b)))

l))))

(if (> max 0)

(map ’array

(lambda (x)

(/ x max))

l)

61

l)))

;; Perform convolution of stream and base.

;; base should be longer than stream.

(defun convolve (stream base)

(let* ((len (length stream))

(iter (+ (length stream) (length base) -1))

(result (make-array iter :initial-element 0)))

(dotimes (count iter nil)

(setf (aref result count)

(reduce #’+

(map ’array

(lambda (r s)

(* r s))

(if (> len count)

(subseq stream (- len count 1))

stream)

(if (> len count)

base

(subseq base (- count len -1)))))))

result))

;; Return an array of every "rate" samples from array x.

(defun decimate (x rate)

(let ((result ()))

(loop for i from 0 to (1- (length x)) do

(if (eq (mod i rate) 0)

(setf result

(concatenate ’array result (list (aref x i))))))

result))

;;; This sets everything in motion (main procedure)

;; results are stored in the four files, filt.dat, gauss.dat,

;; bitstream.dat, and gmsk.asc

;; gmsk.asc is the final signal that we’ll be sending, the rest

;; make nice graphs so you can see what’s happening at each stage.

(let* ((filtout (open "filt.dat" :direction :output

:if-exists :supersede :if-does-not-exist :create))

62

(gaussout (open "gauss.dat" :direction :output

:if-exists :supersede :if-does-not-exist :create))

(bitsout (open "bitstream.dat" :direction :output

:if-exists :supersede :if-does-not-exist :create))

(gmskout (open "gmsk.asc" :direction :output

:if-exists :supersede :if-does-not-exist :create))

(buffer-size 4096) ;;number of samples in gmsk.asc

(Rs 52000000) ;;Fast sample rate that we decimate later

(Ts (/ 1 Rs)) ;;Sample duration

(n0 13) ;;Decimation rate to get 4x10^6 samples/sec

(n1 192) ;;Number of times we repeat each bit

(delta 1625000/24) ;;1/4 270.833333 as per GSM spec (Rappaport pg 566)

(mag 30000)) ;;amplitude

(reset) ;;Sets phase angle to zero

(let* ((filter (gsm-gmsk Ts)) ;;make gaussian filter

(bits (make-bitstream ;; create the access burst bits

’(0 0 1 1 1 0 1 0 ;;extended tail bits

0 1 0 0 1 ;;training sequence: 41 bits

0 1 1 0 1

1 1 1 1 1

1 1 0 0 1

1 0 0 1 1

0 1 0 1 0

1 0 0 0 1

1 1 1 0 0 0

0 1 0 1 1 0;;encrypted bits: 36 bits

0 1 0 1 1 0

1 0 1 1 0 0

0 0 1 0 0 1

1 0 0 1 0 1

0 1 0 1 1 1

0 0 0 ;;tail bits

) n1))

;; now filter the access burst

(filtered (normalize (convolve filter bits)))

;; decimate to get proper sample rate

(modwave (decimate filtered n0))

;; create padding for 4096 samples

63

(zerobuffer (make-array

(* (ceiling (/

(- buffer-size

(length modwave))

2))

2)

:initial-element 0)))

;; Write gaussian filter to file

(map nil (lambda (x)

(format gaussout "~A~%" x))

(normalize filter))

;; Write raw bits to file

(map nil (lambda (x)

(format bitsout "~A~%" x))

bits)

;; Write filtered bits to file

(map nil (lambda (x)

(format filtout "~A~%" x))

modwave)

;; Write GMSK signal with zero padding

(map nil (lambda (x)

(format gmskout "~A~%" x))

zerobuffer)

(map nil (lambda (x)

(let ((complex (modfm Ts (* delta x))))

(format gmskout "~f~%~f~%"

(* mag (realpart complex))

(* mag (imagpart complex)))))

modwave)

(map nil (lambda (x)

(format gmskout "~A~%" x))

zerobuffer)

;; Close files, and we’re done.

(close filtout)

(close gaussout)

(close bitsout)

(close gmskout)))

64

APPENDIX D. TRANSMIT.PY

#!/usr/bin/python

##

File: transmit.py

Author: Ian Larsen

Description: Uses the gnuradio python

module to tune the USRP and transmit

the raw GMSK I/Q data to it.

#

##

from gnuradio import gr

from gnuradio import usrp

def build_graph ():

fg = gr.flow_graph ()

#set the USRP as our destination

dest = usrp.sink_c(0, 32) #32 is the interpolation rate

print "Interp rate: " + str(dest.interp_rate())

print "DAC Freq: " + str(dest.dac_freq())

print "N Channels: " + str(dest.set_nchannels(1))

#Tune the USRP and daughterboard to the proper frequency

subdev = usrp.selected_subdev(dest, (0, 0))

print dest.pga_min()

print dest.pga_max()

dest.set_pga(0, -0.0) #20 dB of gain

dest.set_pga(1, -0.0) #20 dB of gain

print dest.pga(0)

print dest.pga(1)

freq = dest.tune(0, subdev, 900e6)

if freq:

print "Frequency: 900e6"

#set up the gmsk data as the source

src = gr.file_source(gr.sizeof_gr_complex, "gmsk.bin", True)

65

#connect the source to the destination

fg.connect (src, dest)

return fg

#main loop

if __name__ == ’__main__’:

fg = build_graph ()

fg.start ()

raw_input (’Press Enter to quit: ’)

fg.stop ()

66

APPENDIX E. RECEIVE.PY

#!/usr/bin/python

##

File: receive.py

Author: Ian Larsen

Description: Uses the gnuradio python

module to tune the USRP and receive

the raw GMSK I/Q data from it,

demodulate it using an FM demodulator,

and store the result in file "fmraw.dat"

#

##

from gnuradio import gr

from gnuradio import usrp

import time

def build_graph ():

#set decimation rate and center frequency

decim = 16

center_freq = 900e6

#build flow graph

this is simple, it comes in from the USRP,

into the demodulator, and out to a file.

fg = gr.flow_graph ()

u = usrp.source_c(0, decim)

#select the flex900 daughterboard

subdev = usrp.selected_subdev(u, (0,0))

g = subdev.gain_range()

#set the gain and tune

subdev.set_gain((g[0] + g[1]) * 0.5)

freq = u.tune(0, subdev, center_freq)

67

#define the components

sink0 = gr.file_sink(gr.sizeof_float, "fmraw.dat")

demod = gr.quadrature_demod_cf(4)

#connect the components

fg.connect (u, demod)

fg.connect (demod, sink0)

#return completed flow graph

return fg

Main - only receive for 0.2 seconds, otherwise

we’ll get a huge amount of data

if __name__ == ’__main__’:

fg = build_graph ()

fg.start ()

time.sleep(0.2)

fg.stop ()

68

APPENDIX F. RECEIVE2.PY

#!/usr/bin/python

##

File: receive2.py

Author: Ian Larsen

Description: Uses the gnuradio python

module to tune the USRP and receive

the raw GMSK I/Q data from it,

and store the result in file "fmraw.dat"

#

##

from gnuradio import gr

from gnuradio import usrp

import time

def build_graph ():

set decimation rate and center frequency

decim = 16

center_freq = 900e6

#build flow graph

fg = gr.flow_graph ()

u = usrp.source_c(0, decim)

#get access to flex900 daughterboard

subdev = usrp.selected_subdev(u, (0,0))

#set gain and tune

g = subdev.gain_range()

subdev.set_gain((g[0] + g[1]) * 0.5)

freq = u.tune(0, subdev, center_freq)

#generate component - just a file sink here.

sink0 = gr.file_sink(gr.sizeof_gr_complex, "fmraw.dat")

69

#connect output of USRP straight to file

fg.connect (u, sink0)

#return the flow graph

return fg

Main - only receive for 0.1 second, otherwise

we’ll get a huge amount of data

if __name__ == ’__main__’:

fg = build_graph ()

fg.start ()

time.sleep(0.1)

fg.stop ()

70

APPENDIX G. FM DEMOD.PL

#!/usr/bin/perl

##

File: fm_demod.pl

Author: Ian Larsen

Description: Reads 8-byte binary

complex IQ samples stored by gnuradio

and demodulates them as an FM signal.

Signal power is measured in order to

decide when an FM signal is being

received, as opposed to just noise.

A limiter is employed to eliminate

transients that occur when the FM

demodulator is turned on and off.

#

##

use strict;

#open input and output files

open(INFILE, shift) or die "Couldn’t open input file.\n";

my $outname = shift or die "Couldn’t open output file.\n";

open(FMOUT, ">$outname.fm") or die "Couldn’t open output file.\n";

open(FMBIN, ">$outname.bin") or die "Couldn’t open output file.\n";

open(IOUT, ">$outname.i") or die "Couldn’t open output file.\n";

open(QOUT, ">$outname.q") or die "Couldn’t open output file.\n";

#set decimation rate, 16 is default.

my $decim = shift || 16;

Find sample duration based on decimation rate

my $dt = 1 / (64000000 / $decim);

print "Sample interval: $dt\n";

my $oldI = 0;

my $oldQ = 0;

my $power = 0;

my $thresholdPower = 1e13; #130dB

my $signalNoisePower = 0;

my $signalTime = 0;

71

my $noisePower = 0;

my $noiseTime = 0;

my $data;

Read an IQ sample, one at a time

while (read(INFILE, $data, 8))

{

translate binary float data into

a form we can use

my ($i, $q) = unpack("ff", $data);

write IQ samples to files

print IOUT "$i\n";

print QOUT "$q\n";

Avoid division by zero

if ($i == 0)

{

$i = 0.0001;

}

if ($q == 0)

{

$q = 0.0001;

}

my $fm = 0;

Check signal power.

If it’s over the threshold, we demodulate

by differentiating the phase to get

instantaneous frequency.

Otherwise, we output a zero.

$power = ($i * $i + $q * $q) / $dt;

if ($power > $thresholdPower)

{

$fm = (($i * ($q - $oldQ) / $dt) -

($q * ($i - $oldI) / $dt)) /

(($i *$i) + ($q * $q));

if ($fm > 100000 || $fm < -100000)

{

$fm = 0;

}

72

Keep track of total signal power

for SNR meausurement

$signalNoisePower += $power;

$signalTime += $dt;

}

else

{

Keep track of total noise power

for SNR meausurement

$noisePower += $power;

$noiseTime += $dt;

}

Write output to files

print FMOUT "$fm\n";

print FMBIN pack("f", $fm);

$oldI = $i;

$oldQ = $q;

}

#print results

my $avgSNP = ($signalNoisePower / $signalTime);

my $avgNP = ($noisePower / $noiseTime);

print "Average signal plus noise power: $avgSNP \n";

print "Average noise power: $avgNP \n";

print "Calculated average signal power: " . ($avgSNP - $avgNP) . "\n";

print "SNR: " . (($avgSNP - $avgNP) / $avgNP) . "\n";

close INFILE;

close FMOUT;

close FMBIN;

close IOUT;

close QOUT;

73

THIS PAGE INTENTIONALLY LEFT BLANK

74

APPENDIX H. CORRELATOR.CPP

// File: correlator.cpp

// Author: Ian Larsen

// Description: Perform correlation of an incoming

// signal and determine the time of arrival

// by finding the maximum correlation value.

// Show the absolute and average number of

// samples between maxima.

// Calculate average error for known sample distance.

using namespace std;

#include <iostream>

#include <fstream>

#include <math.h>

#include <stdint.h>

#include <unistd.h>

#include <sys/mman.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#define TARGETSIZE 665

#define THRESHOLD 8e6

//Perform cumulative sum of multiplication

//between two arrays

float

multAdd (float *data, float *target, int size)

{

float result = 0;

for (int i = 0; i < size; i++)

{

result += data[i] * target[i];

75

}

return result;

}

int

main(int argc, char *argv[])

{

ifstream target;

ofstream output;

ofstream output1;

float targetArray[TARGETSIZE]; //length of target data in samples

float *data = NULL;

int fd = open("incoming.dat", O_RDONLY);

if (fd < 0)

{

cerr << "Couldn’t open incoming data file" << endl;

return 1;

}

//open ideal sampled signal file

target.open("target.dat");

if (!target)

{

cerr << "Couldn’t open target file" << endl;

return 1;

}

//load target data into array

for (int i = 0; i < TARGETSIZE; i++)

{

target >> targetArray[i];

}

target.close();

//map first 1 megabyte of target file into memory

data = (float *) mmap(0x0, 0x100000, PROT_READ, MAP_SHARED, fd, 0);

cout << "Data mapped to: " << data << endl;

76

//open output files

output.open("correlated.dat");

output1.open("statistics.dat");

if (!output || !output1)

{

cerr << "Couldn’t open output file" << endl;

return 1;

}

//Do correlation for entire input stream

int numtimes = (0x100000 / (sizeof(float))) - TARGETSIZE;

float max = -1;

int maxOccuredAt, lastMaxAt = 0;

int maxes = 0;

int maxError = 0;

double total = 0;

double totalError = 0;

double totalVariance = 0;

for (int i = 2000; i < numtimes; i++)

{

float cumSum = multAdd(&data[i], targetArray, TARGETSIZE);

//Only check for maximum beyond a certain threshold,

//otherwise we’d find all local maxima, which we don’t want.

if (cumSum > THRESHOLD)

{

if (cumSum > max)

{

max = cumSum;

maxOccuredAt = i;

}

}

//After we’ve found a max, we report it

//only when we’ve dipped below the threshold.

//This is how we make sure the maximum is the

//maximum for the entire set of points above

//the threshold.

else if (cumSum < THRESHOLD && max > 0)

{

if (lastMaxAt > 0)

{

77

int difference = maxOccuredAt - lastMaxAt;

int error = 4096 - difference;

if (abs(error) > abs(maxError))

{

maxError = error;

}

maxes++;

totalError += error;

totalVariance += error ^ 2;

total += maxOccuredAt - lastMaxAt;

cout << "Max at: " << maxOccuredAt

<< ", " << maxOccuredAt - lastMaxAt

<< " samples between maxima. Average: "

<< total / maxes

<< " Error: " << error

<< endl;

//LaTeX tabular output

output1 << maxOccuredAt << " & "

<< maxOccuredAt - lastMaxAt << " & "

<< total / maxes << " & "

<< error << "\\\\" << endl;

}

lastMaxAt = maxOccuredAt;

max = -1;

}

//save correlated data point to file

output << cumSum << endl;

}

//Report statistics

cout << "Total Samples: " << total << endl;

cout << "Number of maxima: " << maxes << endl;

cout << "Average: " << total / ((double) maxes) << endl;

cout << "Maximum Error: " << maxError << endl;

cout << "Mean Error: " << totalError / ((double) maxes) << endl;

cout << "Variance: " << totalVariance / ((double) maxes) << endl;

cout << "Std Dev: " << sqrt(totalVariance / ((double) maxes)) << endl;

78

output.close();

output1.close();

return 0;

}

79

THIS PAGE INTENTIONALLY LEFT BLANK

80

APPENDIX I. STATISTICS.PL

#!/usr/bin/perl

###

#

File: statistics.pl

Author: Ian Larsen

Description: Calculates statistics of

received correlation data.

The results can be graphed in a

histogram.

#

###

my $totalError = 0;

my %bins = ();

for ($i = -10; $i <= 10; $i++)

{

$bins{$i} = 0;

}

my $count = 0;

my $outliers = 0;

open(INFILE, "statistics.dat");

while($val = <INFILE>)

{

chomp($val);

#reject outliers

if ($val > -90 && $val < 90)

{

$totalError += $val;

$bins{$val}++;

$count++;

}

else

81

{

$outliers++;

}

}

close(INFILE);

print "Rejected $outliers outliers.\n";

print "Data Points: $count\n";

open(OUTFILE, ">histogram.dat");

for ($i = -8; $i <= 8; $i++)

{

print OUTFILE "$i " . ($bins{$i} / $count) . "\n";

print "$i: " . $bins{$i} . " " . ($bins{$i} / $count) . "\n";

}

close(OUTFILE);

my $mean = $totalError / $count;

print "Mean: $mean\n";

#calculate variance

$count = 0;

open(INFILE, "statistics.dat");

while($val = <INFILE>)

{

chomp($val);

#reject outliers

if ($val > -90 && $val < 90)

{

$totalVariance += ($val - $mean) ** 2;

$count++;

}

}

close(INFILE);

print "Variance: " . $totalVariance / $count . "\n";

print "Std Dev: " . sqrt($totalVariance / $count) . "\n";

82

APPENDIX J. DISTANCE.LISP

;;;

;; File: distance.lisp ;;

;; Author: Ian Larsen ;;

;; Description: Define a grid with ;;

;; listening posts. ;;

;; Then calculate delays for ;;

;; each point on the grid. ;;

;;;

;; Calculate distance between two points

(defun distance-between (a b)

(let ((x (- (car b) (car a)))

(y (- (cadr b) (cadr a))))

(values

(sqrt (+ (expt x 2) (expt y 2)))

x

y)))

;; Functions for colorizing the grid

;; and saving the output to a file

(let ((grid (make-array (* 4 1000 1000)

:initial-element #xff

:element-type ’(unsigned-byte 8))))

(defun clear-grid ()

(setf grid (make-array (* 4 1000 1000)

:initial-element #xff

:element-type ’(unsigned-byte 8))))

(defun color-point (x y &optional (color #x333333ff))

(if (or (< x 0) (< y 0) (> x 999) (> y 999))

()

(progn

(setf (aref grid

(* 4 (+ x (* 1000 (- 999 y)))))

(logand (ash color -24) #xff))

83

(setf (aref grid

(+ 1 (* 4 (+ x (* 1000 (- 999 y))))))

(logand (ash color -16) #xff))

(setf (aref grid

(+ 2 (* 4 (+ x (* 1000 (- 999 y))))))

(logand (ash color -8) #xff))

(setf (aref grid

(+ 3 (* 4 (+ x (* 1000 (- 999 y))))))

(logand color #xff)))))

(defun save-rgb ()

(let ((file (open "output.rgba" :direction :output

:element-type ’(unsigned-byte 8)

:if-does-not-exist :create

:if-exists :supersede)))

(write-sequence grid file)

(close file))))

;; calculate the delay in grid spaces that

;; each listening post would see for a certain

;; coordinate

(defun calc-delays (point &rest lps)

(let* ((delays

(loop for lp in lps collect

(distance-between point lp))))

delays))

;; Go through entire grid and color each point

;; according to how close it is to actual

;; delay values. Precision can be varied.

(defun test-grid (&optional (precision 1))

(let* ((emitter ’(200 300))

(lp0 ’(0 0))

(lp1 ’(0 999))

(lp2 ’(999 999))

(d0 (distance-between emitter lp0))

(d1 (distance-between emitter lp1))

(d2 (distance-between emitter lp2))

(lp01diff (floor (- d1 d0)))

(lp02diff (floor (- d2 d0)))

84

(lp12diff (floor (- d2 d1))))

(format t "~A ~A ~A~%" (- d1 d0) (- d2 d0) (- d2 d1))

(clear-grid)

(loop for x from 0 to 999 do

(loop for y from 0 to 999 do

(color-point

x

y

(let* ((l (calc-delays

(list x y) lp0 lp1 lp2))

(time01 (floor

(- (second l) (first l))))

(time02 (floor

(- (third l) (first l))))

(time12 (floor

(- (third l) (second l)))))

(cond ((< (abs (- time01 lp01diff))

precision)

#xff0000ff)

((< (abs (- time01 lp01diff))

(* 2 precision))

#xff8888ff)

((< (abs (- time01 lp01diff))

(* 3 precision))

#xffccccff)

((< (abs (- time02 lp02diff))

precision)

#x00ff00ff)

((< (abs (- time02 lp02diff))

(* 2 precision))

#x88ff88ff)

((< (abs (- time02 lp02diff))

(* 3 precision))

#xccffccff)

((< (abs (- time12 lp12diff))

precision)

#x0000ffff)

((< (abs (- time12 lp12diff))

(* 2 precision))

#x8888ffff)

85

((< (abs (- time12 lp12diff))

(* 3 precision))

#xccccffff)

(t

#xffffffff))))))

(save-rgb)))

(test-grid 37)

86

LIST OF REFERENCES

[1] Jeffrey H. Reed. Software Radio: A Modern Approach to Radio Engineering.
Prentice Hall, 2002.

[2] David Adamy. EW101: A First Course in Electronic Warfare. Artech House,
2001.

[3] Upendra Ramdat. Software Communications Architecture (SCA) compliant soft-
ware radio design for Interim Standard 95B (IS-95B) transceiver. Master’s thesis,
Naval Postgraduate School, 2007.

[4] Kian Wai Low. Software Communications Architecture (SCA) compliant soft-
ware defined radio design for IEEE 802.16 wirelessman-OFDMTMtransceiver.
Master’s thesis, Naval Postgraduate School, 2006.

[5] Wai Kiat Chris Leong. Software defined radio design for an IEEE 802.11A
transceiver using open source Software Communications Architecture (SCA) im-
plementation::embedded (OSSIE). Master’s thesis, Naval Postgraduate School,
2006.

[6] Glenn D. Hartwell. Improved geo-spatial resolution using a modified approach
to the complex ambiguity function (CAF). Master’s thesis, Naval Postgraduate
School, 2005.

[7] Juan Sanfuentes. Software Defined Radio Design for Synchronization of 802.11a
Receiver. Master’s thesis, Naval Postgraduate School, 2007.

[8] Juan P. Svenningsen. Modeling, simulation and implementation of a non-
coherent binary-frequency-shift-keying (BFSK) receiver-transmitter into a field
programmable gate array (FPGA). Master’s thesis, Naval Postgraduate School,
2005.

[9] Michel Mouly and Marie-Bernadette Pautet. The GSM System for Mobile Com-
munications. Cell & Sys, 1992.

[10] 3rd Generation Partnership Project; Technical Specification Group GSM/EDGE.
3GPP TS 45.002: Radio Access Network; Multiplexing and multiple access on
the radio path (Release 7), 2007.

[11] Gunnar Heine. GSM Networks: Protocols, Terminology, and Implementation.
Artech House, 1998.

[12] 3rd Generation Partnership Project; Technical Specification Group GSM/EDGE.
3GPP TS 45.004: Radio Access Network; Modulation (Release 6), 2005.

87

[13] Theodore S. Rappaport. Wireless Communications: Principles and Practice
2ndEdition. Prentice Hall, 2002.

[14] Dawei Shen. Tutorial 4: The USRP Board. http://www.nd.edu/∼jnl/sdr/

docs/tutorials/4.html. (Accessed September 2007).

[15] Roberto Christi. Modern Digital Signal Processing. Brooks/Cole, 2004.

[16] GNU Radio 3.0 Documentation: usrp standard tx Class Reference.
http://gnuradio.org/doc/doxygen/classusrp standard tx.html. (Ac-
cessed September 2007).

[17] John G. Proakis. Digital Communications. McGraw Hill, 2001.

[18] Alan V. Oppenheim and Alan S. Willsky. Signals and Systems. Prentice Hall,
1983.

[19] Vladimir Vassilevsky. FM Demodulation. http://www.dsprelated.com/

showmessage/67382/1.php. (Accessed September 2007).

88

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Ian Larsen
Naval Postgraduate School
Monterey, CA

4. Frank Kragh
Naval Postgraduate School
Monterey, CA

5. Clark Robertson
Naval Postgraduate School
Monterey, CA

6. Donna Miller
Naval Postgraduate School
Monterey, CA

7. Roberto Cristi
Naval Postgraduate School
Monterey, CA

8. Tri Ha
Naval Postgraduate School
Monterey, CA

9. Herschel Loomis
Naval Postgraduate School
Monterey, CA

10. Peter Ateshian
Naval Postgraduate School
Monterey, CA

11. Giovanna Oriti
Naval Postgraduate School
Monterey, CA

89

12. Alex Julian
Naval Postgraduate School
Monterey, CA

13. Alan Ross
Naval Postgraduate School
Monterey, CA

14. Tim Meehan
Naval Postgraduate School
Monterey, CA

15. Nathan Beltz
Naval Postgraduate School
Monterey, CA

16. Ray Cole
U.S. Naval Research Laboratory
Washington, DC

17. Rich North
JTRSJPEO
San Diego, CA

18. Gerry Baumgartner
SPAWAR
San Diego, CA

90

	thesis_cover
	thesis

