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1. Introduction 

Radio frequency (RF) microelectromechanical system (MEMS) research has been ongoing for 
well over a decade.  This research area has been strongly focused on developing robust, reliable 
MEMS switches and phase shifters for cell phone, electronic scanning antenna, and radar 
applications.  Previous and existing research into RF MEMS switches and phase shifters has 
been focused primarily on electrostatic actuation with a few efforts in other actuation 
mechanisms such as thermal, piezoelectric, and magnetic (1).  The relative simplicity and ease of 
integration of the electrostatic actuation mechanism is one of the key reasons for its larger 
research base.  The most advanced switch programs include Radant’s electrostatic ohmic series 
switch; Lincoln Laboratories electrostatic capacitive shunt switch; MEMtronics electrostatic 
capacitive shunt switch; and Raytheon’s electrostatic capacitive shunt switch.  Each of these 
research efforts has demonstrated excellent performance for RF switches including insertion loss, 
isolation, and reliability.  To date, Rockwell and Raytheon have demonstrated some of the best 
performing phase shifters (2–6).  With this background, the goal of our research program has 
been to demonstrate an electronically scanned antenna (ESA) with RF MEMS phase shifters.  
This demonstration platform could then be used to evaluate MEMS phase shifter performance 
within an ESA.   

2. Experimental Procedure 

MEMS switches and phase shifters were fabricated on high resistivity (>10 kOhm) silicon 
substrates at the Army Research Laboratory (ARL) specialty electronics cleanroom.  The patent 
pending fabrication process will not be discussed in this section but is referenced in the patent 
disclosure filed by Pulskamp, et al. (7).  Wafers completed fabrication and underwent switch 
performance testing on a Cascade wafer probe station.   

For a MEMS phase shifter, a reflection phase shifter architecture was chosen to best use the 
performance of the switch and shrink the overall dimensions of the phase shifter (8–10).  The 
MEMS phase shifter uses a co-planar waveguide (CPW) coupled line directional coupler, and 
two delay lines with shunt switches located at the appropriate location for the desired phase 
states (figure 1).  The RF input and output were located at the bottom left and right; the switches 
were operated in pairs from right to left for the 0°, 90°, and 180° phase states, respectively.  The 
270° phase state uses the CPW short at the end of the transmission line, located at the top of the 
image.  If the delay along the two delay lines is equal, the microwave energy reflected from the 
closed switch pair (or shorted line) add in phase at the output of the coupler with a phase shift 
equal to twice the delay associated with length of the delay line.   
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Figure 1.  Reflection type MEMS phase shifter.  

NOTE:  Completed 2–bit reflection type MEMS phase 
shifter die (2.75mm × 4mm) with 6 electrostatic 
shunt switches and integrated Lange coupler. 

After initial wafers with MEMS phase shifters were successfully tested, additional wafers were 
fabricated with the intent of separating individual die prior to the final device release.  For these 
wafers, completed phase shifter die with dimensions of 4 by 2.75 millimeter (mm) (17 gigahertz 
(GHz) design) were diced and separated from the wafer and prepared for device inspection.  
Completed die were placed into a silicon carrier wafer with recessed cavities for the die.  The 
carrier wafer was placed onto a support chuck within a Cascade wafer probe station.  Each die 
were tested for functionality of all phase states.   

Experimental testing of switches and phase shifters was completed with a HP 8510 network 
analyzer in conjunction with two RF probes used with the Cascade wafer probe station.  Switch 
testing consisted of gathering S-parameter measurements from 45 megahertz (MHz) to 40 GHz 
in both the open and closed states.  For the phase shifters, S-parameters were collected from 16 
to 18 GHz of each of the available phase states of the phase shifter (i.e., four for the 2–bit phase 
shifters and eight for the 3–bit phase shifters).  Following RF performance evaluation, functional 
phase shifters were marked and selected for package and assembly. 
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The phase shifter package, seen in figure 2, consists of a cavity for the MEMS die and 
connectors for both direct current (DC) and RF contacts.  The DC bias pads of each of the 
MEMS switches are wirebonded to one of the eight contact pins.  The RF pathway consists of 
GPPO connectors on the outside of the package; transition to sections of microstrip (8.4 mm 
long); a J-Micro microstrip to CPW transition; and the MEMS phase shifter die placed between 
and wirebonded to the two J-Micro connectors. 

Figure 2.  RF MEMS phase shifter package. 

NOTE:  Package includes eight pins for DC bias contacts, microstrip sections, 
J-Micro microstrip to CPW transitions, and GPPO connections. 

Following assembly, the connectorized MEMS phase shifters undergo another round of RF 
testing to verify each of the available phase states were still operable.  This additional testing 
allows for selection of the eight phase shifters that have similar performance including phase 
state, return loss, and insertion loss.  After the selection process, the packages were ready to 
populate the patch antenna array.  The patch antenna array in figure 3 consists of an RF input 
port, sections of microstrip with splitters to each of the eight phase shifters, and each of the eight 
slot fed patch antennas. 

(a)                                  (b)  

Figure 3.  Patch antenna array. 

NOTE:  (a) Back view showing linear patch antenna array with microstrip  
transmission lines on a duroid substrate, a section for the eight phase  
shifters, and (b) front view showing eight slot fed patch antennas. 
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The assembled MEMS ESA was prepared for testing, by completing the wiring of each of the 
DC control lines to the phase shifter control panel, as shown in figure 4.  The control panel has 
rotary switches to choose one of the four available phase states, along with resistors and 
capacitors soldered to each of the switch locations.  This reduces any transient signals during the 
phase state selection process.  The input to the phase shifter control panel consisted of two wires 
that were connected to a DC power supply. 

Figure 4.  Phase shifter control panel consisting of rotary switches 
for each of the phase shifters. 

Testing of the MEMS ESA occurred in an anechoic chamber at ARL October 2005 and again 
April 2006.  All testing was performed with the MEMS ESA in receive mode with the 
transmitted 17 GHz continuous wave (CW) signal coming from a specified waveguide horn 
antenna operating from 15 to 22 GHz.  Figure 5 shows the ESA held in position using a 
clamping circuit board holder and tape.  The horn antenna was supplied with RF energy from a 
Wiltron 68347B signal generator, while the MEMS ESA was positioned approximately 50 ft 
from the horn.  The ESA was attached to a block of foam attached to a rotating stage platform.  
The output from the ESA was connected to the mixer driven at 1.5 milliampere (mA) and 
measured with a bandwidth of 6 on the detector.  The output from the detector, phase locked at 
17 GHz, and the rotating stage controller was captured via a Labview generated program and 
stored at 1° increments from −90º to +90º.   

(a)              (b)  

Figure 5.  ESA held in position. 

NOTE:  (a) Shows the backside view mounted and fixtured MEMS ESA with clamping circuit 
board holder and tape keeping the antenna position fixed, and (b) front view of the MEMS ESA. 
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In order to establish the absolute gain of the MEMS ESA, a standard gain horn antenna was used 
to receive the transmit signal.  The standard gain horn was measured with the same parameters as 
the MEMS ESA except it was scanned from −10º to +10º. 

3. Results and Discussion 

3.1 Electrostatic Shunt Switch 

ARL has developed a robust fabrication process and a sound mechanical and microwave design 
for a MEMS RF switch.  The program goal of a low-loss, low-power consumption RF MEMS 
switch was successfully achieved in 2004.  The patent pending ohmic shunt switch has a nominal 
operating voltage of 40 to 50V, is very broadband, and capable of operating from DC to at least 
40 GHz with an insertion loss < 0.3 decibel (dB) and isolation > 20 dB, as illustrated in figure 6.  
A summary of the performance characteristics is listed in table 1 including values for 17 and 
35 GHz.   

(a)
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Figure 6.  Measured S parameters of the ohmic shunt electrostatic 
switch in the (a) off state, and (b) on state. 

Table 1.  Summary of electrostatic shunt switch performance. 

dB 45 MHz Ku-band (17GHz) Ka-band (35 GHz) 
Insertion Loss <.1 0.18 0.31 
Return Loss 32 30 24 
Isolation 32 30 29 
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3.2 MEMS Phase Shifter 

In addition to the 2–bit phase shifter at 17 GHz, figure 7 shows the 3–bit phase shifters at 17 and 
35 GHz were designed, fabricated, and tested.  The performance characteristics of all of the 
phase shifters are summarized in table 2, and the S parameter plots for the 2–bit 17 GHz phase 
are shown in figure 8.  Both 17 GHz designs have an average insertion loss of 2.5 dB, while the 
35 GHz design has an average loss of 3.3 dB possibly a problem with the coupler design.  The 
return loss for each of the phase shifters was greater than 20dB and the phase error is ± 5° on 
average for both 17 GHz designs and increases to nearly 10° for the 35 GHz design. 

(a)                         (b)  

Figure 7.  3–bit phase shifters. 

NOTE:  (a) The 3-bit 17 GHz  and 3 bit 35 GHz, and (b) designs are shown with the 
17 GHz design having a footprint of 2.8 × 4mm while the 35 GHz design has 
a footprint of 2.2 × 2.1mm. 

Table 2.  The 17 and 35 GHz phase shifter performance summary. 

Phase States 
Degrees 0 45 90 135 180 225 270 315 

2 bit 17 GHz         
Insertion Loss (dB) 2.1 N/A 2.3 N/A 2.7 N/A 3.1 N/A 

Phase Error (°) 0 N/A −6 N/A 2 N/A −5 N/A 
3 bit 17 GHz         

Insertion Loss (dB) 2.6 1.9 2.0 2.3 2.4 2.8 3.0 3.7 
Phase Error (°) 0 −9 −5 −4 −3 1 0 −3 
3 bit 35 GHz         

Insertion Loss (dB) 2.5 2.1 2.1 2.4 3.3 4.3 5.5 4.3 
Phase Error (°) 0 −12 −8 5 −16 14 13 10 
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NOTE:  The 0º state is the red trace, the 90º state is the blue trace, the 180º state is 
the magenta trace, and the 270º state is the cyan trace. 

Antenna (17 GHz 1x8 Linear Patch Array) 

Using the 2–bit phase shifters, the linear 1 × 8 patch antenna array was capab
five different collective phase states.  The states were labeled with the phase shift (Δϕ
phase shifters as the indicator for the possible states (0, 90, −90, 180, −180).  Values were 

Δϕ of zero with all phase shifters at 0° (shortest path length of the phase shifter) 
and with all phase shifters at 270° (i.e., longest path with all MEMS switches off, open).   
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NOTE:  Measured array patterns (red) with predictions from 
EMPiCasso simulations (blue): (state 0) Δϕ of 0º, 
(state 1) Δϕ of 90º,(state 2) Δϕ of 180º, (state 3) Δϕ of −90º. 

 
 

a)  b)  

c)  

Figure 10.  MEMS ESA reconfigured plots.  

NOTE:  MEMS ESA performance normalized with measurements from a standard gain 
horn antenna, (a) Δϕ of 0º, (b) Δϕ of ±90º, and (c) Δϕ of ±180º. 
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4. Conclusion 

Using a novel electrostatic ohm L have demonstrated low-loss 
digital phase shifters at 17 GHz and 35 GHz 
respectively. rray at 

A, functioned well exhibiting beam 
steering for each of the five ava ing eight 2-bit 
MEMS phase shifters.  T Δϕ of 0º, at a 
Δϕ of 90º, and at a Δϕ

 

ic shunt switch, engineers at AR
with average loss of about 2.5 dB and 3.3 dB, 

  The phase shifters were packaged and placed into a 1 × 8 linear patch a
enabled ES

ilable beam positions (0º, 25º, −
he maximum gain displayed by the MEMS ESA was at a 

 of 180º.   

17 GHz.  The patch array, representing a MEMS 
25º, and ± 55º) us
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