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Abstract— We examine the problem of estimating vector-
valued variables from noisy measurements of the difference
between certain pairs of them. This problem, which is naturally
posed in terms of a measurement graph, arises in applications
such as sensor network localization, time synchronization, and
motion consensus.

We obtain a characterization on the minimum possible covari-
ance of the estimation error when an arbitrarily large number
of measurements are available. This covariance is shown to
be equal to a matrix-valued effective resistance in an infinite
electrical network. Covariance in large finite graphs converges
to this effective resistance as the size of the graphs increases.
This convergence result provides the formal justification for
regarding large finite graphs as infinite graphs, which can be
exploited to determine scaling laws for the estimation error in
large finite graphs. Furthermore, these results indicate that in
large networks, estimation algorithms that use small subsets of
all the available measurements can still obtain accurate estimates.

I. INTRODUCTION

We consider the estimation of vector-valued variables based
on noisy measurements of the difference between certain pairs
of such variables. In particular, denoting the variables of
interest by {xu : u ∈ V} where V := {1, 2, . . .}, we consider
problems for which noisy “relative measurements” of the form

ζu,v = xu − xv + εu,v (1)

are available, where εu,v denotes measurement noise. The
ordered pairs of indices (u, v) for which we have relative
measurements form a set E that is a (typically strict) subset
of the set V × V of all pairs of indices. Just with relative
measurements, the xu’s can be determined only up to an
additive constant. To avoid this ambiguity, we assume that
a particular variable (say xo) is used as the reference with
xo known. The problem of interest is to estimate the node
variables from all the available measurements. This estimation
problem is relevant to several sensor and multi-agent network
applications, such as localization with noisy distance and angle
measurement [1–3], time-synchronization [2, 4, 5] and motion-
coordination [6]; see [6, 7] for an overview. The estimation
problem we study is an instance of a general class of pa-
rameter estimation problems in sensor networks called self-
calibration [3, 8]. Among the applications mentioned above,
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localization in sensor networks has probably attracted the most
attention in recent times. The reader is advised, however,
that localization from range-only measurements, such as those
considered in [9, 10], do not fall into the problem category
investigated in this paper.

The measurement equations (1) can be expressed in terms
of a directed graph G = (V , E) with an edge from node u to
v if the measurement ζu,v is available. The graph G is called
the measurement graph, and each vector xu, u ∈ V is called
the u-th node variable.

The main result of this paper relates to infinite sets of
available measurements, which is used to model the limiting
case for a very large number of measurements. When the
number of measurements is infinite, we show that for every
positive constant ε > 0, it is possible to construct an unbiased
estimate for a node variable xu that uses only a finite subset
of the available measurements but whose estimation error
variance is only ε above the minimum possible estimation
error variance that could be obtained by considering the whole
infinite set of measurements. The main assumption needed is
that the graph must have a finite maximum node degree, i.e.,
that there is a maximum number of relative measurements
involving each node variable. An implication of this result is
that for estimation problems based on relative measurements,
after a certain point, considering more measurements will only
marginally improve the quality of the estimate. On the positive
side, this simplifies the construction of estimation algorithms
in large–scale networks because it justifies considering a rela-
tively small subset of measurements. Distributed algorithms
to estimate the node variables from relative measurements
have been examined in [2, 7] in which nodes with embed-
ded processing and communication capability estimates their
variables by local computation and communication. Although
the algorithms in [2, 7] were developed for finite graphs, in a
large graph these algorithms may take a long time to provide
accurate estimates, since the information about all the available
measurements are fused iteratively to determine the estimates.
The results of this paper suggest that it may be possible to
devise algorithms such that they obtain estimates quite fast,
while sacrificing little accuracy.

Another contribution of this paper is that the results es-
tablished here help determine how the estimation error grows
as the network size increases. It is often easier to establish
asymptotic results on the minimum error variance for infinite
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graphs than for large finite graphs, since boundary effects are
usually weaker in infinite graphs than in finite graphs. Scaling
laws for the minimum estimation error in infinite graphs are
investigated in [11]. The main convergence result of this paper
provides the formal justification for regarding infinite graphs
as suitable proxies for very large but finite graphs. It was
assumed in [11] that estimation error covariances in infinite
graphs are well-defined. We show in this paper that this
assumption is indeed valid, if certain properties are satisfied
(those stated in Theorem 1). Therefore, the results in this paper
also establish the conditions under which approximation of
large finite graphs by infinite graphs is valid.

The key technical tool used to prove the results discussed
above is the analogy between the measurement network and
an electrical network. When the node variables are scalars and
the measurement graph is finite, the variance of the estimation
error for a node variable xu is numerically equal to the
effective resistance between the node u and the reference node
o of an electrical network obtained from the measurement
graph by placing at each edge (u, v) ∈ E a resistor whose
resistance is equal to the variance of the measurement error
εu,v. This electrical analogy was noted by Karp et al. [4] for
the time-synchronization problem.

In this paper, we show that an electrical analogy still holds
for vector-valued node variables, provided that we consider
generalized electrical networks in which currents, voltages,
and resistors are matrix-valued, but still satisfy appropriately
adapted forms of Kirchoff’s and Ohm’s laws. In this case,
the electrical network is obtained by placing at each edge
(u, v) ∈ E a resistor whose (matrix-valued) resistance is
equal to the covariance matrix of the measurement noise
εu,v. We further show that, when the measurement graph is
infinite, as one considers increasingly large but finite subsets
of the measurements, the covariance matrix of the estimation
error of a node variable xu converges to the (matrix-valued)
effective resistance between node u and the reference node o
of an infinite generalized electrical network obtained from the
infinite measurement graph.

For certain infinite measurement graphs, such as d-
dimensional square lattices, the effective resistances can be
explicitly computed. Because of the electrical analogy and the
convergence result established in this paper, one can determine
the smallest estimation error variance that could be obtained by
considering the whole (infinite) set of measurements in such
graphs. In practice, measurement graphs may not be lattices,
but it is generally possible to embed them in lattices or find
lattices that can be embedded in measurement graphs [11, 12].
It turns out that estimation error variances are monotonic with
respect to the partial order defined by graph embedding, which
is a consequence of our extension of the so-called Rayleigh’s
Monotonicity Law [12] to generalized electrical networks. As
a consequence, we can construct upper and lower bounds on
the estimation error variances in these measurement graphs
from the results available for lattices. A preliminary study
on establishing scaling laws for the estimation error variance
in large graphs using embedding in lattices was undertaken
in [11].

Numerical studies on subgraphs of the 2-dimensional lattice
show that information from a relatively small finite subgraph
of the infinite measurement graph is sufficient to provide
an estimate whose variance is quite close to the minimum
variance that is achievable by using all the measurements.
Increasing the size of the subgraph, i.e., increasing the number
of measurements processed beyond a certain point does not
yield a commensurate return in the decrease in variance. In
particular, when constructing the BLU estimate of a partic-
ular node u’s variable, if all measurements involving nodes
lying within a distance of twice the distance between u and
the reference are used, the difference between the resulting
estimation error variance of xu and the minimum possible
variance is less than 10%. For an arbitrary infinite graph,
similar trends are expected as long as the graph is close to
a lattice in an appropriate sense. The question of what is a
meaningful measure for a graph to be close to a lattice for the
BLU estimation problem has been addressed in [11].

The rest of the paper is organized as follows. Section II
summarizes the main result of the paper. Section III introduces
generalized electrical networks. Section IV establishes the
analogy between the estimation and electrical network prob-
lems for finite measurement graphs and uses this to prove the
main result. Section V describes scaling laws for the minimum
possible estimation error in lattices and a numerical study on
the convergence of the estimation error covariances in finite
subgraphs as the subgraphs are increased in size. The paper
concludes with a summary in Section VI.

II. MAIN RESULT

Consider a set of vector-valued variables xu ∈ Rk, u ∈
V := {1, 2, . . .}, where the set V is either finite, or infinite
but countable. These variables are to be estimated based on
noisy relative measurements of the form:

ζu,v = xu − xv + εu,v, (u, v) ∈ E (2)

where εu,v denotes a zero-mean measurement noise and E
is the set of pairs (u, v) for which relative measurements are
available. The covariance matrix of the error εu,v is denoted
by Pu,v := E[εu,vε

T
u,v], where E(·) denotes expectation and

(·)T denotes transpose. The measurement error covariance
matrices are assumed to be positive definite and finite. The
measurement errors on different edges are uncorrelated, i.e.,
for two edges e, ē ∈ E , E[εeε

T
ē ] = 0 unless e = ē. We assume

that the value of a particular reference variable xo is known
and without loss of generality we take xo = 0.

The accuracy of a node variable’s estimate, measured in
terms of the covariance of the estimation error, depends on
the graph G as well as the measurement error covariances.
The estimation problem is therefore formulated in terms of
a network (G, P ) where P : E → Sk+ is a function that
assigns to each edge (u, v) ∈ E the error covariance matrix
Pu,v of the measurement error associated with the edge (u, v).
The symbol Sk+ denotes the set of k × k symmetric positive
definite matrices.

We are interested in problems for which the set of variables
and available measurements is very large. We model this
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situation by making the number of variables and measurements
countably infinite. The measurement graph G is therefore
an infinite graph. In such problems, the question arises if
it is possible to construct an estimate of an arbitrary node
variable xu by using only a finite subset of measurements such
that its error covariance is arbitrarily close to the minimum
error covariance achievable by using all the infinite number
of measurements. To pose this question, we focus on an
arbitrary node u ∈ V — hereafter called the node of interest
— and examine the estimates of xu using larger and larger
“subgraphs” as described next. First we recall certain graph
theoretic terminology. A undirected path between a pair of
nodes u1 and uN in a graph is a finite, alternating sequence of
nodes and edges u1, e1, u2, e2, . . . , eN−1, uN such that every
edge is incident on its two adjacent nodes in the sequence,
and no node or edge is repeated. An edge (u, v) is said to be
incident on the nodes u and v. A directed graph is said to be
weakly connected if there is an undirected path between every
pair of nodes. For two graphs G1 = (V1, E1), G2 = (V2, E2),
the notation G1 ⊂ G2 means V1 ⊂ V2 and E1 ⊂ E2. We
now consider a sequence of finite measurement subgraphs
G(1),G(2),G(3), . . . that satisfies the following assumption.

Assumption 1 (Nested sequence): The sequence of finite
graphs G(1),G(2),G(3), . . . has the following properties:

1) The sequence is nested in the sense that

G(1) ⊂ G(2) ⊂ G(3) ⊂ · · · ⊂ G,

2) The sequence converges to the graph G in the sense that
every node and edge in G appears in one of the G(n) for
some finite n.

3) Each finite graph G(n), n ∈ N is weakly connected.
�

In constructing such a nested sequence of finite graphs,
every graph G(n) should contain the reference node o and
the node of interest u. Figure 1 shows the first few elements
of such a nested graph sequence that will eventually converge
to the 2-dimensional square lattice (the formal definition of a
lattice will be provided in Section V-A). One could regard each
finite subgraph G(n) as describing a finite subset of available
measurements that could be processed up to some time tn <
∞ to construct an estimate of xu. As time increases, more
measurements can be processed, and therefore at some time
tn+1 > tn, the subgraph G(n+1) contains more measurements
than G(n). In this context, we are interested in studying if
there is a point after which there is little gain in processing
more measurements, as this will not improve the estimate of
xu significantly. Essentially, we are asking whether or not the
sequence of estimates produced using the nested sequence of
subgraphs converges.

Given a finite subset of measurements characterized by
one of the graphs G(n), it is straightforward to compute the
Best Linear Unbiased (BLU) estimate x̂

(n)
u that minimizes the

estimation error variance among all linear unbiased estimators.
This estimate is a linear combination of the measurements
ζe, e ∈ E specified by a set of appropriately chosen coefficient

matrices. In particular, the BLU estimate is given by

x̂(n)
u =

∑

e∈E(n)

C(n)T
e ζe, (3)

where the function C(n) : E (n) → R
k×k specifies the

coefficients of the measurements. Note that in the equation
above, and in the sequel, for a function f with the edge set E
as the domain, we use fe to denote the value of the function at
an edge e ∈ E . We call the function C(n) the BLU estimator
for xu based on the finite graph G(n).

Every estimator C(n) can be viewed as an element of the
real linear vector space HP consisting of all edge-functions of
the form C : E → Rk×k for which

‖C‖2 :=
∑

e∈E
Tr(CT

e PeCe) < ∞, (4)

where Tr(·) denotes trace, and each Pe denotes the error
covariance matrix for the measurement associated with the
edge e ∈ E . It is straightforward to show that HP is a
Hilbert space with the associated inner product 〈C, C̄〉 =
∑

e∈E Tr(CT
e PeC̄e), ∀C, C̄ ∈ HP . We say that an edge-

function in HP has finite support if it has only a finite number
of nonzero entries. Since all the sets E (n) in (3) are finite,
every estimator C(n) is a finite-support edge-function in HP .

For infinite graphs, the summation in (4) is actually a series.
However, the series is absolutely convergent due to the positive
definiteness of the Pe’s, hence the order of the summation is
immaterial and therefore the expression in (4) is well defined.

We now state the main result of the paper, which establishes
the convergence of BLU estimators as n → ∞. To state this
result we recall that the degree of a node is defined as the
number of edges that are incident on the node.

Theorem 1 (BLU Convergence): Consider a network
(G, P ) for which the measurement graph G has a finite
maximum node degree, and for which the error covariance
function P is uniformly bounded in the sense that there exist
constant matrices Pmin, Pmax ∈ Sk+ such that

Pmin ≤ Pe ≤ Pmax, ∀e ∈ E ,

where A ≤ B means that A − B is negative semi-definite.
For every node u ∈ V \ {o}, where o is the reference node,
if {G(n)} is a nested sequence of finite graphs that satisfies
Assumption 1 with u and o belonging to every graph in the
sequence, the following statements hold.

1) The sequence of BLU estimates {x̂(n)
u } converges in the

mean-square sense.
2) The sequence of BLU estimators {C(n)} for xu con-

verges to some C ∈ HP .
3) The sequence of BLU estimation error co-variance ma-

trices

Σ(n)
u,o := E[(xu − x̂(n)

u )(xu − x̂(n)
u )T ]

converges to a symmetric positive definite matrix Σu,o.
Moreover, these BLU covariances converge monotoni-
cally in the sense that

Σ(1)
u,o ≥ Σ(2)

u,o ≥ · · · ≥ Σu,o > 0. �
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Fig. 1. A nested sequence of measurement graphs that “tend to” the 2-dimensional square lattice.

Theorem 1 shows that under the bounded degree assump-
tion, by using only a finite number of measurements among
the infinitely many potentially available, we can construct
estimates whose error variance is arbitrarily close to the
minimum possible variance that could be achieved by using
all the available measurements. In addition, the estimates
themselves converge and the “limiting” estimator is square-
summable in the sense of (4).

Although Theorem 1 states that the BLU covariances in
the finite graphs converges to a limiting covariance Σu,o, it
does not specify what the limit is. However, the proof of
this result actually provides a construction to obtain Σu,o

from the network (G, P ) by showing that it is numerically
equal to a matrix-valued generalized effective resistance in a
generalized electrical network. This analogy with an electrical
network is the key technical tool to prove Theorem 1. It
also provides additional intuition into the problem. The next
section describes generalized electrical networks and presents
the associated technical results needed to prove Theorem 1.

III. GENERALIZED ELECTRICAL NETWORKS

A generalized electrical network (G, R) consists of a graph
G = (V,E) (finite or infinite) together with a function R :
E → Sk+ that assigns to each edge e ∈ E a symmetric
positive definite matrix Re called the generalized resistance
of the edge.

A generalized flow from node u ∈ V to node v ∈ V with
intensity j ∈ R

k×k is an edge-function j : E → R
k×k such

that

∑

(p,q)∈E

p=p̄

jp,q −
∑

(q,p)∈E

p=p̄

jq,p =











j p̄ = u

−j p̄ = v

0 otherwise
∀p̄ ∈ V . (5)

We say that a flow i is a generalized current when there is a
node-function V : V → Rk×k for which

Ru,viu,v = Vu − Vv , ∀(u, v) ∈ E . (6)

The node-function V is called a generalized potential as-
sociated with the current i. Eq. (5) should be viewed as
a generalized version of Kirchoff’s current law and can be
interpreted as: the net flow out of each node other than u and

v is equal to zero, whereas the net flow out of u is equal to
the net flow into v and both are equal to the flow intensity j.
Eq. (6) provides in a combined manner, a generalized version
of Kirchoff’s loop law, which states that the net potential drop
along a circuit must be zero, and Ohm’s law, which states that
the potential drop across an edge must be equal to the product
of its resistance and the current flowing through it. A circuit
is an undirected path that start and end at the same node. For
k = 1, generalized electrical networks are the usual electrical
networks with scalar currents, potentials, and resistors.

The following property for the generalized electrical net-
works is implicitly assumed throughout this section.

Assumption 2 (Generalized electrical network): The gen-
eralized electrical network (G, R) is constructed from a graph
G that is weakly connected with a finite maximum node de-
gree, and from an edge-resistance function R that is uniformly
bounded, i.e., there exists constant symmetric positive-definite
matrices Rmin, Rmax such that Rmin ≤ Re ≤ Rmax, ∀e ∈ E .

The energy dissipated by an edge-function j in the network
(G, R) is defined by

‖j‖ :=
(

∑

e∈E
Tr(jT

e Reje)
)

1
2

. (7)

It is straightforward to verify that the set of edge-functions
with finite dissipated energy constitutes a Hilbert space HR

with inner product 〈j, j̄〉 =
∑

e∈E Tr(jT
e Rej̄e), ∀j, j̄ ∈ HR.

For infinite networks, the summation in (7) is an absolutely
convergent series and the order of summation is irrelevant.
Flows of finite support always belong to HR.

A. Existence and Uniqueness of Generalized Current
Existence and uniqueness of scalar currents in infinite net-

works has been examined in [13, 14]. It was shown by Flanders
that, unlike in finite networks, in an infinite electrical network
the current is not uniquely determined by Kirchoff’s laws
and Ohm’s law [13]. He showed, however, that uniqueness
of current in an infinite network can be established if two
additional conditions are imposed: the current has a finite
dissipated energy and it is the limit of flows with finite
support. For this reason, in examining the uniqueness of
generalized currents in infinite networks we restrict ourselves
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to generalized flows that are limits of finite support flows and
that have finite dissipated energy. For finite networks these
conditions hold trivially.

The following theorem establishes existence, uniqueness,
and linearity of generalized currents and potential differences
in generalized electric networks. The proof of this result is
provided in Appendix I.

Theorem 2 (Generalized Current): For every pair of nodes
u, v ∈ V and intensity i ∈ Rk×k , among all flows that have
finite dissipated energy and are limits of finite support flows,
there exists a unique current i from u to v with intensity i. In
addition,

1) the current is the flow that minimizes the energy dis-
sipation, among all flows from node u to node v with
intensity i, that are limits of finite support flows, and

2) the current i and the potential difference Vu−Vv (for ev-
ery u, v ∈ V ) are linear functions of the intensity i. The
potential is unique only up to an additive constant. �

It was previously known that in a scalar electrical network,
the current minimizes energy dissipation. This result is known
as Thomson’s Minimum Energy Principle [12, 14]. Theorem 2
shows that generalized currents also obey Thomson’s Principle
in both finite and infinite networks.

B. Generalized Effective Resistance
It was shown in the previous section that the potential

difference Vu − Vv ∈ Rk×k associated with a current of
intensity i ∈ Rk×k flowing from u to v is a linear function of
i. It turns out that this linear map can be expressed through
the matrix multiplication by a k × k matrix, which is stated
next. The proof of this result is provided in Appendix I.

Lemma 1: Let (G, R) be a generalized electric network
satisfying Assumption 2. The linear mapping between i and
Vu − Vv can be defined by multiplication by a k × k ma-
trix, which we call the generalized effective resistance Reff

u,v

between u and v:

Vu − Vv = Reff
u,vi, ∀i ∈ R

k×k. �

In the sequel, we will refer to generalized effective resis-
tance simply as effective resistance. In view of Lemma 1,
the effective resistance between two nodes is the potential
difference between them when a current with intensity Ik, the
k × k identity matrix, is injected at one node and extracted at
the other, which is analogous to the definition of effective
resistance in scalar networks [12]. Moreover, the effective
resistance is a symmetric positive-definite matrix. To show
this, we will need the following technical result (also proved
in Appendix I), which will have additional usefulness in the
sequel.

Lemma 2: Let i ∈ HR be the unique current in the network
(G, R) with intensity i ∈ Rk×k from u to v, and let j be a flow
with intensity j ∈ Rk×k from u to v that can be expressed as
a limit of finite support flows. Then,

∑

e∈E

iTe Reje = (Vu − Vv)T j,

where V is a generalized potential associated with the current
i. Moreover, the series in the left-hand side converges abso-
lutely, meaning that each one of the k2 series that constitute
the matrix-valued left hand side converges absolutely. �

To prove positive-definiteness of effective resistances, set
j = i in Lemma 2, where both i and j have intensity Ik , to
obtain

∑

e∈E
iTe Reie = (Vu − Vv)T = (Reff

u,v)
T , (8)

where the second equality follows from the definition of
effective resistance in Lemma 1. Since all the generalized
edge-resistances Re are symmetric and positive-definite, we
conclude that the left-hand side must be symmetric and
positive-definite, which confirms that effective resistances are
indeed symmetric positive-definite.

C. Rayleigh’s Monotonicity Law
The next result relates the effective resistances of two

distinct networks related by an appropriate partial order. A
similar result for finite scalar networks, called Rayleigh’s
Monotonicity Law [12], states that if the edge-resistances in
a scalar electrical network are increased (perhaps even made
infinity, i.e., an open circuit), then the effective resistance
between every pair of nodes in the network can only increase.
For a long time, Rayleigh’s Monotonicity Law was considered
so evidently true that no proof was deemed necessary. Never-
theless, Doyle and Snell [12] provided a proof, which we now
extend to generalized electrical networks.

Theorem 3 (Generalized Rayleigh’s Monotonicity Law):
Consider two generalized electrical networks (G, R) and
(Ḡ, R̄) for which G ⊂ Ḡ and Re ≥ R̄e for every e ∈ E . For
every pair of nodes u, v of G,

Reff
u,v ≥ R̄eff

u,v,

where Reff
u,v and R̄eff

u,v are the effective resistances between u
and v in the networks (G, R) and (Ḡ, R̄), respectively. �

Proof of Theorem 3. Let i : E → Rk×k and ī : Ē → Rk×k

be the currents from u to v in the networks (G, R) and (Ḡ, R),
respectively, both with intensity i ∈ Rk×k . Defining j̄ : Ē →
Rk×k to be the following “extension” of the current i to the
graph Ḡ

j̄e =

{

ie e ∈ E
0 e ∈ Ē \ E

we conclude that j̄ satisfies the conservation law (5) for
the network (Ḡ, R) and is therefore a flow for this network
(although not necessarily a current). Since according to Theo-
rem 2 the current ī is the flow of minimum dissipated energy
for the network (Ḡ, R), we conclude that

Tr(
∑

e∈Ē
īTe R̄e īe) ≤Tr(

∑

e∈Ē
j̄T
e R̄ej̄e)

=Tr(
∑

e∈E
iTe R̄eie)

≤Tr(
∑

e∈E
iTe Reie),

5



where the equality is a consequence of the definition of j̄ and
the last inequality follows from the fact that R̄ē ≤ Re, ∀e ∈ E .
From this, Lemma 2, and the definition of effective resistance,
we conclude that

Tr(iT R̄eff
u,vi) ≤ Tr(iT Reff

u,vi),

for every i ∈ Rk×k, from which the result follows.

D. Approximating Infinite Network Currents
The next theorem shows that currents and effective re-

sistances in an infinite network can be approximated with
arbitrary accuracy by those in a sufficiently large but finite
subnetwork. A similar result for the usual scalar electrical
networks was established by Flanders [13, 14]. The proof
of the theorem, which is inspired by [13], is provided in
Appendix I.

Theorem 4 (Finite Approximation): Let (G, R) be a net-
work satisfying Assumption 2, {G(n)} a nested sequence of
finite graphs satisfying Assumption 1, and u, v two arbitrary
nodes that appear in every graph G(n). For a given intensity
i ∈ Rk×k , let i and i(n) denote the currents from node u to
node v in the infinite network (G, R) and in the finite network
(G(n), R), respectively. Then,

lim
n→∞

i(n) = i,

where convergence is in the HR-norm. In addition, denoting
by Reff

u,v and R
eff(n)
u,v the effective resistances between nodes u

and v in the networks (G, R) and (G(n), R), respectively, we
have

lim
n→∞

Reff(n)
u,v = Reff

u,v. �

This result will be instrumental in showing that the BLU
estimator error covariances in large finite networks converge
to the effective resistance in the limiting infinite network.

IV. ELECTRICAL ANALOGY AND PROOF OF THEOREM 1
We start by establishing the electrical analogy for finite

networks. The proof of Theorem 1 is then provided, which
uses these results.

A. BLU Estimation in Finite Networks
The analogy between BLU estimation in a finite measure-

ment network and the corresponding electrical network is
stated in the next theorem.

Theorem 5 (Finite Electrical Analogy): Let (G, P ) be a
measurement network with a finite weakly connected graph
G = (V , E) and an edge-covariance function P : E → Sk+,
with node o as the reference node. For every node u ∈ V \{o},
the following statements hold.

1) The BLU estimator C of xu in the finite measurement
network (G, P ) is equal to the current i with identity
intensity Ik in the generalized electrical network (G, P )
from u to o.

2) The covariance Σu,o of the BLU estimation error xu−x̂u

is equal to the effective resistance Reff
u,o between the node

u and the reference node o. �

To prove this theorem, we need the next lemma which shows
that in a finite network, an unbiased estimator must be a flow.
The proof of the lemma is provided in Appendix I.

Lemma 3 (Unbiased Estimator): In a finite measurement
network (G, P ) with a reference node o, an edge function j is
a linear unbiased estimator of a node variable xu if and only
if j is a flow of intensity Ik from node u to the reference node
o. In this case, the covariance of the error in the estimate ˆ̂xu

is given by

E[(xu − ˆ̂xu)(xu − ˆ̂xu)T ] =
∑

e∈E
jT
e Peje. �

Note that we have used ˆ̂xu above to distinguish the estimate
from the BLU estimate x̂u of the node variable xu. The
next result provides a necessary and sufficient condition for
the existence of linear unbiased estimators in finite networks,
whose proof is provided in Appendix I.

Lemma 4: For a finite measurement graph G = (V , E)
with a reference node o ∈ V , there exists an unbiased
estimator for every node variable xu, u ∈ V \ {o} if and
only if G is weakly connected. �

The previous result explains the need for the assumption of
weak connectivity. We are now ready to prove Theorem 5.

Proof of Theorem 5. From the Unbiased Estimator Lemma 3
and the definition of energy dissipation (7), we see that in a
finite network (G, P ) with reference node o, the BLU estimator
C of node variable xu is given by

C = arg min ‖j‖

subject to: j is a flow of intensity Ik from u to o.

Comparing with the electrical network problem, we conclude
from Theorem 2 that the BLU estimator C of xu is the current
i of intensity Ik from u to o in the generalized electrical
network (G, P ), which proves the first statement.
Since C = i, it follows from Unbiased Estimator Lemma 3
that the covariance of xu’s BLU estimation error is given by

Σu,o =
∑

e∈E
iTe Peie = Reff

u,o,

where the second inequality follows from (8), which proves
the second statement.

B. Computation of the BLUE in Finite Networks
In this section we provide explicit formulas for computing

the BLU estimates and the covariances, and remark on dis-
tributed computation of the estimates for sensor-network ap-
plications. Consider a finite measurement graph G = (V , E)
with |V | = N nodes and |E | = M edges. Without loss of
generality, let xo = 0 and the reference node o be indexed by 1
and the nodes with unknown node variables indexed 2 through
N . To express the relationship between the variables and the
measurements in a compact form, we use the definition of the
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Fig. 2. A measurement Graph G with node 1 as the reference node, its generalized incidence matrix A, and the generalized basis incidence matrix Ab

constructed w.r.t. the reference node. The (block) row and (block) column indices of A correspond to node and edge indices, respectively.

incidence matrix of a graph from [15]. The incidence matrix
A of a directed graph G consisting of N nodes and M edges
is an N ×M matrix, with one row per node and one column
per edge. It is defined by A := [aue], where aue = 1 is if the
edge e is incident on the node u and directed away from it,
au,e = −1 if e is incident on u but directed toward it, and
au,e = 0 if e is not incident on u. We define the generalized
incidence matrix as

A := A ⊗ Ik ∈ R
kN×kM , (9)

where ⊗ denotes the Kronecker product. Figure 2 shows an
example of a generalized incidence matrix.

Let x = [xT
2 , xT

3 , . . . , xT
N ]T ∈ Rk(N−1) the vector of all

the unknown node variables. By stacking together all of the
measurements into a single vector z = [zT

1 , zT
2 , . . . , zT

M ]T ∈
R

kM and all the measurement errors into a vector ε =
[εT

1 , . . . , εT
M ]T ∈ RkM , we can express all of the measurement

equations (1) in the compact form

z = AT
b x + ε, Ab := Ab ⊗ Ik , (10)

where Ab is the basis incidence matrix of G, defined as the
submatrix of the incidence matrix A obtained after removing
the row corresponding to the reference node o. In general,
a basis incidence matrix of a directed graph is obtained by
removing any row of the incidence matrix [15]. We call the
matrix Ab defined in (10) the generalized basis incidence ma-
trix of G. We further construct P := diag(P1, P2, . . . , PM ) ∈
RkM×kM as the block diagonal square matrix of all the
measurement error covariances. Figure 2 shows an example of
a generalized basis incidence matrix. The next result provides
explicit formulas for computing the BLU estimates and error
covariances in finite graphs.

Theorem 6: Consider a finite measurement network (G, P )
satisfying Assumption 2 with a graph G = (V , E). Let the
reference node o be indexed by 1, and the vectors x, z, ε and
the matrices Ab, P be constructed as described above. Then,
the BLU estimate of x is given by

x̂ = L−1
b AbP

−1z, Lb := AbP
−1AT

b , (11)

and the error covariance by

Σ := E[(x − x̂)(x − x̂)T ] = L−1
b . �

Proof of Theorem 6. A basis incidence matrix constructed by
removing an arbitrary row from the incidence matrix of a
graph has full row rank if and only the graph is weakly
connected [15]. It follows from Assumption 2 that the gen-
eralized basis incidence matrix Ab of the measurement graph
G also has full row rank. Assumption 2 also ensures that
P > 0; hence Lb is positive-definite. The statements then

follow from standard results in least squares estimation applied
to the measurement model (10) (see, e.g., [16]).

It follows from the theorem above that the BLU covariances,
and therefore the generalized effective resistances, can be
determined by computing the inverse of Lb. In the special
case when k = 1 and P = I , Lb turns out to be the
Dirichlet Laplacian matrix of the graph G with the reference
node o node as the boundary [17]. For this reason, we call
Lb in (11) the generalized Dirichlet Laplacian matrix of the
finite network (G, P ). Due to the structure of the matrix Lb,
the equation Lbx̂ = b is amenable to parallel iterative methods
for solving linear equations. Such techniques are used in [7]
to devise distributed algorithms to compute the BLU estimate
x̂, in which every node computes its own variable’s estimate
and the information needed to carry out the computation is
obtained by communicating with its neighboring nodes.

C. Proof of the main result
Theorem 1 can now be proved using the tools developed so

far.

Proof of Theorem 1. We will prove the statements of the
theorem in reverse order.
Since the sequence of BLU covariances Σ

(n)
u,o is the same as

the sequence of effective resistances R
eff(n)
u,o ( Finite Electrical

Analogy Theorem 5), and the sequence R
eff(n)
u,o converges to

the effective resistance Reff
u,o in the infinite network (Finite

Approximation Theorem 4), we have

Σ(n)
u,o = Reff(n)

u,o → Reff
u,o =: Σu,o.

Moreover, by the construction of the nested sequence {G(n)},
if n1 ≤ n2, then G(n1) ⊂ G(n2), and so by the Generalized
Rayleigh’s Monotonicity Law (Theorem 3),

Σ(1)
u,o ≥ Σ(2)

u,o ≥ . . . ,

from which the third statement of the theorem follows.
Moreover, the BLU estimator C(n) of xu in the finite network
(G(n), P ) is equal to the current i(n) in the generalized elec-
trical network (G, P ) (Finite Electrical Analogy Theorem 5),
and the currents i(n) converge to the unique current i in the
electrical network (G, R) (Finite Approximation Theorem 4).
Therefore

C(n) = i(n) → i =: C,

where the convergence is in the HP -norm. This proves the
second statement.

7



By definition of the BLU estimator, we get

x̂(n)
u =

∑

(p,q)∈E(n)

C(n)T
p,q (xp − xq + εp,q)

= xu +
∑

(p,q)∈E(n)

C(n)T
p,q εp,q , (12)

where the second equality follows from unbiasedness, since
otherwise the expectation of the left hand side would not be
equal to xu. Let n < l, so that from Assumption 1, G(n) ⊂
G(l). It follows from the uncorrelated-ness of the ε’s and (12)
that

E[(x̂(l)
u − x̂(n)

u )(x̂(l)
u − x̂(n)

u )T ] =
∑

e∈E(l)

(C(l)
e − C(n)

e )T Pe(C
(l)
e − C(n)

e ),

where we have used the convention that C
(n)
e = 0 if e ∈

E (l) \ E (n). This leads to

Tr
(

E[(x̂(l)
u − x̂(n)

u )(x̂(l)
u − x̂(n)

u )T ]
)

= ‖C(l) − C(n)‖2,

where ‖·‖ is the HP -norm. Since C(n) → i, ‖C(l)−C(n)‖ →
0 as n, m → ∞. Therefore,

lim
n→∞

sup
l≥n

Tr
(

E[(x̂(l)
u − x̂(n)

u )(x̂(l)
u − x̂(n)

u )T ]
)

= 0. (13)

We recall that a sequence of random variables {ηn} converges
in the mean square sense if and only if (proposition 6.3 in [18])

lim
n,l→∞

sup
l≥n

E[ |ηl − ηn|
2] = 0.

Therefore, the sequence of random vectors x̂
(n)
u converge

entry-wise in the mean square sense. This proves the first
statement and completes the proof of Theorem 1.

Remark 1 (Role of edge directions): Effective resistances
are independent of the directions of the edges in the graph.
Reversing the direction of an edge e simply reverses the sign
of the current ie on that edge. It follows from (8) that the
effective resistance between any two nodes is unaffected by
the edge-directions. Therefore, all results in this paper that
use the graph partial order defined in Assumption 1 also hold
when G ⊂ Ḡ is understood to mean that the graph G can be
embedded in the graph Ḡ, which means that (1) the nodes of
G can be mapped injectively into the nodes of Ḡ; and (2) for
every edge e = (u, v) in G, there is a corresponding edge ē
in Ḡ that is incident on the nodes ū and v̄, where ū and ū
correspond to u and v, respectively, but edge directions need
not be preserved.

It follows from the electrical analogy that, although a mea-
surement graph is directed because of the need to distinguish
between a measurement of xu − xv and that of xv − xu, the
BLU error covariance is independent of the edge directions.

�

V. BLUE COVARIANCE IN LATTICES

In this section we look at certain special classes of infinite
graphs, namely, lattices, for which the effective resistance
between two nodes can be analytically derived. Since we
can exactly compute the effective resistance, we know the
minimum possible variance achievable in these graphs. A
numerical study is also presented for lattices to examine the
rate at which the BLU estimator variances in a nested sequence
of finite subgraphs converge to the minimum possible value
as the subgraphs increase in size.

A. Effective Resistance in Lattices
The d-dimensional square lattice Zd is defined as a graph

with a node in every point in Rd with integer coordinates and
an edge between every pair of nodes at an Euclidean distance
equal to one. Edge directions are arbitrary since they play no
role in the effective resistance, and therefore in the estimation
error covariances (see Remark 1). We construct a generalized
electrical network by assigning a constant matrix-resistance to
every edge of Zd.

The following lemma establishes the effective resistance of a
d-dimensional square lattice. The graphical distance dG(u, v)
between two nodes u and v in a graph G is the minimum
number of edges one has to traverse in order to go from u
to v, without necessarily respecting the edge orientations. The
graphical distance in the lattice Zd is denoted by dZd

(·, ·).
Lemma 5: Consider the electrical network (Zd, Ro) with

the same generalized resistance Ro ∈ Sk+ at every edge
of the d-dimensional square lattice. The generalized effective
resistance Reff

u,v between two nodes u and v in the electrical
network (Zd, Ro) satisfies

1) Reff
u,v(Z1) = Θ

(

dZ1(u, v)
)

2) Reff
u,v(Z2) = Θ

(

log dZ2(u, v)
)

,
3) Reff

u,v(Z3) = Θ
(

1
)

. �

The usual asymptotic notation Θ(·) is used with matrix valued
functions in the following way. For two functions g : R →
Rk×k and f : R → R, the notation g(z) = Θ(f(z)) means
there exists a constant zo and two matrices A, B ∈ Sk+ that
are independent of z such that Af(z) ≤ g(z) ≤ Bf(z) for all
z > zo.

Note that the Generalized Current Theorem 2 guarantees
that effective resistances in infinite lattice networks are well
defined. The results in Lemma 5 are established by extending
known results on the scalar effective resistance in the d-
dimensional square Lattice to the generalized case.

The next result, whose proof is provided in Appendix I, is
needed for the proof of Lemma 5.

Lemma 6: For a given graph G with finite maximum node
degree, let reff

u,v denote the scalar effective resistance between
two nodes u and v in an a scalar electrical network (G, 1) that
has 1-Ohm resistors on every edge of the graph G. Let (G, Ro)
be a generalized electrical network constructed from the same
graph G by assigning a generalized resistance Ro ∈ Sk+ to
every edge of G. Then,

Reff
u,v = reff

u,vRo. �
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Scaling laws for the effective resistances in scalar lattice
networks are stated in the next result, which follows from the
results established in [19, 20].

Lemma 7: Consider the electrical network (Zd, 1) with
the same scalar resistance 1-Ohm at every edge of the d-
dimensional square lattice. The scalar effective resistance reff

u,v

between two nodes u and v in the electrical network (Zd, 1)
satisfies

1) reff
u,v(Z1) = Θ

(

dZ1(u, v)
)

2) reff
u,v(Z2) = Θ

(

log dZ2(u, v)
)

,
3) reff

u,v(Z3) = Θ
(

1
)

. �

Lemma 5 now follows from Lemma 7 and Lemma 6.

B. Convergence Rate
Theorem 1 shows that the BLU estimator error variance in a

sequence of nested finite subgraphs of an infinite measurement
graph converges to a limiting variance that is numerically equal
to an effective resistance, regardless of how the sequence G(n)

is constructed. However, the rate at which the covariances Σ
(n)
u,o

converge to the effective resistance in the infinite graph will
depend on how the sequence {G(n)} is constructed vis-a-vis
the nodes u and o. One natural way to construct the graph
G(n) = (V (n), E (n)) is to take V (n) to contain all nodes
that are at a graphical distance smaller than α(n) from the
shortest path connecting u and o, where α(·) is a positive
and increasing function. The distance of a node from a path
denotes the minimum graphical distance between the node and
any node on the path. If there are multiple shortest paths, we
take the union of the sets obtained for each shortest path. E (n)

is then chosen as the set of edges that are incident on the nodes
in V (n). This construction satisfies Assumption 1.

Figure 3(a-c) shows the first three members of a sequence
of nested subgraphs {Z

(n)
2 } of the 2-dimensional lattice Z2,

constructed according to the procedure outlined above, with
α(n) = n. For simplicity, we consider the case of scalar
variables and measurements, and every measurement error is
assumed to have a variance 1. Covariances for vector-valued
variables could be obtained using Lemma 6. Figure 3(d) shows
the plot of the variances Σ

(n)
u,o of node u in the measurement

network (Z
(n)
2 , 1) as a function of n. The limiting value of

the variance is the effective resistance between u and o in
the infinite lattice Z2. In an infinite 2-dimensional lattice with
unit resistance on every edge, the effective resistance between
two nodes u with relative x and y coordinates is given by
Reff

u,o = 1
π
(log

√

x2 + y2+γ+ 1
2 log 8), where γ ≈ 0.577 [19].

For the example in Figure 3(a-c), x = 4, y = 0, so the
limiting variance for node u is Σu,o = Reff

u,o ≈ 0.956, which
is shown by a dotted line in the Figure 3(d). As expected,
the variances Σ

(n)
u,o monotonically decrease and approach the

asymptotic value as n increases.

For a given nested sequence G(n), the convergence rate of
Σ(n) to Σ will depend on the graphical distance du,o between
nodes u and o. Taking this into account, we can construct the
sequence G(n) by choosing V (n) as the set of nodes that are
within a graphical distance of β(n)du,o of the shortest path
connecting u and o, where β(·) is a positive and increasing

function. Numerical studies on the 2-dimensional lattice Z2

indicate that with this construction, the ratio ‖Σ
(n)
u,o‖/‖Σu,o‖

depends only on the value of β and is independent of du,o.
Figure 3(e) shows the ratio ‖Σ

(n)
u,o‖/‖Σu,o‖ as a function of

β for three different nodes taken at distances of 2, 4 and
8, respectively, from o. The figure shows that the rate of
convergence of Σ

(n)
u,o to the limiting value Σu,o is not sensitive

to the distance between u and o. In particular, with β = 2, the
error between Σ(n) and Σ is less than 10%. These studies show
that in a 2-dimensional lattice, a relatively small subgraph
is sufficient to obtain an estimate whose variance is quite
close to the minimum possible achievable by using all the
measurements. For an arbitrary measurement graph, as long as
the graph is “close to” a lattice in an appropriate sense, similar
trends are expected. For details on appropriate measures of
closeness to lattices, the reader is referred to [11].

VI. SUMMARY

The problem of estimating vector-valued node variables
from noisy relative measurements naturally arises in many ap-
plications that have a graphical structure, such as localization
in sensor networks and motion consensus in swarms of mobile
agents. In this paper we obtained a characterization on the
covariance of the minimum possible estimation error when an
arbitrarily large number of measurements is available. This
covariance was shown to be equal to a matrix-valued effective
resistance in an infinite electrical network. We also showed
that when the measurement graph has bounded node degree,
the error covariance of the estimate produced by using only a
finite subset of measurements converge to the error covariance
of the estimate that could be obtained by using all the available
measurements.

The convergence results established in this paper provide the
formal justification for treating large finite graphs as infinite
graphs, which can be used to obtain asymptotic bounds on
the estimation error. Preliminary work on determining such
asymptotic error bounds for infinite graphs has been reported
in [11]. Further work on establishing scaling laws using the
tools developed in this paper is under way. Furthermore, the
matrix-valued effective resistance is also relevant in several
other distributed control problems [6]. The tools developed
in the paper are therefore useful in answering scalability
questions in certain distributed control problems as well.

Another implication of the convergence results established
in this paper is that for estimation problems based on rel-
ative measurements, after a certain point, considering more
measurements will only marginally improve the quality of the
estimate. This observation may be of interest to designers of
distributed estimation algorithms, since it shows that accurate
estimation is possible by considering a relatively small subset
of measurements among all the available ones. Developing
such algorithms, and methods to choose the best possible
subset of measurements, are topics for future research.

Our problem formulation assumes zero-mean measurement
noise. If this is not the case, BLU estimators produce biased
estimates. In fact, it may happen that the bias increases as
the number of measurements increases, which could provide
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Fig. 3. (a)-(c)The first three members of a sequence of nested subgraphs Z
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2 , 1) to the minimum possible variance in (Z2, 1), as a

function of β(n) for three different node pairs u, o, when the node set V (n) is chosen so as to encompass all nodes within a radius of β(n)du,o from the
shortest path connecting u and o .

additional justification for using only a small subset of the
available measurements. A detailed study of the impact of
measurement-noise bias remains a problem for future research.

ACKNOWLEDGMENT

The authors wish to thank Bassam Bamieh for several
helpful discussions.

REFERENCES

[1] A. Basu, J. Gao, J. Mitchell and G. Sabhnani. Distributed
localization by noisy distance and angle information. In
Proc. of the 7th ACM International Symposium on Mobile
Ad Hoc Networking and Computing (MobiHoc). 2006.

[2] P. Barooah, N. M. da Silva and J. P. Hespanha. Dis-
tributed optimal estimation from relative measurements
for localization and time synchronization. In P. B.
Gibbons, T. Abdelzaher, J. Aspnes and R. Rao (editors),
Distributed Computing in Sensor Systems DCOSS, vol.
4026 of LNCS, pp. 266 – 281. Springer, 2006.

[3] R. Moses and R. Patterson. Self-calibration of sensor
networks. In SPIE: Unattended Ground Sensor Tech-
nologies and Applications IV, vol. 4743, pp. 108–119.
2002.

[4] R. Karp, J. Elson, D. Estrin and S. Shenker. Optimal
and global time synchronization in sensornets. Tech.
rep., Center for Embedded Networked Sensing, Univ. of
California, Los Angeles, 2003.

[5] R. Solis, V. S. Borkar and P. R. Kumar. A new
distributed time synchronization protocol for multihop
wireless networks. In Proc. of the 45th IEEE Conference
on Decison and Control. 2006.

[6] P. Barooah and J. P. Hespanha. Graph effective resis-
tances and distributed control: Spectral properties and
applications. In Proc. of the 45th IEEE Conference on
Decision and Control, pp. 3479–3485. 2006.

[7] —. Estimation from relative measurements : Algorithms
and scaling laws. IEEE Control Systems Magazine,
vol. 27, no. 4: 57 – 74, 2007.

[8] K. Whitehouse and D. Culler. Calibration as param-
eter estimation in sensor networks. In the 1st ACM
international workshop on Wireless sensor networks and
applications, pp. 59 – 67. 2002.

[9] N. Patwari, A. O. H. III and M. Perkins. Relative
location estimation in wireless sensor networks. IEEE
Transactions in Signal Processing, vol. 51, no. 8: 2137–
2148, 2003.

10



[10] D. Moore, J. Leonard, D. Rus and S. Teller. Robust
distributed network localization with noisy range mea-
surements. In Proceedings of the 2nd ACM Conference
on Embedded Networked Sensor Systems, pp. 50–61.
2004.

[11] P. Barooah and J. P. Hespanha. Estimation from relative
measurements: Error bounds from electrical analogy. In
Proc. of the 2nd International Conference on Intelligent
Sensing and Information Processing(ICISIP), pp. 88–93.
2005.

[12] P. G. Doyle and J. L. Snell. Random walks and electric
networks. Math. Assoc. of America, 1984.

[13] H. Flanders. Infinite networks: I - resistive networks.
IEEE Transactions on circuit theory, vol. CT - 18, no. 3:
326–331, 1971.

[14] A. H. Zemanian. Infinite Electrical Networks. Cam-
bridge Tracts in Mathematics. Cambridge University
Press, Providence, R.I., 1991.

[15] W.-K. Chen. Applied Graph Theory. North Holland
Publishing Company, 1971.

[16] J. M. Mendel. Lessons in Estimation Theory for Signal
Processing, Communications and Control. Prentice Hall,
1995.

[17] F. Chung. Spectral graph theory. Regional Conference
Series in Mathematics, Providence, R.I., 1997.

[18] E. Wong. Stochastic Processes in Information and Dy-
namical Systems. Robert E. Krieger Publishing Company,
645 New York Avenue, Huntington, NY 11743, 1979.
ISBN 0882759213.

[19] J. Cserti. Application of the lattice green’s function
for calculating the resistance of and infinite network of
resistors. American Journal of Physics, vol. 68, no. 10:
896–906, 2000.

[20] D. Atkinson and F. van Steenwijk. Infinite resistive
lattices. American Journal of Physics, vol. 67: 486–492.,
1999.

[21] D. G. Luenberger. Optimization by Vector Space Meth-
ods. John Wiley and Sons, 1969. ISBN 0471-18117X.

APPENDIX I
PROOFS

We first introduce some terminology. Define a norm for all
node-functions ω : V → Rk×k as

‖ω‖ =





∑

u∈V
Tr(ωT

u ωu)





1
2

=





∑

u∈V
‖ωu‖

2
F





1
2

, (14)

where ‖ · ‖F denotes the Frobenius norm of a matrix, and
a linear vector space SV as the space of all bounded node-
functions with respect to the above defined norm:

SV = {ω : V → R
k×k| ‖ω‖ < ∞}. (15)

For an infinite network (G, R), we introduce the incidence op-
erator A : HR → SV , which is defined by the transformation:

(A j)u =
∑

e∈E
au,eje, j ∈ HR, (16)

where au,e is nonzero if and only if the edge e is incident
on the node u and when nonzero, au,e = −1 if the edge e
is directed towards u and au,e = 1 otherwise. The incidence
operator A is simply an extension to infinite graphs of the
generalized incidence matrix defined in Section IV-A [see (9)]
for finite graphs. The series in (16) is absolutely convergent
since it involves only a finite number of terms due to the
bounded degree of G.

We call a node-function ω ∈ SV a divergence for the graph
G if ω has finite support and

∑

u∈V ωu = 0. One can view a
divergence as an assignment of flow sources at a finite number
of nodes of the graph so that total flow into the graph is equal
to the total flow out of it.

An edge-function j ∈ HR is called a flow in G with
divergence ω ∈ SV if ω is a divergence in G and j satisfies

∑

(u,v)∈E

u=ū

ju,v −
∑

(v,u)∈E

u=ū

jv,u = ωū, ∀ū ∈ V . (17)

The condition (17) can be compactly represented as

A j = ω. (18)

An edge-function j ∈ HR is called a circulation in (G, R) if

A j = 0. (19)

In other words, a circulation is an element of HR that belongs
to N (A ), the null space of A .

First we show that the linear operator A : HR → SV
defined above is bounded. Since for each u ∈ V , (Aj)u ∈
Rk×k, we have

‖(A j)u‖
2
F = ‖

∑

e∈Eu

aueje‖
2
F ≤

∑

e∈Eu

‖je‖
2
F

where Eu is the set edges in E that are incident on u. It can be
shown from the relationship between the Frobenius norm and
the singular values of a matrix that for every edge e ∈ E , we
have ‖je‖2

F ≤ 1
λmin

Tr(jT
e Reje), where λmin is the uniform

lower bound on the smallest eigenvalue of Re, ∀e ∈ E .
Existence of a positive λmin is guaranteed by Assumption 2.
Since the above is true for every u ∈ V , from (14) we get

‖A j‖2 =
∑

u∈V
‖(A j)u‖

2
F ≤

1

λmin

∑

u∈V

∑

e∈Eu

Tr(jT
e Reje)

≤
dmax

λmin

∑

e∈E
Tr(jT

e Reje) =
dmax

λmin
‖j‖2,

where dmax is the largest degree of the nodes of the graph G,
which is finite by Assumption 2. It follows that

‖A ‖ ≤

√

dmax

λmin

,

which shows that A is bounded.

Now we are ready to prove the Generalized Current Theo-
rem 2.

Proof of Theorem 2. We first prove that among the flows in
HR that are limits of finite support flows, the flow with the
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minimum dissipated energy exists and is unique, and that this
flow is a current. Then we show that there can be only one
such current.

For a flow of intensity j that is injected at u and extracted at v,
the corresponding divergence ω̄ is given by ω̄u = j, ω̄v = −j

and ω̄p = 0 for all p ∈ V \ {u, v}. Pick a path P from u to
v, and construct a flow jpath of intensity j from u to v along
P as follows:

jpath
e =











j e ∈ P , ~e = ~P

−j e ∈ P , ~e 6= ~P

0 e /∈ P

It is easy to see that j is a finite support edge-function in
HR that satisfies the constraint equation A j = ω̄. All flows
satisfying this constraint lie in the linear variety jpath+N (A ),
where N (A ) is the null space of A . Since A is a bounded
linear operator, its null space is closed. As a result, N (A ),
which is the space of all circulations, is a Hilbert space.
Consider the subspace of N (A ) that consists of all finite
support circulations, and denote it by NF (A ) (“F ” for finite
support). Its closure NF (A ) is a closed subspace of the
Hilbert space N (A ). By the Projection Theorem applied to
linear varieties (Theorem 1 in section 3.10 of [21]), there exists
a unique edge-function in jpath +NF (A ) of minimum norm,
which we call i, and which is orthogonal to NF (A ).

Since i − jpath ∈ NF (A ), there exists a sequence of finite
support circulations c(n) such that c(n) → (i − jpath), where
the convergence is in HR norm. Define j(n) := jpath + c(n),
so that by construction, each j(n) is a finite support flow of
intensity i from u to v, and j(n) → i in HR. This establishes
the existence and uniqueness of the flow with minimum power
dissipation that is the limit of a sequence of finite support
flows.

Since i is orthogonal to NF (A ),

〈i, c〉 = 0 (20)

for every every c ∈ NF (A ). Declare the generalized potential
drop across an edge e as Reie to satisfy Ohm’s law. If the
graph has no loops, Kirchoff’s loop law is trivially satisfied
by these generalized potential drops. If the graph has loops,
pick a loop C and define a scalar edge-function f : E → R as

fe =











1 if e ∈ C and ~e = ~C,

−1 if e ∈ C and ~e 6= ~C,

0 if e /∈ C.

Now define a finite support circulation c∗ as c∗e = feJ , where
J is an arbitrary k × k matrix. We have

0 = 〈i, c∗〉 =
∑

e∈C

Tr(iTe Rec
∗
e)

=
∑

e∈C

fe Tr(iTe ReJ) =
∑

e∈C

fe Tr(JT Reie)

= Tr

[

JT (
∑

e∈C

feReie)

]

Since this is true for arbitrary J , we must have
∑

e∈C

[fe(Reie)] = 0, (21)

which in turn must be true for every loop C, since the
arguments above can be repeated for every loop. Eq. (21)
therefore shows that the net potential drop along every loop is
0. In other words, the generalized potential drops determined
by i in accordance with Ohm’s law satisfies Kirchoff’s loop
law. Construction of a generalized node potential function V
is now trivial. Therefore i is a generalized current.

To prove uniqueness of the current, let i and ī be two currents
from u to v with intensity i. Define an edge-function d : E →
Rk×k as de := ie−īe. We see that d ∈ NF (A ). From linearity
of the inner product,

〈d, d〉 = 〈i − ī, i − ī〉 = 〈i, d〉 − 〈̄i, d〉 = 0 − 0,

where the last equalities follows from (20), since by construc-
tion, both i and ī are currents. Thus,

∑

e∈E
Tr(dT

e Rede) = 0 ⇒ de = 0 ∀e ∈ E ,

since Re > 0 for all edges e ∈ E . We therefore conclude that
i = ī, which proves that the current i is unique.

To examine the uniqueness of potentials, suppose that V and
V̄ are two potentials associated with the same current. Because
of Ohm’s Law, we conclude that

Vu − Vv = V̄u − V̄v ⇒ Du = Dv, ∀(u, v) ∈ E ,

where D = V −V̄ . Since G is connected, D must be a constant,
but is otherwise arbitrary. This shows that the node potentials
are unique up to an additive constant.

If i is a current with intensity i and ī is a current with intensity
ī, both from u to v, it can be shown in a straightforward
manner that αi + βī is also a current with intensity αi + β ī

from u to v, from which the linearity from i to i follows. A
similar linearity proof also holds for the potential differences.

The corollary presented next is essentially a repetition
of (20), but is restated because of its usefulness in several
subsequent proofs.

Corollary 1: A flow i is the generalized current in the
network (G, R) if and only if

〈i, c〉 = 0

for every circulation c ∈ NF (A ). �

Proof of Lemma 1. For the current with intensity i flowing
from u to v, we define a divergence ω as

ωp = 0 ∀p ∈ V \ {u, v}, ωu = i, ωv = −i.

The flow constraint now becomes Aj = ω. The current i is
the flow that satisfies this constraint and minimizes the energy

12



dissipation
∑

e∈E Tr(jT
e Reje), as shown in Theorem 2. For

every node p ∈ V , the flow constraint becomes

(Aj)p = ωp ⇒
∑

e∈Ep

ap,eje = ωp. (22)

Recognizing that this is a k × k matrix equation, we express
it as k separate vector equations:

∑

e∈Ep

ap,eje,l = ωp,l, l = 1, . . . , k,

where the second subscript l represents the lth column of the
corresponding matrix. It is easy to see that, for every l, the
constraints on the lth column of je’s depend only on the lth

column of ωp, and therefore on the lth column of i. As a
result, the solution to this optimization problem is equivalent
to solving k separate problems “minimize

∑

e∈E jT
e,lReje,l

subject to Ajl = ωl”, for l = 1, . . . , k, where the edge function
jl and the node function ωl are now vector-valued: jl : E →
Rk, ωl : V → Rk, the spaces HR and SV are appropriately
redefined, and the incidence operator A has the same definition
as in (16) with respect to the new spaces HR, SV . Because
of column-wise independence of the current on the intensities,
the matrix current on every edge is obtained by stacking the
k vector-valued currents on that edge as columns. For every
vector-valued current intensity il, l = 1, . . . , k, we obtain a
corresponding vector-valued potential difference Vu,l − Vv,l.
Again, the matrix-valued potential difference Vu−Vv resulting
from the original problem consists of the k columns that are
the vector-valued potential difference Vu,l−Vv,l resulting from
the k separate optimization problems described above.
These k separate optimization problems can be solved to
determine the vector-valued edge currents in the same manner
that the single optimization problem was solved in the proof
of Theorem 2 to determine the matrix valued edge currents.
In fact, only one of these k problems needs to be solved. To
understand why, we first note that the linearity between the
matrix valued quantities i and Vu −Vv that was established in
Theorem 2 will be retained between the corresponding vector-
valued quantities. Specifically, when a vector-valued current il

flows from u to v with vector intensity il, the vector-valued
voltage drop Vu,l −Vv,l will be a linear function of the vector
intensity il, which will be in general a k × k matrix. Let
Reff

u,v ∈ Rk×k be this matrix. Then,

Vu,l − Vv,l = Reff
u,vil, ∀il ∈ R

k. (23)

From linearity, the same is true for every l = 1, . . . , k.
Stacking together the k columns in (23), for l = 1, . . . , k, we
get Vu − Vv = Reff

u,vi, which proves that the linear mapping
between matrix intensity i and matrix-valued potential drop
Vu − Vv is the k × k matrix Reff

u,v .

Proof of Lemma 2. Pick a path P from u to v, and construct
a flow jpath of intensity j from u to v along P as follows:

jpath
e =











j e ∈ P , ~e = ~P

−j e ∈ P , ~e 6= ~P

0 e /∈ P

The assumed properties of j imply that j ∈ jpath + NF (A).
Let j(n) be a sequence of finite support flows in (G, R) that
converge to the flow j, i.e., j(n) → j in HR. Define

c := j − jpath

c(n) := j(n) − jpath.

The function c ∈ HR is a circulation since it is the difference
between two flows of the same intensity between the same
two nodes. Moreover, {c(n)} is a sequence of finite-support
circulations that converge to c in HR. Now, since c(n) is a finite
support circulation, from Corollary 1, 〈i, c(n)〉 = 〈i, jpath −
j(n)〉 = 0 for every n, and therefore

lim
n→∞

〈i, jpath − j(n)〉 = 0,

Using linearity and continuity of the inner product, we there-
fore conclude that

lim
n→∞

〈i, j(n)〉 = 〈i, jpath〉 ⇒ 〈i, j〉 = 〈i, jpath〉

⇒
∑

e∈E
Tr(iTe Reje) =

∑

e∈P

Tr((Reie)
T jpath

e ) = Tr((Vu − Vv)T j)

(24)

Since i, j ∈ HR, denoting the sth column of ie by is,e and
the tth column of je by jt,e, we can show from (24) using
straightforward algebraic manipulation that

qs,t :=

∞
∑

e=1

iTs,eRejt,e < ∞. ∀s, t = {1, . . . , k},

and that the series converges absolutely for every s and
t. Define the matrix Q by [Q]s,t = qs,t. Since the series
converges, for every ε > 0, we can choose N large enough
such that

‖
N

∑

e=1

iTe Reje − Q‖ < ε,

where ‖ · ‖ represents any matrix norm. We thus conclude
that since i, j ∈ HR, the series

∑

e∈E iTe Reje converges
absolutely to a k× k matrix. Since (24) holds for an arbitrary
j, it can be shown in a straightforward manner that the series
∑

e∈E iTe Reje must converge to (Vu − Vv)T j. Therefore we
get the desired result

∑

e∈E
iTe Reje = (Vu − Vv)T j.

Proof of Theorem 4. For every ε > 0, we can find a finite-
support flow j(n) from u to v of intensity i such that

‖i− j(n)‖ < ε, (25)

which follows from the characterization of the current i in
Theorem 2. Pick a finite subgraph G(n) = (V (n), E (n)) of G
from the nested sequence {G(n)} such that the support of j(n)

lies in G(n) (i.e., the edges on which j(n) is not zero are in
E (n)). Note that by construction u, v ∈ V (n). Denoting by

13



i(n) the current in (G(n), R), it follows from Corollary 1 that
for a circulation c(n) whose support lies in G(n),

〈i(n), c(n)〉 = 0, and 〈i, c(n)〉 = 0.

⇒ |〈i − j(n), c(n)〉| = |〈i, c(n)〉 − 〈j(n), c(n)〉|

= |〈i(n), c(n)〉 − 〈j(n), c(n)〉|

= |〈i(n) − j(n), c(n)〉|.

Pick c(n) = i(n)−j(n), which, being a difference of two finite
support flows from u to v with the same intensity, is a finite
support circulation. Furthermore, its support lies in G(n) since
both i(n) and j(n) have their support in G(n). For this choice
of c(n) in the equation above, we get

|〈i − j(n), i(n) − j(n)〉| = ‖i(n) − j(n)‖2

⇒ ‖i(n) − j(n)‖2 ≤ ‖i− j(n)‖‖i(n) − j(n)‖,

from the Cauchy Schwarz inequality. Therefore,

‖i(n) − j(n)‖ ≤ ‖i − j(n)‖ < ε,

from (25). From the triangle inequality, we now get

‖i − i(n)‖ ≤ ‖i− j(n)‖+ ‖i(n) − j(n)‖ < 2ε,

which proves the statement that i(n) → i in HR.
To prove the convergence of the effective resistances, pick an
arbitrary i ∈ Rk×k and let i and i(n) be the currents with
intensity i from u to v in (G, R) and (G(n), R), respectively.
Lemma 2 implies

∑

e∈E
iTe Reie = iT Reff

u,vi,

∑

e∈E
i(n)T
e Rei

(n)
e =

∑

e∈E(n)

i(n)T
e Rei

(n)
e = iT Reff(n)

u,v i,

∑

e∈E
iTe Rei

(n)
e = iT Reff

u,vi,

where the last equality uses the fact that i(n) is a flow in G
with intensity i (though not a current). Therefore,
∑

e∈E
Tr

(

(i − i(n)
e )T Re(ie − i(n)

e )
)

= Tr
(

iT (Reff(n)
u,v − Reff

u,v)i
)

Since i → i(n) in HR, the left hand side goes to 0 as n → ∞.
Since this is true for arbitrary i, R

eff(n)
u,v → Reff

u,v.

Next we prove Lemma 3 that shows that in a finite graph
an unbiased estimator must be a flow.

Proof of Lemma 3. By definition, a linear estimate of the node
variable xu in the finite network (G, P ) is given by

ˆ̂xu =
∑

e∈E
jT
e ζe

for some matrices {je, e ∈ E}. Therefore,

ˆ̂xu =
∑

(p,q)∈E
jT
p,q(xp − xq + εp,q) (26)

which implies that

E[ˆ̂xu] =
∑

(p,q)∈E
jT
p,q(xp − xq)

=
∑

(p,q)∈E
jT
p,qxp −

∑

(p,q)∈E
jT
p,qxq

=
∑

p̄∈V

∑

(p,q)∈E
p=p̄

jT
p,qxp −

∑

q̄∈V

∑

(p,q)∈E
q=q̄

jT
p,qxq

= (
∑

p̄∈V
xT

p̄

∑

(p,q)∈E
p=p̄

jp,q)
T − (

∑

q̄∈V
xq̄

∑

(p,q)∈E
q=q̄

jp,q)
T .

(27)

If j is a flow with intensity Ik from u to o, using (5) we
conclude that the first term above can be expressed as

(
∑

p̄∈V
xT

p̄

∑

(p,q)∈E
p=p̄

jp,q)
T = (xu − xo)

T + (
∑

p̄∈V
xT

p̄

∑

(q,p)∈E
p=p̄

jq,p)
T

= (xu − xo)
T + (

∑

q̄∈V
xq̄

∑

(p,q)∈E
q=q̄

jp,q)
T .

Combining this with (27), we get E[ˆ̂xu] = (xu − xo) = xu,
because xo = 0, which proves sufficiency.

If j is not a flow, there is at least one node, say r ∈ V , where
the flow condition (5) is violated. Assume for the moment that
r is neither u nor o. We rewrite (26) as

E[ˆ̂xu] =
∑

(p,q)∈E
p=r

jT
p,q(xp − xq) +

∑

(p,q)∈E
q=r

jT
p,q(xp − xq) + T

where T denotes the remaining terms of the sum and does
not involve xr,

= (
∑

(p,q)∈E
p=r

jp,q −
∑

(p,q)∈E
q=r

jp,q)
T xr + T2,

where the terms constituting T2 also do not involve xr . Since
the flow condition (5) is not satisfied at r, the coefficient of
xr above is not zero and so ˆ̂xu is biased. The same proof
technique can be applied to the case when r is either u or o,
which proves necessity.

If j is an unbiased estimators of xu in the finite network
(G, P ), the covariance of the estimation error is

E[(xu − ˆ̂xu)(xu − ˆ̂xu)T ] = E[(

|E |
∑

l=1

jT
l εl)(

|E |
∑

`=1

jT
` ε`)

T ]

Σu,o =

|E |
∑

l=1

jT
l E[εlε

T
l ]jl =

|E |
∑

l=1

jT
l Pljl,

where the second inequality was obtained by using the fact that
the measurement errors on different edges are uncorrelated.
This proves the second statement of the lemma.

Next we provide the proof of Lemma 4 that states that
unbiased estimators of node variables in a measurement graph
exist if and only if the graph is weakly connected.
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Proof of Lemma 4. If G is weakly connected, we can con-
struct an undirected path P from u to o and define an edge-
function j as follows:

jpath
e =











j e ∈ P , ~e = ~P

−j e ∈ P , ~e 6= ~P

0 e /∈ P

where ~e = ~P means that the orientation of the edge e is the
same as the orientation of the path P , and ~e 6= ~P means the
orientations are opposite. The orientation of an edge e in a path
P = . . . , p, e, q, . . . is said to be the same as the orientation
of the path if e = (p, q). If e = (q, p), the orientation of the
edge is opposite to that of the path. It is straightforward to see
that j is a flow of intensity Ik from u to o, and therefore by
Lemma 3, j is an unbiased estimator of xu.
If G is not weakly connected, it can be decomposed into a
number of disjoint subgraphs such that every one of them is
weakly connected. These subgraphs are called weakly con-
nected components of G. Pick such a weakly connected com-
ponent that does not contain the node o, call it G1 = (V1, E1),
and pick an arbitrary node u in G1. By contradiction, assume
that there exists a flow of matrix intensity Ik from u to o. Let
A1 be the generalized incidence matrix of G1. Let G1 consist
of N nodes and M edges, and without loss of generality, let
u be numbered as node 1. Define J := [jT

1 , jT
2 , . . . , jT

M ]T ∈
RkM×k as the tall matrix of the flows on the edges in the
component G1 and ω = [Ik, 0, . . . , 0]T ∈ RkN×k with Ik in
the 1st k × k block position, and 0 everywhere else. Then the
conservation law (5) can now be expressed compactly as

A1J = ω. (28)

Now define 1 := [Ik, Ik . . . , Ik]T ∈ RkN×k, and multiply
both sides of the equation above by 1T , which is equivalent
to adding all the rows. The incidence matrix of a weakly
connected graph has the property that the sum of its rows
is 0 [15], and the same is true for the generalized incidence
matrix. Since G1 is weakly connected, we obtain the following
contradiction

1TA1J = 1T
ω ⇒ 0 = Ik. (29)

Thus no flow of intensity Ik from u to o is possible. The result
then follows from Lemma 3.

Proof of Lemma 6. Let is : E → R be the scalar current in
(G, 1) of unit scalar intensity from u to v. It follows from (8)
that

reff
u,v =

∑

e∈E
(ise)

2.

We first claim that the matrix current i in (G, Ro) of intensity
Ik from u to v is given by isIk .
To prove this claim, let c ∈ NF (A). Since i ∈ HR trivially,

〈i, c〉 =
∑

e∈E
Tr(iTe Roce) =

∑

e∈E
ise Tr(Roce)

=
∑

e∈E
ise Tr(c̄e) =

∑

e∈E
ise

k
∑

l=1

c̄(l,l)
e

where c̄e := Roce ∈ Rk×k for every e ∈ E , and c̄
(l,m)
e ∈ R

represents the (l, m)th scalar entry of the matrix c̄e. Hence,

〈i, c〉 =
∑

e∈E

k
∑

l=1

isec̄
(l,l)
e =

k
∑

l=1

∑

e∈E
isec̄

(l,l)
e =

k
∑

l=1

〈is, c̄(l,l)〉

(30)

where the k inner products on the right hand side are evaluated
in the space H1 defined for the scalar network (G, 1). Since c
is a circulation, Ac = 0. Therefore

∑

e∈Ep

ap,ec̄e = Ro

∑

e∈Ep

ap,ece = 0, ∀p ∈ V ,

where Ep is the set of edges in G that are incident on p, which
shows that c̄ is also a circulation. Clearly, each scalar valued
edge function c̄(l,m) : E → R is also a circulation for the
scalar electrical network (G, 1). It follows that 〈is, c̄(l,l)〉 = 0
for each l = 1, . . . , k. Hence, (30) implies

〈i, c〉 = 0

for every c ∈ N (A), which is precisely the characterization of
the current in HR stated in Corollary 1. This proves our claim
that isIk is the current in (G, Ro). Therefore, the effective
resistance is given by

Reff
u,v =

∑

e∈E
iTe Roie = Ro

∑

e∈E
(ise)

2 = Ror
eff
u,v ,

because of (8), which completes the proof.
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