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Abstract

Integral expressions for the pump and generated fields are presented
here for the case of second harmonic generation of a focused Gaussian
pump beam incident on a nonlinear crystal . The birefringent walk-off of
the generated beam and the effect of pump depletion are included in the
theory.

1 Introduction

The theory of second harmonic generation (SHG) of a focused Gaussian beam
in the presence of beam walk-off presented by Boyd and KleiIllnan(l) has been
widely used in the nonlinear optics community. A limitation of their method is
the exclusion of pump depletion which makes it inapplicable to the case of high
conversion efficiency. The numerical method developed by Smith (2) and recent
work by Wang and Weiner (3) and by Kasamatsu, Kubomura and Kan (4) ex­
tend the theory of Boyd and Kleinman to include the effect of pump depletion.
\Ve present here an alternate technique to calculate the spatial distribution of
the pump and the SHG fields in presence of diffraction, linear absorption, phase
mismatch, beam walk-off and pump depletion. The field distributions are ex­
pressed as multiple integrals, which are considerably simplified for the case of
collimated beams, i.e., when the spread of the pump beam due to difI'raction
inside the crystal can be ignored. This is often the case when high peak power
pulsed lasers are used as pump beams because the pump is intentionally kept



(2)

(3)

collimated through the nonlinear optical medium to avoid damage to the mate­
rial.

In the theory presented here the incident pump beam is assumed to be fo­
cused at the crystal center - this restriction can be easily removed later. The
aim of this work is to describe the general approach taken and to provide ex­
pressions for the electric fields expanded up to fifth power in the second-order
nonlinear optical coefficient, d. The method described here is an extension of

an early work on optical parametric oscillation (OPO)(5) and can be readily
applied to other nonlinear optical processes of current interest, such as pump
resonant SRO or resonant second harmonic generation (SHG). As pointed out
in ref.3, the Green's function method is easily extended to the time dependent
case as well. However, a limitation of the perturbative approach used here is
that multiple integrals need to be evaluated, which becomes computationally

time consuming when six, eight or higher dimensional integrals are involved.
In the following sections, the derivation of the relevant wave equations is

provided first, to set up the starting equations. Then, the Green's function
method of solution in terms of a power series in the nonlinear coefficient is
described, and the expressions for the pump and the SHG beam electric fields
are evaluated for a few terms.

2 The Starting Equations:
The notations for electric fields and nonlinear polarizations used here will gen­
erally follow the convention adopted in the Handbook of Nonlinear OptiCS(6)

(using the SI system of units). The subscripts p and s denote the pump and the
SHG fields, respectively. The fields are assumed to be linearly polarized, and
only the scalar components of the electric fields are considered in the nonlin­
ear interaction. The equation 16.4.5 in Quantum Electronics(7) is taken as the
starting point of the analysis here:

8E 82E 82
V2E = floO'm + floc 8t2 + ILo 8t2 PNL (1)

The electric fields at the pump and the SHG frequencies (wp and WS1 respec­
tively) are written as

EWp(r, t) = Ep(r)e-iwpt + cc

EW' (r, t) = E,,(r)e-iw,t + cc

and the total nonlinear polarization as

PNdr, t) = (P~PL(r)e-iwpt + cc) + (p~8L(r)e-iw8t + cc) (4)

Following ref. 6 (chapter 2) we assume that the nonlinear polarization terms at
the pump and the SHG frequencies can be written as

P"//L(r) = 4dEoE,,(r)E;(r)

2

(5)



P'f,h(r) = 2dcoEp(r)2 (6)

Inserting equations 2,3,4,5 and 6 in equation 1, and collecting terms oscillating
at frequencies wp and ws, we obtain,

where

(\72 + k;.)Ep(r) = -J10w;P':,'L(r)

(\72 + k;,)Es(r) = -ILOW;P'f,i'L(r)

(7)

(8)

k;. = k; + iWpJ10ap k;l = k; + iWsJ10as (9)

In the above, it has been assumed that in equation 1, cp,s = con~,s and that the
wavevectors are kp,s = np,swp,s/ c where np and ns denote the refractive indices
of the medium at the two frequencies.

3 Green's Function Solution

The solution to the inhomogeneous differential equations 7 and 8 above is ob­
tained using the Green's function method:

J1 w2 J eikpl RpEp(r) = -~ dr'-R--P':,PL(r)41f p

(10)

(11)
J1 w2 J eik'l R,

Es(r) = -~ dr'--P'!v'L(r)
41f Rs

where Rp and Rs denote the magnitudes of the displacement vectors connecting
the points r' and r for the pump and the SHG fields, respectively. The pump
beam is assumed to propagate in the medium as an ordinary wave, so that

Rp I r - r' I

~')2 + (y - y')2 + (z - z')2 (12)

If the SnG field propagates through the nonlinear crystal as an extraordinary
wave, say with a walk-off angle denoted by p, and if the Cartesian coordinates
are chosen such that the propagation vector of the SHG field lies in the x, z
plane and is at angle p with the z axis, we have (1)

Rs = J{(x - pz) - (x' - pz')}2 + (y - y')2 + (z - z')2

For small absorption, equation 11 can be re-written as:

(13)

i"'V .op
kPI = kp + ~2

3

,Os

kSl """ ks + ~2 (14)



where Ctp,s = C7V/-lO/Ep, .• denote the the linear absorption coefficients. The
Fresnel approximation

and

1
Rp ~ (z - z') + nI~. ~,\ {(x - x? + (y _ y')2}

1
Rs ~ (z - z') + nl ,\ {(xa - X')2 + (y _ y')2}

(15)

(16)

is used in the exponents, with Xa = x-p(z-z') and the approximation Rp, Rs ~
(z - z') is used in the denominators. Equations 10 and 11 then reduce to

J10W~ J dx' dy' dz'Ep (r) == - -4-1["- --z---z-, -

eik,,(Z-z')- ~(z-z')+ 2(:~Z') {(x-x')2+(y_y')2}p~PL (1") (17)

and

__ /-low; J dx' dy' dz'Es(r) - 4 '1[" z-z

eik• (z-z') -;.>- (z-z')+ 2(;~'z') {(xu -x')2+(y_y')2}p~'L (1") (18)

The incident pump beam is assumed to have Gaussian cross-sections and to be
focused at the center of a nonlinear medium of length t. Assuming the origin of
the coordinate system to be at the incident face of the medium, the amplitude
E~O) (1') of the incident pump field can he written as

E(O)(r) = Epo eikpz-"'pz/2e-(x2+y2)/{w~,,(1+2i(z-&)/bp} (19)
p 1+2i(z-~)/bp

where bp == kpw5p denotes the confocal parameter. In the first order approxi­
mation, i.e., when pump depletion is ignored, it is assumed that the pump field
Ep remains equal to E~O), a nonlinear polarization at frequency Ws is generated
through equation 6, which gives rises to an electric field (dE~l) at frequency Ws

through equation 11. This generated SHG field interacts with the pump field
E~ to generate a nonlinear polarization through equation 5, which generates
(through equation 10) a component of the electric field at the pump frequency

(denoted by, say, d2 E~2). Following this procedure, a series of SHG and pump
field terms, respectively odd and even powered in d, can be obtained. That is,
in general, the SHG and the pump fields can be written as

Es = dE~l) + d3 E~3) + d5 E~5) ...

Ep = E~O) + d2 E~2) + d4 E~4) + d6 E~6) ...

4
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(21)



Substituting these series in the equations 5 and 6, the nonlinear polari.zation
terms can also be expanded in power series in d:

pp(2) = 4d2 ( E( I) E(O) *NL 0 s p

pp(4) = 4d4( (E(I) E(2)* + E(3) E(O)*)NL 0 s p s P

pp(6) = 4d6( (E(5) E(O)* + E(3) E(2)* + E(I) E(4)*)NL 0 s p s p s p

Using equations 19 and 24, and substituting in 18, the first term on the right

hand side of eqn. 20 can be determined. Using this expression for dE?) and

eqn. 19 in eqn. 27, the d2E~2) term in eqn. 21 can be evaluated from eqn.

17. With this d2 E~2) and the Es from eqn. 19 substituted in eqn. 25, equation
17 can be used for the evaluation of the d3 Ei3) term in Eqn. 20, and so on.

Before embarking on the explicit determination of each of these terms, in the
next section several parameters are defined, and a new notation is introduced
which allows all the spatial integrations to be performed in dimensionless units.

where

and

W 8(.1) s(3) 8(5)
P N"L = PN L + PN L + PN L ...

W p(2) p(4) p(6)
P NPL = P N L + P N L + P N L ...

P~~ = 2d(oE~O)2

pP) = 4d3( E(O) E(2)NL 0 p p

ps(5) = 2d5( (E(2)2 + 2E(4) E(O»)NL 0 p p p

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

3.1 Notation

The parameter Ep == l/bp where l denotes the length of the nonlinear medium
is used to characterize the amount of focusing of the pump beam. The phase
mismatch between the nonlinear polarization beam and the generated SHG wave

is denoted by
6.k == 2kp - ks. (30)

Similarly, the mismatch in linear absorption between the nonlinear polarization
and the SHG beam is proportional to

6.cx == cxp - cxs/2.

In addition, the following parameters are defined:

(31 )

P == x/wop

PI == X' /Wop

q == y/wop

qi == y'/wop

5

t == z/l

tl == z'/l

(32)

(33)



Po == Xo!Wop WI == pl/wop (34)

where WI is a dimensionless parameter which provides a measure of the amount

of walk-off of the SHG wave as it propagates through the crystal. Also, dcfining
the variables up and dp(t) as

Up == 1 - i~p

dl(t) == up + 2iE.,pt

(35)

the incident pump field can be expressed as:

E(O)(r) = Epo eikplt-C>plt/2e-(p2+q2)/d,(t)
p dl(t)

(36)

(37)

4 The expressions for the electric field ternlS
4.1 The first order SHG field term

Using Eqns. 18,19 and 24, the first order signal field term dEF) is obtained
(after integrating over the transverse coordinates):

dE,:I)(r) = K.Epof.~I)(r) (38)

where

and

"'== 2i7rdlEpo

Asns
(39)

. ( 2+ 2) 2

. 1t e(,L'>k-L'>a)lt, e- Pa q d2(t,t,)
f~l)(r) == e(,kR-C>8/2)lt dtl-----------.

o dl(tdd2(t,td

Here Po = P - Wl(t - td· The function d2(t, tl) is defined as

d2(t, tl) == dl(tl) + 2ikE.,p(t - tl),

where k == 2kp/ks.

(40)

(41 )

4.2 The second order pump field term

Using Eqns 38,19, 27 and 17, the second order pump field term d2 E~2) can be
obtained (after integrating over the transverse coordinates):

d2E(2)(r) = _ns I'" 12 f(2)(r)
p np p

6

(42)



e(ikp-ap/2)lt it dt1e(-itlk-as/2)lt,

it,x 0 dt2e( -itlk-tla)lt2

e - (p2+q2)a2+2pb2 +C2

where

!~2)(r)

x
d1 (t4)ds (t, tl, t2, t3, t4)

(43)

with

and

d3(tl, t2)

a2(t,tl,t2) == J4(t,tl,t2"

dl (tIt
b2(t, tl, t2) == 2WI(tl - t2) A4(t, tl, t2"

C2(t, tl, t2) == -2WI2(tl _ t2)2( d2a(t, tl)
A4(t,tl,t2"

(44)

(45)

(46)

Other functions used above are defined as

d2a(t, td == dl(tl)* + 2i~p(t - tl) (47)

d3(tl, t2) == d2(tl ,t2) + 2dI (tl)* (48)

d4(t, tl, t2) == dl(td*d2(tl, t2) + 2i~p(t - tl)d3(tl, t2) (49)

4.3 The third order SHG field term

Using Eqns. 19, 42, 25 and 18, the third order SHG field term d3 E.P) can be
obtained (after integrating over the transverse coordinates):

d3E~3)(r) = _(nS)2K I K 12 !p)(r)
np

(50)

e(iks -as/2)lt it dti e(itlk-tla)lt,

ltl [2X 0 dt2e( -itlk-a,/2)lt2 0 dt3e(itlk-tla)lt3

e-(Pa 2 +q2)a3+2pab3+C3

where

where

!i3)(r)

x
dl(t3)d6(t, tl, t2)

d5(tl,t2, t3)

a3 (t, t I , t2) == d6 (t, t I, t2, t3) ,

7
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(52)



and

b3(t, t1, t2) == 2W1(t2 - t3) d1(t2)*d1(t1)
-'6(t, t1, t2, t3"

2 91(t,t1,t2)

C3(t,t1,t2) == W12(t2 - t3) -'4(t,t1,t2)d6(t,t1,t2,t3"

(53)

(54)

with

and

d5(iI, t2, t3) == d4(t1, t2, t3) + d1(t1)d3(t2, t3) (55)

d6(t, t1, t2, t3) == d1(tdd4(t1, t2, t3) + ikf,p(t - t1)d5(t1, t2) (56)

91(t, t1, t2, t3) = 4ikf,p(t - t1)d1(t1)d1(t2)*2 - 2d2a(t1, t2)d6(t, t1, t2, t3) (57)

4.4 The fourth order pump field terms

Using Eqns. 38, 42, 50 and 19 in 28 and 17, the fourth order pump field term
d4 E(4) is obtained as a sum of two terms d4 E(4) and d4E(4).P pI p2 .

d4E~i)(r) = 2(~8)2 I '" 14 Epof~i)(r)p

d4E~;)(r) = (~S)2 I'" 14Epof~~)(r)p

The expressions for f~i) and f~~) are given in the next two subsections.

4.4.1 /4)pI

1t [1f~i) (r) == e(ikp-ap/2)lt 0 dt1 e( -if:;.k-as/2)lt, 0 dt2e(if:;.k-f:;.a)lt"

lt2 [3X 0 dt3e( -if:;.k-a.,/2)lt3 0 dt4e(if:;.k-f:;.a)lt4

e-(p2+q2)a41 +2pb41+C41
x

d1(t4)d8(t, t1, t2, t3, t4)

(58)

(59)

(60)

where

and

a41(t, t1, t2, t3, t4) == d7(t1, t2, t3, t4)
-'8(t, t1, t2, t3, t4"

b41(t, t1, t2, t3, t4) == WI d1(t1)*92(t1, t2, t3, t4)
d8(t, t1, t2, t3, t4) ,

(61)

(62)

C41(t, t1, t2, t3, t4) == W/{93(t1, t2, t3, t4) + 94(t, iI, t2, t:3, t4)} (63)

8



with

92(t1,t2,t3,t4) == (t1-t2)d5(t2,t3,t4) -2(t3 -t4)d1(t3)*d1(t2)

(t t t t) - 93n(t1, t2, t3, t4)
93 1, 2, 3, 4 = ( )93d t 1, t2,. t3, t4

_ 94n(t, t1, t2, t3, t4)

94(t, t1, t2, t3, t4) = ( )"94d t,t1,t2,t3,t4

93n(t1, t2, t3, t4) = (t3 - t4)291(t1, t2, t3, t4)

-(t1 - t2)2d4(t2, t3, t4)d5(t2, t3, t4)

93d(t1, t2, t3, t4) = d4(t2, t3, t4)d6(t1, t2, t3, t4)

94n(t, t1, t2, t3, t4) = 2i~p(t - t1)d1(t1)*92(t1, t2, t2, t3)2

94d(t1, t2, t3, t4) = d6(t1, t2, t3, t4)ds(t, t1, t2, t3, t4)'

The functions d7 and dB are given by

(64)

(65)

(66)

(67)

(68)

(69)

(70)

d7(t1, t2, t3, t4) == d6(t1, t2, t3, t4) + d1 (tJ)*d5(t2, t3, t4) (71)

and

dS(t1, t2, t3, t4) == d1(t1)'d6(t1, t2, t3, t4) + 2i~p(t - tJ)d7(t1, t2, t3, t4) (72)

4.4.2 f(4)p2

t t'f;~)(r) = e(ik,,-op/2)lt Jo dhe(-if:>.k-o./2)lt, Jo dt2e(if:>.k-f:>.o)lt2

t' t3x Jo dt3e{if:>.k-o./2)lt3 Jo dt4e( -if:>.k-f:>.o)lt4

e - (p2 +q2 )a42 +2pb42 +C42
x

d1(t4)ds(t, h, t2, t3, t4)

where

a42(t, t1, t2, t3, t4) == d9(t1, t2, t3, t4)
dlO(t, t1, t2, t3, t4)'

b42(t, t1, t2, t3, t4) == WI d1(tJ)*95(t1, t2, t3, t4)
dlO(t, t1, t2, t3, t4) ,

and

C42(t, t1, t2, t3, t4) == W1296(t1, t2, t3, t4)

9
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(74)

(75)

(76)



with

95(t1,t2, t3, t4) == 2(t1 - t2)d4(t1, t3,t4)* + 2(t3 - t4)d21(tl, t3)*d2(tl, t2) (77)

2i~p(t - t1)95(t1, t2, t3, t4)2

96(t, t1, t2, t3, t4) == d2(t1, t2)d4(t1, t3, t4)*dlO(t, h, t2, t3, t4)

2(t1 - t2)2 2(t3 - t4)2d21 (tl, t3)*

d2 (t1, t2) - d4 (t1, t3, t4)*

The functions dg and dlO are given by

(78)

d9(t1, t2, t3, t4) == 2d4(t1, t3, t4)* + d2(tl, t2)d3(t3, t4)* (79)

and

dlO(t, tl, t2, t3, t4) == d2(t1, t2)d4(t1, t3, t4)* + 2i~p(t - t1)dg(t1, 12, t3, t4) (80)

4.5 The fifth order SHG field term

Using Eqns 42, 58, 59 and 19 in 26 and 18, the fifth order pump field term
d5 E(5) is obtained as a sum of three terms d5 E(5) d5 E(5) and d5 E(5).8 s 1 , 82 82 .

d5E;~)(r) = (:S)2,.. I,.. 14 Epof;~)(r)p

d5E;~)(r) = 4(:S)2/'i; I,.. 14 Epof;~)(r)p

and

d5E;~)(r) = 2(:S)2/'i; I K 14 Epof;~)(r)p

where the expressions for the terms f;~), f;~) and f;~) are given below:

(81)

(82)

(83)

4.5.1 f(5)sl

f.~~) (r) == e(ik, -Os/2)lt it dt1 e(i6k-6o)lt,

x ltl dt2e( -i6k-a.j2)lt21t2 dt3e(i6k-6a)lt3

x ltl dt4e( -i6k-as/2)lt41t4 dt5e(i6k-6a)lt5

e-(Pa 2+q2)a5l +2Pah5l +C5l
X ------------

dl(t3)dl(t5)dI2(t, t1, t2, t3, t4, t5)
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where

and

dll (tl, t2, t3, t4, tS)

aSI(t, tl, t2, t3, t4):= dI2(t, tl, t2, t3, t4, tS)'

97(tl, t2, t3, t4, tS)

t t) = W --"--;'--:---;---;:-~ , ) ,bSI(t,tl,t2, 3, 4 - IdI2(t,tl,t2,t3,t4,tS

(85)

(86)

CSI(t, tl, t2, t3, t4) := W12{ 9s(tl, t2, t3, t4, ts)2dI2a(t, tl, t2, t3, i4, tS)
dI2(t, tl, t2, t3, t4, tS)

-9g(tl, t2, t3, t4, ts)} (87)

with

97(tl, t2, t3, t4, ts) := 2(t2 - t3)dl(t2)*d4(t1,t4, ts)

+ 2(t4 - tS)dl(t4)*d4(tl, t2, t3) (88)

_ dl(t2)' dl(i4)'

9S(tI, t2, t3, t4, ts) = 2(t2 - t3) J ( + 2(t4 - ts) d ( \ (89)4 tl,t2, t3 4 tl, t4, ts

_ 2 d21(t1, t2) 2 d21(tl, t4)

9g(tl, t2, t3, t4, tS) = 2(t2 - t3) J ( + 2(t4 - tS) d ( \' (90)4 tl,t2,t3 4 tl,t4,tS

The functions dll and dl2 are given by

dll(tl, t2, t3, t4) := d3(t2, t3)d4(tl, t4, ts) + d3(t4, tS)d4(tl, t2, t3) (91)

and

dI2(t, tl, t2, t3, t4) := d4(tl, t2, t3)d4(tl, t4, ts)

+ ik~p(t - h)dll (tl, t2, t3, t4, is) (92)

4.5.2 fS)82

where

f;~)(r) := e(iks-a,/2)lt it dtle(it>.k-t>.a)ltl

x ltldt2e( -it>.k-as/2)lt21t2 dt3e(it>.k-t>.a)lt3

x lt3 dt4e(-it>.k-a,,/2)lt41t4 dtse(it>.k-t>.a)lt5

e-(Pa 2+q2)a52+2Pab52+C52
X -------------

dl(t3)dl(ts)dI2(t, tl, t2, t3, t4, ts)

dI3(tl, t2, t3, t4, ts)

aS2(t, tl, t2, t3, t4) := dI4(t, tl, t2, t3, t4, ts)'
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and

bS2(t, tl, t2, t3, t4) == WI dl(tddl(t2)*92(t2, t3,t4, tS)
dI4(t, tl, t2, t3, t4, tS) ,

(95)

CS2(t, tl, t2, t3, t4) == WI2 {93(t2, t3, t4, tS) + 94 (tl, t2, t3, t4, tS)

+ ik~p(t - tl)dl(tl)dl(t2)*2hl(t2,t3,!.4, tS)2} (96)
dS(tl, t2, t3, t4, tS)dI4(t, tl, t2, t3, t4, ts).

The functions dl3 and dl4 are given by

dI3(tl, t2, t3, t4, ts) == dl (tl)d7(t2, t3, t4, ts) + dS(tl, t2, t3, t4, ts) (97)

and

dI4(t, tl, t2, t3, t4, ts) == dl(tl)ds(tl, t2, t3, t4, ts)

+ ik~p(t - tddI3(tl, t2, t3, t4, ts) (98)

4.5.3 is)83

where

and

f;g)(r) == e(ik8-a./2)lt lt dtle(i6k-6a)lt1

x lt1dt2e(-i6k-a,/2)lt21t2 dt3e(i6k-6a)lt3

x lt2 dt4e(i6k-aB/2)lt41t4 dtse( -i6k-6a)lts

e-(Pa 2+q2)ns3+2PabS3+CS3
X -------------

dl (t3 )dl (ts )d12 (t, tl , t2, t3, t4, ts)

aS3(t, tl, t2, t3, t4) == dIS(tl, t2, t3, t4, ts)
d16(t, tl, t2, t3, t4, ts)'

bS3(t, tl, t2, t3, t4) == WI dl(tI)9s(t2, t3, t4, ts)
d16(t, tl, t2, t3, t4, ts) ,

(99)

(100)

(101 )

CS3(t, tl, t2, t3, t4) == W/{96(tl, t2, t3, t4, ts)

+ ik~p(t - tl)dl(tl)h3(t2, t3, t4, tS)2 } (102)
dIO(tl,t2,t3,t4,ts)dI6(t,tl,t2,t3,t4,tS)'

The functions dls and d16 are given by

dIS(tl, t2, t3, t4, ts) == dl(tl)dg(t2, t3, t4, ts) + dlO(tl, t2, t3, t4, ts) (103)

and

dI6(t, tl, t2, t3, t4, ts) == dl (tddlO(tl, t2, t3, t4, ts)

+ ik~p(t - tl)dIS(tl, t2, t3, t4, t.)) (104)
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5 Conclusions

Expressions for the pump and second harmonic fields are presented as series of
terms in increasing powers of the nonlinear optical coefficient. The effects of
beam diffraction, linear absorption and beam walk-off are included. An advan­
tage of the method presented here over the widely used numerical method may
lie in the increase in the computation speed, especially in special cases. For
example, in the case of a collimated pump beam, i.e., for ~p « 1, the single,
double and triple integrals in the expressions for the fields reduce to analytical
expressions and the quadruple and quintuple integrals reduce to much simpler
integrals which can be rapidly evaluated using standard computers. Also, the
method can be extended to the case of pump beams of arbitrary shape.
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