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ANALYTICAL AND EXPERIMENTAL STUDIES OF THE
QUANTIFICATION AND PROPAGATION OF UNCERTAINTIES IN

NONLINEAR SYSTEM MODELING AND SIMULATION

Abstract

The project research objectives were focused on developing methods and procedures
suitable for use with dynamic response measurements from flexible structural
components and assemblages that may incorporate elements undergoing significant
multi-dimensional nonlinear deformations. By using a powerful model-free approach to
obtain computationally efficient reduced-order models, a general framework was
developed for the probabilistic representation and propagation of measured uncertainties
in the stochastic nonlinear test articles, their related nonparametric nonlinear model, and
the corresponding probabilistic time-history response of the physical system. The
research included carefully conducted experimental studies of generic types of
nonlinearities likely to be encountered in aerospace structures. High-fidelity models (both
parametric as well as nonparametric) were created that have the potential to provide
predictive descriptions of uncertain nonlinear system behavior under arbitrary dynamic
environments.

Accomplishments

Research activities of this project proceeded along two fronts: (1) an experimental phase
involving the design and fabrication of an adjustable test apparatus for conducting studies
on a generic multi-dimensional "joint" element which incorporates important nonlinear
characteristics such as nonlinear elastic properties, hysteretic characteristics, and
deadspace nonlinearities involving friction, and (2) an analytical phase focused on the
development of a theoretical framework for processing experimental structural response
measurements from uncertain systems and to develop and evaluate the utility of some
promising analytical tools for the quantification and propagation of uncertainties in
nonlinear dynamic systems.

1.0 ANALYTICAL STUDIES:

Identification and Prediction of Stochastic Dynamic Systems in a Polynomial Chaos
Basis

An approach for obtaining predictions about the dynamic response of an uncertain non-
linear two-degree-of-freedom system under deterministic excitations has been developed.
This approach consists of two independent procedures. In the first step, the Restoring
Force Method is applied to identify the dynamic parameters of an uncertain nonlinear
single-degree-of-freedom system with randomness in all its parameters. After identifying
the properties of all nonlinear systems, the second phase is applied and the stochastic
differential equations governing the motion of the uncertain non-linear two-degree-of-
freedom system (Eq. 1) is solved using Polynomial Chaos Expansion:
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mil,(t,O) + r(x,(1,0),i (t,O),0) -r 2 (x 2 (t,0) - x1 (t,0),*2(1,0) - j(1(1,0),0) = F(t)

m2 2 (t,0) + r2(x 2 (t0) - xJ1(t,0),' 2 (t,0) - ,(tO),O) + r3 (x 2 (t1,0), 2 (t,0),0) = F2 (1)

where the state variables and restoring forces will be functions of a random vector 0.

Figure 1: Nonlinear two-degree-of-freedom system.

A numerical study in which just the non-linear coupling parameters are assumed to be
stochastic was carried out as an example. The uncertain viscous damping term was
assumed to have a uniform distribution, the uncertain linear stiffness a Gaussian
distribution, and the uncertain hardening coefficient a Gamma distribution. For all three
parameters a 25% coefficient of variation was assumed. By using the nonparametric
identification technique under discussion, the uncertainty in the identified parameters was
determined as well as their corresponding histograms, and compared with original
probability distributions (Figure 2).

Having identified the nonlinear system, a Polynomial Chaos Expansion (PCE) is
performed to represent the random characteristics of the nonparametric estimated
parameters. Due to the stochastic nature of the dynamic response of the system, it can be
expanded again in a Polynomial Chaos basis leading to predictions of random response
time histories reflecting the uncertainty in the real dynamic parameters and the error
propagation in the identification process. The results obtained after solving the stochastic
differential equation of motion (Eq. 1) subjected to deterministic swept-sine excitations
are summarized in Figure 3. The solutions for x,(t,0) and x2 (t,0) are given in terms of

their means M., , yx. and standard deviations ux,, J0A. Additionally, the variances

obtained by using PCE are compared with the variances calculated after solution of
deterministic differential equations for 15000 Monte-Carlo events corresponding to the
"real" random system. It is clear that an accurate estimation of responses in the nonlinear
2DOF system was achieved by performing the nonparametric identification technique.

Further details regarding this study are available in the work of Ghanem et al., 2005, and
in Masri et al., 2005, and Masri et al., 2006.
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Figure 2: Statistical characteristics of estimated nonlinear SDOF. Part (a) shows the mean of the estimated

Restoring Force. Parts (b),(c) and (d) show distribution of identified parameters , k and i compared with
the corresponding parent distribution used for generating the "real" uncertain parameters.

2.0 EXPERIMENTAL STUDIES:

Test setup of a 2DOF Nonlinear Nonconservative "Joint" System
A test apparatus was designed to simulate the behavior of a nonlinear dissipative 2DOF
"joint" element, in order to utilize the application of data-based model-free
representations of such systems. The test setup consists of two computer-controlled
elector-mechanical servo drives that generate external excitations in two independent
directions. The motion of the drives is transferred through a shaft, with universal joints at
each end to provide decoupled motions, to the nonlinear "joint" element. The applied
forces to the system are measured through two sets of strain gauges mounted on the shaft
in axial and torsional configurations. The relative motions, in the axial and rotational
directions, of the "joint" are measured with four sets of optical encoders. Two linear and
angular accelerometers are used to measure the absolute acceleration of the "joint". The
data acquisition system included a DAQ-board, three counter-boards, controller, and a
chassis, in order to have synchronized measurements. A pictorial diagram indicating the
inter-connection of the main system components, including the mechanical assembly,
excitation sources, instrumentation network, and sensors, is provided in Fig. 4
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Figure 3: Stochastic response of 2DOF nonlinear system. Left column shows the stochastic solution for

x, (t,O) and relative displacement x 2 (t,) -x 1 (t, 0). The right row shows the comparison between the

standard deviations obtained by using the identified parameters and 15000 Monte-Carlo realizations of the
"real" parameters.

Formulation
The nonlinear nonconservative components, in this study, are presented as massless
nonlinear 'joint" elements, which are located between two lumped masses of the system.
Figure 5 shows the free body diagram of a massless nonlinear "joint" element that is
located between DOF-i and -J, with constant mass matrices of M,.and Mithat

characterizes the inertia forces; x i , i, xj , and i, which are the state of the DOFs;

r(x,x,p) which represents the restoring force vector of nonlinear nonconservative

forces of the "joint" element; and F F,,0 , , ,, T,.,, T,,,,j and which are the sum of the

resulting forces (external and internal) applied to the DOFs-i and-j of the system.
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Figure 4: System architecture and wiring diagram of test setup.

The nonlinear restoring force of the "joint" element shown in Fig. 5 can be obtained by
subtracting the corresponding inertia forces of each DOFs from the sum of the resulting
forces applied to the "joint" element of the system.

:.o ," "" : _. .:-r(x, ,p)

x o t a , .. "

xj

where: 7 toal

Figure 5: Free body diagram of a generic massless nonlinear "joint" element.
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Figure 6: Experimental data sets used in the identification of the nonlinear coupled 2DOF "joint".
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Training Data Sets from Experimental Test Setup

For an accurate identification of nonlinear dynamical systems, it is essential that the
identification data sets provide a complete representation of the nonlinear characteristics
of the system Therefore, the data sets selected for the identification of the simulation
model, were data sets of the system responses when subjected to broadband random
excitations, in order to capture all the modes of the system within the excitation
frequency range. However, for capturing the coupling effects of the nonlinear component
through the identification process, it was necessary that the data sets incorporate the
coupling effects of the DOFs, because the identified model depends on the input and
output data. Therefore, three data sets were required to capture the correct behavior of the
system. These data sets, which are shown in Fig. 6, represent the system response when
there was excitation on each of the axes individually, and when the excitation forces were
applied to both axes simultaneously. Moreover, the data were normalized across all the
sets prior to the identification process in order to have a zero mean with amplitude of±l.

Further details regarding this study are available in the work of Caffrey et al., 2004 and
Tasbihgoo et al., 2006.
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