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Abstract 
Acoustic-to-seismic (A/S) coupling involving airborne sound is used to generate soil 

vibrations that interact with the top plate of a buried landmine.  Due to scattering, the interaction 

at the soil-mine interface produces an enhanced and strongly nonlinear soil surface vibration 

directly over the buried landmine.  Resonant tuning curves of the soil-mine system show that the 

nonlinear behavior observed near resonance for “on the mine” locations is considerably stronger 

that that seen “off the mine.”  This suggests that some false alarms due to the resonant effects of 

the ground’s natural layering may be eliminated by comparing the frequency softening in 

resonant tuning curves between “off” and “on target” locations. 

Experiments with the soil-mass oscillator (SMO) apparatus show that the nonlinear 

acoustic landmine detection problem involves mesoscopic nanoscale nonlinear elastic behavior.  

Resonant tuning curves have linear backbones, a behavior also characteristic of certain 

geomaterials (sandstone).  Elasto-slip (Iwan 1966) and LISA (Scalerandi et al 2002) models of 

hysteresis are used to explain this phenomenon. 

The soil-mine interface, which is modeled using a soil-plate oscillator (SPO) apparatus, is 

extremely nonlinear.  The SPO is excited using both acoustic and electromagnetic means.  A/S 

coupling experiments are employed to simultaneously measure vibrations at the underside of a 

buried clamped plate and the soil surface.  Electrodynamic experiments determine the motional 

impedance of a combined soil-plate system.  At large drive amplitudes, the backbone curves 

obtained from the SPO exhibit more complicated behavior, which is described using a bilinear 

hysteresis model (Caughey 1966). 

Nonlinear acoustic landmine detection experiments are performed in the anechoic 

chamber facility using both a buried acrylic drum-like mine simulant and a VS 1.6 plastic anti-
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tank landmine.  Using an automated laser Doppler vibrometer, soil surface vibrations are profiled 

as a function of scan position.  Elements of both the elasto-slip and bilinear hysteresis models 

appear in these experiments. 

 

Keywords: 

- hysteresis 

- mesoscopic 

- nonlinear 

- nonclassical nonlinearity 

- acoustic landmine detection 



4 

Acknowledgments 
A special thank you goes out to those individuals whose contributions have made this 

endeavor possible.  Foremost, to my advisor, Professor Korman, without whom the project never 

would have even started.  Also, to CDR Edward Tucholski, USN, for his ever insightful input.  

To Mr. Rick Jackson, for his constant helpfulness in procuring laboratory equipment.  To Dr. 

Michele Griffa and the Geophysical Research Group (EES-11) at the Los Alamos National 

Laboratory for a very educational visit to their facility.  To the Trident Committee for the 

opportunity to see this project through to completion and to Mrs. Cindy Gallagher at the 

Multimedia Services Center for helping organize a year’s worth of work into a final presentation.  

Lastly, and most importantly, to MIDN Kathleen E. Pauls,  my roommates MIDN Christopher R. 

Eubanks and MIDN Blake M. Wanier, my fellow Rough Riders of 26th Company, and my 

Company Officer, Major Jay Bishop, USMC – without their constant support I most certainly 

would not have succeeded. 



5 

Table of Contents 
Abstract ........................................................................................................................................... 2 
Acknowledgments........................................................................................................................... 4 
Table of Contents............................................................................................................................ 5 
List of Figures ................................................................................................................................. 7 
List of Tables ................................................................................................................................ 10 
Chapter 1 – Introduction ............................................................................................................... 11 

Historical Background .............................................................................................................. 11 
History of Nonlinear Acoustic Landmine Detection ................................................................ 11 

Chapter 2 – Experimental Procedures and Results ....................................................................... 18 
2.1 Soil Mass Oscillator............................................................................................................ 18 

2.1a. Soil Stiffness – 1-D Model........................................................................................... 19 
2.1b. Nonlinear Observations from Acoustic-to-Seismic (A/S) Coupling Experiments ...... 23 
2.1c. Mesoscopic Elastic Behavior ....................................................................................... 24 
2.1d. The Iwan Model of One-Dimensional Forced Oscillations with Hysteresis ............... 25 
2.1e. Soil Comparison........................................................................................................... 32 
2.1f. Local Interaction Simulation Approach (LISA) Modeling .......................................... 33 

2.2 Soil Plate Oscillator ............................................................................................................ 40 
2.2a. Vibrations of an Elastic Clamped Plate in the Absence of Soil Loading..................... 41 
2.2b. Comparison of the Soil-Mass Oscillator, Soil-Plate Oscillator, Buried Mine Simulant, 
and VS 1.6 Nonlinearities ..................................................................................................... 42 
2.2c. Mesoscopic Elastic Behavior at Higher Amplitudes in the Soil-Plate Oscillator........ 45 

2.3 Electrodynamic Soil Plate Oscillator .................................................................................. 50 
2.3a. Measuring the Relationship between the Driving Force and the Vibration Response 50 
2.3b. Measuring the Dynamic Impedance of the Soil-Plate Oscillator as a Function of 
Amplitude ............................................................................................................................. 52 

2.4 Nonlinear Detection of a Buried Landmine Simulant ........................................................ 55 
2.4b. Comparison of the “On the Mine” versus “Off the Mine” Nonlinear Resonant 
Response for a Mine Simulant.............................................................................................. 57 
2.4c. One-Dimensional Velocity Profiles ............................................................................. 58 
2.4d. Two-Dimensional Velocity Profiles ............................................................................ 61 

2.5 VS 1.6 Anti-tank Landmine................................................................................................ 63 
2.5a. Comparison of the “On the Mine” versus “Off the Mine” Nonlinear Resonant 
Response for a VS 1.6 Landmine ......................................................................................... 63 
2.5b. One-Dimensional Velocity Profiles............................................................................. 65 
2.5c. Effects of grazing angle upon experimental measurements......................................... 65 

Conclusions................................................................................................................................... 68 
Appendix A - Experimental Equipment ....................................................................................... 72 

A1.  Electronic Equipment........................................................................................................ 72 
A2.  Vibration Measurement Devices....................................................................................... 73 

A2i. Piezoelectric Accelerometer ......................................................................................... 73 
A2ii. Geophone ..................................................................................................................... 73 
A2iii. Laser Doppler Vibrometer (LDV) .............................................................................. 74 

Appendix B - Linear versus Nonlinear Behavior ......................................................................... 76 



6 

Appendix C – Soil-mass oscillator tuning curves, backbone curves, spring constants and Iwan-
model yield forces................................................................................................................... 78 

Appendix D - Presiach-Mayergoyz Formalism ............................................................................ 81 
Appendix E - Wave Propagation on a Clamped Plate .................................................................. 88 
Appendix F - Automated Detection Algorithms and LabVIEW® ................................................ 98 
Appendix G - Buried Acrylic Simulant: Resonant Tuning Curves and Backbone Curves ........ 102 
Appendix H – Two-Dimensional Soil Surface Vibration Profiles ............................................. 109 
Appendix I – Buried VS 1.6 Anti-tank Landmine: Resonant Tuning Curves and Backbone 

Curves ................................................................................................................................... 112 
Bibliography ............................................................................................................................... 117 
References................................................................................................................................... 120 
 



7 

List of Figures 
Figure 1 – Linear model of soil as a damped spring..................................................................... 12 
Figure 2 – Linear model of the top plate of a landmine as an elastic plate with lump-element 

mass loading............................................................................................................................ 12 
Figure 3 – Linear model of a soil and elastic plate coupled oscillator ......................................... 13 
Figure 4 – Nonlinear model depicting separation between the elastic top plate of a landmine and 

soil during the tensile phase of oscillation.............................................................................. 14 
Figure 5 – Nonlinear model of soil as a hysteretic medium ......................................................... 14 
Figure 6 – Nonlinear model of the soil-mine system in agreement with a well-defined theory for 

bilinear hysteresis.................................................................................................................... 14 
Figure 7 – Soil-mass oscillator schematic .................................................................................... 19 
Figure 8 – Linear regression of ω2 versus m-1 used to determine the effective stiffness of the Soil-

Mass Oscillator. ...................................................................................................................... 22 
Figure 9 – Nonlinear tuning curves and linear backbone curve from the soil-mass oscillator using 

dry, sifted masonry sand. ........................................................................................................ 24 
Figure 10 – Classical nonlinearity.  On the microscopic scale, each single grain of sand exhibits a 

strain response when subjected to an external stress. ............................................................. 24 
Figure 11 – Mesoscopic nonlinearity.  On the mesoscopic scale, individual grains interact with 

neighboring grains.  The points of contact between grains cause a “stick-slip” strain response 
when stressed. ......................................................................................................................... 24 

Figure 12 – Combined model of elasto-slip hysteresis................................................................. 25 
Figure 13 – Force-deflection diagram for one element in the elasto-slip model .......................... 26 
Figure 14 – Hysteresis loop created by exceeding the yield force of a system ............................ 26 
Figure 15 – Hysteresis loops for varying distribution functions, φ, defined by β ........................ 27 
Figure 16 – Backbone curves from the Iwan model for various values of β. ............................... 30 
Figure 17 – Tuning curves predicted by the Iwan model for the case β=1................................... 30 
Figure 18 – Nonlinear tuning curves and linear backbone curve from the soil-mass oscillator 

using dry, sifted loess soil. ...................................................................................................... 33 
Figure 19 – Sample 1-D soil lattice depicting grain-bond-grain units.......................................... 34 
Figure 20 – Sample Preisach-Mayergoyz distribution of pressure thresholds for the HEU in a soil 

sample ..................................................................................................................................... 35 
Figure 21 – Bi-state protocol for the LISA model.  Each state is a function of three elastic 

parameters. .............................................................................................................................. 36 
Figure 22 – PM-space distribution of only two HEUs ................................................................. 36 
Figure 23 – Hysteretic contributions of individual elements in a PM-space distribution. ........... 37 
Figure 24 – Overall hysteretic behavior of a two-element system. .............................................. 37 
Figure 25 – PM-space distribution containing 50 HEUs and the corresponding hysteresis loop. 38 
Figure 26 – PM-space distribution containing 300 HEUs and the corresponding hysteresis loop.

................................................................................................................................................. 38 
Figure 27 – Schematic of soil-plate oscillator with loudspeaker.................................................. 40 
Figure 28 – Tuning curves of rms acceleration versus frequency for an unloaded clamped plate 

exhibiting a slight deviation from linear behavior. ................................................................. 42 
Figure 29 – Tuning curves and backbone curve from the soil-plate oscillator when instrumented 

with a thick, rigid aluminum plate and loaded with a 1” thick soil layer. .............................. 43 



8 

Figure 30 - Tuning curves and backbone curve from the soil-plate oscillator when instrumented 
with a thin, flexible acrylic plate and loaded with a 1” thick soil layer.................................. 44 

Figure 31 – Nonlinear tuning curves and nonlinear backbone curve from the soil-plate oscillator 
using dry, sifted masonry sand over a large range of drive amplitudes.................................. 45 

Figure 32 – Force-deflection diagram for a single bilinear-hysteretic element............................ 46 
Figure 33 - Backbone curves from the Caughey model for various values of μ. ......................... 49 
Figure 34 - Tuning curves predicted by the Iwan model for the case μ = 0.5 .............................. 49 
Figure 35 – Applying the Caughey model to experimental data.  Experimental tuning curve (left), 

theoretically predicted tuning curve (middle), and overlay of experimental and theoretical 
tuning curves (right)................................................................................................................ 50 

Figure 36 – Soil-plate oscillator instrumented with a dynamic force gauge, stationary magnetic 
coil, and moving powerful rare earth magnets........................................................................ 50 

Figure 37 – Schematic of the soil-plate oscillator instrumented with a dynamic force gauge, 
stationary magnetic coil, and powerful rare earth magnets used to drive the plate. ............... 51 

Figure 38 – Lissajou figures for the case with (a) no soil loading and (b) soil mass loading. ..... 51 
Figure 39 – Small soil-plate oscillator instrumented with a stationary Pasco 400-turn inductor 

coil and moving powerful rare earth magnets......................................................................... 52 
Figure 40 – Circuit diagram of the electro-dynamic soil-plate oscillator apparatus..................... 53 
Figure 41 – Motional impedance plots from the electro-dynamic soil-plate oscillator................ 54 
Figure 42 – Mine Simulant ........................................................................................................... 56 
Figure 43 – Soil-Mine Simulant Oscillator Experimental Apparatus........................................... 57 
Figure 44 – Resonant tuning curves 10 cm away from the center of a mine simulant buried in 

masonry sand inside the anechoic chamber. ........................................................................... 57 
Figure 45 – Resonant tuning curves directly over the center of a mine simulant buried in masonry 

sand inside the anechoic chamber........................................................................................... 58 
Figure 46 – Velocity profiles as a function of the mine’s radius (a = 5.5 cm) for small and large 

acoustic drive levels. ............................................................................................................... 59 
Figure 47 – Velocity profiles for all drive amplitudes referenced to the frequency of maximum 

resonance directly over the mine. ........................................................................................... 60 
Figure 48 – Maximum velocity profiles as a function of mine radius (a = 5.5 cm) ..................... 61 
Figure 49 – Soil surface vibration velocity profile as a function of radial position from a buried 

simulant................................................................................................................................... 62 
Figure 50 – Contour plots of soil surface vibrations..................................................................... 62 
Figure 51 – Gaussian fits to the experimental soil surface vibration data collected in two-

dimensions. ............................................................................................................................. 62 
Figure 52 – VS 1.6 plastic anti-tank mine and cut-away view. .................................................... 63 
Figure 53 - Soil-Mine Oscillator Experimental Apparatus........................................................... 64 
Figure 54 – Resonant tuning curves and backbone curve directly over a buried VS 1.6 landmine 

at relatively low drive levels. .................................................................................................. 64 
Figure 55 – Resonant tuning curves and backbone curve directly over a buried VS 1.6 landmine 

over a relatively larger range of drive levels than used in Figure 54...................................... 65 
Figure 56 – Velocity profiles of a buried VS 1.6 anti-tank landmine as a function of mine radius.

................................................................................................................................................. 65 
Figure 57 – Tuning curves measured directly over the buried mine using a forward-looking LDV 

for a variety of grazing angles. ............................................................................................... 67 
Figure 58 – Piezoelectric accelerometer ....................................................................................... 73 



9 

Figure 59 – Geophone................................................................................................................... 74 
Figure 60 – Effect of grazing angle on the laser Doppler vibrometer .......................................... 75 
Figure 61  - A linear oscillator has a sinusoidal displacement amplitude.  The oscillation is not 

distorted so that a single spike is observed in the Fourier spectrum....................................... 77 
Figure 62 - The displacement amplitude of a nonlinear oscillator deviates from sinusoidal 

behavior.  The oscillation exhibits distortion so that several spikes (frequency components) 
are observed in the Fourier spectrum...................................................................................... 77 

Figure 63 – Generic hysteresis loop.............................................................................................. 81 
Figure 64 – Generic bi-state protocol ........................................................................................... 81 
Figure 65 – Random distribution in a generic Presiach-Mayergoyz space .................................. 82 
Figure 66 – Evolution of a random PM space.  a.) The control variable D is changed to an 

arbitrary value Dmax.  b.) The sample is fully conditioned.  c.) The values enclosed by the 
triangle are in the active region as D oscillates between Dmin and Dmax.  d.) A smaller range of 
D yields a smaller active region.............................................................................................. 84 

Figure 67 – Ferromagnetic specimen subjected to an external H-field. ....................................... 85 
Figure 68 – Ferromagnetic bi-state protocol................................................................................. 85 
Figure 69- Double-well potential for a ferromagnetic domain when H is much less than the 

threshold value. ....................................................................................................................... 86 
Figure 70 – Potential wells for varying values of H. .................................................................... 86 
Figure 71 – Ferromagnetic bi-state protocol with thermally induced transitions......................... 87 
Figure 72 – Wave pulse on a string. ............................................................................................. 88 
Figure 73 – Wave pulse on a membrane....................................................................................... 90 
Figure 74 – Wave pulse on a membrane subjected to an external driving force. ......................... 92 
Figure 75 – Clamped plate subjected to external driving force .................................................... 93 
Figure 76 – LabVIEW® front panel for the 2-D mine sweeping experiment ............................... 99 
Figure 77 – LabVIEW® circuit diagram to conduct a frequency sweep and save the tuning curve 

to file. .................................................................................................................................... 100 
Figure 78 – Flowchart of LDV motor control and Agilent spectrum analyzer algorithm for an 

automated scan across a soil box. ......................................................................................... 101 
 
 



10 

List of Tables 
Table 1 – Comparison of nonlinearity for the soil-mass, soil-thick plate, and soil-thin plate 

oscillators ................................................................................................................................ 45 
Table 2 – Sound speed equations, spring constants, and yield forces for the different nonlinear 

acoustic landmine detection experimental apparatuses .......................................................... 80 
 
 



11 

Chapter 1 – Introduction 

Historical Background 
Landmines are present in more than 80 nations and contaminate more than 200,000 

square kilometers of the world’s landmass.  Though accurate numbers are difficult to obtain the 

number of annual casualties caused by landmines is estimated to be upward of 6,500 per year.1

  On an even more frightening scale, this amounts to more than 17 casualties per day 

around the globe.  And in addition to severe human suffering, the presence of landmines also 

creates tremendous economic problems.  Transit is difficult through potentially mined areas, and 

the threat of a single mine can often render otherwise fertile farmland useless.  Per the 1997 

Ottawa Treaty, also known as the Mine Ban Treaty, more than 140 signatories are undertaking 

mine clearance efforts.  However, at the current rate of progress complete demining will require 

between 450 and 500 years. 

History of Nonlinear Acoustic Landmine Detection 
Nonlinear acoustic landmine detection has shown tremendous promise in recent years.  

Many anti-personnel and anti-tank mines are made predominantly from plastic components, 

making conventional detection schemes involving ground penetrating radar or metal detection 

extremely difficult and unreliable. 

Over the past ten years, Dr. James Sabatier (at the University of Mississippi’s National 

Center for Physical Acoustics) has documented that acoustical methods can accurately locate 

certain types of plastic anti-tank and anti-personnel mines (VS1.6, VS2.2) that are buried in 

gravel road beds. In particular, acoustic-to-seismic (A/S) coupling techniques have shown 

tremendous promise in reducing false alarm rates, which is critical for any practical detection 

technology.2,3
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 In Sabatier’s setup, loudspeakers placed roughly 1 to 2 meters above the ground 

10generate airborne acoustic pressure waves which interact at the surface of the ground to create 

seismic disturbances in the soil.  The vibrations in the soil then interact with the top plate 

structure of the buried mine to produce an identifiable response. 

At low frequencies (around 100 Hz) the wavelength of acoustic pressure waves is 

relatively long in comparison to the both the burial depth and thickness of an unearthed 

landmine.  This justifies a lump-element treatment of the soil, mine case, and coupled soil-mine 

oscillator.  For the case of a simple damped, linear treatment, the lump-element models of the 

soil (Figure 1), mine casing (Figure 2), and coupled soil-mine oscillator (Figure 3) are shown 

below. 

 
Figure 1 – Linear model of soil as a damped spring 

 
 
 

 
Figure 2 – Linear model of the top plate of a landmine as an elastic plate with lump-
element mass loading 
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Figure 3 – Linear model of a soil and elastic plate coupled oscillator 
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Figure 4 – Nonlinear model depicting separation between the elastic top plate of a 
landmine and soil during the tensile phase of oscillation 

 
 

 
Figure 5 – Nonlinear model of soil as a hysteretic medium 

 

 
Figure 6 – Nonlinear model of the soil-mine system in agreement with a well-defined 
theory for bilinear hysteresis 
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Figure 4 is a description of the original one-dimensional nonlinear system proposed by 

Donskoy.4    Like Figure 3, both the plate and the soil are defined by their own elastic 

parameters.  However, as the plate oscillates it causes a more complicated nonlinear vibration 

interaction with surrounding soil.  Though not fully understood, there are believed to be partial 

separation effects between the soil column and the plate.  In a simplified sense, these separation 

effects are modeled by the gap depicted in the Figure 4.  The significant nonlinear behavior that 

arises from the partial separation and other nonlinear effects may be easily measured at the soil 

surface using a laser Doppler vibrometer (LDV), accelerometer, or geophone along with a 

spectrum analyzer. 

 In studying the effects of the soil-mine system, it is important to realize that the soil also 

exhibits its own nonlinear behavior.  Figure 5 addresses this behavior by modeling the elastic 

behavior of the soil as a nonlinear spring.  The question that arises, then, is to what extent the 

nonlinearity of the soil contributes to the overall nonlinearity observed when searching for 

landmines.  In order to address this problem, a variety of experiments have been designed to 

isolate various facets of the intricate soil-mine oscillator. 

 The Soil-Mass Oscillator (SMO) facilitates the nonlinear study of soil alone.  The 

experimental apparatus (described in more detail on pages 18-19 of this report) consists of a rigid 

steel toroid atop a rigid platform.  Inside the toroid is a column of soil, sitting beneath a rigid 

mass plug.  Mass loading experiments are used to determine the elastic stiffness of the soil 

medium.  Resonant tuning curve experiments show that the nonlinearity inherent to the soil is 

mesoscopic elastic, or nonclassical, in nature because the detuning of the resonant frequency 

occurs as a linear function of the displacement amplitude of oscillation.  The nonlinearity arises 

from a mesoscopic stress-strain hysteresis in the granular lattice structure, as shown in Figure 6, 
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which is similar to the behavior observed in geomaterials such as sandstone.  An elasto-slip 

model composed of a series-parallel model of Jenkin’s elements5 is used to quantify the degree 

of nonlinearity inherent to the soil.  A statistical model based upon a Preisach-Mayergoyz (PM) 

formalism6 is also examined as a viable option for explaining the mesoscopic nanoscale elastic 

behavior. 

The Soil Plate Oscillator (SPO) consists of a soil column resting atop a thin clamped 

plate and supported within a short cylindrical tube.  The SPO affords an opportunity to study the 

contributions of the soil-top plate interface to the overall nonlinearity of the buried landmine 

system.  A clamped plate without soil mass-loading is considered to be a very well behaved 

linear system.  When a soil column is added above the clamped plate, resonant tuning curve 

experiments show the system to be nonlinear.  If the plate is thick enough to be considered rigid, 

the nonlinearity observed is due predominantly to the soil alone.  However, if the plate is 

relatively thin and compliant in comparison to the stiffness of the soil column, the observed 

nonlinearity results from the combined effects of soil and soil-plate interface nonlinearity.  For 

low amplitude excitation, the elasto-slip and PM models predict the resonant behavior witnessed 

in the system.  For extremely thin plates subjected to large excitation levels, though, a model 

exhibiting bilinear hysteretic behavior7 proves to be more useful. 

The aggregate effects of soil and soil-plate nonlinearity, namely the acoustic-to-seismic 

coupling excitation and the subsequent near-field scattering that generates enhanced soil surface 

vibrations, are examined using a buried acrylic mine simulant and a plastic VS 1.6 Italian anti-

tank mine.  A self-designed LabVIEW® control system is used to conduct one- and two-

dimensional profiles of soil surface vibrations.  Here, computer controlled stepper motors 

position a laser Doppler vibrometer (LDV) in a discrete scan pattern in order to profile soil 
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surface vibrations both on and off the target.  Data is saved directly to a computer (AMD 

AthlonTM XP 2200+ processor, 1.84 GHz, 512 MB RAM) in a fully automated process. 

The observed behavior from resonant tuning curve experiments of the buried simulant 

and VS 1.6 corresponds very closely to results obtained from SMO and SPO experiments.  That 

is, resonant frequency softening corresponding to an increase in acoustic drive amplitude is 

witnessed.  The behavior over a compliant object, either mine or mine simulant, is more similar 

to the bilinear hysteretic model employed in the case of the SPO.  Conversely, off target behavior 

is more akin to the elasto-slip model used in analyzing the SMO. 

Experiments are also conducted in order to determine the limitations of “forward-

looking” mine detection.  The rough surface scattering which enables a LDV to be used when 

measuring soil-surface vibrations also limits detection at shallow grazing angles.  Shallow 

grazing angles often cause a noisy speckle pattern that inhibits forward-looking mine detection.  

At some minimum grazing angle the signal-to-noise ratio becomes so weak that no resonant 

response is detectable.  Forward scattering experiments are performed to determine the limiting 

grazing angle in the experimental system. 
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Chapter 2 – Experimental Procedures and Results 

2.1 Soil Mass Oscillator 
The granular nature of soil makes it an inherently nonlinear medium.  In order to 

accurately interpret the nonlinear responses observed in systems involving buried landmines or 

landmine simulants, it is first necessary to separate and examine the nonlinear contributions of 

the soil itself. 

The soil-mass oscillator, depicted in Figure 7, is built for the purpose of studying the 

nonlinear properties of the soil medium alone.  A soil sample is enclosed by a thick-walled steel 

toroid, concrete platform, and aluminum slug.  This setup creates a soil column reminiscent of 

the rods of geomaterials used when performing resonant bar experiments.8  An Agilent 35670A 

spectrum analyzer generates a swept sine signal that is amplified to drive a 12-inch diameter 

subwoofer positioned two feet above the soil-mass oscillator.  The massive concrete slab base is 

needed to reduce the natural resonant vibration frequencies of the concrete floor in the laboratory 

room.  A geophone placed on top of the aluminum slug measures soil surface vibrationsm which 

are digitally recorded by the Agilent spectrum analyzer.  (More detailed specifications and 

descriptions of all the experimental equipment used, including the Agilent spectrum analyzer and 

the geophone, are included in Appendix A).  Apart from daily environmental changes involving 

temperature and humidity, the only variable quantities in the soil-mass oscillator experiments are 

the magnitudes of mass loading, mass of the soil column, and acoustic drive amplitude.  Varying 

any of these parameters ceteris paribus enables one to study the nonlinear oscillator under 

different resonant conditions. 
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Figure 7 – Soil-mass oscillator schematic 
 

2.1a. Soil Stiffness – 1-D Model 
Controlled mass loading of the soil-mass oscillator allows the spring constant of the soil 

to be experimentally determined.  At low drive amplitudes, the linear system behaves as a driven 

oscillator with damping, so according to Newton’s second law 

 
 ∑ =+−−= xmtFxbkxF extx &&& ωcos  

  Equation 1 
 
  
where kx−  is a linear restoring force, xb&−  is a damping force, and tFext ωcos  is an externally 

applied driving force.  This yields the following equation of motion for the system, 

tFkxxbxm ext ωcos=++ &&&  
Equation 2 

 
The homogenous solution for the damped harmonic oscillator is 

( ) ( )βωα += − tAetx res
t cos  

Equation 3 
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where  
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and A and β are determined by initial conditions.  The particular solution to the equation of 

motion is given as 
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In the case of weak or negligible damping, the solution simplifies to 

 

( )
km

tFtx ext

−
= 2

cos
ω

ω  

Equation 7 
 
Under experimental conditions, if the driving force is also relatively weak then the spring 

constant for the weakly damped, weakly driven harmonic oscillator is shown to be  

 
 2ωmk =  

Equation 8 
 

From Equation 8, it is now possible to calculate the effective spring constant of the soil.  

Tuning curves of soil surface velocity versus frequency are collected as precise mass weights are 
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added to the system for an invariant drive amplitude.  For each 10 gram mass that is added, the 

system softens and the effective mass becomes 

weightssoilplugeff mmMm ++=
3
1  

Equation 9 
 
The mass of the soil is approximated as the mass of a linear spring oscillating with a fixed mass 

on one end.9  When Equation 8 is inserted into Equation 9, the relationship for determining the 

spring constant becomes 

2
03

1 ω⎟
⎠
⎞

⎜
⎝
⎛ ++= weightssoilplugeff mmMk  

Equation 10 
 
That is, the square of the natural resonant angular frequency is inversely proportional to the 

effective mass, where the constant of proportionality is effk . 

For a typical data run, the Agilent spectrum analyzer operates in the swept sinusoidal 

mode.  The acoustic drive amplitude is kept at a low, or “infinitesimal” amplitude so that the 

tuning curve behavior is kept as close to the linear regime as possible.  Larger, or “finite,” 

amplitudes could detune the system and produce an unwanted shift in the resonant peak to 

slightly lower frequencies as the effective spring constant “softens.”  A plot of Equation 10 for 

each resonant peak produces Figure 8.  For this particular example using (673.3 ± 0.1) grams of 

dry, sifted masonry sand, the spring constant is computed from a regression analysis to be 

( )
m
Nkeff

6101.04.4 ×±= . 
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Figure 8 – Linear regression of ω2 versus m-1 used to determine the effective stiffness of the Soil-Mass 
Oscillator. 
 
 
From linear acoustic theory it is known that the longitudinal velocity of sound, c , propagating 

through a medium is10  

 
ρ
Yc =  

Equation 11 
 
where ρ is the density of the medium and Y is its Young’s, or elastic, modulus.  Young’s 

modulus is defined as stress over strain, so for the case of longitudinal compression or expansion 

of magnitude LΔ , 
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Equation 12 
 
Here, 0L is the equilibrium length and A is the cross sectional area of the effective column 

through which the sound is  propagating.  Substituting Equation 12 into Equation 11, the 

expression for the sound speed in a medium is equal to 

 

A
kL

c
ρ

0=  

Equation 13 
For the data in Figure 8, the sound speed in the soil ( )CT o20=  is (149 ± 1) m/s. 
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Algebraic manipulation of Equation 13 also provides a method to verify the value of k 

found from the regression analysis above. 

 

0

2

L
Ack ρ

=  

Equation 14 
 

2.1b. Nonlinear Observations from Acoustic-to-Seismic (A/S) Coupling 
Experiments 

To this point, the soil has only been studied in a linear context.  Acoustic-to-seismic 

(A/S) coupling techniques provide a manner in which to begin examining the nonlinear elastic 

properties of the soil.  In A/S experiments, a specimen is subjected to driving acoustic pressures 

of varying amplitude and the relative shift in frequency is observed.  Tuning curves (plots of the 

amplitude of the resonant response versus frequency) are generated for various sound pressure 

levels.  The acoustic drive level remains constant throughout the duration of a sweep but is 

uniformly incremented between successive sweeps. 

In Figure 9, tuning curves are shown for frequency sweeps conducted in the 325 to 375 

Hz bandwidth.  The collection of tuning curves shows a clear decrease in peak resonant 

frequency as acoustic excitation increases.  This shift is depicted by the locus of peak amplitudes 

for each tuning curve, also referred to as a backbone curve, and is indicative of softening of the 

soil’s effective spring constant.  Each of the additional ten tuning curve families collected from 

the soil mass oscillator (displayed in Appendix C) have a linear backbone curve, suggesting that 

the nonlinear behavior of the soil is mesoscopic elastic in nature. 
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Figure 9 – Nonlinear tuning curves and linear backbone curve from the soil-mass oscillator using dry, sifted 
masonry sand. 
 

2.1c. Mesoscopic Elastic Behavior 
A mesoscopic description of the physical world, which lies between the macroscopic and 

microscopic levels, is needed in order to understand and explain the elasticity of granular media.  

Whereas classical nonlinearity results from the microscopic stress-strain response of each 

individual grain of sand (see Figure 10), mesoscopic nonlinearity, sometimes referred to as 

nonclassical nonlinearity, arises from the interaction of a small aggregate of grains with their 

immediate neighbors.  In the mesoscopic model, nonlinearity results from a “stick-slip” 

mechanism.  When initially stressed the points of contact between grains bind, or “stick” 

together.  As stress continues to build a yield point is reached and the grains suddenly “slip” (see 

Figure 11).  This “slip-stick” type nonlinearity is the primary cause for the mesoscopic elastic 

behavior observed in the soil-mine system. 

 
Figure 10 – Classical nonlinearity.  On the microscopic 
scale, each single grain of sand exhibits a strain 
response when subjected to an external stress. 

 
Figure 11 – Mesoscopic nonlinearity.  On the 
mesoscopic scale, individual grains interact with 
neighboring grains.  The points of contact between 
grains cause a “stick-slip” strain response when 
stressed. 
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2.1d. The Iwan Model of One-Dimensional Forced Oscillations with 
Hysteresis 

The stick-slip nature of mesoscopic nonlinear media creates another observable nonlinear 

effect called hysteresis.  Hysteretic systems are not only state dependent but also history 

dependent.  That is, in order to properly describe a hysteretic system it is not sufficient to know 

only its current condition, but also how it arrived at that present condition.  As grains of soil 

continuously stick and slip the soil lattice structure is altered.   The macroscopic effect of these 

fluctuations is a change in the net lattice yield force of the system, measurements of which serve 

as a quantifiable measure of the degree of nonlinearity in a system. 

Iwan11 presents a hysteretic model based upon series-parallel construct of elasto-slip 

elements.  As shown in Figure 12, the hysteretic system is a parallel network of “slip-stick” 

spring components known as Jenkin’s elements.  Each spring is linear and each slip damper has a 

maximum allowable force 
N
fi , which is different for each of the N elements in the model.   If the 

maximum allowable force of any particular element is exceeded, the element in question will 

yield and its spring constant will no longer contribute to the elastic behavior of the macroscopic 

system.  The force-deflection response for a single Jenkin’s element is shown in Figure 13. 

 
Figure 12 – Combined model of elasto-slip hysteresis 
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Figure 13 – Force-deflection diagram for one element in the elasto-slip model 

 

The lattice yield force is a stress threshold above which the specimen is no longer in the 

linear elastic region of deformation.  If a sample is stressed beyond its lattice yield point, it will 

not return to its prestressed condition simply by removing the external stress.  Thus, the stress-

strain diagram will form a hysteretic loop as seen in Figure 14. 

 
Figure 14 – Hysteresis loop created by exceeding the yield force of a system 

 

The actual force at which each element slips varies, but according to Iwan’s model the yield 

forces are distributed equally about a mean value, yF .  If the distribution function, ϕ , is a band-

limited function with width fΔ  and normalized area, the following parameters can be defined: 

yF
f

2
Δ

=β  

Equation 15 
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Linear elastic 
region 
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yF
kAQ ≡  

 Equation 16 
 

Here, β  is a dimensionless parameter that defines the bandwidth of the “flat” distribution 

function centered about Fy.  For the case when 0→β , the distribution has infinitesimal width.  

That is, all the constituent Jenkin’s elements have identical yield forces.  As 1→β , the 

bandwidth of the distribution becomes infinitely large.  k is once again the spring constant and A 

is the deflection amplitude of the stressed system, which makes Q the maximum dimensionless 

amplitude of deflection.  Hysteresis loops for different values of β are shown in Figure 15. 

 
Figure 15 – Hysteresis loops for varying distribution functions, φ, defined by β 
 

In Iwan’s elasto-slip model of hysteresis, the equation of motion is 

( ) tFxxfxm ωcos, =+ &&&  
Equation 17 

 
where the function f accounts for hysteretic contributions.  Using the method of equivalent 

linearization,7 the nonlinear term in Equation 17, ( )xxf &, , is replaced by an equivalent linear 

restoring force, xx κγ +& , and an error term ( )xx &,ε .  That is 

( ) tFxxxxxm ωεκγ cos, =+++ &&&&  
Equation 18 
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Here, κ and γ are parameters dependent upon both amplitude and β .  In order for the 

substitution above to be valid, the error term must be minimized.  In other words, 

 
( )[ ] 0, 2

=
∂

∂
γ

ε xx &
 

Equation 19 
 

( )[ ] 0, 2

=
∂

∂
κ

ε xx &
 

Equation 20 
 
After the minimization is performed, the equation of motion becomes 
 

tFxxxm ωκγ cos=++ &&&  
Equation 21 

 
whose solution is assumed to be 

θcosAx =  
Equation 22 

 
where  

ψωθ −= t  
Equation 23 

 
Here, A is the maximum amplitude of the vibration and ψ  is the phase of the motion.  The 

equation for a tuning curve according to this model is given by 
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In order to make Equation 24 dimensionless, the following substitutions are made, 
 

m
k
ωη =  

yF
Fr =  

( ) ( )
yF
ACQC =  

( ) ( )
yF
ASQS =  

Equation 27 
 

The dimensionless form of a tuning curve is then 
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though the backbone curve is simply 
 

( )
Q
QC

=2η  

Equation 29 
 
Here, the backbone curve is defined as the locus of normalized maximum amplitude responses 

obtained from each of the resonant tuning curves.  

In order to determine the yield force of the masonry sand used in the soil-mass oscillator, 

a distribution function must first be selected.  In other words, a value for β must be chosen. 
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Figure 16 – Backbone curves from the Iwan model for various values of β. 

 

 
Figure 17 – Tuning curves predicted by the Iwan model for the case β=1. 

 
Plots of backbone curves for various values of β  are shown in Figure 16.  Empirical 

observations from the soil-mass oscillator correspond most closely to the case for 1=β .  Sample 

tuning curves predicted by the Iwan model for 1=β  are depicted in Figure 17.  Under this 

condition, 
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0ω
ωη ≡  

Equation 30 

( )
4
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Equation 31 
  
Substitution of Equation 30 and Equation 31 into Equation 29 provides 
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Equation 32 
  
 
A binomial expansion for Q << 1 produces the relationship 
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Equation 33 
  
The spring constant, k , is determined from the mass loading experiment shown in Equation 10 

and Figure 8.  The yield force, Fy, is obtained from one of the tuning curve data sets and its 

corresponding backbone curve, such as that shown in Figure 9.  However, the recorded data from 

the spectrum analyzer is in terms of velocity and not amplitude, as required by Equation 33.  

Velocity, u, is related to amplitude, A, in the following manner  

f
u

A
π2

=  

Equation 34 
 
where f  is the average frequency across a narrow bandwidth of the swept sinusoid.  

Substituting into Equation 33, the relationship becomes 
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This shows that a plot of particle velocity versus frequency will have 
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Equation 36 
 
The yield force is 

( )
f
kfslope

Fy π16
0−=  

Equation 37 
 

The linear regression of sound speed versus frequency for the data in Figure 9 is u = (7.56 

± 0.04) mm/s – (21.0 ± 0.1) μm*f.  The spring constant is, =k (6.1 ± 0.1) x 106 
m
N .  The yield 

force is, =yF (2.6 ± 0.4) N. 

The elastic modulus of the dry, sifted, “homogenous” soil is affected by its pre-stressed 

state, so that the initial conditions of every trial run are unique.  As a result, the quantitative 

measure of nonlinearity will not be identical from trial to trial.  Soil is affected by environmental 

conditions such as temperature, atmospheric pressure, and moisture content.  Nevertheless, 

though it is not intentionally controlled, the laboratory environment throughout the duration of 

these experiments remained fairly consistent at 20º C.  Results obtained from the soil-mass 

oscillator tend to be relatively repeatable.  The average yield force for eleven trials using dry, 

sifted masonry sand is 2.9 N with a standard deviation of 0.4 N.  

2.1e. Soil Comparison 
It is expected that different soils exhibit different degrees of nonlinearity.  This might be 

due in part to porosity as well as grain size and shape.  Figure 18 shows the increasing drive 

amplitude experiment for the soil-mass oscillator using a dry, sifted, Mississippi loess soil rather 

than masonry sand.  Loess soil is a much finer silt-like soil than masonry sand.  Here, the slope 

of the backbone curve is steeper than in the case of masonry sand.  Qualitatively, however, it 
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exhibits the same linear backbone curve indicative of mesoscopic elastic behavior.  Using the 

same technique as described for the masonry sand above, the yield force for the loess soil is 

determined to be (5.9 ± 0.3) N. 

 
Figure 18 – Nonlinear tuning curves and linear backbone curve from the soil-mass oscillator using dry, sifted 
loess soil. 
 

2.1f. Local Interaction Simulation Approach (LISA) Modeling 
The elasto-slip model developed in 1966 by Iwan is not the only model available to 

describe the nonclassical nonlinearity apparent in the soil-mass oscillator, and the LISA method 

proposed by Scalerandi et al6 certainly provides an alternative, more modern approach.  

However, while extremely advantageous for lending physical intuition to the complex soil 

system, it also has certain limitations which arise from its purely phenomenological nature. 

The primary advantage of the LISA model lies in its ability to provide a conceptual 

framework in which to envision the nonlinearity of the soil.  For the sake of simplicity, only a 

one-dimensional lattice is considered herein.  Each grain and interstice form a single 

subcomponent, referred to as a G-B unit or hysteretic elastic unit (HEU).  A sample 1-D lattice is 

shown in Figure 19.  Each grain is considered to be entirely elastic, and the interstices obey a 

“slip-stick” mechanism loosely similar to that proposed by Iwan.  The overall behavior of a HEU 

is governed by the combined behavior of its constituent grain and interstice.  It is this aggregate 

effect that is nonclassically nonlinear. 

u = (21 ± 1) mm/s – (63 ± 3) μm *f  k = (4.7 ± 0.1) MN/m  Fy = (5.9 ± 0.3) N 
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Each interstice has a specific yield force at which it changes from linear elastic to 

inelastic.  From a physical standpoint, the compressive elastic properties of the interstice can be 

thought of in terms of “squeezing” a fluid from the interstice.  Conversely, the tensile elastic 

properties of an interstice can be envisioned as the suction effect between two grains that are 

being pulled apart.  For mathematical simplicity, however, the LISA model views each interstice 

as a small vacuum.  That is to say, the mathematical complications caused by the fluid dynamics 

of air or water in interstice regions are not addressed mathematically.   

 

 

Figure 19 – Sample 1-D soil lattice depicting grain-bond-grain units 
 

In the 1-D case, the grains and interstices are subject solely to longitudinal compression 

and tension.  The constituent equation of state for each HEU is given as 

TPE χεηεσ ++= &  
Equation 38 

=σ stress = force per area 

=E Young’s (elastic) modulus 

=ε strain = elongation per equilibrium length of HEU 

=η viscosity coefficient 

grain graingrain bondbond grain graingrain bondbond
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=ε& strain time-rate of change 

=χ poroelastic threshold parameter 

=TP poroelastic pressure 

The LISA model assumes that every HEU obeys the same equation of state, but allows each 

interstice to have different pressure threshold values.  The distribution of threshold values for 

every HEU in a sample is presented graphically in a Preisach-Mayergoyz (PM) space.  A sample 

distribution of 300 HEUs is generated by the author using Mathematica® and is shown in Figure 

20.  (The PM formalism is described in greater detail in Appendix D). 

 
Figure 20 – Sample Preisach-Mayergoyz distribution of pressure thresholds for the HEU in a soil sample 
 
In brief, each point in the PM-space distribution corresponds to a single HEU having a unique bi-

state protocol as shown in Figure 21.  As the acoustic pressure, P, changes, an interstice can shift 

from an open state, C2, to a closed state, C1, or vice versa.  However, a “closing” will only occur 

if the pressure exceeds the closing pressure threshold, Pc, whereas an “opening” only results if 

the pressure drops below the opening pressure threshold, Po. 
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Figure 21 – Bi-state protocol for the LISA model.  Each state is a function of three elastic parameters. 

 
 

Each HEU is itself hysteretic, and the overall hysteretic behavior observed in the system 

is the aggregate contribution of all the elements.  For example, a PM-space containing only two 

HEUs is shown in Figure 22.  The corresponding stress-strain hysteresis loop that results from 

each HEU as the pressure field oscillates between -10 and 10 Pa is shown in Figure 23. 

 
Figure 22 – PM-space distribution of only two HEUs 
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Figure 23 – Hysteretic contributions of individual elements in a PM-space distribution. 
 
Superposition of the hysteretic contributions of elements one and two produces the overall 

hysteresis loop for the two-element system that is seen in Figure 24.  As the number of HEUs in 

the system increases, the PM-space is more heavily populated and the overall hysteresis loop 

becomes increasingly smoother.  Examples of PM-space distributions having 50 and 300 

elements and the corresponding hysteresis loops are shown in Figure 25 and Figure 26, 

respectively. 

 

 
Figure 24 – Overall hysteretic behavior of a two-element system. 

 

Element 1 Element 2
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Figure 25 – PM-space distribution containing 50 HEUs and the corresponding hysteresis loop. 
 

 
Figure 26 – PM-space distribution containing 300 HEUs and the corresponding hysteresis loop. 
 

For a system with a large number of hysteretic elements, as in Figure 26, the 

phenomenological hysteresis loop behavior mirrors that predicted by Iwan (Figure 14).  In fact, 

the shape of this hysteresis loop predicts tuning curve behavior with a linear backbone.  Though 

additional numerical efforts beyond the scope of this project are required in order to generate 

50 HEUs

300 HEUs
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such tuning curves, the evident shared behavior with the Iwan model provides incredibly strong 

justification for the use of the LISA approach in modeling the buried landmine system. 

While LISA is a tremendously promising model, it has certain aspects that must be 

further refined in order to make it useful in a predictive sense.    From Equation 38 and Figure 21 

it is clear that each of the two possible states in the bi-state protocol is dependent upon the three 

parameters E, η, and χ.  However, the connection between these parameters and the microscopic 

physical world is not yet well understood.  The model itself is “reverse engineered” from 

macroscopic observations of nonlinearity and not yet connected to the actual microscopic regime 

of individual grains.  In other words, though the parameters E, η, and χ seem to be measurable 

microscopic quantities, as of yet there exists no conclusive experimental verification as to the 

role each plays in determining the observed overall nonclassical nonlinear behavior.  Efforts are 

underway by Darling and TenCate to further develop the understanding between the 

aforementioned elastic parameters and physical microscopic reality using neutron diffraction 

techniques.12 

An additional difficulty of the LISA model is that the PM space, in order to properly fit 

experimental results, depends heavily upon complicated adjustable parameters that are not well 

understood.  In and of itself, the PM approach is not flawed.  In fact, the statistical complexity of 

the distribution function as well as the probabilistic treatment of thermally induced state 

transitions makes it considerably more versatile than the band-limited function employed by 

Iwan.  However, the PM distributions used in the LISA modeling done by Scalerandi et al were 

entirely arbitrary and disconnected from physical experimental specimens.  Though every 

geospecimen possesses its own footprint in PM space, actually generating this PM space is a 

very demanding mathematical problem.   
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2.2 Soil Plate Oscillator 
Moving beyond the nonlinearity which results from just soil alone, the soil-plate 

oscillator apparatus enables the study of the nonlinear interaction that occurs at the soil-mine 

interface.  The soil-plate apparatus cuts away many of the additional complexities inherent in a 

real landmine and isolates the soil-elastic plate boundary. 

This analysis begins with an examination of the vibration of a clamped plate, and then 

continues on to look at the coupled soil-plate system.  As seen in Figure 27, an acrylic plate 

simulating the elastic top plate of a landmine is securely clamped between two aluminum 

flanges.  As in the case of the soil-mass oscillator (Section 2.1), the Agilent spectrum analyzer 

provides a swept sine signal, which is amplified to drive a pair of three-inch diameter 

loudspeakers.  The loudspeakers, in turn, generate an acoustic pressure wave that excites the 

system.  An accelerometer affixed to the underside of the plate measures the vibration response 

of the plate.  If the plate is loaded with a column of soil, a second accelerometer is placed atop 

the column to measure the response of the combined soil-plate system.  As before, measurement 

data is recorded by the spectrum analyzer in dual channel operation.  (Further descriptions of 

experimentally used equipment are given in Appendix A.) 

 
Figure 27 – Schematic of soil-plate oscillator with loudspeaker 

 

Dimensions of soil column: 
diameter = 20.4 cm 
maximum thickness = 9 cm 
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2.2a. Vibrations of an Elastic Clamped Plate in the Absence of Soil Loading 
In order to understand the coupled soil-plate oscillator model, one must first begin with a 

discussion of clamped plate vibrations independent of soil loading.  The individual particles 

within the plate obey a two-dimensional equation of motion whose solution satisfies the wave 

equation.  A thorough development and derivation of this idea is included in Appendix E.  For 

the case of vibration with azimuthal symmetry, the displacement of particles at any radial 

location, w(r), on a clamped plate is given by 
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Equation 39 
 
where the wave number k is defined as follows 
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Equation 40 
 
and the physical parameters of the plate are defined as 
 

=P driving acoustic pressure 

=ρ plate density 

=d plate thickness 

=ω natural resonant frequency of the clamped plate 

=a clamped radius 

=σ Poisson’s ratio 

=E Young’s (elastic) modulus 

 

The theoretical prediction for the lowest resonant frequency of vibration of the plate is given by 

ka = 3.20.  Using Equation 40 one can show that 
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Equation 41 
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where ρ
Eclong =  and 

π
ω
2

res
resf = .  σ is taken to be 1/3 as Poisson’s ratio for the acrylic plate.  

Then, given =resf 286 Hz, d = 3.2 mm, and a = 10.2 cm, one can characterize the acoustic 

properties of the plate material in terms of its longitudinal bar speed, longc , which is computed to 

be 19,000 m/s. 

It is important to note that Equation 39 is the exact solution to a linearized wave equation 

for the elastic plate.  Similarly, the magnitude of the transverse velocity and acceleration of a 

clamped plate are given by ( )rwω and ( )rw2ω , respectively.  Experimental measurements of an 

unloaded clamped plate exhibit a slight stiffening of the plate at relatively large amplitudes of 

vibration. This leads to a small increase in the resonant frequency as drive amplitude increases as 

shown in Figure 28. 

 
Figure 28 – Tuning curves of rms acceleration versus frequency for an unloaded 
clamped plate exhibiting a slight deviation from linear behavior. 

 

2.2b. Comparison of the Soil-Mass Oscillator, Soil-Plate Oscillator, Buried 
Mine Simulant, and VS 1.6 Nonlinearities 

As previously mentioned, soil is an inherently nonlinear medium.  Therefore, it is 

expected that a coupled soil-plate system will depart from the linear behavior observed in the 

case of the unloaded clamped plate.  It is important to quantify and compare the overall 

nonlinearity of a system due to soil oscillations over a flexible plate with the soil oscillations 

over a rigid boundary. 

Accelerometer attached 
to plate

NO SOIL

Accelerometer attached 
to plate
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Figure 29 shows the soil-plate oscillator apparatus instrumented with a 1” thick 

aluminum plate (6” diameter), which is considered to be fairly rigid.  The clamped aluminum 

plate is loaded with a 4 5/8” diameter soil column.  The family of tuning curves and 

corresponding backbone curve obtained from the soil-plate oscillator when instrumented with the 

mass-loaded thick aluminum plate are shown in Figure 29.  

 
Figure 29 – Tuning curves and backbone curve from the soil-plate oscillator when instrumented with a thick, 
rigid aluminum plate and loaded with a 1” thick soil layer. 
 

The slope of the backbone curve is a measure of the nonlinearity present in the system.  

The backbone curve (the locus of peak accelerations versus corresponding resonant frequency) is 

fit to a linear function such that 
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Equation 42 
where 0f  is the natural resonant frequency of the system when subjected to an external driving 

force of infinitesimal amplitude.  A parameter of nonlinearity, 1−β , suitable to describe the 

detuning or softening is computed from a regression analysis so that 

( ) 0

1 1
fslope

≡−β  

Equation 43 
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The results from Figure 29 show that the parameter of nonlinearity of soil alone is 1−β = 0.070 

m/s2. 

When the relatively rigid, thick aluminum plate supporting the soil column is replaced by 

a flexible, 1/8” thick acrylic plate (6” diameter), the parameter of nonlinearity in the coupled 

soil-plate system is found to increase considerably.  The tuning curve results from this 

experiment are shown in Figure 30.  Here, 1−β  is found to equal 0.128 m/s2.  The same masonry 

sand used earlier is now placed back in the SPO such that the soil column remains effectively 

unchanged from the rigid plate case.  It must be concluded that the additional nonlinearity 

observed arises from some facet of the combined soil-plate system.  The hypothesis that the 

interaction which occurs at the interface between the soil and the plate must be nonlinear is 

strongly supported. 

 
Figure 30 - Tuning curves and backbone curve from the soil-plate oscillator when instrumented with a thin, 
flexible acrylic plate and loaded with a 1” thick soil layer. 
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The nonlinearity of the soil-mass, soil-thick plate, and soil-thin plate systems are collected in 

Table 1. 

 
Table 1 – Comparison of nonlinearity for the soil-mass, soil-thick plate, and soil-thin plate oscillators 

Experiment β-1  
soil-mass oscillator (loess soil) 0.022 m/s2 

soil-mass oscillator (masonry sand) 0.061 m/s2 
soil-thick plate oscillator (masonry sand) 0.070 m/s2 

soil-thin plate oscillator (masonry sand) 0.128 m/s2 

 

2.2c. Mesoscopic Elastic Behavior at Higher Amplitudes in the Soil-Plate 
Oscillator 

At small drive amplitudes the soil-plate oscillator exhibits mesoscopic elastic behavior 

characterized by the presence of a linear backbone curve.  However, the mesoscopic nonlinear 

model appears to break down at larger drive amplitudes.  Experiments with masonry sand and 

the soil-plate oscillator are revisited using a modified soil-plate oscillator apparatus with a 0.030” 

thick clamped plate (8” diameter).  The actual unclamped physical diameter of the plate is 8”.  

This SPO is more compliant than the previous version which had a 0.090” thick plate (4 5/8” 

diameter).  The results for the more compliant system are shown in Figure 31.  The linear 

backbone behavior exists until the rms velocity nears 0.002 m/s.  At this point there is a 

noticeable curvature to the backbone, indicating that what is happening is more complicated than 

just the mesoscopic nonlinear behavior of soil alone. 

 
Figure 31 – Nonlinear tuning curves and nonlinear backbone curve from the soil-plate oscillator using dry, 
sifted masonry sand over a large range of drive amplitudes. 
 



46 

As a first approach to explaining this behavior, the elasto-slip theory of Iwan can be 

applied using a piecewise technique.  There appear to be two relatively distinct linear regions 

above and below 100 Hz.  In Figure 30 the plate is loaded with (392.6 ± 0.1) g of dry, sifted 

masonry sand, and, using Equation 37, the yield force is calculated for both regions.  When f  < 

100 Hz, the analysis predicts that NFy 4.1= .  When f > 100 Hz, the yield force is predicted to 

be NFy 21.0=  

A second approach utilizes a model of bilinear hysteresis developed by Caughey.7  Rather 

than envisioning a system of Jenkin’s elements that only behave elastically up to a certain yield 

force (as with Iwan), the Caughey model can be imagined as a single spring whose elastic 

constant changes at a unique transition point.  That is, if x0 is the designated transition point for a 

particular spring-like element and A is the maximum amplitude of oscillation, 

01 0, xxxkF
ox

<<−=−  and AxxxkF
ox

<<−=+ 02 , , where 12 kk < .  If 02 =k , the elastoplastic 

case  of Iwan’s model for the case where 0=β  is recovered.  The force-deflection diagram for a 

single element in the bilinear hysteretic model is shown in Figure 32. 

 
Figure 32 – Force-deflection diagram for a single bilinear-hysteretic element. 

 
The equation of motion Caughey employs in his bilinear hysteresis model is 
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Equation 44 
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The ( )txF ,,μ  term is the hysteretic restoring force and simplifies to x in the case where μ  goes 

to zero.  Defining the following variables and making appropriate substitutions into Equation 44 

 
2

0ω=m
k  

t0ωτ =  

sx
k
P
=  

0ω
ωη =  

Equation 45 
 
the equation of motion can be rewritten as 
 

( ) ηττμ
τ

cos,,2

2

sxxF
d

xd
=+  

Equation 46 
 
 
In order to solve this second order nonlinear differential equation, Caughey uses a technique 

developed by Kryloff and Bogoliuboff13 known as the method of slowly varying parameters 

where 

 
( ) ( )φηττ += cosRx  

Equation 47 
( ) θφητ =+  

Equation 48 
 
Here R and φ  are defined to be the respective amplitude and relative phase in the oscillating 

response and are allowed to slowly vary in time.  Equation 47 is differentiated twice and 

substituted into Equation 46.  Caughey’s analysis eventually leads to the following frequency 

response equation for the system 
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where 
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π
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Equation 50 
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Equation 51 
 
The maximum peak resonance is achieved at 
 

( )
R
RC

=2η  

Equation 52 
 
which represents the backbone curve of the system.  As the degree of bilinearity in the system 

increases, the curvature of the backbone becomes more pronounced.  The measure of a systems 

bilinear nature is parameterized by the variable μ. 

 

K
K21−=μ  

Equation 53 
 
where K1 and K2 are the slopes of the force-displacement diagram before and after the yield 

point is reached, respectively.  A plot of backbone curves for various values of μ is shown in 

Figure 33.  For a fixed value of μ = 0.5, a family of resonant tuning curves is pictured in Figure 

34.  Clearly, the Caughey model accurately replicates the curved behavior seen in the soil-plate 

oscillator. 
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Figure 33 - Backbone curves from the Caughey model for various values of μ. 
 

 

Figure 34 - Tuning curves predicted by the Iwan model for the case μ = 0.5 
 
 To reiterate this last point, an experimental data set of resonant tuning curves is taken 

from the soil-mine simulant apparatus (Section 2.4).  The buried simulant has a very thin, 

flexible plate much like the soil-plate oscillator.  A normalized tuning curve, theoretically 

predicted curve (μ = 0.44 and f = 0.42), and overlay of the two curves is shown in Figure 35. 
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Figure 35 – Applying the Caughey model to experimental data.  Experimental tuning curve (left), 
theoretically predicted tuning curve (middle), and overlay of experimental and theoretical tuning curves 
(right). 
 
 
Applying the Caughey theory, the yield force for the soil-mine simulant system is determined to 

be NFy 1.6~ . 

2.3 Electrodynamic Soil Plate Oscillator 

2.3a. Measuring the Relationship between the Driving Force and the 
Vibration Response 

A second variant of the soil-plate oscillator replaces the acoustic driving force with an 

electromagnetic one.  An inductor coil mounted on a force gauge (PCB Piezotronics Model No. 

208C01, sensitivity = 110.7 mV/N) is placed below the clamped plate and mounted inside the 

bottom flange to the base of the apparatus.  Rare earth magnets are affixed to opposing sides of 

the clamped plate such that the plate is driven in a similar fashion to a loudspeaker.  See Figure 

36 and Figure 37.   

  
Figure 36 – Soil-plate oscillator instrumented with a dynamic force gauge, 
stationary magnetic coil, and moving powerful rare earth magnets 

Inductor Coil 
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Figure 37 – Schematic of the soil-plate oscillator instrumented with a dynamic force 
gauge, stationary magnetic coil, and powerful rare earth magnets used to drive the 
plate. 
 

Figure 38 shows a comparison of the applied driving force versus acceleration response of the 

elastic plate observed near resonance for the case of (a) no soil mass loading and (b) soil loading.  

In the case of no soil loading, the smooth Lissajou pattern is indicative of linear behavior.  In 

contrast, the pointed Lissajou pattern in the case of soil loading signals that the behavior 

observed appears to be nonlinear. 

 

Figure 38 – Lissajou figures for the case with (a) no soil loading and (b) soil mass loading. 
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2.3b. Measuring the Dynamic Impedance of the Soil-Plate Oscillator as a 
Function of Amplitude 

A smaller iron soil-plate oscillator (4 5/8 inch inner diameter) has also been configured in 

the electro-dynamic setup with a 400-turn Pasco electromagnetic coil.  See Figure 39. 

 
Figure 39 – Small soil-plate oscillator instrumented with a stationary Pasco 400-turn 
inductor coil and moving powerful rare earth magnets 

 
This particular electro-dynamic setup allows for precise impedance curve measurements 

to be taken, from which the lumped mechanical acoustic parameters of the system can be 

measured.  The electrical impedance of the electro-dynamic soil-plate oscillator is given by 

( )
mechanical

EEmotionalEEElectrical Z
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2
l

++=++= ωω  

Equation 54 
 

where ER is the resistance of the wire in the coil, EL is the inductance of the coil, mechanicalZ is the 

impedance of the combined soil-plate oscillator, and B is the effective magnetic field reaction on 

the coil of effective length l .  Electrical measurements showed that Ω22.0~ER  and 

mHLE 0.3~  well below resonance.  The complex mechanical impedance is defined to be 

u
FZmechanical =  

Equation 55 
 

where F is the complex driving point force and u is the complex particle velocity at the driving 

point. 
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Figure 40 – Circuit diagram of the electro-dynamic soil-plate oscillator apparatus. 
 

The circuit diagram in Figure 40 shows how the electrical impedance of the system is 

experimentally measured.  The voltages Vab and Vbc go to channels one and two, respectively, of 

the Agilent spectrum analyzer, which operates in swept sinusoidal mode.  Simple circuit analysis 

shows that the electrical impedance can be computed from the ratio of complex voltages. 
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Equation 56 
Figure 41 shows the experimental results obtained from measurements of the electrical 

impedance as a function of incrementally increased drive amplitude.  Since the electro-

mechanical coupling parameter ( )2lB  is independent of frequency, once the ER  and ELjω  

contributions from the coil are canceled, the mechanical impedance can be computed from 

( )
motional

mechanical Z
BZ

2
l

=  

Equation 57 
 
The results from Figure 41 clearly show that the frequency of mechanical resonance decreases 

with increasing drive level.  This is in agreement with the earlier soil-plate oscillator mechanical 

measurements of tuning curve acceleration versus frequency.  The real part of motional 
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impedance corresponds to the amount of damping in the system.  As drive amplitude increases, 

the effective damping of the system decreases, but the quality factor is seen to increase.  The 

imaginary part of motional impedance is related to the mass-spring like behavior of the system.  

At higher frequencies, mass-like behavior dominates spring-like behavior.  The opposite is true 

at lower frequencies.  The experimental data shows a shift from mass-like to spring-like behavior 

as drive amplitude increases. 

 
Figure 41 – Motional impedance plots from the electro-dynamic soil-plate oscillator 
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The footprint shape of the tuning curve is depicted from the motional impedance plots of 

the real versus imaginary parts of motionalZ , which progress from a circular loop (linear response) 

to a distorted loop (nonlinear response) as drive amplitude increases.  mechanicalZ  near a 

mechanical resonance can be expressed as  

⎟⎟
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⎞
⎜⎜
⎝

⎛
−+=

ω
ω eff

effeffmechanical

K
MjbZ  

Equation 58 
 
Here b, M, and K are the effective damping constant, mass, and spring constant of the combined 

soil-plate oscillator system.  However, a nonlinear mathematical model for the point mechanical 

impedance of the soil-plate oscillator is needed to further develop expressions for the amplitude 

dependence of the mechanical impedance near resonance.  

2.4 Nonlinear Detection of a Buried Landmine Simulant 
Having separately examined the nonlinear properties of soil and the soil-plate boundary, 

attention is now given to nonlinear detection of a buried landmine simulant.  The mine simulant 

detection problem involves near-field scattering effects along with the challenges of 

understanding the system nonlinearity.  Experiments are performed in an anechoic chamber 

facility.  The drum-like mine simulant is shown in Figure 42.  The simulant case is fabricated 

from a 6.4 mm thick (11 cm inner diameter, 12.3 cm outer diameter) acrylic tube that is 6 cm 

long.  A thin, circular acrylic plate (0.76 mm thick) is fused to the “top” end of the tube to model 

the effects of a circular clamped elastic plate. A 6.4 mm thick “bottom” plate is fused to the 

opposite end of the tube. 
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Figure 42 – Mine Simulant 

 
 

The experimental setup involving the buried simulant is shown in Figure 43.  As before, 

the Agilent spectrum analyzer is used to generate a swept sine source voltage.  The signal is 

amplified to drive the loudspeakers, which generate an acoustic drive pressure.  A laser Doppler 

vibrometer (LDV) in a forward-looking orientation is used to measure soil surface vibration.  A 

microphone measures acoustic sound pressure.  The LDV is mounted to a tripod inside the 

anechoic chamber using two Velmex UniSlide® rotary tables.  The rotary tables are connected 

orthogonally so as to produce a biaxial sweeping capability.  Each rotary table is controlled by a 

separate Velmex NF90 step motor controller.  The entire experiment is remotely controlled using 

a LabVIEW® program written during a month-long development period in January 2007.  The 

program is capable of automatically controlling the scan position of the LDV, operating the 

spectrum analyzer, and storing data directly to the computer’s hard drive.  Appendix F provides a 

more detailed description of the computer algorithm as well as some sample LabVIEW® 

programming code. 
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Figure 43 – Soil-Mine Simulant Oscillator Experimental Apparatus 
 

2.4b. Comparison of the “On the Mine” versus “Off the Mine” Nonlinear 
Resonant Response for a Mine Simulant 

The resonant characteristics of the soil surface will vary due to the natural layering of the 

soil, inhomogeneities, and burial depth.  For the experiments performed in the soil tank, the dry 

sifted masonry sand is used to reduce the effects of layering and inhomogeneities.  The low 

frequency cut-off of resonant soil vibration modes in the tank is around 250 Hz. 

 
Figure 44 – Resonant tuning curves 10 cm away from the center of a mine simulant buried in masonry sand 
inside the anechoic chamber. 
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Figure 45 – Resonant tuning curves directly over the center of a mine simulant buried in masonry sand inside 
the anechoic chamber. 
 

For an acrylic mine simulant (Figure 42) buried 2 cm deep, resonant tuning curve 

measurements were made at various scan positions across one radial axis of the simulant.  The 

acoustic drive level was incremented linearly from 99.3 dB to 120.9 dB and a collection of 22 

tuning curves was measured for each of the 31 scan locations.  Tuning curves shown in Figure 44 

and Figure 45 compare the responses between a location 10 cm away from the center of the 

buried mine simulant and one directly over the mine simulant, respectively.  There is little 

appreciable resonant response “off target” and there is a great deal of scatter when attempting to 

determine a backbone curve.  The tuning curves shown in Figure 45 exhibit a relatively strong 

response measured “on target.”  Here, the backbone curve shows considerable “softening” and 

resembles the bilinear hysteresis results derived in the Caughey model (Section 2.2c.).   The 

greatly reduced nonlinear resonant behavior as one moves from an “on target” to an “off target” 

location seems to indicate that the observed nonlinearity involves the interaction of the soil-top 

plate interface. 

2.4c. One-Dimensional Velocity Profiles 
Tuning curves are measured at each scan position by incrementing the acoustic drive 

amplitude from lower to higher values.  The process is repeated at each new scan position across 

the buried landmine simulant.  For each discrete drive amplitude, a profile of peak vibration 

amplitude is plotted as a function of position.  The single-peaked soil vibration response 
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indicates that the mine simulant is oscillating in its fundamental mode of vibration.  For acoustic 

drive levels below 105 dB, the skirts of the profile show irregular behavior. 

 
Figure 46 – Velocity profiles as a function of the mine’s radius (a = 5.5 cm) for small and large acoustic drive 
levels. 
 

Figure 46 displays plots of the system’s velocity response at each given scan location 

across a radial axis of the mine.  The radius of the mine simulant is a = 5.5 cm.  The plotted 

velocities are not the peak amplitude responses from each scan position, though they correlate 

closely.  The necessary velocity components from the tuning curve measurements taken at each 

location represent the amplitude response at a given drive level for the exact same reference 

frequency.  More specifically, the frequency of the largest amplitude response per drive level 

when located directly over the buried simulant becomes the chosen reference frequency.  The 

vibration amplitude at that frequency and drive level is extracted from the remainder of the 

locations to produce the profiles seen in Figure 46.  The leftmost figure is obtained from a 

relatively low-level acoustic drive pressure.  In contrast, the figure on the right is obtained from a 

significantly larger acoustic driving force. 
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Figure 47 – Velocity profiles for all drive amplitudes referenced to the frequency of maximum resonance 
directly over the mine. 
 

Velocity profiles for each discrete drive level (from 99.30 dB to 120.9 dB referenced to 

20μPa) are superimposed in Figure 47.  The profiles obtained from the larger drive levels clearly 

show that the simulant is oscillating in its fundamental mode of vibration.  It is tempting perhaps 

to believe that the irregularities observed in the case of lower drive levels imply an interesting 

physical phenomenon or perhaps resonance in other than the fundamental mode.  This is not the 

case, however – the multiple peaks observed result from resolution limitations of the measured 

frequency response.  This assertion is verified by looking at a plot of peak resonant amplitude 

versus radial position for each drive level, as shown in Figure 48.  Whereas the actual frequency 

of peak resonance may shift slightly from the peak resonant frequency directly over the mine, the 

plot of peak amplitudes ensures the clearest possible picture of the simulant’s resonant response.  

It becomes clear that the simulant is in its fundamental vibration mode at all drive levels.  

However, this latter technique, while valuable for “on the mine” analysis, is not useful for “off 

the mine” locations.  As there are no clearly identifiable maximum resonances when located “off 

target,” it cannot be used to extend the velocity profile beyond the actual radius of the mine. 
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Figure 48 – Maximum velocity profiles as a function of mine radius (a = 5.5 cm) 

  

2.4d. Two-Dimensional Velocity Profiles 
A two-dimensional profile using a grid of 15 by 15 points is shown in Figure 49.  The 

relative magnitude of soil particle velocity measurements is transferred into a contour plot in 

Figure 50.  Each contour corresponds to a 10 mm/s increase in vibration velocity.  The smooth 

surface plotted in Figure 51 is a Gaussian fit to the experimental data.  The fitted function about 

the central peak is of the form  

Equation 59 
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Additional two-dimensional profiles for linearly increasing acoustic pressure between 131.8 dB 

and 150.9 dB are shown in Appendix H.  For the case of the sound pressure level equal to 150.9 

dB, βx = 0.490a, βy = 0.406a, and γ = 120.202 mm/s. 
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Figure 49 – Soil surface vibration velocity profile as a function 
of radial position from a buried simulant. 

 

 
Figure 50 – Contour plots of soil surface vibrations. 

 

 
Figure 51 – Gaussian fits to the experimental soil surface 
vibration data collected in two-dimensions. 
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2.5 VS 1.6 Anti-tank Landmine 
Figure 52 shows a plastic VS 1.6 anti-tank landmine.  A cross-section view showing the 

detail of the top plate reveals a circumferential leaf-spring support of a plastic top plate, which 

does not have uniform thickness. 

 

Figure 52 – VS 1.6 plastic anti-tank mine and cut-away view. 

2.5a. Comparison of the “On the Mine” versus “Off the Mine” Nonlinear 
Resonant Response for a VS 1.6 Landmine 

An inert VS 1.6 landmine is buried beneath a smooth, flat layer of soil supported by 

concrete soil tank on the concrete floor in the laboratory room.  The experimental apparatus is 

shown in Figure 53.  The same experiments performed using the buried mine simulant (sections 

2.4b and 2.4c) are performed for the buried VS 1.6 landmine.  Resonances involving the intricate 

shape of the actual landmine casing are not easy to predict from theory.  The VS 1.6 has a 

compliant pressure plate, but its complex overall structure causes additional resonant peaks to 

appear in the resonant tuning curve experiments.  The tuning curve experiments are performed 

over a bandwidth that is below the 300 Hz cut-off frequency for vibration modes in the large soil 

tank. 
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Figure 53 - Soil-Mine Oscillator Experimental Apparatus 
 
 

The VS 1.6 exhibits aspects of both the elasto-slip (section 2.1d) and bilinear hysteresis 

models (section 2.2c) depending upon the range of drive amplitudes investigated.  For sound 

pressure levels in the range 82.6 dB to 107.7 dB, the tuning curves for the VS 1.6 display linear 

backbone curves (shown in Figure 54).  The vertical portion of the backbone curve that is 

measured at very low amplitudes indicates that β << 1 when applying the Iwan model. 

 
Figure 54 – Resonant tuning curves and backbone curve directly over a buried VS 1.6 landmine at relatively 
low drive levels. 
 

In contrast, if the maximum limit of the drive level is increased to 113.6 dB, the resonant 

response of the VS 1.6 shows an upward curvature that resembles the backbone curve behavior 

predicted by Caughey’s bilinear hysteretic model.  Resonant tuning curves measured directly 

over the buried mine for larger drive amplitudes are shown in Figure 55. 
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Figure 55 – Resonant tuning curves and backbone curve directly over a buried VS 1.6 landmine over a 
relatively larger range of drive levels than used in Figure 54. 
 

2.5b. One-Dimensional Velocity Profiles 
The automated scanning apparatus is used to create velocity profiles as a function of mine 

radius for the buried VS 1.6 landmine.  The velocity profiles are shown collectively in Figure 56.  

Here, the frequency resolution limitations at low drive amplitudes appear to be less significant 

than in the case of the simulant.  The single-peaked shape of the velocity profile indicates that 

the compliant pressure plate of the mine is oscillating in its fundamental mode of vibration. 

 
Figure 56 – Velocity profiles of a buried VS 1.6 anti-tank landmine as a function of 
mine radius. 

 

2.5c. Effects of grazing angle upon experimental measurements. 
Experiments to this point have been conducted with a relatively large grazing angle 

(between 30 and 45 degrees depending upon scan location).  As the grazing angle diminishes, so 

does the strength of the signal response measured by the LDV.  Measurements are possible 

because of the rough surface back-scattering that occurs when the laser light is incident upon the 

granular soil.  Experiments reported here show that at some minimum grazing angle, the LDV 

cannot properly detect the scattered signal.  It is believed that the frequency modulation circuit in 
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the Polytec100 LDV may be dropping out of its own dynamic detection range.  This might be 

due to the elongated laser spot size on the rough surface which causes a scattered speckle pattern 

and results in a noisy analog detection voltage.   This minimum grazing angle is experimentally 

determined to be 19 degrees.  Figure 57 shows a bandwidth of frequencies containing the 

fundamental resonant frequency of the VS 1.6 mine itself.  The laser spot is located directly over 

the center of the buried mine.  For grazing angles greater than or equal to 19 degrees, there is a 

strong resonant response.  Conversely, for grazing angles smaller than 19 degrees there is no 

measurable soil surface vibration response.  The measured soil surface vibration for various 

angles of incidence is shown in Figure 57. 
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Figure 57 – Tuning curves measured directly over the buried mine using a forward-looking LDV for a variety 
of grazing angles.

20 degrees 

19 degrees 18.75 degrees 

18 degrees 18.5 degrees 



68 

 

Conclusions 
Acoustic-to-seismic methods have shown tremendous promise in positively identifying 

landmines.  The nonlinear behavior that arises when a compliant buried landmine is excited is an 

incredibly complex phenomenon.  At present, the intricate physics concerning the interaction of 

a granular media and the top plate of a landmine are not extremely well understood.  The 

experiments contained herein attempt to characterize the observed nonlinear behavior through a 

variety of modeling and profiling techniques. 

The soil-mass oscillator apparatus effectively enables one to measure the elastic 

parameters of a soil medium by performing mass loading experiments and applying linear 

acoustic theory.  The stiffness of dry, sifted masonry sand is measured to be 

( )
m
Nkeff

6101.04.4 ×±= , and the sound speed in the medium at CT o20=  is (149 ± 1) m/s.  

When A/S techniques are employed, the masonry sand is shown to undergo softening.  That is, 

as the drive amplitude increases, the resonant frequency of the soil decreases.  The linear nature 

of this backbone curve identifies the system as potentially mesoscopic elastic. 

The elasto-slip model of elastoplastic hysteresis presented by Iwan exhibits linear 

backbone behavior and is used to model the Soil-Mass Oscillator.  Iwan’s model is based upon a 

distribution of Jenkin’s elements, a series-parallel arrangement of springs attached to slip-

dampers.  Depending upon the bandwidth of the distribution of elements, a function of β, the 

backbone curve will change shape slightly.  For β = 1, the backbone curve is completely linear.  

Applying the Iwan model to experimental data, the average yield force for the soil lattice 

structure of the masonry sand over eleven trials is calculated to be 2.9 N with a standard 
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deviation of 0.42 N.  Different soils have different lattice yield points.  Loess soil is shown to 

yield at (5.9 ± 0.3) N. 

A secondary model which has great potential value in studying the nonlinear soil-mine 

system is the Local Interaction Simulation Approach (LISA).  LISA is a statistical formulation 

based upon a distribution of elements having unique bi-state protocols.  The LISA model is 

shown to produce hysteresis loops in stress-strain diagrams very similar to those presented in the 

Iwan model.  This fundamental similarity in regards to the hysteretic behavior of the model lends 

tremendous credence to the application of LISA to the nonlinear acoustic landmine detection 

problem.  Further studies connecting the microscopic parameters of soil with the 

phenomenological equations of state employed by LISA are needed before the model can be 

directly applied. 

The Soil Plate Oscillator apparatus allows the nonlinear behavior that develops at the 

soil-plate interface to be studied.  Theory predicts that vibrations of a clamped plate should be 

linear.  Empirical data from the oscillator in the absence of soil mass loading actually exhibited a 

slight stiffening effect. 

A comparison of the overall nonlinearity of the soil-mass oscillator and soil-plate by 

regression analyses of resonant tuning curves.  The soil-mass oscillator loaded with loess soil is 

the least nonlinear of the systems studied.  The soil-thin plate oscillator loaded with masonry 

sand is the most nonlinear of those studied. 

At large drive amplitudes, the resonant tuning curve behavior appears to depart from the 

linear backbone predictions of both the Iwan and LISA models.  A bilinear model of hysteresis 

developed by Caughey seems to provide a more accurate description of the complicated 
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nonlinear behavior.  Fitting Caughey’s theoretical predictions to empirical data, the lattice yield 

force is computed to be approximately 6.1 N. 

A variant upon the acoustically driven soil-plate oscillator, the electro-dynamic soil-plate 

oscillator enables extremely accurate measurements of motional impedance to be obtained.  At 

very low drive amplitudes, the circular Lissajou patterns signal relatively linear behavior.  As the 

drive amplitude increases and nonlinearity is introduced into the system, the Lissajou patterns 

become distorted.  The downward shift in resonant frequency that occurs as drive amplitude 

increases corresponds to the behavior observed in the soil-mass and soil-plate oscillators.  

Further, the decrease in the effective resistance of the system and increase in the quality factor of 

the oscillation as drive amplitude grows is in accordance with expected behavior of nonlinear 

mesoscopic elastic systems.  A great deal of future study can be undertaken with the electro-

dynamic soil-plate oscillator. 

The design and implementation of an automated LabVIEW® control system was 

instrumental in generating soil surface vibration profiles of a buried acrylic mine simulant and an 

inert VS 1.6 plastic anti-tank mine.  In both cases, the nonlinear behavior observed “on-target” 

greatly surpassed the negligible responses seen “off-target.”  At large drive amplitudes, both the 

mine simulant and VS 1.6 exhibited the curved backbones similar to those seen in the Caughey 

model of bilinear hysteresis.  Low amplitude driving of the VS 1.6 showed linear backbone 

behavior as predicted by Iwan. 

One-dimensional velocity profiles of soil surface vibration as a function of scan position 

indicate that both the mine simulant and VS 1.6 landmine oscillate in their fundamental mode of 

vibration.  The mine simulant was profiled in two dimensions.  The resulting velocity profile is 

fit to a Gaussian. 
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Lastly, the increased noise caused by speckle and backscatter of laser light from a 

granular medium establishes a minimum grazing angle beyond which landmine detection cannot 

occur.  For the experimental setup described here, the grazing angle is determined to be 19 

degrees. 

Potential for future study in the area of nonlinear acoustic landmine detection is very 

promising.  The models presented herein verify the existence of nonlinear mesoscopic elastic 

behavior in the soil-mine system, and they provide a solid foundation for more complex 

modeling techniques.  A breakthrough connection between microscopic features and mesoscopic 

elastic parameters could potentially lend a predictive value to the LISA model.  One of the 

greatest shortcomings at present is the time requirement for signal processing.   While nonlinear 

acoustic landmine detection techniques are extremely reliable, they are also quite slow.  

Technological improvements could greatly improve data collection rates and make this detection 

technique a reality. 
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Appendix A - Experimental Equipment 

A1.  Electronic Equipment 
The Agilent 35670A Dynamic Spectrum Analyzer is a dual channel electronic instrument 

and has a bandwidth of 100 kHz per channel.  It can be operated with a high frequency resolution 

(better than 0.1 Hz if needed), and its 90 dB dynamic range makes it an extremely versatile 

instrument in applications involving spectral analysis.  In the swept sinusoidal mode, the 

instrument takes the average of many Fast Fourier Transforms (FFTs) for each sweep location 

(typically 5 cycles per point) that synchronously corresponds to the output frequency of the 

analyzer.  The sweep rate, number of points per sweep, and the resolution of the instrument are 

easily configured and changed for a variety of experimental setups. 

In the swept sinusoid mode, the spectrum analyzer is responsible for generating a 

constant amplitude sinusoidal tone that changes its frequency linearly from the beginning to the 

the end of the designated frequency band.  Simultaneously, the analyzer records the FFT of the 

input time varying voltages to channels one and two in a narrow bandwidth centered about the 

source out frequency. 

The source output was connected to a pair of 21 cm diameter loudspeaker through two 

separate AIWA stereo integrated power amplifiers (model no. SA-A6OU) for the mine simulant 

experiments.  For the VS 1.6 experiments, two 12 inch subwoofer speakers were driven using 

CE2000 Crown Audio Power Amplifiers.  Typically, the vibration transducer device (see below) 

was connected to channel one, and the acoustic pressure was measured by a microphone 

connected to channel two.  Both channels were displayed as separate traces of voltage versus 

frequency on the front panel display of the spectrum analyzer. 
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A2.  Vibration Measurement Devices 

A2i. Piezoelectric Accelerometer 
Small Endevco accelerometers with nominal sensitivity 0.300 pC/(m/s2) were used to 

make contact vibration measurements.  Each accelerometer was connected to an Endevco charge 

amplifier, which converts the alternating charge stored on the piezoelectric crystal to an 

alternating voltage with relatively low output impedance.  A miniature 2 gram B&K 

accelerometer (3 cm diameter and 3 cm tall) along with a B&K charge amplifier was also used. 

The transducer in each of these accelerometers is a compression sensitive piezoelectric 

crystal affixed to a stationary mass (Figure 58).  As the accelerometer is subjected to longitudinal 

compression, it is compressed against the mass and produces electric signals that correspond to 

the magnitude of compression.  The Endevco accelerometers have minimal transverse sensitivity 

(0.5 – 2.0%).  Consequently, they are less sensitive to rocking motions.  This characteristic 

makes them particularly useful in experiments where ambient vibrations or non-orthogonal 

motion may be masking the desired surface vibrations. 

 

Figure 58 – Piezoelectric accelerometer 

A2ii. Geophone 
The SM-11 geophone is designed to detect seismic vibrations in the frequency range 

between 80 Hz and 500 Hz.  It is also used as a contact vibration measurement device.  As the 

geophone vibrates, the movement of a magnet mounted on two leaf springs inside a stationary 

inductor coil (Figure 59) induces an electric current in the coil.  The induced electromotive force 

is proportional to the particle velocity of vibration.  The output impedance of the geophone is 

+++++++++++_ _ _ _ _ _ _ _

mass

rigid base
_

+piezoelectric 
crystal +++++++++++_ _ _ _ _ _ _ _

mass

rigid base
_

+piezoelectric 
crystal



74 

relatively low, so it is capable of driving a voltage signal along a long coaxial cable connected to 

a high impedance load.  

 

Figure 59 – Geophone 
 

A2iii. Laser Doppler Vibrometer (LDV) 
The Polytec PDV-100 laser vibrometer is used to remotely measure soil surface 

vibrations.  Since there is no physical contact between the LDV and the soil, the LDV has the 

added benefit of being able to detect soil surface vibrations without mass loading.  The 

sensitivity of the LDV varies within different bandwidths of operation.   The particle velocity 

vibration at the soil surface causes a slight Doppler shift in the reflected laser beam.  An 

interferometer inside the LDV converts the Doppler shift into an equivalent voltage which is 

proportional to the velocity of the reflected surface (considering normal incidence). 

If the LDV is mounted in a forward-looking orientation, one must account for the fact 

that the component of particle velocity along the direction of the laser beam decreases with 

angle.  The normal component of the particle velocity decreases by a factor of sinθ as the grazing 

angle θ decreases.  Only the shift that occurs in the direction of the laser beam contributes to the 

Doppler effect.  See Figure 60. 
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Figure 60 – Effect of grazing angle on the laser Doppler vibrometer 

 
 

It is not the intensity of the LDV signal diminished by scattering that causes the 

frequency modulated (FM) detection to become noisy.  The LDV’s incident beam undergoes 

light scattering from the granular medium that introduces a speckle noise interference pattern in 

the scattered waves.  The problems involving the demodulation of laser light due to back-

scattering from a granular rough surface (introducing noise in the FM detection system otherwise 

known as speckle noise) has been addressed in the specific context of landmine detection by 

Goggans et  al.14 

θ

vsoil
v soil(s

in θ
)

LDV

soil

θ

vsoil
v soil(s

in θ
)

LDV

soil



76 

Appendix B - Linear versus Nonlinear Behavior 
 

Whenever a system excited by a harmonic force with a single “primary” frequency 

component generates an oscillation response with frequency components other than the primary, 

the system is said to exhibit nonlinear behavior.  This behavior is called distortion and can be 

commonly observed when one overdrives the loudspeakers on a stereo system.  The differences 

between linear and nonlinear behavior can be illustrated by comparing the oscillations of a mass 

suspended by a spring with the oscillations of a mass suspended by an elastic band.  The mass on 

the spring exhibits linear behavior as the spring force varies linearly with position.  A plot of the 

displacement amplitude versus time will exhibit pure sinusoidal behavior.  The mass on the 

elastic band is a nonlinear system because the restoring force is not a linear function of its 

position.  At each crest the oscillating mass will “jump,” thus exhibiting an amplitude versus 

time response that will not show pure sinusoidal behavior. 

The complexity of the nonlinear response relative to the linear response can be observed 

by comparing the Fast Fourier Transforms (FFT) of both systems.  Mathematical Fourier 

analysis shows that periodic functions, which are a superposition of harmonic tones of varying 

amplitude, can be decomposed into their components.  In the case of the linear signal, the output 

frequency spectrum exhibits only one frequency.  In the nonlinear system, the output frequency 

spectrum is a superposition of several tones. See Figure 61 and Figure 62. 
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Figure 61  - A linear oscillator has a sinusoidal displacement amplitude.  The oscillation is not distorted so 
that a single spike is observed in the Fourier spectrum. 
  
 
 

 
Figure 62 - The displacement amplitude of a nonlinear oscillator deviates from sinusoidal behavior.  The 
oscillation exhibits distortion so that several spikes (frequency components) are observed in the Fourier 
spectrum.   
 

The soil-mine system is nonlinear.  In particular, it is the soil-mine interface that exhibits 

the very strong nonlinear behavior that is observed.  Thus, while linear acoustic methods have 

been used as an effective technology for detection schemes, nonlinear acoustic mine detection 

improve upon linear acoustic detection methods by increasing the “on the mine” versus “off the 

mine” vibration amplitude contrast ratio and eliminate certain types of “false alarms.”  

Time Frequency

Time Domain Frequency Domain 
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Appendix C – Soil-mass oscillator tuning curves, backbone curves, spring 
constants and Iwan-model yield forces 

 

Figure C-1 

Figure C-2 

Figure C-3 

Figure C-4 

Figure C-5 
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Figure C-6 

Figure C-7 

Figure C-8 

Figure C-9 

Figure C-10 
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Table 2 – Sound speed equations, spring constants, and yield forces for the different nonlinear acoustic 
landmine detection experimental apparatuses 
Figure Sound Speed Equation Spring Constant 

(106 N/m) 
Yield Force (N) 

C-1 u = (8.9 ± 0.3) mm/s – (25.2 ± 0.7) μm*f 6.0 ± 0.1 3.0 ± 0.1 
C-2 u = (8.73 ± 0.08) mm/s – (24.5 ± 0.2) μm *f 6.0 ± 0.1 3.02 ± 0.05 
C-3 u = (8.2 ± 0.1) mm/s – (22.8 ± 0.3) μm *f 6.1 ± 0.1 2.84 ± 0.06 
C-4 u = (8.0 ± 0.1) mm/s – (22.1 ± 0.3) μm *f 6.1 ± 0.1 2.77 ± 0.06 
C-5 u = (7.8 ± 0.1) mm/s – (21.3 ± 0.4) μm *f 6.3 ± 0.1 2.75 ± 0.07 
C-6 u = (7.56 ± 0.06) mm/s – (20.8 ± 0.2) μm *f 6.2 ± 0.1 2.66 ± 0.05 
C-7 u = (7.78 ± 0.05) mm/s – (20.9 ± 0.1) μm *f 6.6 ± 0.1 2.84 ± 0.05 
C-8 u = (7.42 ± 0.07) mm/s – (19.4 ± 0.2) μm *f 7.0 ± 0.1 2.72 ± 0.05 
C-9 u = (6.07 ± 0.06) mm/s – (15.6 ± 0.2) μm *f 7.2 ± 0.1 2.26 ± 0.04 
C-10 u = (8.3 ± 0.1) mm/s – (16.8 ± 0.3) mm *f 11.4 ± 0.1 3.96 ± 0.08 
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Appendix D - Presiach-Mayergoyz Formalism 
The Preisach-Mayergoyz (PM) formalism was first developed in the context of 

ferromagnetism and later extended to any phenomenological situation which can be described by 

an input-output equation of state.  That is, the equation of state must contain a transfer function 

that converts any given input to a corresponding output.  For example,  

( )AB ρ=  

where ρ is the transfer function converting A into B. 

 
Figure 63 – Generic hysteresis loop 

 

If A and B both vary in time, a plot of B versus A will yield a hysteresis loop like that seen in 

Figure 63.  By varying the complexity of ρ, the PM formalism can be used to reproduce every 

possible hysteretic curve. 

 

Figure 64 – Generic bi-state protocol 
 

B 

A 
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The constraints upon the equation of state required by the PM formalism mandate a bi-

state protocol as shown in Figure 64.  Depending on the value of an externally applied control 

variable, D, any particular subcomponent will be in one of two states: the active state, C2, or the 

inactive state, C1.  While every subcomponent in a sample must obey the same general bi-state 

protocol, it is not necessary that they each be governed by the same threshold values, D1 and D2.  

That is, each subcomponent may be triggered on or off by different values of the external control 

component.  These “on-off” values define the protocol for a specific subcomponent and are 

plotted as ordered pairs in a PM-space (see Figure 65).  Since D1 < D2 the possible states are 

actually restricted to a half-space.   

 
Figure 65 – Random distribution in a generic Presiach-Mayergoyz space 
 

Macroscopic behavior results from the aggregate behavior of each subcomponent in 

response to an external control.  In the PM formalism, it is assumed that the universal control 

uniformly influences every subcomponent within a sample.  As each subcomponent has a unique 

protocol, whether or not it is active depends upon both the value of the control as well as the 
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history of the system.  For a random sample, such as that depicted in Figure 65, the initial states 

of each subcomponent are unknown. 

As D changes, the number of active elements changes.  This evolution is depicted 

graphically in the PM space, as shown in Figure 66.  Increasing the magnitude of the control D 

corresponds to positive movement along the horizontal axis, as shown in Figure 66a.  At an 

arbitrary value Dmax, all the subcomponents to the left of the vertical line have been driven into 

the C1 state.  The states of those subcomponents to the right of Dmax remain unknown.  If Dmax is 

pushed to the rightmost value of the PM space as in Figure 66b, then all the subcomponents are 

driven into state C2.  Having conditioned the sample in this manner, if D is reduced (represented 

by a negative movement along the vertical axis) only those components above Dmax are returned 

to the C1 state.  Thus, it is apparent that a conditioned sample oscillating between two values of 

D will only have a triangular active region as shown in Figure 66c.  The subcomponents within 

this region will change state depending upon the value of the varying control, while those outside 

the triangle remain constantly in one of the two possible states.  Oscillations between different 

values of the control will produce differently sized active regions (Figure 66d). 
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Figure 66 – Evolution of a random PM space.  a.) The control variable D is changed to an arbitrary value 
Dmax.  b.) The sample is fully conditioned.  c.) The values enclosed by the triangle are in the active region as D 
oscillates between Dmin and Dmax.  d.) A smaller range of D yields a smaller active region. 
 

For a ferromagnetic sample, such as that depicted in Figure 67, the control component is 

an externally applied magnetic field, H.  The bi-state condition for any given subcomponent in a 

sample is the magnetization, M, and is shown in Figure 68.  Magnetization is the dipole moment 

density in a sample, so M for any particular subcomponent can be thought of as either spin up or 

spin down (M↑ and M↓, respectively).  

 

b.) 

c.) d.) 

a.) 
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Figure 67 – Ferromagnetic specimen subjected to an external H-field. 
 

 

Figure 68 – Ferromagnetic bi-state protocol 
 

The motivation for the ferromagnetic bi-state protocol arises from internal energy 

considerations.    Internal energy is defined as 

Equation 60 
HMUM

vv
•−=  

which is a double-welled potential because M has two possible states (up or down).  In Figure 

69a potential curve is depicted for an arbitrary H.  Despite being double-valued, the 

magnetization will behave so as to ensure that the overall potential energy resides in the lower of 

the two ground states. 
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Figure 69- Double-well potential for a ferromagnetic domain when H is much less 
than the threshold value. 

 
 

Each H will yield a different potential, but as H approaches a threshold value, the 

potential wells become progressively shallower.  When H finally passes through its threshold, 

the potential will become instantaneously single-valued and will then return to its double-valued 

condition.  After the transition, though, the original state will no longer be the lowest energy 

ground state.  Thus, the subcomponent is forced to change from one state to the next.  This 

progression is shown in Figure 70. 

 
Figure 70 – Potential wells for varying values of H. 
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Energy considerations resulting from the externally applied H-field are the primary cause 

of state transitions, but they are not the only possible transition mechanism.  It is also possible 

for such transitions to be induced thermally.  It is certainly more probable for a subcomponent to 

exist in the lowest energy ground state, but thermal effects can cause a jump from a lower energy 

state to a higher one.  As H approaches the threshold value, the probability of thermally induced 

transitions rises even further because the barrier potential and the energy differential between the 

wells both decrease.  This probabilistic effect is depicted by the arrows in Figure 71. 

 
Figure 71 – Ferromagnetic bi-state protocol with thermally induced transitions 

 
In summary, from its birth as a tool used to explain hysteresis effects in ferromagnets, the 

PM space has evolved into a statistical formulation capable of describing the macroscopic 

hysteretic behavior of any system using a distribution of constituent bi-state protocols.  The 

phenomenological mesoscopic elastic behavior observed in geomaterials has been effectively 

simulated by Scalerandi et al.6 
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Appendix E - Wave Propagation on a Clamped Plate 
An acoustic pressure wave causes longitudinal displacement of particles as it propagates 

through a medium.  If a sound wave is normally incident upon a solid lattice structure that is 

constrained by some set of boundary conditions, the molecules in the solid can be thought of as 

moving transversely with respect to the boundaries as they are acoustically excited. 

To model this situation in a 1-D case, the classic transverse wave on a string problem is 

considered as shown in Figure 72. 

 
Figure 72 – Wave pulse on a string. 
 
For simplicity’s sake, the following approximations are made: 
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Equation 61 
 
Noting the following definition for the speed of a traveling wave 

μ
Tc ≡  

Equation 61 takes the well-known form of the wave equation 
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2
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cdx

yd  

Equation 62 
 

whose general solution containing waves traveling in both the +x and -x directions is 

( ) ( ) )(, ctxgctxftxy −++=  
Equation 63 

 

Advancing on to the 2-D case, the string can be replaced by a membrane and linear tension per 

unit length becomes surface tension per unit length, T~ . 
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Figure 73 – Wave pulse on a membrane. 

 
Again, because the surface area patch is assumed to infinitesimally small, the following 

approximations holds true 
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The normal direction is now defined by the z-axis.  Application of Newton’s second law in this 

coordinate plane yields 
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Equation 64 
 

 

 

For the 2-D case the sound speed in the medium takes on the following definition 

σ
Tc
~

≡  

and the familiar 2-D wave equation results 
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Equation 65 
 

The wave on a membrane problem becomes slightly more complex if an external driving force is 

introduced into the system. 



92 

 
Figure 74 – Wave pulse on a membrane subjected to an external driving force. 

 
 

Newton’s second law must now account for this additional force, which is assumed to be 

normally incident upon the membrane. 
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Reworking the problem with this slight perturbation produces a new wave equation 
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If the membrane is assumed to be circular in nature and the external force acts at the center of the 

membrane, then the wave equation will be devoid of angular dependence.  Expanding the 

gradient in polar coordinates while neglecting angular dependence clearly shows that the solution 

to the wave equation will be solely a function of the radial distance from the center of the 

membrane, r. 
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Developing the actual wave equation with the classical methods used above for a thin, circular, 

elastic clamped plate is considerably more daunting than either of the previous examples. 

 
Figure 75 – Clamped plate subjected to external driving force 

 
However, the equation for a clamped plate transducer as seen in Figure 75 is derived by Mason15 

to be 
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Equation 66 
 

== tjePP ω
0 driving acoustic pressure 

=ρ plate density 

=d plate thickness 

=ω natural resonant frequency of the clamped plate 

=σ Poisson’s ratio 

=E Young’s (elastic) modulus 
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Noting the definition for k, it can be shown that Equation 66 can be algebraically manipulated to 

yield 
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Equation 67 
 

The first two terms of Equation 67 are a difference of squares, so 
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Rewriting the gradient terms of Equation 68 in radial form and neglecting angular dependence 

because the plate is assumed to circularly clamped 
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In this treatment, the plate is driven by a uniform pressure and is assumed to have circular 

symmetry.  Thus, it is expected that the solution to the wave equation should be a linear 

combination of real and imaginary zeroth order Bessel functions of the first and second kind. 

( ) ( ) ( ) ( )jkrDYkrCYjkrBJkrAJw ogenous 0000hom +++=  

However, ( )krY0  and ( )jkrY0  become infinite as r approaches zero, so physical constraints 

demand that C and D equal zero for the circular plate.  Note that if the circular plate were 

actually annular this constraint would not exist.  The homogenous solution for the circular plate 

then becomes 
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( ) ( ) ( ) ( )jkrJkrIkrBIkrAJw ogenous 0000hom , ≡+=  
Equation 69 
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If Equation 68, the equation of motion, is in fact true, then there must also exist a constant 

particular solution. 

ξ=particularw  
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The general solution of the equation of motion is a linear combination of the homogenous and 

particular solutions. 

particularogenousgeneral wwww +== hom  

( ) ( )
200 ωρd
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Equation 71 
 

Since the plate is circularly clamped, it must obey the following boundary conditions when r is 

equal to the clamped radius, a. 

( ) 0== arw  
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Applying the first condition to Equation 71 
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Equation 72 
 

In order to apply the second boundary condition, it must be recalled that 
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Equation 73 
 

Equation 72 and Equation 73 now form a system of equations that can be used to determine the 

coefficients A and B. 

( )
( ) ( ) ( ) ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+

= 2
0100

1

ωρd
P

kaIkaJkaIkaJ
kaIA  

Equation 74 
 

( )
( ) ( ) ( ) ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+

= 2
0100

1

ωρd
P

kaIkaJkaIkaJ
kaJB  

Equation 75 
 

The general solution for a clamped plate is then 
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Equation 76 
 
The lowest resonant frequency of this oscillating plate occurs when ka = 3.20.  A plot of this 

single peaked mode shape is shown in standard acoustics texts. 



98 

Appendix F - Automated Detection Algorithms and LabVIEW® 
The integration of an external control system into the experimental setup was realized for 

the first time in the buried-simulant setup with far-reaching benefits.  In addition to being a 

pragmatic necessity for actual mine clearance operations, the self-sustaining nature of the setup 

has enabled prolonged, high-resolution data sets to be gathered.  A self-designed LabVIEW® 

program regulates the entire experimental process.  The host personal computer is connected to 

the Agilent spectrum analyzer via an IEEE 488.2 National Instruments card and HP-GPIB cable.  

The flow of information over the GPIB interface is two-way – control commands are sent to the 

spectrum analyzer and data is saved directly to the host computer’s hard drive.  The movement 

commands that physically enable the scanning procedure are sent to the two NF90 motor 

controllers via RS-232 serial ports. 

The LabVIEW® interface for conducting a two-dimensional profile of a buried mine or 

mine simulant is shown in Figure 76 on the following page.  The front panel requires a variety of 

user inputs.  These include: 

- start frequency of the sweep (Start Frequency (Hz) ) 

- stop frequency of the sweep (Stop Frequency (Hz) ) 

- initial source level (Source Level (mV) ) 

- magnitude by which to increase the source level (Amplitude Increment (mV) ) 

- number of sweeps to perform at each scan position (Sweeps per Location) 

- the dimensions of the grid to be scanned (Initial X-axis Motor Index and Initial Y-axis 

Motor Index) 

- the number of scan positions in each direction (X-axis Increments and Y-axis 

Increments) 

The actual LabVIEW® code is graphical in nature.  Sample code which conducts a single 

frequency sweep and saves the tuning curves to file is shown in Figure 77.



 

 

Figure 76 – LabVIEW® front panel for the 2-D mine sweeping experiment
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Figure 77 – LabVIEW® circuit diagram to conduct a frequency sweep and save the tuning curve to file. 
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The graphical programming environment of LabVIEW® is relatively difficult to present 

in its entirety, as each virtual instrument is often a multi-layered combination of several sub-

virtual instruments.  The general algorithm for conducting a nonlinear scan of the buried mine 

simulant is given in Figure 78. 
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Figure 78 – Flowchart of LDV motor control and Agilent spectrum analyzer algorithm for an automated scan 
across a soil box. 
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Appendix G - Buried Acrylic Simulant: Resonant Tuning 
Curves and Backbone Curves 
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Appendix H – Two-Dimensional Soil Surface Vibration Profiles 
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Figure H-7 
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Appendix I – Buried VS 1.6 Anti-tank Landmine: Resonant Tuning Curves and 
Backbone Curves 
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