REPORT DOCUMENTATION PAGE AFRL-SR-AR-TR-07-0411

Public reporting burden for this collection of inf: tion is ted to average 1 hour per response, including the tlime for reviewing the
data needed, and compleding and reviewing this collection of information. Send comments regarding this burden estimate or any oth ing
this burden to Department of Def LV glon Headquarters Services, Directorate for Inf jon Operations and Reports (0704 %
4302 Respohdents should be aware that notwithstanding any other provision of law, no person shall be subject 1o any penalty for fa antly
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
15/01/2007 Final Report 01/12/2005---30/11/2006
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
Algorithm and Implementation of P-adic Cyc lic Codes Using
Exact Arithmetic Library Developed for Quantum Computing 5b. GRANT NUMBER
FA9550-06-1-0038
5¢c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) 5d. PROJECT NUMBER
Chao Lu
Computer & Information Sciences 5e. TASK NUMBER
Towson University 5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAM-E(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER
Towson University 8000 York Road
Towson, MD 21252
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10, SPONSOR/MONITOR’S ACRONYM(S)
Dr. Jon Sjogren 4015 Wilson Blvd, Room 713
AFOSR/NM Arlington, VA 22203-1954
11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

?Wobu\fbm ﬁl-ﬂP{JWedﬁ/ pu,bllf/ Pilease

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Summary: The first part of the research is that we have expanded the Exact Scientific Computational Library (ESCL), and Dixon’s
algorithm on rational N by N matrix inverse was implemented. We studied and experimented the relation of required length M of p-adic
expansion and the prime p, and the possible use of the length of periodicity of a rational number’s p-adic expansion in determining the
length of required M in rational matrix operations.

The second part of the work is to develop and implement computational algorithms for p-adic cyclic code generation, which is based on the
results of the paper, Modular and p-adic cyclic codes, by A.R. Calderbank and N.J.A. Sloane. Algorithms and software have been developed
to give an alternative solution to factorize the polynomial X"-1 over the ring of integers modulo p“, where p is a prime not dividing », and it
can generate the table of cyclic codes using the divisors of X"-1 as their generator polynomials.

All the implementation of ESCL is in C++, as well as the software to generate p-adic cyclic codes.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES Chao Lu
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (inciude area
code)
410-704-3701

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Algorithms and Implementation for P-adic Cyclic Codes Using Exact

Arithmetic Library Developed for Quantum Computing

Final Report (Grant # FA9550-06-1-0038)
Chao Lu

Computer & Information Sciences

Towson University

January 16, 2007

UNIVERSITY

20071016432

1. Summary

The first part of the research is that we have expanded the Exact Scientific Computational Library (ESCL),
and the Dixon’s algorithm [1] on rational N by N matrix inverse was implemented. We studied the relation
of required length M of p-adic expansion and the prime p by experiments, and the possible use of the length
of periodicity of a rational number’s p-adic expansion in determining the length of required M in rational

matrix operations.

The second part of the work is to develop and implement computational algorithms for p-adic cyclic code
generation, which is based on the results of the paper, Modular and p-adic cyclic codes, by A.R.Calderbank
and N.J.A. Sloane [2]. Algorithms and software have been developed to give an alternative solution to
factorize the polynomial X"~/ over the ring of integers modulo p°, where p is a prime not dividing n, and it
can generate the table of cyclic codes using the divisors of X"-/ as their generator polynomials.

All the implementation of ESCL is in C++, as well as the software to generate p-adic cyclic codes.

2. Progress on ESCL Using P-adic Arithmetic

In the design of ESCL we employ several developing tools and a specific library--NTL. We use Visual C++
6.0 and MFC to develop and debug the codes. MATLAB Symbolic is used for comparison. We adopt the
NTL library to process the input and output of arbitrary long integers, which are the numerator and
denominator of a rational NTL, written by Shoup [3], a high-performance, portable C++ library for number
theory that provides both data structures and algorithms for arbitrary length integers. NTL allows
manipulation of integers for vectors, matrices, and polynomials over finite fields, and arbitrary precision

floating-point arithmetic.

Our ESCL has the following operations:

1) Converting rational to p-adic number and via verse.

2) Single rational number’s calculation: addition, subtraction, multiplication and division.

3) The addition, subtraction and multiplication of two rational matrixes.

4) The inverse of a single rational N by N matrix.

In order to improve the efficiency of ESCL, a proper prime p and the length M of p-adic expansion need to
be determined. We did experiments on a random rational matrix with different prime numbers and record
the execution time. Our experiments show that the running time is more related to the length M of p-adic
sequence, where “M" can be calculated based on the prime p:

m =2[log(82™)/log p|, (1)

where the & = 1—[A, and A, isthe Euclidean length of the ith column.

(TR 1)

The process of choosing p and M can be done as follows. Suppose that for certain “‘p”, we can get “M" very

small. If we choose a small M, then use (1) to calculate prime p. Thus we will get a relatively big prime and
a theoretic smallest M, and some adjustment is needed during the process. The flow chart is shown in

Figure 1.

Input the matrix to

be calculated.

mEstimate2 ()

Get the prime number being
estimated (estimatePrime). Here

we suppose the m=1.

selectPrime()

Get the accurate prime number.

mEstimate2 ()

Get the m.

Figure 1. Estimating the prime rﬂnmber

Dixon’s algorithm for matrix inverse from “Exact Solution of Linear Equations Using P-adic Expansions”
[1] was implemented, which is the newly added function since the last report. To get the A, for which
AxA”'=I, we take the following three steps.
1) Get the nxn matrix C, whose entries lie in /0, p-1]
AA'=I=>AA"modp=Imodp=>AC=Imodp;=>C= A mod p.
2) Compute a p-adic approximation x’ to A'. x'isa nxlcolumnofA™.
m-1 m-=1
x'=Y x,p' = (Cbmod p)p'

1=0 i=0

3) Transfer x’ to rational field.

Repeat doing 2) 3), until bi=bn-1,

1 0 0

0 1 0
and bn: b]: cee b11-I=

0 0 1

Figure 2 shows an example for this operation.

enter the operation

input the dimision

input W 1 elements

input

input 3 elements

L+ B 1 i. 1_1;
724.-1./24.5

-1/6,.1/6,17121

Figure 2. Matrix inverse example

Our system is capable of carrying out exact arithmetic operations for rational numbers using the finite

segmented p-adic numbers. The representation of the rational numbers has several appealing properties.

Given the usual representation of the positive integers, it is, in a genuine sense, the natural extension to the

rational. The algorithms for addition, subtraction, and multiplication are those of the usual integer

arithmetic; the division algorithm is truly the analogue of multiplication.

When two p-adic rational numbers are added, subtracted, multiplied, or divided, the result is an infinite but

eventually repeating sequence of digits (periodicity).

Despite the advantages of finite segment p-adic arithmetic and exact representation, there are certain issues

need to be addressed:

1) Improve the EstimateM(). Currently, the M estimation does not always work well. In some situation, it
cannot give the sufficient number of digits for p-adic sequence for exact computation. To avoid this
kind of errors, we have increased its size to 30 and more.

2) A more efficient method for prime number selection for the given rational.
3. The Length of Periodicity for the P-adic Expansion

To determine what is the sufficient length M of p-adic expansion for a rational number in the matrix

operation is not a trivial problem. Let us observe what happens after the arithmetic operations of two p-adic

sequences.

All rational numbers can be uniquely written in the form of a = Zajp’ ;

J=0
We know that a real number is rational if and only if its decimal expansion is periodic. Similarly, a p-adic
number is rational if and only if its p-adic expansion is periodic. Consequently, since we are primarily
interested in the p-adic expansions of rational numbers we will be dealing only with p-adic expansions

which are periodic.
The expansion eventually repeats to the right. That is, if @ is a rational number, then it has a repeating

pattern of @, p’ in its P-adic expansion, i.e., it is of the form

a=.4,...4.q,...a,_,

For example:
1 =
—=.231(p=5
3 (p=3)
2 o
—=.413(p=5
3 (P=5)

The operation of addition, subtraction, multiplication and division in the set of p-adic numbers are quite
similar to the corresponding operations in decimals. The main difference, however, is that we proceed from
“left to right” rather than from “right to left” as we do with decimals.

Addition/subtraction

Assume that we have two P-adic sequences: (s<t)

a=.4...Aa...a,

b=.B,...Bb,...b,
Line up these two sequences

AA,..Aa..a_]|4a .-

B .B|b,..
Set a!'-.r+| =c|

al"-.uli-n = af—.n-l
Coon = cl

A4.. Aa..a_lc..CCi.. L.

B ..B|b..bb..b,..
Let’s consider the right side of the vertical stroke line
Cy Cy Csy e Cp € ver sasll Dpye
+ b b, bs 5 s s bg By ome bgus
¢;+by cy+b; cytbs ver Citby...

Suppose two integer X,y satisfy the condition that x # y and ¢, +b, = ¢, *+b,
* ¢, and by can be any number
. in the worst case, we must make sure that ¢, = a, = g, and ¢, = b, = b,
x=klxn+i=k2Xm+j
y=k3xn+i=kdxm+j
= x-y = (kl-k3)xn = (k2-k4) X m
CX#EY
.. k1-k3 and k2-k4 are nonzero integers
x-y must be exactly divisible by » and m, the smallest integer which satisfies this requirement is LCM(n,m).

The carry digits’ modification

We only need to consider the (1+1)th carry digit, because it will cause the exception of the periodic part.
Since the maximum carry digit of the addition of two numbers is 1, we can classify the following numbers
into three types and they have different effects.

Type One: The (1+1)th digit is less than p-/, assume the (+1)th digit is g:

vg<p-l=>qg+l<p

= .4...+ 1 (the carry digit)=.(g +1)...

so only one digit will be affected.
Type Two: The next » digits following the t¢h digit have the value p-/

Assume the (t+r+1)th digitis q,and ¢ < p—1

—_— - -
(p=D..(p-1gq..+1...=.0..0(g +1)...
r + 1 digits will be affected.

In addition, » < LCM (n,m)

Because if » = LCM (n,m), then it belongs to the type three.

Type Three: The digits following the t/ digit are rotation numbers of p-/

p-1+41=0=0

The result is 0.

We can draw a conclusion that the maximum length of the p-adic expansion is:

2x LCM (n,m) + max(s,t)—1.

Multiplication

axb=.4...4.q,.. a,...a x.B..Bb,...b,

—A..Aa..ax.B..B+4..44..a,x0..0b..b,

= Ay A0y X By Bt A AxO 05,...b, +.0..0a,...a, x.0..08,..b,

-

I a
Let’s analyze the three parts separately,
Part 1:

... 4, el

s ool By Fioeill, BB B 0. C s

>
3

That is, the result is a p-adic sequence, which has a periodic part of » digits.

Part 2:

*B...B€Z

" .A...A,x0.0b..b,=.D,..D,d..d,

That is, the result is a p-adic sequence, which has a periodic part of m digits.

Part |1 + Part 2:

o—"”‘-—b——
A...4.a, .. a,...a,x.B,. .- B, +.4,. .. A4,;%0..0b,...b,

I 2

According to the previous conclusion we get from the Addition part,

P‘A—h———- —_—
= il At a...a,x.B..B+.4..4,x0.0b..b,=E..Ee..ecmnm

This is a p-adic sequence which has a periodic part of LCM(n,m) digits.

Part 3:

o S
0..0a,...a,x0..0b,...b,
=(a,...a)x(1+p" +p™" +...+ p°)x(b...b,)x(1+ p" + p*" +...+ p”)x p™*'
=(a...a)x(b...b,)x p™' x(1+ p" + p™" +...+ p”)x(1+ p" + p™" +...+ p")

4 5

Part4(a,...a,)x(b...b)xp"" eZ.

Part 5 is the one we need to focus on.

A+p"+p" +...+p2)x(1+p" +p*" +...4+ p”)
n-1 n-1 m=1 m-1

— —— s
=.10...010...0...%.10...010...0...

a a a a, a; a a & oox B
x b, b, b, b, by b, b B e v B
ab ab ab ab ab ab ab ab .. ab..
ab, ab, ab, ab, ab, apb, ab, .. a.b,..
ab, ab, apb;, ab, ab, ab, .. a_b;..
ab, .

Ignore the carry, the krh products digitis a,b, +a,_\b, +... + ab,

Set (k'+1)x LCM (n,m) >k > k'xLCM (n,m) let LCM(n,m)=1¢,

ab+a, b +...+a b+ A by + b+t Gpby ot @b+ ab,

| 2 3

VG = Wi = e = Ao 8B = by = = by

~.part 1 can be rewrite as @, ., b, + @y_y by + ...+ @by oy + @Dy g Foo F G b,
part 2 can also be rewrite as @, ., b, + @ o by ¥+ QB D g HoF G by
part 3 can be rewrite as @,_.,b, +a,_y, b, +... + b,

We can find that part 1 equal to part 2, and because there are LCM(n,m) items in this part, we must get

a, x b, once, which is the only item has the value 1, and all other items’ value is 0, that is the result of part

1is 1, so far as part 2.
Part 3 is the actually the front part of part 1, that means the value of part 3 may be 1 or 0.

Base on this discovery, we can divide the configuration into LCM (n,m)x LCM (n,m)modules. Let's

take 100100100...x101010...(p =5) asan example.

6, so we divide the module in 6 x 6
.100100100100100100100100100100100100...

».101010101010101010101010101010101010..,

LCM(2,3)

o 0o — o o clo o — O O OClo o -0 0 QOO0 —~©C O O]l OO0 — O O Olwn
o 0o o0 — olo oo — ol o0 o -~ 0Oojlo O ©C O — Ol O o o — v
- 0O o0 ol o0 0 00l 0 0 0 O O|l—-0C O C o QO] — O C O wi
o o ~ 0o o ol -~ o0l O~ 0 O CO|lCOO0C -~ 0O O QOO © — gl
oo o0 o =~ oloocoo -0l oo © -0l o ©C - OO O =
- o ©0 O O O|l—~ o O 0 O Q-0 0 Cc o0 Qo|l—Cc o o o o~ vy
o o —— 0o O Ccjloo -~ 0 0 Q00 o -~ 0 O Ol Cc — O O ©Q =
o o o o — ole o0 -0l © 0 C - Qo O O O — -
- o o o o ol o0 0 OoOl—2 O 0 OO0 Qo|l—<Q o Qo h g
o - o 0 0ol -0 ©O Ol ©O -~ C C Ol © — =t
o c o0 0 -~ ol 0 -0l ©OC 0 - QC|lOo O L]
- o o o o o|l—m oo o o ©o ol —- O O © © O] — =
o o — o o olo o -0 © Ol © — O © O L}
o o 0o 0 -~ QCOlocoo o0 -~ 0Ol ©C © — g}
- o0 o o o o|l— o o ©o ©o ©o|l—- O © O o
o o — 9o O ol © - O O 9olo o —~ g
o 0O 0 - 0ol 0 C O — O|lO © (o}
- o 0o 0 ol o o o o o] — (g}
o O = O O Ol o - O O C o~
o O o 0 —- ol O O O - o~
-0 O 0 0O Ool—- O O O ol
o o - O O OjlC O - (o}
c o O o — Q|0 o —
-, 0 0 O O (o]
c o - O © O —_—
c o o o - —
- o o o —
(= = —
(=T =) o=

We can find two type of modules here, one is:

This one is corresponding to the part3;
The other one is:

1 0 0 1 0 0
o 0 0 0 0 O
0o 90 1 0 O]
o 0 o0 0 0 O
o 1 o0 0 1 0
o o0 0 0 0 O

This one is corresponding to the part] part2 and so on, we can accumulate every line of this module, the
result is always 1, which is the previous conclusion we draw for part 1.

Ignore the carry, assume that ¢, is the kth digit of the product, we can find that ¢,,, =¢, +1

Now let’s continue to get the result:
101111 212222 323333 434444 545555 656666 767777 878888 989999...
101111 212222 323333 434444 001111 212222 323333 434444 001111...

100100100...x101010...
=1011112122223233334344440

Conclusion: In multiplication, the length of periodic part of the product is:
LCM(m,n)x(p-1), ()

where m and » are the length of periodic part of the two multipliers, p is the prime.

The length of periodicity of the resulting p-adic sequence can be very large from (2). But if we should
represent all the p-adic sequences with a complete period during all the calculations, we will definitely
carry out all the arithmetic operations exactly.

4. Computational Algorithm and Software for Generating P-adic Cyclic Codes

A.R.Calderbank and N.J.A. Sloane [2] “Modular and p-adic cyclic codes ", studied how to lift from binary
cyclic Hamming code of length 7 to octacode, which is equivalent to the binary nonlinear
Mordstrom-Robinson code, and provided a general structure of cyclic codes over Zg, Zjg, ..., then to the
2-adic integers Z,. That is to say, all the cyclic codes share a common generator polynomial X+ x4+
(A-1)x -1, which satisfies A - A + 2 =0, A is a 2-adic number.

The purpose of our study is to provide an alternative solution to generate the p-adic cyclic codes, which can
be implemented efficiently using computer science methodology, and we developed software to generate

p-adic cyclic codes.

Theoretical Background

10

According to the definition of cyclic code, a subset S of Z" is cyclic if (an.1,80,a),....8,2)€ S whenever
(30,31,.-,8n.2,80.1) € S. A linear code C is called a cyclic code if Cis a cyclic set.

We also know that, R = Z,[X]/(X"-1) forms a polynomial ring. By defining the following map between Z;"
and Z,[X)/(X"1),

1: 2> Z[XJ(X™1), (8081,....301) [P Bgtaixt.. Fap.x™ (3)

We can set up a one to one correspondence between an element of space Z," and an element polynomial of
ring Z[X]/(X"-1).

Connect ideals of ring Zo[X]/(X"-1) and cyclic codes contained in Z;" by the following theorem:

Theorem 1 Let 7 be the linear map defined in (3). Then a nonempty subset C of Z" is a cyclic code if and
only if n(C) is an ideal of Z[X]/(X"-1). (Proof in [4], p.136).

For the convenience of our discussion, we give the following definition of the generator polynomial of a

cyclic code.

Definition 1 The unique monic polynomial of the least degree of a nonzero ideal J of Zo[X]/(X"-1) is called
the generator polynomial of /. For a cyclic code C, the generator polynomial of n(C) is also called the

generator polynomial of C.

By using this definition, we can set up an one-to-one correspondence between the cyclic codes in Z," and

the monic divisors of X"-1 € Z[x].

To be precise, each monic divisor of X"-7 is a generator polynomial of a cyclic code in Z,".

For example, by factorizing the polynomial x°- 1 € Zy[x]:
X6-1=(1+x)7°(1 +x+x)

We can list all the monic divisors of x°*— 1:

1, 1 +x, I+x+x2,
(1+x)%, (1+x)(1+x+x7), (1+x)%(1 +x+xY),
(A+x+x) (1+00+x+x), 1 +x8,

These nine monic divisors are related to nine ideals of ring Z ,[x]/X’-1, and thus related to nine cyclic codes

of length 6. Based on the map w, we can generate all these cyclic codes.

For instance, we can get the cyclic code corresponding to the polynomial (7 + x + x’)? as its generator by
the following way:
Step 1. Expand the generator polynomial, (1 +x +x)*=1 + x>+ x
Step 2. Multiply the generator polynomial with all the polynomials within the ring Z,[x]/X’-1, and get the
following ideal /:
0,1+ +x , x+x +x’, 1 +x+x+x+x+x0).

Step 3. Using map =, we get the corresponding cyclic code:

{000000, 101010, 010101, 111111}.

11

In general, we denote /n,k d] to describe a linear code and naturally a cyclic code, where » is the length of
the codeword, k is the number of the base vectors, and d is the least distance between any two code words.

The following theorem can relate /n,k,dJ of a cyclic code to the features of the generator polynomial of an
ideal I of ring Z,/X]/(X"-1).

Theorem 2 Let g(x) be the generator polynomial of an ideal of Z,/X]/(X"-1). Then the corresponding cyclic
code has dimension & if the degree of g(x) is n-k, and the length of the codeword is n.

In the above example, the generator polynomial is g(x) = / + x’ + x’,and n = 6, k = 6-4 =2.
This relates to a /6,2,3] cyclic code. The length of the codeword is 6, and this cyclic code will have F=2
= 4 code words.

The following theorem decides the number of cyclic codes:
Theorem 3 Let x"- 1 € Z [x] have the factorization
r
X"~ 1 =TIp(x),

i=1
where p,(x), pa(x), p.(x) are distinct monic irreducible polynomials and e, 2 / for all i = /,2,....r. Then
there are I7,.," (e,+1) cyclic codes of length n over Z,.
The key point of finding all the cyclic codes over Z," is the factorization of X"-/ over Z,. We will discuss
our method to factorize the polynomial X"-1 over Z,.

Mechanism to Generate p-adic Cyclic Codes

The idea of generating p-adic cyclic codes is given by the following theorem:

Theorem 4 Let g = p°, 1 <a < Ifg)(x) € Z,[x] is amonic irreducible divisor of x"-/ over Z,, then there
is a unique monic irreducible polynomial g,(x) € Z,[x] which divides x"-1 over Z, and is congruent to g;(x)

mod p.

The complete proof can be found in [2]. If we define a cyclic code of length n over Z, , we can get another
cyclic code of Z,, whose generator polynomial is obtained by lifting the generator polynomial of the first
cyclic code to Z,; . And then we can continue this way to get the cyclic code over Z,, where /] <a <

An Alternative Algorithm for the Generation of p-adic Cyclic Codes
Our algorithm has two steps:
a) Factorization of X"-/ over Z;
b) Lifting the generator polynomial over Z,r and then to Z,r+/.
Step a) is the foundation of our implementation. In order to simplify our situation, we will let n be a prime,
which has the form 8m-1, so that X"-] can always be factorized over Z, in the following form:
Xl = (x = 1m(x) m(x)

where all the factors are irreducible.

Factorization of X"-1 over Z,
Since
x"-1 = (x = Dmy(x)ma(x)

m(X) = g+ ax + ax’ + .. + X"

3(X) = bo + byx + bx? + ... + byx™"?

a,beZ,(0<i<n-1/2),
So
X1 =(x= D1 +x+x + ...+ x*) == (x = Dmy(x)ma(x)
Let
agbo = 1 (mod 2),
agb, + a;by = 1 (mod 2),

aobn.12 + 41bg12yr + ooe + 8nabo = 1 (mod 2),
aibp.1iz + abgazyr + o+ @papby = 1 (mod 2),

y.12bn12 = 1 (mod 2).

And the vector (a0,al,...,an-1/2,b0,b1,... bn-1/2) which satisfies all the equations above will be the
coefficients of irreducible polynomials m,(x) and my(x).
Therefore, it is easy for computers to enumerate from (0,0,0,...,0) to (1,1,1,...,1); and because x"-/ has the
unique factorization, so the computer can stop wherever it finds a solution.
Lifting the Generator Polynomial over Z,r to Z,r+1
From theorem 1, we know that for every monic irreducible divisor A,(x) of X"-/ over Z,, there is a unique
monic irreducible polynomial in Z,,/x] which divides X"-1 over Z,, and is congruent to hi(x) mod p. Let

X1 = (x = Dmy(x)ma(x);

Assume
m,(x) = f1(x), ma(x) = gl(x);
Let
£,2(x) = fL1(x) + 2*(co tcyx + ... + CorX™D),
222(x) = ga1(x) + 2*(dp +dix + ... + o1 x™'),
0<ci,di<1,0<i<n-1/2.

We have

£,2(x) = f,1(x) (mod 2), g:2(x) = g,1(x) (mod 2).
Let

I_‘J{\} = C.l? = L-:‘Ix TR ".-.‘n-l?.x"-I B

S N ’ =172
‘:‘-.’2(\} d 0 d X T d n-i_‘x“lI .

Again, we can use computer to enumerate vector (¢g,Cy,...,Cp.1 2,do,dy,....dn12) from (0,0,...,0) to (1,1,...,1) to

find a value which can satisfy the following equation group:

¢’od’y = 1 (mod 2%,

¢pd’y + ¢y dp =1 (mod 2%,

T y 3 . 3 3 A
C “d nin TC€ |d (n-1/2%1 T +o. TC n-I-Id 0= 1 ('In()d 2),

¢y’ 2 + €2 err2yt o+ €' pgd’y = 1 (mod 2°),
. ’ 2
C i gd n-1/2 1 ““0d 2 i

P, . . - - . . -~ 2 ~ . -
The solution will be the unique factorization of x"-/ over 27, and after getting />2(x) and g,2(x), we can
continue this step to get f;a(x) and grafx), (2<a<®).

Software

The following are some screenshots, which can demonstrate our programs:

¢t C:\Documents and Settings\hunter\My Documents\Wisual Studio Projectsithesis\Release\the...

Figure 3. Main Menu

Figure 4 is the screenshot when p = 2, n = 7, r = &; p should be a prime number, » should be a prime

number which has the form 8m-/, r could be any integer larger than zero. We can find that it has the same
result as in A.R.Calderbank’s paper.

ev C:\Documents and Settings\hunter\My Documents\Wisual Studio Projects\thesis\Re

Input prime number p 2 2

Input the degree of polynomial X"n-1

Input the pouver to which t w lynomial
I i] Y

» 8

illli!?!
1141 mod

of %2141 nod

solutiont?t?
[4] mod
+ value of x2[4]1 nod

value of

one csolutiontt?
» yalue of x1[4]1 nmod
» yalue of x2[4] mod
t one solution???
we value of x1 [4]1 mod
value of %2041 mod
one solution???
value of x1[4]1 mod
value of x2[41 mod
one solut i.lill'.g!
value of x1[41 mod
value of x2[4]1 mod
. one solution???
value of x1[41 nmod
» value of x2[41 mod
one solutiont??
alue of x1[41 mod
s value of x2[4]1 mo

leaseMhe. ..

Figure 4. Output Whenp =2, n

Figure 5 is the screenshot whenp = 3, n =11, r = §:

Command 2 > 1

Input prime number p > 3

Input the degree of polynonial X™n-1

Input the power to which the polynomial
11. » 8

one solutiontt?
value of x1161 mod
value of x2[6]1 mod
one solution??t?
value of x1[61 mod
yalue of %2161 mod

one solution
value of 1l mod

value of 61 mod

one solutiont?t?
value of x1[61 mod
value of %2061 mod
one solution??t?
value of x1[61 mod
value of [6]1 mod

one salutiontt?
value of x1[61 mod
value of x2[61 mod

one solutiont?t?
value of x1[61 mod
value of [6]1 mod
one solutiont®?t?
value of x1161 mod
value of x2I[61 nod

Figure 5. Output Whenp =3, n=11,r=8

Figure 6 is the screenshot whenp = 2, n = 23, r = &:

~uments and SettingsihunteriMy

one sol
value of x1[12]

alue of 21

ne szolution?
alue ol 10121
alue 20121

ne solutiont
of x1[1:

alue of x2012)

ne zolutiont??
alue of x1[12]

vIue of x21121]

Documents\Wisual Studio Projects\thesis\Release\thesis.exe

2n

6. Output When p

B

Figure

The main function of our software is the factorization of polynomial of X"-1. From the coding theory, we
know that cyclic codes have many good characteristics for error-correction and cryptography. It may have
some merit to investigate the p-adic cyclic codes. In this study, by setting up a one-to-one correspondence
between cyclic codes and ideals of a polynomials ring, we can use algebraic methods to explore the
features of p-adic cyclic codes.

In the future, we may use this software as a tool to study the features of p-adic cyclic codes, and/or use the
software to auto-generate cyclic codes in any application.

References

[1] Dixon, J. “Exact Solution of Linear Equations Using P-adic Expansions”, Numerische Mathematik 40,
137-141 (1982) Springer-Verlag.

[2] A.R.Calderbank and N.J.A.Sloane, “Modular and p-adic cyclic codes”, arXiv:CO/0311319v1, 18 Nov 2003.
[3] Shoup, V NTL library at: http://shoup.net/ntl/

[4] San Ling and Chaoping Xing, “Coding Theory: a first course”, Cambridge University Press, 2004

[5] Kornerup, P. and Gregory, R.T. “Mapping Integers and Hensel Codes onto Farey Fractions”, BIT 23 (1983),
9-20.

[6] Krishnamurthy, F. V. “Matrix Processors Using P-adic Arithmetic for Exact Linear Computations”, IEEE
Transactions on Computers, vol. C-26, No. 7, July 1977.

[7] Vladimirov, V.S., Volovich, 1.V. and Zelenov, E.I. P-adic Analysis and Mathematical Physics, Series on
Soviet & East European Mathematics — Vol. 1.World Scientific 1993.

[8] Lu, C. and An, M. “Final Report of Simulation of Quantum Time-Frequency Transform Algorithms”,
(FA9550-04-1-0406), 2004,

[9] Lu, C. and An, M. “Final Report of A Computational Library Using P-adic Arithmetic for Exact Computation
with Rational Numbers in Quantum Computing”, (FA9550-05-1-0363), 2005.

