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ABSTRACT

Image-aided navigation techniques can determine the navi-
gation solution (position, velocity, and attitude) by observ-
ing a sequence of images from an optical sensor over time.
This operation is based on tracking the location of station-
ary objects in multiple images, which requires solving the
correspondence problem. This is an active area of research
and many algorithms exist which attempt to solve this prob-
lem by identifying a unique feature in one image and then
searching subsequent images for a feature match. The cor-
respondence problem is plagued by feature ambiguity, tem-
poral feature changes, and also occlusions, which are dif-
ficult for a computer to address. Constraining the corre-

spondence search to a subset of the image plane has the
dual advantage of increasing robustness by limiting false
matches and improving search speed. A number of ad-hoc
methods to constrain the correspondence search have been
proposed in the literature.

In this paper, the correspondence problem itself is care-
fully analyzed from fundamental optical principles. This
development results in a general temporal sampling con-
straint and also reveals the essential connection between
the deleterious effects of temporal aliasing and the ambi-
guities which plague the correspondence search problem.
This temporal image sampling constraint is expressed as a
function of the navigation trajectory for elementary cam-
era motions. The predicted sampling rates are on the or-
der of those needed for adaptive optics control systems and
require very large bandwidths. The temporal image sam-
pling constraint is then re-evaluated by incorporating iner-
tial measurements. The incorporation of inertial measure-
ments is shown to reduce the required temporal sampling
rate to practical levels, which evidences the fundamental
synergy between image and inertial sensors for naviga-
tion and serves as the basis for a real-time, adaptive, anti-
aliasing strategy.

INTRODUCTION

It is well-known that optical measurements provide ex-
cellent navigation information, when interpreted properly.
Optical navigation is not new. Pilotage is the oldest and
most natively familiar form of navigation to humans and
other animals. Mechanical instruments such as astrolabes,
sextants, and driftmeters [17] have been used to make pre-
cision observations of the sky and ground to improve navi-
gation performance for centuries.

The difficulty in using optical measurements for au-
tonomous navigation, that is, without human intervention,
has always been in the interpretation of the image, a diffi-
culty shared with Automatic Target Recognition (ATR). In-
deed, when celestial observations are used, the ATR prob-
lem in this structured environment is tractable and auto-
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matic star trackers are widely used in astro-inertial nav-
igation systems for long-range aircraft, space navigation,
and ICBM guidance. When ground images are to be
used, the difficulties associated with image interpretation
are paramount. At the same time, the problems associated
with the use of optical measurements for navigation are
somewhat easier than ATR. Moreover, recent developments
in feature tracking algorithms, miniaturization, and reduc-
tion in cost of inertial sensors and optical imagers, aided by
the continuing improvement in microprocessor technology,
motivates us to consider using inertial measurements to aid
the task of feature tracking in image sequences and realize
a tightly-coupled image-aided INS.

The methods are typically classified as either feature-based
or optic flow-based, depending on how the image corre-
spondence problem is addressed. Feature-based methods
determine correspondence for “landmarks” in the scene
over multiple frames, while optic flow-based methods typ-
ically determine correspondence for a whole portion of the
image between frames using correlation techniques. A
good reference on image correspondence is [13]. Optic
flow methods have been proposed in the literature generally
for elementary motion detection, in a somewhat structured
environment focusing on determining relative velocity or
angular rates for obstacle avoidance [7].

Feature tracking-based navigation methods have been pro-
posed both for fixed-mount imaging sensors or gimbal
mounted detectors which ”stare” at the target of interest,
similar to the gimballed infrared detector on some heat-
seeking missiles. Many feature tracking-based navigation
methods exploit knowledge (eithera priori, through binoc-
ular stereopsis, or by exploiting terrain homography) of the
target location and solve the inverse trajectory projection
problem [1, 14]. If noa priori knowledge of the scene is
provided, egomotion estimation is completely correlated
with estimating the scene. This is referred as the struc-
ture from motion (SFM) problem. A theoretical develop-
ment of the geometry of fixed-target tracking, with noa
priori knowledge is provided in [16]. An online (Extended
Kalman Filter-based) method for calculating a trajectory by
tracking features at an unknown location on the Earth’s sur-
face, provided the topography is known, is given in [5]. Fi-
nally, navigation-grade inertial sensors and terrain images
collected on a T-38 “Talon” are processed and the potential
benefits of optical-aided inertial sensors are experimentally
shown in [18].

Many methods for solving the correspondence problem
have been proposed in the computer vision literature. A
popular algorithm is the Lucas-Kanade feature tracker [12],
which relies on the premise of the invariance of the in-
tensity field between images. It uses a template correla-
tion algorithm to minimize the sum of squared differences
(SSD) between image intensities. The algorithm typically

assumes a linear (x − y plane) motion model, but can be
extended to optimize over affine or bilinear transforma-
tions. Other feature correspondence algorithms have been
proposed which are invariant to rotations, scaling or both.
(e.g., [10]) More robust feature tracking algorithms are
typically computationally expensive and a designer must
trade tracking robustness and accuracy for real-time per-
formance.

Current Correspondence Constraint Approaches

Exploiting inertial measurements to constrain the corre-
spondence search has been proposed in the literature. In
this section, two methods which exploit inertial measure-
ments are discussed.

Bhanu and Roberts [3] utilize inertial measurements to
compensate for rotation between images and to predict the
focus of expansion in the second image. Once the sec-
ond image is derotated and the focus of expansion is estab-
lished, the correspondence between interest points is calcu-
lated using goodness-of-fit metrics. One relevant metric is
the correspondence search constraint placed on each point.
This constraint ensures each interest point lies in a cone-
shaped region, with apex at the focus of expansion, bisected
by the line joining the focus of expansion and the the inter-
est point in the camera frame at the first image time. While
this constraint is not statistically rigorous, it does show the
value of using inertial measurements to aid the correspon-
dence problem.

Strelow also incorporates inertial measurements to
constrain the correspondence search between image
frames [20]. This constraint on the image search space is a
similar concept to the field of expansion method proposed
by Bhanu; however, Strelow generalizes the approach
by exploiting epipolar geometry. The projection of an
arbitrary point in an image is described by an epipolar line
in a second image. All epipolar lines in an image converge
at the projection of the focus of the complimentary image.
Combining knowledge of the translation and rotation
between images and the pixel location of a candidate
target in the first image, a correspondence search can then
be constrained to an area “near” the epipolar line. This
approach is illustrated in Fig. 1.

Strelow’s method of using inertial measurements to con-
strain the correspondence search along an epipolar line is
ad-hoc, since the search space is not defined statistically.
This method could be improved by utilizing a stochasti-
cally rigorous development.

In previous publications, we have presented an approach
which leverages the inertial measurements and any avail-
able terrain information to predict the locations and statis-
tical uncertainty of features in a new image [24, 25]. Our
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Figure 1: Correspondence search constraint using epipo-
lar lines. Given a projection of an arbitrary point in an
initial image, combined with knowledge of the translation
and rotation to a second image, the correspondence search
can be constrained to an area near the epipolar line. Note
the epipole can be located outside of the image plane, as
shown in this example.

goal in this article is to expand the stochastic constraint the-
ory to an elemental level which is dependent on the inherent
optical properties of the sensor. Analyzing the correspon-
dence problem from this perspective reveals the parallel
nature between feature correspondence searching and tem-
poral sampling theory in signal processing which is well-
understood. As a result, feature correspondence ambiguity
is shown to be analagous to temporal aliasing. Thereby,
sampling theory can be used to predict and mitigate/avoid
the presence of aliasing in feature space.

In the next section, the theory of image sampling is devel-
oped from first principles, with particular attention to the
anticipated issues with regard to temporal sampling.

GENERAL IMAGE SAMPLING PROBLEM

The mathematical relationships governing spatial-temporal
sampling are developed from basic optical and sampling
theory. This development provides a theoretical basis
which is used to develop temporal sampling constraints in
subsequent sections.

Image Sampling Considerations

A digital imaging device is, in essence, a sampler of light
intensity patterns in three dimensions: two spatial and one
temporal. Analyzing the effects of the sampling process on
image sequences resulting from camera motion with due
regard given to the motion’s dynamics has very important
implications on how to properly interpret image sequences
to derive navigation information.

Effects of Egomotion on Image Formation

As discussed in the previous section, the recorded image
is a representation of the optical intensity patterns gen-
erated by a scene. The projection function is a function
of the scene itself, the camera optical properties, and the
pose (i.e., relative position and orientation) of the camera
and scene. This strong coupling between camera pose and
the image is the basis for the rapidly growing research ef-
forts dedicated to exploiting images to determine changes
in camera pose. In this section, the geometric projection
function is developed using a pinhole camera model. This
model will be used as a basis for quantifying the effects of
egomotion and temporal sampling.

Optical Sensor Model

An optical sensor is a device designed to measure the in-
tensity of optical energy (light) entering the sensor through
an aperture. Imaging sensors consist of an array of light-
sensitive detectors which create a two-dimensional light in-
tensity measurement (i.e., image). In this section, the basic
physical properties of an optical sensor are presented, and
a model representing an optical sensor is given.

For the purposes of this discussion, theworld is defined as
a collection of all real objects. Some objects are sources of
radiometric illumination orradiance. These light sources
illuminate the world and interact with the other physical
objects through various types of reflection. The amount
of light along a certain direction is defined as theirra-
diance[13]. The physical irradiance pattern entering the
aperture of the optical sensor is defined as thesceneand is
represented by a continuous array of nonnegative real num-
bers,o(x, y, t), projected onto the image plane. For the
purposes of this discussion, the irradiance sources are con-
strained to an arbitrary, piecewise continuous, Lambertian
surface in three dimensions.

A digital optical imaging sensor consists of an aperture,
lens, detector array, and sampling array. A simple imaging
system model is shown in Figure 2. The lens focuses the
scene on the detector array. The light pattern focused on
the detector array is defined as theimageand represented
by, i(x, y, t). In statistical terms, theimage is the mean
photon arrival rate, and is defined by a Poisson distribu-
tion [4]. The detector array converts the light energy into a
voltage or a charge which is converted to a digital value by
the sampling array. The sampling array is assumed to be a
square grid, although other patterns can be designed (e.g.,
honeycomb) [8].

The lens is an analog low-pass filter in the spatial do-
main, with a cutoff frequency (fc) determined by the aper-
ture (D), wavelength of light source (λ), and focal length
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Figure 2: Digital imaging system. The imaging system
transforms the scene into a digital image. The major com-
ponents of the camera are the optics, light detector, ampli-
fier, and analog to digital converter.

of the camera (f0) [4]:

fc =
D

λf0

[
1
m

]
(1)

Thus, a scene consisting of a point source of light (delta
function intensity) would appear slightly blurred (spread)
on the image plane. Assuming spatial invariance, this blur-
ring due to the lens is represented by thepoint spread func-
tion, h(ξ, ρ), whereξ andρ are the spatial differences in
thex andy directions, respectively. The image in the spa-
tial domain can now be expressed mathematically as the
convolution of the scene and point spread function [6]

i(x, y, t) =
∫

ξ∈X

∫

ρ∈Y

o(ξ, ρ, t)h(x−ξ, y−ρ) dρ dξ (2)

The image is physically continuous in space and time. This
continuous function of three variables is then sampled and
converted to an array of (digital) numbers. Concerning the
sample process, the light energy in the image is integrated
in each pixel over a temporal period defined as thedwell
time(∆t). The sampled image (is(m, n, i)) is obtained for
integer pixel location(m,n) and sample time,ti, as

is(m,n, ti) =

∫ ti+∆t/2

ti−∆t/2

∫ m+∆x/2

m−∆x/2

∫ n+∆y/2

n−∆y/2

i(x, y, ti)dxdydt (3)

Analyzing the image sampling process from a frequency
domain perspective provides insights into the rigorous use
of images for navigation purposes. As previously men-
tioned, the camera optics act as an analog low-pass filter,
characterized by the time-invariant point spread function,
h(ξ, ρ). The frequency domain representation of the point
spread function,H(fx, fy), is called theoptical transfer
function. Applying the Fourier transform to the image
equation (2), shows the multiplicative relationship for the

Figure 3: Effects of camera optics on image spatial fre-
quency. The camera optics act as a low-pass filter with a
cutoff frequency offc. The scene, which is wideband, ap-
pears as a band-limited image on the detector array.

spatial frequency domain representation of the image:

I(fx, fy, t) = O(fx, fy, t)H(fx, fy) (4)

In most conditions, the projected scene can be treated as a
wideband function relative to the optical transfer function,
(i.e.,fcscene

À fcOT F
). This results in the following spatial

frequency limitation of the projected image

I(fx, fy, t) = 0, ∀ |fx|, |fy| > fc (5)

This relationship is expressed graphically in Figure 3.

The sampling operation can be represented by a zero-order
hold (or sample-and-hold) process in the spatial domain
and as a natural sampling process in the time domain
(see [19]). The resulting frequency spectrum for the sam-
pled image consists ofsinc-weighted copies of the image
frequency response, located at integer multiples of the spa-
tial sampling frequency. An illustration is shown in Fig-
ure 4. Hence, to prevent spatial aliasing, that is, to avoid the
“difffraction limit”, the spatial sampling rate must satisfy
the spatial Nyquist condition in both dimensions, which is
determined by the camera optics as:

fx, fy > 2fc = 2
D

λf0
(6)

wherefx andfy are the spatial sampling rates in thex and
y directions, respectively. These are directly related to the
physical pixel size as:

fx =
1

∆x
(7)

fy =
1

∆y
(8)

where∆x and∆y are the pixel sizes in thex andy direc-
tions.

Camera motion changes the projection of a stationary scene
which, for a simple point illumination source, results in an
apparent image “shift”. This image shift results in a mod-
ulation of the frequency content in the temporal frequency



Figure 4: Spatial Sampling Illustration. The spatial sam-
pling process createssinc-weighted spectral copies in the
spatial frequency domain when square pixels are used. The
sampling frequency,fs, must be greater than twice the cut-
off frequency,fc, to eliminate spatial aliasing.

domain. More specifically, the velocity of a point source
in the image plane,(ṡproj

x , ṡproj
y ), results in the following

Nyquist temporal sampling constraint

ft > 2max
{
ṡproj

x , ṡproj
y

}
fc (9)

Assuming square pixels which are sized according to the
spatial Nyquist sampling (i.e.,fx = fy = 2fc) results in
the following pixel size

∆pixel =
1

2fc
(10)

Substituting Eqn. (10) into (9) results in the normalized
temporal sampling constraint

ft >
max

{
ṡproj

x , ṡproj
y

}

∆pixel
(11)

As a result, to minimize temporal aliasing, the Nyquist rate
can be achieved by ensuring no feature moves more than
one half of the minimum distance between intensity peaks
in the image plane. Given an optical cutoff frequency of
fc, the temporal sampling interval,Ts, should be chosen
such that the maximum image shift due to camera motion
is less than 1

2fc
. This implies a fundamental interrelation-

ship between the minimum spatial and temporal sampling
intervals, which is somewhat similar to the spatial-temporal
discretization constraint found when solving the heat PDE,
also known as the von Neumann condition.

In the next section, a mathematical model describing the
relationship between point locations in the world and image
will be derived. The resulting projection equations will be
used to calculate appropriate temporal sampling intervals,
based on scene geometry and camera motion.

Egomotion Effects on Temporal Sampling

In the previous section, the effects of egomotion on the for-
mation of the image are presented. In this section, the ego-
motion effects on temporal sampling are illustrated. Re-
ducing the spatial dimensionality of the problem from two

Figure 5: Thin lens camera model. The thin lens model
directs parallel light rays toward the focus, resulting in an
image. Figure is not to scale.

to one is performed in order to illustrate the effects of ego-
motion on temporal sampling in a manner that is easier to
visualize.

Projection Theory

The camera optical properties define the relationship be-
tween the scene and the projected image. Recalling the
simple camera model (Figure 2), the lens focuses the
incoming irradiance pattern (i.e., scene) onto the image
plane. For a theoretical thin lens, the projection is a func-
tion of the focal length of the lens and the distance from the
lens, as shown in Figure 5. This relationship is expressed
by thefundamental equation of the thin lens[13]:

1
Z

+
1
z

=
1
f0

(12)

whereZ is the distance from the object to the lens,z is
the distance from the lens to the image plane, andf0 is the
focal length.

As the aperture of the thin lens decreases to zero, the sys-
tem can be modeled as a pinhole camera (see Figure 6). In
this model, all incoming light must pass through the opti-
cal center and is projected on an image plane located at a
distancef from the lens. The resulting image is an inverted
projection of the scene.

This model can be further simplified by placing a virtual
image plane in front of the optical center, as shown in Fig-
ure 7. Given a point source at locationsc the resulting loca-
tion of the point source on the image plane, relative to the
optical center of the camera, is given by

sproj =
(

f0

sc
z

)
sc = f0sc (13)

wheresc
z is the distance of the point source from the optical

center of the camera in thezc direction. The underline in-



Figure 6: Pinhole camera model. The pinhole camera is
a theoretical camera model where a thin lens aperture ap-
proaches zero. The projected image is inverted on the im-
age plane.
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Figure 7: Camera projection model. The pinhole camera
model is modified by placing a virtual image plane one fo-
cal length in front of the optical center. As a result, this
model eliminates the image inversion present in the stan-
dard pinhole camera model.

dicates a vector expressed in homogeneous notation, which
is given by:

sc =
1
sc

z

sc (14)

In order to interpret the calculated projection in a digital
image, the physical image plane coordinates must be con-
verted to a coordinate system based on pixel location. The
following development defines the pixel coordinate sys-
tem and derives the transformation from the physical im-
age plane to pixel location. The image plane consists of
an (M × N ) grid of rectangular pixels with heightH and
width W , shown in Figure 8. The origin of the projection
frame is located at the physical center of the array. The
origin of the pixel coordinate system is located beyond the
upper left corner of the array, such that the center of the up-
per left pixel corresponds to the (1,1) pixel coordinate. This
definition of pixel coordinates corresponds to the elemen-
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Figure 8: Camera image array. The camera imager con-
sists of an (M × N ) array of pixels. The physical height
and width of the array are represented byH and W , re-
spectively.

tal matrix locations when the image is stored in a computer.
This can be expressed as a two-element vector

spix =
[

u
v

]
(15)

whereu andv are the row and column corresponding to the
pixel of interest.

The transformation from the projection coordinates to pixel
coordinates is given by:

spix =
[ − 1

∆x 0 0
0 1

∆y 0

]
sproj +

[
M+1

2
N+1

2

]
(16)

where∆x and∆y are the sizes of the pixels in thex andy
directions, respectively, which are defined as:

∆x =
H

M
(17)

∆y =
W

N
(18)

Combining Eqs. (13) and (16) and expressing the pro-
jected pixel location vector using homogeneous coordi-
nates yields the following affine transformation from cam-
era frame to pixel location:

spix =

[
− f0

∆x 0 M+1
2

0 f0
∆y

N+1
2

]
sc (19)

= Tpix
c sc (20)

A transformation from a landmark location in navigation
frame coordinates to pixel coordinates can now be derived
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Figure 9: Target to image transformation geometry. The
relationship between the camera position, (p), and target
location, (t), can be expressed in pixel coordinates using
transformations based on the navigation state and camera
parameters.

based on the navigation state. The geometry is shown in
Figure 9. The line of sight vector,s, is the vector differ-
ence between the target locationt and the camera posi-
tion, which are both available in navigation frame coordi-
nates (n).

sn = tn − pn (21)

The resultant vector can be transformed to the camera refer-
ence frame using the navigation-to-camera frame direction
cosine matrix:

sc = Cc
nsn (22)

Finally, the pixel location is calculated using Eqn. (20).

Apparent Pixel Motion Calculations

The previous development is extended to illustrate the ap-
parent pixel motion of a point feature due to relative mo-
tion. The development begins by recalling the camera-to-
pixel transformation shown in Eqs. (13-22).

spix = Tpix
c sc = Tpix

c sc/sc
z (23)

where the camera frame line of sight vector,sc, is given by

sc = Cc
n [tn − pn] (24)

The apparent pixel motion is derived by taking the deriva-
tive of spix with respect to time:

ṡpix = Tpix
c ṡc (25)

where

ṡc =
sc

z ṡ
c − scṡc

z

(sc
z)

2 (26)

The time-derivative of the camera frame line-of-sight vec-
tor is given by

ṡc = Cc
nΩn

cn [tn − pn] + Cc
n

[
ṫn − ṗn

]
(27)

whereΩn
cn is the skew-symmetric form of the angular rate

of the camera to the navigation frame, expressed in the nav-
igation frame. The skew-symmetric form is defined in [23].
Expressing the rotations in the camera frame yields the fol-
lowing equivalent form:

ṡc = −Ωc
ncs

c + Cc
n

[
ṫn − ṗn

]
(28)

Analysis of Eqn. (28) shows that the change in line-of-sight
vector is a function of both the camera rotation and relative
translational motion between the camera and landmark of
interest.

In many cases, the landmark motion relative to the naviga-
tion frame is insignificant and can be neglected. Applying
this assumption and coordinitizing the camera translational
motion in the camera frame yields

ṡc = −Ωc
ncs

c − vc (29)

wherevc is the velocity of the camera, relative to the nav-
igation frame, coordinitized in the camera frame. Com-
bining Eqs. (25), (26) and (29) results in the well-known
optical flow equation[21]:

Substituting Eqn. (29) into Equations (26) and (25) results
in the apparent pixel motion in thex andy directions:

u̇ = − f0

∆x

(
−ωy − vx

sc
z

+
sc

xsc
y

(sc
z)2

ωx −
(

sc
x

sc
z

)2

ωy

+
sc

y

sc
z

ωz +
sc

x

(sc
z)2

vz

)
(30)

v̇ =
f0

∆y

(
ωx − vy

sc
z

− sc
xsc

y

(sc
z)2

ωy +
(

sc
y

sc
z

)2

ωx

−sc
x

sc
z

ωz +
sc

y

(sc
z)2

vz

)
(31)

which is expressed using the scalar components of the rota-
tion, velocity, and line-of-sight vectors referenced in Equa-
tion (29).

The temporal sampling constraint proposed in the previous
section indicates that it is desirable to sample such that the
apparent pixel motion is limited to no more than one pixel
of change per image in both thex andy spatial dimensions,
provided the image is sampled at spatial Nyquist frequency.
Given a sample interval,Ts, the maximum pixel motion
component,Kmax can be approximated by

Kmax = max {|u̇|Ts, |v̇|Ts} ≤ 1 (32)



In the next section, the derived apparent pixel motion is
analyzed for a representative scenario which illustrates the
difficulty in achieving samples from traditional imaging
systems which do not violate the temporal sampling con-
straints presented above.

ILLUSTRATIVE CASE STUDY

In this section, the apparent pixel motion is calculated for
a selection of representative imaging scenarios. As previ-
ously developed, the generalized sampling characteristics
of a given imaging sensor is a function of a number of pa-
rameters. In this scenario, we will assume that the cam-
era intrinsic parameters (i.e.,∆x, ∆y, f0, D, andλ) are
fixed in such a way to guarantee proper spatial sampling.
For this case, we are interested in the resulting temporal
sampling rate (ft) which is consistent with the temporal
sampling constraints derived in the previous section. The
camera intrinsic parameters are chosen to be representative
of currently available machine-vision cameras. These pa-
rameters are shown in Table 1.

Table 1: Camera Intrinsic Parameters. The camera intrin-
sic parameters are chosen to be representative of currently
available machine vision cameras and are chosen to elimi-
nate spatial aliasing.

Description Parameter Value (Units)
Wavelength λ 550 µm
Focal length f0 6 mm
Lens Aperture D 6/16 mm
Vertical Image Size M 1024 pixels
Vertical Pixel Size ∆x 4.4 µm
Horizontal Image Size N 1280 pixels
Horizontal Pixel Size ∆y 4.4 µm

The first case study is a simple5deg
sec horizontal pan, with

no translational motion. The resulting motion parameters
for this condition are as follows:

vc =




0
0
0




(m

s

)
(33)
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(
rad
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)
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Substituting these motion parameters and the intrinsic cam-
era parameters into Eqs. (30) and (31) yields

Kmax =
6mm

4.4µm
Ts max

{∣∣∣∣
sc

xsc
y

(sc
z)2

∣∣∣∣ ,
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sc
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)2
∣∣∣∣∣

}
5π

180
(35)

As evident in Eqn. (35), the pixel motion is primarily a
function of the camera motion with second-order effects
related to the position of the point source within the image.
The worst-case condition occurs at the extreme extents of
the image. Substituting these conditions into (35) resolves
the maximization ambiguity

Kmax =
6mm

4.4µm
Ts max {0.1762, 1.2203} 5π

180
(36)

= 145.2Ts (37)

Applying the temporal sampling constraint and solving for
Ts yields:

Ts ≤ 1
145.2

(sec) (38)

which results in a minimum frame rate of145.2 Hz and,
consequently, a maximum exposure time of6.9 ms.

In the next example, the effects of translational motion are
investigated. Here, the camera is moving at 300meters per
secondwith a fixed orientation. The distance to the terrain
is 10,000meters, which represents a high-altitude cruise
profile for an aircraft. The resulting motion parameters for
this condition are as follows:
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
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)
(39)
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Substituting these motion parameters and the intrinsic cam-
era parameters into Eqs. (30) and (31) yields

Kmax =
6mm

4.4µm
Ts max

{
300m

s

10000m
, 0

}
(41)

Kmax = 40.9Ts (42)

Applying the temporal sampling constraint and solving for
Ts yields:

Ts ≤ 1
40.9

(sec) (43)

which results in a minimum frame rate of40.9 Hzand max-
imum exposure time of24.4 ms.

The final example represents the conditions expected dur-
ing a low-level, high speed dash profile. As in the previous
example, the camera is moving at 300meters per second
with a relatively fixed orientation. However in this case,
the distance to the terrain is reduced to 300meters. The re-
sulting motion parameters for this condition are as follows:
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Substituting these motion parameters and the intrinsic cam-
era parameters into Eqs. (30) and (31) yields

Kmax =
6mm

4.4µm
Ts max

{
300m

s

300m
, 0

}
(46)

Kmax = 1363.6Ts (47)

Applying the temporal sampling constraint and solving for
Ts yields:

Ts ≤ 1
1363.6

(sec) (48)

which results in a minimum frame rate of1363.6 Hz and
maximum exposure time of733 µs.

These case studies illustrate the frame rates required to
sample at the Nyquist frequency. In general, the desired
frame rates are not readily attainable using common hard-
ware and lighting conditions. In many current correspon-
dence search schemes, (e.g. [11], [9], [12]), the Nyquist
sampling frequency for point sources is simply ignored and
the search scheme seeks so-called “strong” features which
are consistent between frames and geometrically consistent
within a collection of other features (e.g., RANSAC). It is
our assertion that these feature extraction and correspon-
dence techniques are effectively applying low-pass, anti-
aliasing filters which eliminate the higher frequency com-
ponents which are corrupted by temporal aliasing.

As mentioned previously, there is a strong coupling be-
tween changes in camera pose and the apparent pixel mo-
tion. In the next section, measurements from an inertial
sensor are used to mitigate the effects of temporal aliasing.

INCORPORATION OF INERTIAL SENSOR MEA-
SUREMENTS

As shown in the previous section, non-aliased temporal
sampling can require relatively high frame rates, even for
relatively simple imaging scenarios. High frame rates can
present a number of challenges for a given imager, includ-
ing high communication bandwidth requirements and short
exposure times, requiring more sensitive (and expensive)
sensors. We propose to exploit the information provided
by inertial sensors in order to reduce the image sampling
rates required to deliver anti-aliased measurements. The
development of the aided sampling theory is presented as
follows.

Inertial sensors can provide three-dimensional measure-
ments of both angular rate and specific force (i.e., the sum
of acceleration with respect to inertial and gravity) [22].
When combined with a kinematic model, this information
can be exploited to produce an estimate of trajectory. For
the purposes of this illustration, the error dynamics can be
sufficiently modeled using the following method.

When target motion was assumed to be effectively station-

ary, the apparent pixel motion (Eqns. 30 and 31) was a
function of the camera rotation rate and velocity with re-
spect to the navigation frame and the relative location of
the landmark. Strapdown inertial sensors measure both the
angular rotation increment,∆θc

ic, and specific force incre-
ment, ∆vc, with respect to the inertial reference frame.
When combined with knowledge of the gravity vector,
kinematic equations can be used to estimate the position,
velocity, and attitude of the sensor. The inertial measure-
ment errors, initial navigation state uncertainty, and errors
in the gravity model all contribute to the inevitable, unsta-
ble error growth experienced by all unaided strapdown in-
ertial navigation systems. A thorough development of these
properties can be found in [22].

While all inertial navigation systems experience unstable
error growth over time, the relatively short durations be-
tween images allow us to model the errors between succes-
sive images using a simpler model. The first approximation
assumes that the navigation reference frame is effectively
an inertial reference frame over the short term. The second
approximation assumes a general knowledge of the naviga-
tion state (e.g., the system is reasonably aligned) such that
any errors in the navigation state itself do not dominate the
pixel motion prediction between frames.

Thus, the simplified inertial sensor model represents the
measurement as the sum of the true value plus an error and
is given as

ω̃c
nc = ωc

nc + δωc
nc (49)

ṽc = vc + δvc (50)

whereωc
nc is the true angular rotation rate andvc is the true

velocity. The tilde represents the corrupted measurement as
received from the inertial sensor. The inertial measurement
errors,δωc

nc andδvc can be represented as random vectors
with the following statistics over the intervalTs:

E [δωc
nc] = 03×3 (51)

E
[
δωc

ncδωcT
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]
= qw (52)

E [δvc] = 03×3 (53)

E
[
δvcδvcT

]
=

(
σ2

v0
+ qaTs

)
I3×3 (54)

The gyroscopic and accelerometer error sources are as-
sumed to be collectively independent. Substituting the ve-
locity and angle increment measurements from the iner-
tial sensor algorithm into the pixel motion equations from
Eqns. (30) and (31) and integrating the error terms results
in the residual pixel motion error rate due to inertial mea-



surement errors:
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whereδu̇ andδv̇ are the random pixel location errors rates
in thex andy directions, respectively. The standard devia-
tion of the residual pixel errors is given by calculating the
variance of pixel errors after integrating over an interval of
Ts, yielding:
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The temporal sampling constraint can be applied in a simi-
lar manner as before, however in this case the constraint is
applied to the standard deviation ofresidual errorof pixel
motion versus the total pixel motion considered in the un-
aided case.

σKmax = max {σu, σv} (59)

Enforcing the temporal sampling constraint on the residual
random pixel motion requires selecting a confidence inter-
val such that the residual pixel motion is constrained to less
than one pixel uncertainty. This can be accomplished by
evaluating the resulting probability distribution function of
the residual pixel errors.

The preceding development is illustrated using a simple ex-
ample. In this example, a consumer-grade inertial sensor is
available with the following random walk parameters:

qw = 4.2× 10−7 rad2

s
(60)

qa = 1.9× 10−5

(
m
s

)2

s
(61)

As a further simplification, the pan components are isolated
by assuming relatively distant targets (e.g.,sc

z →∞). This

results in the following pixel uncertainties

σu =
f0

∆x
[Tsqw]1/2 (62)

σv =
f0

∆y
[Tsqw]1/2 (63)

Applying a3 − σ bound to the prediction errors results in
the following temporal sampling constraint

3σKmax
= 3 max
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}
≤ 1 (64)
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}
≤ 1 (65)

Solving for the sampling interval yields

Ts ≤ 1
9f2

0 qw
min

{
∆x2, ∆y2

}
(66)

Substituting the previously presented camera and inertial
parameters yields:

Ts ≤ 1
7.03

(sec) (67)

which results in a minimum frame rate of7.03 Hzand max-
imum exposure time of142.3 ms.

This illustration shows the benefits possible when uti-
lizing inertial measurements to reduce temporal aliasing.
This result implies that as long as the rotational motion
is within the bandwidth of the inertial sensor, sampling
at ≥ 7.03 Hertz will give acceptable anti-aliased results.
Thus, when incorporating inertial measurements for fea-
ture anti-aliasing, the sampling rate is independent of cam-
era motion.

CONCLUSIONS AND FUTURE WORK

In this paper, the concepts relating spatial and temporal im-
age sampling are explored from first principles with focus
on the consequences for the correspondence search and fea-
ture tracking problem. The sampling theory is developed
and shown to yield a natural interrelationship between ac-
ceptable spatial and temporal sampling frequencies. The
relationships between apparent feature motion and tempo-
ral sampling requirements are shown to require very high
(possibly unattainable) temporal sampling rates in order to
guarantee un-aliased sampling. We believe this is an un-
derlying cause which forces designers to exploit compli-
cated feature tracking algorithms, which, in essence, can
be viewed as sophisticated anti-aliasing filters. A case in



point is the operation of the optical mouse. It uses a corre-
lation algorithm and assumes a linear (x-y) planar motion.
This, in turn, simplifies the computations and allows for
the use of a very high sampling rate: evidently, the alias-
ing/ambiguity issue is well appreciated because the sam-
pling rate used is 1.8kHz[2].

Once the problem is posed from this perspective, the in-
corporation of inertial sensors is a natural choice. Iner-
tial sensors are shown to have the capability to statisti-
cally constrain the apparent motion effects, which can re-
sult in a significant reduction in required temporal sam-
pling rates while alleviating the burden of feature corre-
spondence search. In essence, inertial sensors are proposed
to provide us with a direct method for reducing or eliminat-
ing temporal aliasing, allowing for the use of sophisticated
and efficient/robust correspondence search algorithms and
operation under lower-lighting conditions.

Indeed, the use of inertial measurements for aiding the fea-
ture correspondence search task is akin to the use of inertial
measurements in ultra-tightly coupled GPS and INS where
the inertial information is used to steer the phase-locked
loops in a feed-forward mechanization. This facilitates pre-
cise code-tracking under dynamic conditions – a powerful
combination of precision and robustness which is the hall-
mark of properly fused synergistic sensors [15].

There are a number of issues which require further work
and development. First, applying statistical constraints
from inertial sensors requires some knowledge of the scene
to properly account for translational motion. We propose
to address this issue by incorporating statistical knowledge
of the terrain (eithera priori or in situ) which could be ap-
plied dynamically to either control temporal sampling rate
or to exclude features for which aliasing is predicted.

Secondly, this development does not exploit any geomet-
ric constraints regarding the scene itself. In certain cases,
(e.g., an aircraft imaging a relatively flat scene) the tem-
poral sampling rate can be reduced below the worst-case
threshold presented in this paper.

Ultimately, we believe this theory demonstrates the com-
plimentary nature of imaging and inertial sensors. As
such, properly incorporating inertial sensors can be a ma-
jor advantage in developing robust image tracking appli-
cations within reasonable imaging and image processing
constraints.

DISCLAIMER

The views expressed in this article are those of the au-
thor and do not reflect the official policy or position of the
United States Air Force, Department of Defense, or the U.S
Government.
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