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Theoretical Analysis of Image Processing Using Parameter-Tuning
Stochastic Resonance Technique

Bohou Xu, Zhong-Ping Jiang, Xingxing Wu, and Daniel W. Repperger

Abstract— Parameter-tuning stochastic resonance has been
successfully applied to the one-dimensional signal processing.
This paper explores the feasibility to extend this technique
for image processing. Based on the two-dimensional nonlinear
bistable dynamic system, the equation satisfied by the system
output probability density function is derived for the first time.
The corresponding equation for the one-dimensional system
is the famous I'okker-Planck-Kolmogorov (FPK) equation. The
stationary solution, eigenvalues and eigenfunctions of this equa-
tion are then investigated. The upper bound of the system
response speed and the related calculation algorithm which
are necessary for the applications of this technique to image
processing are also proposed in this paper. Finally, the potential
applications of this approach in image processing and some
future research are suggested.

Index Terms— Stochastic Systems, Stochastic Resonance, IVil-
tering, Nonlinear Systems, Image Processing

I. INTRODUCTION

Image processing has been widely applied in different
arcas, such as diagnosing tumors in medical images, de-
tecting and identifying hostile targets in military images.
Over the years, many effective image processing algorithms
have been proposed to meet the incrcasing requirements on
image qualities. For the images corrupted by noise, most of
the denosing algorithms will try to remove or suppress the
noise from the systems, becausc the noise is usually thought
to be annoying. Stochastic resonance, on the contrary, is a
phenomenon that the noise can be used to enhance rather than
hinder the system performance. The concept of stochastic
resonance was first proposed by Bcnzi in 1981 [1]. Since
then, stochastic resonance has been applied in a wide-range
of areas, such as physics, chemistry, biomedical sciences, and
engineering [2]. It has been successfully used to improve
the balance control for elderly people [3]. The profoundly
deaf people can improve their spcech understanding with
the aid of noise [4]. For the signal processing area, the
stochastic resonance technique has been applied to the signal
detection [5], signal transmission [6], and signal estimation
[7]. In order to realize stochastic resonance to make the noise
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heneficial to the system, the synchronization between the
input signal and the noise must occur. Basically, there are
two approaches to realize the stochastic resonance effect.
The traditional method is to add an optimal amount of noise
into the system [2]. Parameler-tuning stochastic resonance
proposed by us is the other way [8]-[I1][16]. It realizes
the stochastic resonance effect by tuning system parameters
to their optimal values without adding any additional noise
into the system. We also reveal that the parameter-tuning
stochastic resonance is superior to the traditional method [8],
especially when the initial noise intensity is already beyond
its resonant region. Parameter-tuning stochastic resonance
has also been used (o recover the noisy multi-frequency sig-
nals [9], reduce the bit-error rate (BER) of the transmission
of baseband binary signals [8]. Image processing is another
potential application area of stochastic resonance technique.
There arc some initial research work on it [12]{13]. The
initial research results demonstrate that it is promising
and feasible to develop the innovative and cffective image
processing algorithms using stochastic resonance technique.
All thesc approaches, however, are based on simulalions
and are lacking rigorous theorelical analysis. Tt is difficult
o implecment and extend to other image processing ficlds.
Another problem with these approaches is that they need
to add an optimal additional noise into the images. which
is impossible for some image processing tasks. All these
motivate us (o investigaic the application of parameter-
luning stochastic resonance in image processing based on the
systematic and theoretical analysis. This paper will mainly
focus on the theoretical investigation of the [easibility of
this approach. In order to apply thc current parameier-
tuning technique, the two-dimensional image signals can
be first converted to onc-dimensional signals. Unfortunatcly,
our research demonstrates this method is not effective. The
only possible method is then to treat the two-dimensional
image signals directly without conversion and develop all
the theoretical results in an analytic way as onc-dimensional
parameter-tuning stochastic resonance. For one-dimensional
systems, the parameter-tuning stochastic resonance is based
on the derivation of the Fokker-Planck-Kolmogorov (FPK)
equation satisfied by the system output probability density
function and also the derivation of the system response speed
and its calculation algorithm. Similarly, for two-dimensional
image signals, the feasibility investigation means whether
the equation and its solutions satisfied by system output
probability density function can be derived and whether the
system response time can be calculated. So far, no related
research result could be found in this arca.



The rest of this paper is organized as follows. In Section
I1, we will first propose a two-dimensional nonlinear bistable
dynamic system and then derive the equation satisfied by
the system output probability density function. Section III
will give the stationary solution of this equation. The system
response speed for this two-dimensional system will be
investigated in Section IV. The potential applications of this
approach in image processing are mentioned in Section V.
Finally, Section VI closes the paper with brief concluding
remarks and future research directions.

II. TWO-DIMENSIONAL NONLINEAR BISTABLE
SYSTEM AND RELATED FPK EQUATION

The one-dimensional nonlinear bistable stochastic reso-
nance system can be described by the following equation

[2]

(1) = aa(t) — b (1) + s(t) +n(2), ()
where a and b arc system parameters, s(t) is the input signal,
and 7(¢) is an additive Gaussian white noise with zero mean
average and autocorrelation of (n(t)n(0)) = 2D5(t).

For this nonlinear dynamic system, the output signal-to-
noisc ratio will be maximized when an optimal amount
of noise is added into the system. This is the stochastic

resonance phenomenon.
Similarly, we can propose the following two-dimensional
nonlincar bistable dynamic system

3w

— = f( Tz,

520y flw) + Tz, y), 2)
where w = w(x, J) is the state variable (system output),

flw) = aw — bw® + h, I'(x,y) is additive white Gaussian
noisc, and / is the input signal.
The corresponding difference equation is
w(z + Az, y + Ay) =w(z + Az, y) + w(z,y + Ay) — w(z,y)
+ f{w)AzxAy + Uz, y)AzAy. 3)

In order to derive the FPK cquation satisficd by the system
output probability density function, one possible approach is
to use the similar method as deriving one-dimensional FPK

equation [14].
We have

plw,z+ Az, y+ Ay)
. =/ Plw,x + Az, y + Aylu, x, y) plu, z, y)du, 4)
where p(w,x,y) is the probability density function of the
system output w and P(w,z + Az, y + Aylu, x,y) is the

conditional probability density function.
Also,

Plw,x+ Qz,y + Aylu, =, y)
:/(5('1) —w)P{v,z+ Az, y + Aylu, z, y)dv

" 9" (u — w)

v —u)
/ Z du™
%Z

uO

Plv,x + Az y + Aylu, x, y)dv

"5 (u — w)

4, (w, z, Az, y, Ay) 5
aum

(5)

where

My=1, (6)
Moy (w, 2, Az, y, Ay)

= /(u — )" Plv, o+ Az.y+ Aylu.z. y)do,n = 1.2,..(7)

Then
p (w T+ Az.y + Ay) — plw, z,y)
Q"6 (u —w)

~Z /z\/[,, u,w, Awx, oy, Ay)plw. z,y) ———du

= dun
= s A A 8

NZI o dw n(w,z, Az, y, Ay)plw, z.y)]. (8)
Similarly, we can obtain

plw .z + Az, y) — plw.z.y)

=1 a
:”_lm(—ﬁ)"[l\[,,(w c Av oy Oplaw. o). (9

plw oy + Ay) = plw. z.y)
{”‘j 12y
— ' dw

From this, we can derive the corresponding FPK equation

(Mo (w, 2, 0,0y, Ay)plw. @, 4)]. (10)

(‘)Qﬂ(lu,;ﬂ,;t/)V o 9 \rres roy)plw, x,
-—mﬁf""égm<5;>mﬂmthWwwN“”

where

Co(w,z, y):AlixEO L\TIL\/(/ (M (w, 2, Az, y, Ay)

Ay—0
Mo (w, e, Ax,y,0) — Mnp(w, x,0,y, Ay)]. (12)

For n =1, Cy can be calculated as

Ci{w, z, y) AxAy={w(z + Az, y + Ay) — w(z + Az, y)
—wle,y+ Ay) + wlr y))
=f(w)AzAy. (13)

where the angular brackets denotc the ensemble average.
Unfonunalcly it is impossible to calculate (), for n > 2,
because

Colw, v, ) AaxAy={{w(z + Auw.y + Ay} — wir y)")
*<[‘u'( r+ Ar,y) — w(r. .’/!}J\

~Alwla. y + Ay) - wir y)]). (1)

The system described by (2) provides no enough informa-
tion to calculate the C,, for n > 2.

To overcome the above difficully, we reduce the partial
differential equation (2) to an ordinary differential cquation
along the linc 2 = g + A, y = yo + 1Ay as

d*w
di?
where

= AxAy f(w) -+ AxAyT(wo + LAz, yo + tAy), (15)

(T, )T y1)y = 2D8(x — w1,y — 1), (16)



The equation (15) can then be rewritten as

gﬂ:Alvv,
dt
dv .
E:Ay} (w) + Ay (Axt, Ayt)
=Ayf{w) + Ayl 1{¢). 17
where
(T1(OT (L)) = 2D8(t - t1). (18)

Based on the concept in [14], we can prove the proba-
bility density function p(w,v,t) satisfies the [ollowing FPK
equation

ap(wavaf/) . 9 PO S — 2 2 [
—a = %[A‘Lb/)(u), v, £)] En [Ayf{w)plw, v, b))
DAY O plw, v, t) ' (19)

dv?

Equation (19) is independent on (zg,yo) explicitly, the
solution of this equation will be valid for any (xg, 7g).

Equation (19), however, docs not have a stationary solu-
tion, because it is a hyperbolic equation without any damping
[17]. In order to overcome this problem, equation (2) is now
changed (o

8w

__bw
edy O

+ [(w) + Tz, y), 0

where v is a positive damping coefficient.
In the similar way, we can derive the FPK equation for
system (20)

Op(w, v, ¢ 7
Ll;)’t(g :—%[Am;p(w, v, 1)]

_%[Ay(ﬂ%) + [ (w))p(w, v, )]

+DAy

a2 g
PXel /)(l/U.:)b,[,)- @

In the following section, we will show that the stationary
solution of (21) exists. System described by (20) will be
used as the two-dimensional bistable dynamic stochastic
resonance system to process the image signals.

III. STATIONARY SOLUTION OF
TWO-DIMENSIONAL FPK EQUATIONS

Equation (21) is linear for the probability density function
plw,v,t), so it is possible to be solved by eigenfunction
expanding method.

Let po(w,v) be the stationary solution. It will satisfy the
following equation

_%[A:l/(_A”T) + flw))po(w,0)]

+DAy

5
P [Aowpy(w, v))

20 po(w,v)

e = 0. (22)

Assume pol{w, ) = cf“““lap(w), wce have

I

—Axzve ¢ (w) + vAye o(w)
+2a0Ay(—yv + f(w))ve” ™" p(w)
+DAY (—2a + dagv®)e ‘"”"J@(w) =0. (23)

2 o
—ago —apv”

In order to mecet (23), the following should be satistied by
the coefficient of ©', for + = 0, 1,2

oY Ay — 200 DAY =0, (24)
v 7A;u¢,(w) + 2a0Qy f(w)p(w) = 0. (25
v —200v7Ay + 4(L3DA_’1/2 = 0. (26)

By solving (24),(25), and (26), we can get

ag = (27)

y

2DAy’
w) = Noespl—=— [ Jlw)dul.

elw) =1 Oe(p[DAr): A S (w)dw) (28)

¥

polw, v) = Ny exP[_'ZDAU 02+ Z—)A’A—I / S(w)dw], (29)
! T Jo

where Ny can be determined by

+oo rtoc
/ / po(w. vydwdv = 1. (30)

For convenience, (29) can be rewritlten as

polw,v) = ¢ 0, &I))

where

wnw) = —T oyt
o(w. v) 200y v Dixa: |

/ Shwydw - In Ny, (32)
i)

IV. SYSTEM RESPONSE SPEED OF
TWO-DIMENSIONAL BISTABLE SYSTEMS

Similar to one-dimensional parameter-tuning stochastic
resonance, investigating the characteristics of system re-
sponse speed and developing its calculation algorithm are
very important tasks for the two-dimensional paramcter-
tuning stochastic resonance. It will determine whether the
one-dimensional parameter-tuning stochastic resonance can
be extended to the two-dimensional case.

Let
Di=vAz, (33)
Da=Ay[—yv + f(w)]. (34
Das=DAy. (35)

Equation (21) can be rewritten as

ap ad 19} *p

L. 8 55, s W Y R

o dw (Dip) dv (Dap) + D2z dv?
=Lgp(p), (36)

where
e} d ., . &

Lrp(p) = —2(D1p) = L (Dap) 4+ D0 &L (37
rr(p) (")'w( ) 5)11< 2p) [“'(')U'2 =)



—At equation (36) then becomes

~Lppé(w,v). (38)

Assume p = £(w,v)e
A(w,v) =

Similar to the one-dimensional case, let

E(w,v) = 1 (w, v)ef‘h/r‘), (39)
where ¢ is defined in (32) and ¢~ is the stationary solution
of (21).

In this case, equation (38) becomes

Np = — L, (40)
where L is a differential operator, and

L 1/1—0”/2Lpp( “’/“u’))

o2 0 /2y o2 O —6/2,
Em (D€ i) 8”(Dve )
R APy
Dzv ()7) ( ’l/)). (41)
We can assume
Plw,v) = O(c'¢/2), as w — £oo or v — £00, (42)
because

t)= w, v, t) = 43
. 1711_11 plw, v, t) th plw. v, t) =0, (43)
//676’(111)(1v:c0nst #£0. (44)

We denote the conjugate operator of L as L¢. Let L, =
(L + L°)/2, and Lo, = (L — L¢)/2, thatis L = Ly + Lgs,
we can obtain the following theorems.

Theorem [: The differential operator L in (40) can be
decomposed into symietric part L, and anti-symmelric part
L,s. Also, L, is negative semi-definite.

Proof: First, we will calculate the conjugate operator

of L. It is denoted as L¢, Assume
11m plw, v)= Iun T[(’LU,'U) =0, (45)
Ii = [ vy =0.
“JIEOO W{w, v)= 7]&1;1 n(w,v) =0 (46)

From

/ / 7 Ldvipdw
[ @
// e 011)(

e 5 O .
Dyie *%y —c"l’/zL Doe /2y
L ) 01)( 2 )

52
+e?? Dy 5%7 (e""ﬁ/zw)](l'u)d/l}
Z//’l/)[Dlﬂu(hmad)('{”/z )+D 705/28(1((,}/'/'2”)
], U v
~/2 02 /2
+Daze ey (e”""n)|dwdv, 47)

v
we can define the conjugate operator of L as
-~/ %)
L= /2 D a m/z f,ﬁ/z
e [ 101 Y+ D2 @U( )

02
+Da2s 52

(e”*)]. (48)

Now, we can calculate the symmetric part L. and the anti-
symmetric part L,,. Because

a S d > ¢ N )
—%(Dlt’ )“}—[;(Dg( )+*(1)>)7—( ] = (). (49)

we can get

L+ L
L. (/)_(+—2)[/)
Lo 42 @ —e/2 w2 0 —6/2
==[—e Dye "7 4h) — """ (Dae” /¢
2 [~ ow (D1e V) - v (Pt ¥)
e Dy o (e=/2p) 1 e=#/2 D, D_(e4/2y)
T ov? dw
. 2
—el2p _<)_ B2 L2, J° o2,
+-€ _av((ﬂ P) + ¢ 25 (¢ 7))
1, 0 —ey 0O & o
=—pe" |— = (D1e” ") - ) )+ 90— ‘
i (7'11,'( L ()u(/) @)+ D i S
yr]:/’zi mi)_ /2,
s e )
_ rD/'Zi' 7q‘>£)_ /20 5
“ap e gy () (30)
Also
La 1/)—- (L LY = (L~ L)y

52 ¢ _ iy
:("’)/ 0( (D e @/2 W) — -——(Dg( @/ (f))

d Ay > 0 o O, e
2D, »/2 —e??2 L Do L (o2,
o Daa () = e L (De " L ()

9, O ( ’
— /2 e C (Dye™ (‘)/2”))+ _Ki(Dzeﬂ,;/zw)
dw v
2 30 o )
tagPg e Yl 5D
To conclude, we gel
»/2 0 0 G2
Lo=c®/? 5;((7 . (52)
5h /2 ,) _ ) 5/
Lm:—f"’/' o o2y 9 /2
: € {aw(Dl( + 50 (Dae )
o b @/2\
(D L8 92y 53
T v (D22 " ) >3)

For any  and 7 salisfying (45) and (46), wc have
nlLsdwdy

-/ P e
. v

=— //D22€ @ (("/Qw) 4 (e*"* ) dwdv
], dv

iz, O L o 0 a2
// e v [Dzze du (™)
= //'z/:[,_;udwdv. 54

I

Jdwdv



// 1 Lastpdwdy

f 0 , _a 7] e
/2 0 O o _gra o —/2,
- // ,[f)w(c )+ E)’U(DZ)C ¥)

(Do g(/) T p) dwdv
,(,)/_,’ ‘r,»,/2, /2 _()_ L/2
// vh ()w( n+e VDo ov (™)
+ Doy — g9 70‘7/271) 0 (e ('/)/277)151/“"1")
Ov v ’
// ¢/zd) L) 4 Q(Dge"”mn)
v
06 { gd) 20 dwdv
—/ 4 Losn dwdv. (55)

This means the operator L is symmeltric and L, is anti-
symmetric. Now, we will prove L is also negative semi-

definite.
We have

. d _s O 5 ')
'/'/1/1L,\-'¢/fdwdv='// "Z)et'b/z%[D”e d)aq;( €%

- // Dne‘“’(— #2002 dwdv < 0. (56)
g U

From this, we can conclude that L
definite, This completes the proof. |

)| dwdu

is semi-negative

T/zeorem 2: If A is any non-zero eigenvalue of the op-
erator —L, and A} is the least non-zero eigenvalue of the
operator — L, then ReA > Af{.

Proof:  Assume {\J, 47}, for ¢ = 0,1,..., are the
eigenvalues and eigenfunctions of — L, that is
—Lgpl = Ny, i=0.1,.. (57

Because — L, is symmetric and semi-positive definite, we
have

0=2A < AT < A3 <, (58)
// Wi dwdy = 8y, (59)

Moreover, we assume that A; and ¢; are the elgenV"llue

and elgenfunctlon of —L. That is th/)J = Ajij. A; might
be complex. Then, we get
N S 5 Lypsdwdu 60)

S 45y dwdy

where ¢ is the complex conjugate of ;.
Because {7} is complete in H-space, +/; can be expanded
as

i = Cpti. (61

i=0

Substitute (61) into (60), we get

S Sy Cipi L Cpedawdy 5
o2 [CiPE -

A = —

We can also obtain the following

i i C/']‘I(;"JA // i) Ly dwdy

=0 k=0
VZZ‘( “(1;\ — A+ // copndwdey. (63)
=0 k=0
Z ZC Cikpi Lasti, + Z Z(/'J‘,(,",L Y5 Lasty
10 k=0 1=0 k=0
L Ci Ciri Lasti, +LZC/, STkl La st
i=0 k=0 i=0 k=0
=0. (04)

From above, we have
L 245
Z,ﬁio iCJf| A

Re();) = &izolMd (65)
( ! i=0 C/ji 2

Assume 0 < Re{M) < Re(Mp) < .., then

S ICul?Ay L.
Re(h) = ==—— > A 66
e{Ar) = [Cul? 1 (66)

Here, C'g = 0. We then prove that Re(A) = A7,

[ |

From Thcorem 2, we can rcgard Ay as a lower bound
of the system response speed of —L and takc A7 as an
approximation of the system responsc specd of system (20).
We now investigate its calculation algorithm.

The eigenvalue problem of operator L, A4 = - L, can
be rewritten into the variational form (Rayleigh qu()ucnl)[ 15]

N st IS u’;L’q'g/)(/'uu'l'u
W0 [T w2dwdo

I 'u‘)e"”/za%[Dgge*"".l()—(c’f)/Qz/))]<i'u/<iYJ

=st. — — Jv
’/’LD S ¥?dwdv

== g JJ Daze™® ()( 0/24p) |2 dusdv
";‘” S w2dwdy

v [ Daze™ (25 dwdv
%0 ff e~ *2dwdv

where ¢ = ¢®/24p, and “st.”
the functional.

Obviously, A* > 0. It will take the zero value, if ¢ is
constant (This means 1 = Ce~=%/2_and it is a stationary so-
lution). The above problem can be solved using the subspace
iteration method.

The calculation algorithm of Aj

(67)

denotes the stationary value of

1s outlined as follows

1) Determine the integral range in (67);

2) Divide the intcgral range into n x 7 parts and use
the finite element method to transform the variational
problem (67) into a general-matrix cigenvaluc problem

(AM) = [KD{C) = 0. (68)



where [M] is a positive definite matrix and [K] is a
non-negative matrix.
3) Use subspace against-iteration method to get the min-
imum positive eigenvalue Af.
Besides the stationary solution,
expanding solution of (21)

we can now gel the

—ALt—é/2
vye "t ¢/

plw,v. t) = polw, v)+Crp(w,
+Cotpa(w, ’U)c"'\zfﬂ‘b/g + ... (69)

where pg is the stationary solution described by (31), and
{Ni, ¢}, for i = 1,2,.., are the cigenvalues and eigen-
function of —L. It is obvious that p(w,v,t) = po(w,v),
- when Ajt > 1. This can be satisfied by adjusting the system
parameters a and b which arc defined in (2). In this case, we
can use po(w,v) to approximate p(w,v,t) when applying
this technique to image processing.

V. POTENTIAL APPLICATIONS IN IMAGE
PROCESSING

The derivation of (69) demonstrates the feasibility to
extend the concepts of paramcter-tuning stochastic resonance
to the two-dimensional case. The two-dimensional bistable
system (20) can be used as a nonlinear filter o process the
noisy two-dimensional image signal to improve the image
quality. The probability characteristics of the image signal
after the filter is described by (20). It can then be used
to derive other performance measures based on different
image processing tasks, such as image signal-to-noisc ratio,
probability of target detection error, etc. The performance
measures can then be taken as the object function to be
optimized by tuning the system parameter a and b, which is
the concept of parameter-tuning stochastic resonance. This
method has the potential to be applied in image processing
tasks in which the image signals are corrupted by the noise.
The system parameters will be tuned properly to synchronize
the signals and the noise to convert the noise to be a positive
factor to improve the tmage qualities.

VI. CONCLUSION AND FUTURE WORK

Through theoretical analysis, this paper reveals that the
one-dimensional parameter-tuning stochastic resonance can
be extended to the two-dimensional case and it is feasible to
use it for image processing. The Fokker-Planck-Kolmogorov
(FPK) equation for the two-dimensional nonlinear bistable
dynamic stochastic resonancc system can be derived. Its
stationary solution is also given in this paper. Also, the sys-
tem response speed for this two-dimensional bistable system,
which is another important part of parameter-tuning stochas-
tic resonance, can be calculated with our proposed algorithm.
All these demonstrate that all the critical techniques of
the paramcter-tuning stochastic resonance are now available.
They arc ready to be applied to process two-dimensional im-
age signals. The two-dimensional parameter-tuning stochas-
tic resonance provides an innovative and promising approach

for image processing. [t will find wide-range applications,
just like that of one-dimensional parameter-tuning stochastic
resonance. Nex!(, wec will apply this new approach to real
image processing tasks. We will start from the binary images
with white Gaussian noise and then cxtend to gray images
with colored noise.
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