Measuring In-Flight Angular Motion With a Low-Cost Magnetometer

by Thomas E. Harkins and Michael J. Wilson

ARL-TR-4244 September 2007

Approved for public release; distribution is unlimited.
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

DESTRUCTION NOTICE—Destroy this report when it is no longer needed. Do not return it to the originator.
Measuring In-Flight Angular Motion With a Low-Cost Magnetometer

Thomas E. Harkins
Weapons and Materials Research Directorate, ARL

Michael J. Wilson
ATK

Approved for public release; distribution is unlimited.
A technique for obtaining pitch, yaw, and roll rates of a projectile from a single, low-cost, commercial off-the-shelf magnetometer has been developed at the Advanced Munitions Concepts Branch of the U.S. Army Research Laboratory’s Weapons and Materials Research Directorate. In this report, the magnetometer-based methodology is presented, the flight experiment and subsequent analyses are described, criteria for use of this methodology are given, and the potential uses of this technique in inertial measurements unit/INS applications are discussed.
Contents

List of Figures iv

1. Introduction 1

2. Inertial Navigation of Projectiles 1

3. Vector Magnetometer 4

4. Obtaining Angular Rates From Vector Magnetometers 4

5. Obtaining Spin Rate From Magnetometers 5

7. Criteria for the Use of Magnetometer-Based Angular Rate Estimation 9

8. Summary 10

9. References 11

Distribution List 12
List of Figures

Figure 1. Coordinate systems... 2
Figure 2. Earth-fixed and body-fixed systems and the Euler angle rotation................................. 3
Figure 3. NASA re-entry vehicle models with sensor and telemetry system............................... 7
Figure 4. Apollo model flight data.. 7
Figure 5. Pitch rate history from rate sensors and magnetometers.. 8
Figure 6. Elevation (θ) and azimuth (ψ) angle history... 9
1. **Introduction**

The Advanced Munitions Concepts Branch of the U.S. Army Research Laboratory’s (ARL’s) Weapons and Materials Research Directorate has for many years designed, built, and employed body-fixed sensor and telemetry systems to measure flight body kinematics, primarily in support of military ordnance testing. Because requirements imposed by military applications such as high-g environment, extreme projectile dynamics, small size, low cost, low power consumption, etc., exclude many traditional inertial sensor systems, ARL is continually exploring emerging technologies and developing alternate techniques for their utility in obtaining desired measurements.

With the result from vector differentiation relating the time derivatives of a vector represented in two coordinate systems in relative motion, a technique for obtaining pitch, yaw, and roll rates from a single, low-cost, commercial off-the-shelf magnetometer was developed. In a recent ARL flight experiment intended to characterize the angular motion of National Aeronautics and Space Administration (NASA) re-entry capsules, no data were available from the strap-down angular rate sensors during critical portions of several flights because the launch environment and projectile dynamics exceeded sensor capabilities. These rates were successfully derived from magnetometer data, and complete Euler angular histories of the test trajectories were obtained with an ARL-developed vector-matching algorithm.

In this report, the magnetometer-based methodology is presented, the flight experiment and subsequent analyses are described, criteria for use of this methodology are given, and potential uses of this technique in inertial measurement unit (IMU)/inertial navigation system (INS) applications are discussed.

2. **Inertial Navigation of Projectiles**

The equations of motion describing free-flight dynamics of rigid projectiles have six degrees of freedom, three translational velocity components and three rotational velocity components. A traditional strap-down IMU consists of an orthogonal triad of linear accelerometers and an orthogonal triad of angular rate sensors oriented along a projectile’s principal axes. Given initial launch position, orientation, and velocity of a projectile, the rate sensors’ output is integrated to update the projectile orientation, and the accelerometers are integrated once to update the projectile velocity and twice to update the projectile position. The solution of the inertial navigation problem is conceptually simple, but it is often difficult to realize an IMU capable of measuring the required six body states under constraints imposed by a particular application. Although this problem is
equally of concern to accelerometers and rate sensors, only the orientation estimation (i.e., rate sensor) problem is addressed herein.

Formulation of the inertial navigation problem for gun- and tube-launched projectiles requires the use of multiple coordinate systems (Harkins, 2003, 2007). Trajectory time histories are best described in an earth-fixed coordinate system with its origin at the launcher. Of necessity, strap-down sensor measurements are made in a flight-body-fixed coordinate system, and target locations are most naturally described in another earth-fixed system.

The first coordinate system is right-handed Cartesian (I,J,K) with its origin at the launch site. This will be referred to as the “earth-fixed” system and the axes are defined by

- The I and J axes, which define a plane tangent to the earth’s surface at the origin;
- The K axis, which is perpendicular to the earth’s surface with positive downward, i.e., in the direction of gravity;
- The I axis, which is chosen so that the centerline of the launcher is in the $I-K$ plane.

Down-range travel is then measured along the I axis, deflection along the J axis (positive to the right when one is looking down range), and altitude along the K axis (positive downwards) (see figure 1).

![Figure 1. Coordinate systems.](image)

The second system is convenient for aeroballistic computations of rigid projectiles’ flights and for describing the locations and orientations of such projectiles’ components. This system is right-handed Cartesian (i,j,k) with its origin at the center of gravity (c.g.) of the flight body. For rotating flight bodies, the projectile-fixed coordinate system usually has its i axis lying along the projectile axis of symmetry, i.e., the spin axis (with positive in the direction of travel at launch). The j and k axes are then oriented so as to complete the right-handed orthogonal system (figure 1). Spin (p),
pitch \((q)\), and yaw \((r)\) rates are measured about these axes. This will be referred to as the “body-fixed” system.

The third coordinate system \((X,Y,Z)\) is commonly employed to specify locations on or near the earth’s surface, i.e., north, east, and down. This will be referred to as the “navigation” system where north = \(X\), east = \(Y\), and down = \(Z\).

The earth-fixed and body-fixed coordinate systems are related through an Euler rotation sequence, beginning with a rotation of the earth-fixed frame about the K-axis through the yaw angle \(\psi\). The system is then rotated about the new J’-axis through the pitch angle \(\theta\). Finally, the system is rotated about the new i-axis through the roll angle \(\phi\). The two systems are related by the direction cosine transformation matrix (DCM), \(T_{Eb}\), with the subscript denoting earth fixed to body fixed. This transformation matrix is

\[
T_{Eb} = \begin{pmatrix}
c_{\psi}c_{\theta} & s_{\psi}c_{\theta} & -s_{\theta} \\
c_{\psi}s_{\theta}c_{\phi} - s_{\psi}c_{\phi} & s_{\psi}s_{\theta}c_{\phi} + c_{\psi}s_{\phi} & c_{\psi}s_{\phi} \\
c_{\psi}s_{\theta}c_{\phi} + s_{\psi}c_{\phi} & s_{\psi}s_{\theta}s_{\phi} - c_{\psi}c_{\phi} & c_{\psi}c_{\phi}
\end{pmatrix},
\]

where \(c_\bullet\) is \(\cos(\bullet)\), and \(s_\bullet\) is \(\sin(\bullet)\). Figure 2 shows both coordinate systems and the Euler angle relations between them.

\[\begin{align*}
p & = \dot{\theta} + \left[q \sin(\phi) + r \cos(\phi) \right] \tan(\theta) \\
\dot{\theta} & = q \cos(\phi) - r \sin(\phi) \\
\dot{\psi} & = \left(q \sin(\phi) + r \cos(\phi) \right) / \cos(\theta)
\end{align*}\]
3. Vector Magnetometer

Among the many varieties of magnetic sensors, “vector” magnetometers are devices whose output is proportional to the magnetic field strength along the sensor’s axis(es). If a tri-axial vector magnetometer is installed so that the sensor axes are parallel to the axes of the body-fixed system, the projections of the earth’s magnetic field onto each of the sensor axes can be obtained by equation 1. If \(\vec{M}_E = (M_I, M_J, M_K) \) is the magnetic field vector in the earth-fixed system, then the components along the sensor axes are given by

\[
\vec{M}_b = T_{Eb} \vec{M}_E
\]

or

\[
M_i = c_{\psi}c_{\theta}M_I + s_{\psi}c_{\theta}M_J - s_{\theta}M_K
\]

\[
M_j = (c_{\psi}s_{\theta}s_{\phi} - s_{\psi}c_{\phi})M_I + (s_{\psi}s_{\theta}s_{\phi} + c_{\psi}c_{\phi})M_J + c_{\theta}s_{\phi}M_K
\]

\[
M_k = (c_{\psi}s_{\theta}c_{\phi})M_I + (s_{\psi}s_{\theta}c_{\phi} - c_{\psi}s_{\phi})M_J + c_{\theta}c_{\phi}M_K
\]

In any real magnetic sensor, determination of axes’ orientations and calibration coefficients can be a complex process, but for the present purpose, it is assumed that this has been successfully accomplished and \(\vec{M}_b \) is being accurately measured at a known sampling rate.

4. Obtaining Angular Rates From Vector Magnetometers

Consider two coordinate systems with the same origin and in relative motion, e.g., the earth-fixed and body-fixed systems just described at the time of projectile launch. From vector differentiation, the time derivative of any vector in the earth-fixed system \(\dot{\vec{v}}_E = \delta \vec{v}_E / \delta t \) and its time derivative in the body-fixed system \(\dot{\vec{v}}_b = \delta \vec{v}_b / \delta t \) are related by

\[
\dot{\vec{v}}_E = \dot{\vec{v}}_b + \vec{\omega}_b \times \vec{v}_b
\]

where \(\vec{\omega}_b = (p, q, r) \). Applied to the geomagnetic field vector, equation 5 becomes

\[
\dot{\vec{M}}_E = \dot{\vec{M}}_b + \vec{\omega}_b \times \vec{M}_b
\]

Realizing that equation 6 is unaffected by a translation of the earth-fixed system’s origin to the projectile c.g. at each sampling time and that \(\vec{M}_E \) is unchanging in the earth-fixed system and expanding in component form, we have the relations

\[
\dot{M}_i = -qM_k + rM_j, \quad \dot{M}_j = pM_k - rM_i, \quad \text{and} \quad \dot{M}_k = -pM_j + qM_i.
\]
Because these equations are not linearly independent, they can not be solved directly for the angular rates. However, for most rolling projectiles where $|p| >> |q|$ and $|r|$, a good estimate of p is readily obtainable from the magnetometer data, as described in the next section. With a spin estimate, this system can be solved to yield estimates of the body-fixed pitch and yaw rates. Therefore,

$$\dot{\hat{q}} = \left(\hat{M}_k + pM_j \right)/M_i \quad \text{and} \quad \dot{\hat{r}} = \left(-\hat{M}_j + pM_k \right)/M_i .$$

(8)

5. Obtaining Spin Rate From Magnetometers

Consider an earth-fixed, right-handed Cartesian coordinate system where the z-axis is along the geomagnetic field. In this new system, denoted by the subscript m, the geomagnetic field vector is $\bar{M}_m = (0,0,\vec{M}_E)^T$. As seen in section 2, there is a new set of Euler angles that defines a transformation matrix from this magnetic coordinate system into the body-fixed system so that

$$\begin{pmatrix} M_i \\ \bar{M}_E \\ M_j \\ \bar{M}_E \\ M_k \\ \bar{M}_E \end{pmatrix} = \begin{pmatrix} c_{\psi_m}c_{\theta_m} & s_{\psi_m}c_{\theta_m} & -s_{\theta_m} \\ c_{\psi_m}s_{\theta_m}c_{\phi_m} - s_{\psi_m}s_{\phi_m} & c_{\psi_m}s_{\theta_m}s_{\phi_m} + c_{\phi_m}s_{\theta_m} & c_{\phi_m}s_{\theta_m} \\ c_{\psi_m}s_{\theta_m}s_{\phi_m} + s_{\psi_m}c_{\phi_m} & c_{\psi_m}s_{\theta_m}c_{\phi_m} - s_{\phi_m}s_{\theta_m} & c_{\phi_m}s_{\theta_m} \\ -s_{\psi_m}c_{\theta_m} & c_{\psi_m}c_{\theta_m} & 0 \end{pmatrix} \begin{pmatrix} 0 \\ -s_{\theta_m} \\ c_{\theta_m}s_{\phi_m} \\ -c_{\theta_m}c_{\phi_m} \end{pmatrix}$$

(9)

This gives a definition of the magnetometer measurements in terms of the magnetic Euler angles. The magnetic pitch angle,

$$\theta_m = \sin^{-1}\left(-M_i/\bar{M}_E \right) ,$$

(10)

is the complement of the angle between the projectile’s spin axis (\hat{r}), and the magnetic field, \bar{M}_E. The magnetic roll angle, ϕ_m, is computed by

$$\phi_m = \tan^{-1}\left(M_j/M_k \right)$$

(11)

Analogous to equation 2, the body-fixed rates and the derivatives of the magnetic Euler angles are related by

$$\dot{\phi}_m = p + \left[q \sin(\phi_m) + r \cos(\phi_m) \right] \tan(\theta_m)$$

$$\dot{\theta}_m = q \cos(\phi_m) - r \sin(\phi_m)$$

$$\dot{\psi}_m = (q \sin(\phi_m) + r \cos(\phi_m)) / \cos(\theta_m)$$

(12)
Estimates of $\dot{\phi}_m$ can be obtained in several ways. The simplest method is to make roll period estimates from successive zero crossings or signal extrema on the M_j or M_k signals. This process yields average roll rates over the respective periods. More continuous, higher order estimates are obtained by the computation of equation 11 at each sampling time and the differentiation of the results. Alternatively, $\dot{\phi}_m$ is computed directly from

$$\frac{\delta \tan^{-1}(M_j/M_k)}{\delta T} = \frac{\delta (M_j/M_k)}{\delta T} \left(\frac{1}{1 + (M_j/M_k)^2} \right) = \left(\frac{\dot{M}_j M_k - \dot{M}_k M_j}{M_j^2 + M_k^2} \right)$$

(13)

with the advantage of avoiding potential singularities in equation 11 when $M_k = 0$. The spin rate (p) can then be estimated by low-pass filtering of the $\dot{\phi}_m$ estimates (Wilson, 2004).

6. Measuring Angular Rates of a NASA Crew Exploration Vehicle (CEV) Model

NASA needs to characterize the aerodynamics of the CEV that will be a part of future Mars missions. Some previous measurements had been made in spark ranges with scale models of the CEV, but this methodology cannot be employed to characterize all conditions of interest because of velocity and stability limitations imposed by safety considerations in an indoor range. Further, only limited amounts of data are collected for each shot in a spark range, so testing costs quickly mount with the number of shots required. With the dual hope of expanding the set of potentially measurable flight dynamics and reducing testing costs, it was decided that gun launching of Mars CEV models equipped with a sensor and telemetry system (figure 3c) at an outdoor range would be explored as a practicable way to acquire the desired data at reentry velocities (Brown et al., 2006).

Before proceeding to the Orion CEV tests, we evaluated the proposed methodology using an Apollo capsule model with known aerodynamics (figure 3a and b). The sensor system consisted of six angular rate sensors and a three-axis magnetometer. Along each of the principal axes there were an angular rate sensor with a dynamic range of ± 1000 deg/s, an angular rate sensor with a dynamic range of ± 2000 deg/s, and a vector magnetometer.

Figure 4 gives the body-fixed pitch axis rate sensor data for the first 0.5 second of one of the Apollo model flight tests. Two “problems” with these data are readily apparent. First, the pitch (and yaw) angular rates exceeded the dynamic range of the rate sensors and clipping resulted. Second, after gun launch, the rate sensors required time to “settle”. This is obvious in the 1000-deg/s sensor data but was later discovered to be equally true of the 2000-deg/s sensor data. Because of these issues, the magnetometer-based method was used to estimate the angular rates and the Apollo model’s attitude history.
Initial spin rate was estimated to be approximately 2 Hz from a period measurement of radial magnetometer output. With this value for \dot{p}, equation 8 was evaluated to obtain estimates of the body-fixed pitch ($\dot{\varphi}$) and yaw ($\dot{\psi}$) rates. We estimated $\dot{\varphi}$ and $\dot{\psi}$ by differencing the successive magnetometer measurements. The resulting pitch rate estimate is seen in figure 5a superimposed on the rate sensor data. The good agreement of the magnetometer-derived pitch rate with the rate-sensor-measured pitch rates whenever those measurements exist supports the accuracy of the magnetometer-derived rate estimates at all other times. The magnetometer-derived rates indicate initial pitching rates of approximately 4000 deg/s. These early data are particularly important because the high-drag shape of the model causes the mach 3.5 launch velocity to decay to subsonic speed in less than 1 second, and the high mach numbers are representative of re-entry velocities. Later in the flight, as the model begins to tumble, pitch rates approaching 20000 deg/s are estimated by the magnetometer (figure 5b). Although these data are not of interest for characterizing
CEV aerodynamics, they demonstrate that the magnetometer method does not suffer from dynamic range limitations.

Figure 5. Pitch rate history from rate sensors and magnetometers.

With θ_m, ϕ_m, \dot{q}, and \dot{r} in hand, equation 12 is used to compute ψ_m at each sampling interval.

The magnetic azimuth is then given by

$$\psi_m(t) = \psi_m(0) + \int_0^t \psi_m(t) \, dt.$$ \hfill (14)

Finally, the earth-fixed Euler angles are given by

$$\begin{pmatrix} \theta \\ \psi \\ \phi \end{pmatrix} = T_{mE} \begin{pmatrix} \theta_m \\ \psi_m \\ \phi_m \end{pmatrix}$$ \hfill (15)

where T_{mE} is the DCM relating the magnetic and earth-fixed coordinate systems. This methodology has been successfully implemented in an on-board digital signal processor for real-time guidance of experimental projectiles, as reported in reference 1. When this methodology was executed during post-processing of the flight telemetry data, the Apollo model heading history seen in figure 6 was computed for the first second of flight. With these data, aerodynamic coefficients of interest were estimated for the test vehicle, and the flight experiment evaluation was successfully completed.
7. Criteria for the Use of Magnetometer-Based Angular Rate Estimation

The effectiveness of this methodology is clearly dependent on the accuracy of the measurements of M_i, M_j, M_k, \dot{M}_j, and \dot{M}_k. Thus, a calibrated vector magnetometer is required. Calibration constants can be determined on the ground and pre-loaded or often can be dynamically determined in flight. We estimated \dot{M}_j and \dot{M}_k by differencing successive magnetometer measurements. This simplistic method requires that data rates be sufficiently high to accurately estimate the derivatives. Sampling rates of at least one sample per degree of projectile rotation have been found to be adequate for a number of simulated projectiles. Alternatively, polynomial fitting to the magnetometer data followed by analytic differentiation has been shown to produce equally accurate results at lower sampling rates. Preferred methods should be determined for individual applications.
8. Summary

Free flight angular dynamics of projectiles have been successfully measured with vector magnetometers in flight experiments during intervals when angular rate sensors have failed to provide measurements. This result argues for investigation of the inclusion of magnetometers as supplements and/or replacements to rate sensors in low-cost IMU/INS systems.

<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>ORGANIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DEFENSE TECHNICAL (PDF INFORMATION CTR Only) DTIC OCA 8725 JOHN J KINGMAN RD STE 0944 FORT BELVOIR VA 22060-6218</td>
</tr>
<tr>
<td>1</td>
<td>US ARMY RSRCH DEV & ENGRG CMD SYSTEMS OF SYSTEMS INTEGRATION AMSRD SS T 6000 6TH ST STE 100 FORT BELVOIR VA 22060-5608</td>
</tr>
<tr>
<td>1</td>
<td>DIRECTOR US ARMY RESEARCH LAB IMNE ALC IMS 2800 POWDER MILL RD ADELPHI MD 20783-1197</td>
</tr>
<tr>
<td>2</td>
<td>DIRECTOR US ARMY RESEARCH LAB AMSRD ARL CI OK TL 2800 POWDER MILL RD ADELPHI MD 20783-1197</td>
</tr>
<tr>
<td>3</td>
<td>DIR US ARMY RSCH LABORATORY ATTN AMSRD ARL SE RL M DUBEY B PIEKARSKI AMSRD ARL SE EE Z SZTANKAY 2800 POWDER MILL RD ADELPHI MD 20783-1197</td>
</tr>
<tr>
<td>2</td>
<td>DIR US ARMY RSCH LABORATORY ATTN AMSRD ARL SE SS J EICKE AMSRD ARL SE SA J PRICE 2800 POWDER MILL RD ADELPHI MD 20783-1197</td>
</tr>
<tr>
<td>3</td>
<td>DIR US ARMY RSCH LABORATORY ATTN AMSRD ARL SE SS LADAS A EDELSTEIN D FLIPPEN 2800 POWDER MILL RD ADELPHI MD 20783-1197</td>
</tr>
<tr>
<td>1</td>
<td>DIR US ARMY RSCH LABORATORY ATTN AMSRD ARL WM MB A FRYDMAN 2800 POWDER MILL RD ADELPHI MD 20783-1197</td>
</tr>
<tr>
<td>5</td>
<td>CDR US ARMY TACOM ARDEC ATTN AMSRD AAR F(A) W KONICK C ROBINSON M D’ONOFRIO D WARD B CHRISTOPHERSON 2800 POWDER MILL RD ADELPHI MD 20783-1197</td>
</tr>
<tr>
<td>1</td>
<td>DIR US ARMY CECOM RDEC ATTN AMSEL RD C2 CS J VIG FORT MONMOUTH NJ 07703-5601</td>
</tr>
<tr>
<td>1</td>
<td>CDR US ARMY TACOM ARDEC ATTN AMSRD AAR QEM E M BOMUS BLDG 65S PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>4</td>
<td>CDR US ARMY TACOM ARDEC ATTN AMSRD AAR AEM A S CHUNG W KOENIG W TOLEDO T RECCHIA BLDG 95 PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>1</td>
<td>CDR US ARMY TACOM ARDEC ATTN AMSRD AAR AEM A F BROWN BLDG 151 PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>1</td>
<td>CDR US ARMY TACOM ARDEC ATTN AMSRD AAR AEM C A MOCK BLDG 171A PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>1</td>
<td>CDR US ARMY TACOM ARDEC ATTN AMSRD AAR AEM C J POTUCEK BLDG 61S PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>1</td>
<td>CDR US ARMY TACOM ARDEC ATTN AMSRD AAR AEP S PEARCY BLDG 94 PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>1</td>
<td>CDR US ARMY TACOM ARDEC ATTN AMSRD AAR AEP M CILLI BLDG 382 PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>5</td>
<td>CDR US ARMY TACOM ARDEC ATTN AMSRD AAR AEP E J VEGA P GRANGER D CARLUCCI M HOLLIS J KALINOWSKI BLDG 94 PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>NO. OF COPIES</td>
<td>ORGANIZATION</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>7</td>
<td>CDR US ARMY TACOM ARDEC ATTN AMSRD AAR AEP E D TROAST BLDG 171 PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>2</td>
<td>CDR US ARMY TACOM ARDEC ATTN AMSRD AAR AEP F H RAND BLDG 61S PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>2</td>
<td>CDR US ARMY TACOM ARDEC ATTN AMSRD AAR AEP F D PASCUA BLDG 65S PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>4</td>
<td>CDR US ARMY TACOM ARDEC ATTN AMSRD AAR AEP S N GRAY M MARSH Q HUYNH T ZAPATA BLDG 94 PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>1</td>
<td>CDR US ARMY TACOM ARDEC ATTN AMSRD AAR AEP S C PEREIRA BLDG 192 PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>5</td>
<td>CDR US ARMY TACOM ARDEC ATTN AMSRD AAR AEM L M LUCIANO G KOLASA M PALATHINGAL D VO A MOLINA BLDG 65S PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>1</td>
<td>CDR US ARMY TACOM ARDEC ATTN AMSRD AAR AEM L R CARR BLDG 1 PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>1</td>
<td>CDR US ARMY TACOM ARDEC ATTN AMSRD AAR AEM L J STRUCK BLDG 472 PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>1</td>
<td>CDR US ARMY TACOM ARDEC ATTN AMSRD AAR AEP E D TROAST BLDG 151 PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>1</td>
<td>CDR US ARMY TACOM ARDEC ATTN AMSRD AAR AEP F H RAND BLDG 61S PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>1</td>
<td>CDR US ARMY TACOM ARDEC ATTN AMSRD AAR AEP F D PASCUA BLDG 65S PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>3</td>
<td>CDR US ARMY TACOM ARDEC ATTN AMSRD AAR AEP F D PASCUA BLDG 65S PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>1</td>
<td>CDR US ARMY TACOM ARDEC ATTN AMSRD AAR AEP S N GRAY M MARSH Q HUYNH T ZAPATA BLDG 94 PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>3</td>
<td>PRODUCT MANAGER FOR MORTARS ATTN AMSRD AAR AEP S HARDY M MURPHY BLDG 162 SOUTH PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>1</td>
<td>PRODUCT MANAGER FOR MORTARS ATTN AMSRD AAR AEP S HARDY M MURPHY BLDG 162 SOUTH PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>3</td>
<td>CDR US ARMY TACOM ARDEC ATTN AMSRD AAR AEP S HARDY M MURPHY BLDG 162 SOUTH PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>3</td>
<td>PRODUCT MANAGER FOR MORTARS ATTN AMSRD AAR AEP S HARDY M MURPHY BLDG 162 SOUTH PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>1</td>
<td>CDR US ARMY TACOM ARDEC ATTN AMSRD AAR AEP S HARDY M MURPHY BLDG 162 SOUTH PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>3</td>
<td>CDR NAVAL SURF WARFARE CTR ATTN G34 M TILL G34 H WENDT G34 M HAMILTON G34 S CHAPPELL 17320 DAHLGREN ROAD DAHLGREN VA 22448-5100</td>
</tr>
<tr>
<td>3</td>
<td>CDR NAVAL SURF WARFARE CTR ATTN G34 M TILL G34 H WENDT G34 M HAMILTON G34 S CHAPPELL 17320 DAHLGREN ROAD DAHLGREN VA 22448-5100</td>
</tr>
<tr>
<td>3</td>
<td>CDR NAVAL SURF WARFARE CTR ATTN G34 M TILL G34 H WENDT G34 M HAMILTON G34 S CHAPPELL 17320 DAHLGREN ROAD DAHLGREN VA 22448-5100</td>
</tr>
<tr>
<td>4</td>
<td>CDR NAVAL SURF WARFARE CTR ATTN G61 E LARACH G61 M KELLY G61 A EVANS 17320 DAHLGREN ROAD DAHLGREN VA 22448-5100</td>
</tr>
<tr>
<td>1</td>
<td>CDR OFC OF NAVAL RSCH ATTN CODE 333 P MORRISSON 800 N QUINCY ST RM 507 ARLINGTON VA 22217-5660</td>
</tr>
</tbody>
</table>
1 DIR NAVAL AIR SYSTEMS CMD
TEST ARTICLE PREP DEP
ATTN CODE 5 4 R FAULSTICH
BLDG 1492 UNIT 1
47758 RANCH RD
PATUXENT RIVER MD 20670-1456

1 CDR NAWC WEAPONS DIV
ATTN CODE 543200E G BORGEN
BLDG 311
POINT MUGU CA 93042-5000

2 PROGRAM MANAGER ITTS
PEO-STRI
ATTN AMSTI FL D SCHNEIDER
C GOODWIN
12350 RESEARCH PKWY
ORLANDO FL 32826-3276

2 CDR US ARMY RDEC
ATTN AMSRD AMR SG SD P JENKINS
AMSRD AMR SG SP P RUFFIN
BLDG 5400
REDSTONE ARSENAL AL 35898-5247

1 DIR US ARMY RTTC
ATTN STERT TE F TD R EPPS
REDSTONE ARSENAL AL 35898-8052

1 ARROW TECH ASSOCIATES
ATTN W HATHAWAY
1233 SHELBRUNE RD STE 8
SOUTH BURLINGTON VT 05403

5 ALLIANT TECHSYSTEMS
ATTN A GAUZENS J MILLS
B LINDBLOOM E KOSCO
D JACKSON
PO BOX 4648
CLEARWATER FL 33758-4648

1 ALLIANT TECHSYSTEMS
ATTN R DOHRN
5050 LINCOLN DR
MINNEAPOLIS MN 55436-1097

5 ALLIANT TECHSYSTEMS
ATTN G PICKUS F HARRISON
M WILSON (3 CYS)
4700 NATHAN LANE NORTH
PLYMOUTH MN 55442

8 ALLIANT TECHSYSTEMS
ALLEGANY BALLISTICS LAB
ATTN S OWENS C FRITZ J CONDON
B NYGA
J PARRILL M WHITE
S MCCLINTOCK K NYGA
MAIL STOP WV01-08 BLDG 300
RM 180
210 STATE ROUTE 956
ROCKET CENTER WV 26726-3548

2 SAIC
ATTN J DISHON
16701 W BERNARDO DR
SAN DIEGO CA 92127

3 SAIC
ATTN J GLISH J NORTHRUP
G WILLENBRING
8500 NORMANDALE LAKE BLVD
SUITE 1610
BLOOMINGTON MN 55437-3828

1 SAIC
ATTN D HALL
1150 FIRST AVE SUITE 400
KING OF PRUSSIA PA 19406

1 AAI CORPORATION
M/S 113/141
ATTN C BEVARD
124 INDUSTRY LANE
HUNT VALLEY MD 21030

2 JOHNS HOPKINS UNIV
APPLIED PHYSICS LABORATORY
ATTN W D’AMICO K FOWLER
1110 JOHNS HOPKINS RD
LAUREL MD 20723-6099

4 CHLS STARK DRAPER LAB
ATTN J CONNELLY J SITOMER
T EASTERLY A KOUREPENIS
555 TECHNOLOGY SQUARE
CAMBRIDGE MA 02139-3563

2 ECII LLC
ATTN R GIVEN J SWAIN
BLDG 2023E
YPG AZ 85365
<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>ORGANIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GD-OTS</td>
</tr>
<tr>
<td></td>
<td>ATTN E KASSHEIMER</td>
</tr>
<tr>
<td></td>
<td>PO BOX 127</td>
</tr>
<tr>
<td></td>
<td>RED LION PA 17356</td>
</tr>
<tr>
<td>1</td>
<td>ALION SCIENCE</td>
</tr>
<tr>
<td></td>
<td>ATTN P KISATSKY</td>
</tr>
<tr>
<td></td>
<td>12 PEACE RD</td>
</tr>
<tr>
<td></td>
<td>RANDOLPH NJ 07861</td>
</tr>
<tr>
<td></td>
<td>ABERDEEN PROVING GROUND</td>
</tr>
<tr>
<td>1</td>
<td>DIRECTOR US ARMY RSCH LABORATORY</td>
</tr>
<tr>
<td></td>
<td>ATTN AMSRD ARL CI OK (TECH LIB)</td>
</tr>
<tr>
<td></td>
<td>BLDG 4600</td>
</tr>
<tr>
<td>1</td>
<td>DIRECTOR US ARMY RSCH LABORATORY</td>
</tr>
<tr>
<td></td>
<td>ATTN AMSRD ARL SG</td>
</tr>
<tr>
<td></td>
<td>T ROSENBERGER</td>
</tr>
<tr>
<td></td>
<td>BLDG 4600</td>
</tr>
<tr>
<td>17</td>
<td>DIR USARL</td>
</tr>
<tr>
<td></td>
<td>ATTN AMSRD ARL WM BA D LYON</td>
</tr>
<tr>
<td></td>
<td>T BROWN E BUKOWSKI</td>
</tr>
<tr>
<td></td>
<td>J CONDON B DAVIS</td>
</tr>
<tr>
<td></td>
<td>R HALL T HARKINS (5 CYS)</td>
</tr>
<tr>
<td></td>
<td>D HEPNER G KATULKA</td>
</tr>
<tr>
<td></td>
<td>T KOGLER P MULLER</td>
</tr>
<tr>
<td></td>
<td>B PATTON P PEREGINO</td>
</tr>
<tr>
<td></td>
<td>BLDG 4600</td>
</tr>
<tr>
<td>3</td>
<td>DIR USARL</td>
</tr>
<tr>
<td></td>
<td>ATTN AMSRD ARL WM BC</td>
</tr>
<tr>
<td></td>
<td>P PLOSTINS</td>
</tr>
<tr>
<td></td>
<td>B GUIDOS P WEINACHT</td>
</tr>
<tr>
<td></td>
<td>BLDG 390</td>
</tr>
<tr>
<td>3</td>
<td>DIR USARL</td>
</tr>
<tr>
<td></td>
<td>ATTN AMSRD ARL WM BD M NUSCA</td>
</tr>
<tr>
<td></td>
<td>J COLBURN T COFFEE</td>
</tr>
<tr>
<td></td>
<td>BLDG 390</td>
</tr>
<tr>
<td>2</td>
<td>DIR USARL</td>
</tr>
<tr>
<td></td>
<td>ATTN AMSRD ARL WM BF</td>
</tr>
<tr>
<td></td>
<td>W OBERLE A THOMPSON</td>
</tr>
<tr>
<td></td>
<td>BLDG 390</td>
</tr>
<tr>
<td>2</td>
<td>DIR USARL</td>
</tr>
<tr>
<td></td>
<td>ATTN AMSRD ARL WM MB</td>
</tr>
<tr>
<td></td>
<td>J BENDER W DRYSDALE</td>
</tr>
<tr>
<td></td>
<td>BLDG 390</td>
</tr>
</tbody>
</table>