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1 SUMMARY

This report presents the results of an experimental investigation into the combined
effects of inelasticity and strain rate sensitivity on penetration into geologic or geo-
logical derived targets. Both material models and specific computational methods
have been developed. A new class of compressible rigid viscoplastic models were pro-
posed to capture the solid-fluid transition in behavior at high strain rates, account
for damage/plasticity couplings and viscous effects which are observed in geological
and cementitious materials.

A hybrid time-discretization was used to model the non-stationary flow of the the
target material and the projectile-target interaction, i.c. an explicit Euler method
for the projectile equation and a forward (implicit) method for the target bound-
ary value problem. At each time step, a mixed finite-element and finite-volume
strategy was used to solve the "target” boundary value problem. Specifically, the
nonlinear variational inequality for the velocity field was discretized using the fi-
nite clement method while a finite volume method was used for the hyperbolic
mass conservation and damage evolution equations. To solve the velocity problem,
a decomposition-coordination formulation coupled with the augmented lagrangian
method was adopted.

Numerical simulations of penetration into conerete were performed. By conduct-
ing a time step sensitivity study it was shown that the numerical model is robust and
computationally inexpensive. For the constants involved in the model (shear and
volumetric viscosities, cut-off yield limit and exponential weakening parameter for
friction) that cannot be determined from data, a parametric study was performed.
It is shown that using the material model and numerical algorithms developed the
evolution of the density changes around the penetration tunnel, the shape and lo-
cation of the rigid/plastic boundary, of the compaction zones and of the extent of
damage due to air void collapse are described accurately.



2 Task 1: Development of a new class of fluid-like
constitutive models for porous materials

2.1 Introduction

A general framework for modeling the non-linear behavior of cementitious or geolog-
ical materials for applications involving dynamic loading is offered by viscoplasticity
theory. In the clastic/viscoplastic models with non-stationary yield surface the cen-
tral idea is that the loading function depends on the stress state, the plastic history
of the material through the plastic strains, and a scalar parameter which embodies
time dependent alteration of the material properties. A very large number of models
developed for inviscid behavior have been extended into the rate-dependent range
using the overstress concept. However, most of these models have been developed
in support of civil engineering applications and thus are in general representative of
relatively small strains and low strain rate behavior.

In some processes, such as impact or high velocity penetration into cementitious
or geological materials, large deformations, high pressures and high strain rates oc-
cur. That is why in the mechanical and numerical modeling, an culerian description
and a fluid-type constitutive law seems to be more suitable. Fluid-type constitu-
tive equations have been used to deseribe the high-strain rate behavior of metallic
materials (see for instance Batra, 1987; Batra and Li, 1988). Implicit in these mod-
cls is the hypothesis of incompressibility, hence those models cannot describe the
observed irreversible volumetrie changes observed in geological and cementitious ma-
terials. To account for the effect of compaction on the response of cementitious or
geological materials, an explicit dependence of both the yield limit and the viscosity
coefficients on the current density has to be considered ( e.g. Cazacu et al., 2004).

It is well recognized that depending on their dynamical state, particulate ma-
terials may display both solid and fluid like behavior. Since at low deformation
rates the behavior is mainly dictated by frictional interparticle contact and sliding
of the particles over each other, a large body of literature exists in which particulate
systems are modeled using a solid mechanics approach. These models are gener-
ally developed within the framework of plasticity theory. Again, in order to model
short-term time effects on the quasi-static deformation of such systems, extensions
of the inviscid models using Perzyna’s approach (Perzyna,1966) have been proposed.
However, most of these models are applicable only for relatively small strains and
low strain rates. On the other hand, rapid unfluidized flows such as chute flows
and avalanches in which particles interact by short collisions and cascade over cach
other, are generally modeled based on analogy to gas dynamics (e.g. Jenkins and
Askari, 1991; Campbell and Brennen, 1985).

Non-linear viscous compressible equations have been also used for prediction of
chute flows as well as for describing slowly-moving natural slopes which generally
have a displacement history of few millimeters per year followed by periods ol ac-
celeration degencrating into catastrophic events (e.g. Vulliet, 2000). A combination



of the two approaches was also proposed (e.g. Savage, 1979; Goodman and Cowin
(1971). For example, the premise of the model proposed by Goodman and Cowin
(1971) is that at rest the granular material obeys a Coulomb yield condition. Once
the flow develops the state of stress is a function of the rate of deformation and the
change in volume distribution, with the dissipative part of the stress (i.c. the part of
stress that depends on the deformation rate) being that of a viscous fluid.Starting
from the non-linear viscous model of Savage(1979), recently Elaskar and Godoy
(1998) have proposed a non-linear compressible viscous model of granular flow with
second-order effects.

Experimental evidence indicates that for a wide range of porous and particulate
materials flow develops only if a certain threshold that depends on the stress level
and the density or the solids volume fraction is exceeded. At difference with a
classical fluid model, in the absence of motion such materials can sustain a shear
stress. Generally, in order to describe the behavior of such materials, it is necessary
to formulate a flow activation condition or yield condition that describes the state
of stress in the material at the onset of the deformation process and to describe the
state of stress in the material, once the flow/deformation develops. Moreover, the
clastic effects can be neglected hypothesis which is usually made when describing
the large deformation behavior of particulate materials or cementitious materials.

The main objective of this work is to provide procedures for constructing com-
pressible viscoplastic fluid-type constitutive models compatible with a given flow
initiation criterion. Two methods will be considered: Perzyna's viscoplastic regu-
larization, and a Maxwell type stress superposition method. Examples of consti-
tutive equations obtained from classical yield functions using both procedures are
presented. Illustrations of the response of these models for uniaxial compression
conditions as well as comparisons between these various models are provided. Fur-
thermore, we show that irrespective of the method used, for certain yield conditions
the resulting mechanical model is physically unacceptable. That means that not
from all yield conditions can a fluid-type model be deduced. Extensions of these
models that include coupling between damage, plastic and viscous effects are pro-
posed. Some results of numerical modeling of penetration into concrete using a
compressible rigid-viscoplastic model are presented. Finally, extensions of fluid-
type models that include coupling between damage, plastic and viscous effects are
proposed.

2.2 Rigid viscoplastic fluids

Let us begin by describing what we mean by a rigid viscoplastic fluid. In contrast
with a classical fluid, which cannot sustain a shear stress, we suppose that at rest
the Cauchy stress tensor & must belong to an admissible convex set K of R3*?, the
space of second order symmetric tensors over the set of real numbers R. Conversely,
if the stress is in K then the rate of deformation tensor D = D(v) = (Vv + V7 v)/2
(v denotes the culerian velocity field) vanishes. If the stress tensor is not in K then



there is flow, the rate of deformation tensor D being subject to certain kinematic
constraints, i.c. D € C, and the stress tensor is a function of D

o= f(D(v)) if|D(v)| #0, 1)
ce K if |D(v)| =0,

It should be noted that at difference with a classical fluid constitutive equation,
for a rigid viscoplastic material the function f is not defined and cannot be prolonged
by continuity in D = 0. To ensure continuous transition between flow and no-flow
states, it is necessary to impose that only the limit points of f(D) when D — 0 are

in K, iec.
if D — 0 with D € C and f(D) — o then o € K. (2)

The condition (2) implies that we neglect the clastic properties of the material. Such
a hypothesis is valid in the high pressure regime in which elastic strains are much
smaller than inelastic strains. Also, what we usually call the "static pressure” ( i.c.
the pressure that the material may sustain for zero volume deformation rate) is not
directly present in the model. In order to capture the effect of the porosity on the
behavior of geological materials ( e.g. pore closure, pore collapse), the convex set. A
and f are considered to be functions of h, an internal state variable related to the
actual irreversible volume change. Since elastic effects are neglected, dh = div(v)dt
and based on the continuity equation

j—f - % +v-Vp = —pdiv(v) (3)
where p is the actual density, it follows that din(p) =dh. Thus, the actual density
can be considered as internal variable (see the last section for other choices of the
internal state variable h). In the following, the convex K = K(p) will be defined
through a continuous scalar function F = F(o,p) that describes the flow/no flow
condition, i.c.

K(p) = {o e RY?; F(o,p) < 0}.

From classic representation theorems for isotropic tensor functions, it follows
that there exist three scalar functions «, 3,4 which depend on D through its three
invariants such that

f(D.p) = a(D,p)I + 3(D,p)D' +~(D,p)D?,

where I is the second-order identity tensor, while A’ denotes the deviator of any
symmetric second-order tensor A, i.e. A" = A —tr(A)/3I, and ‘tr* stands for the
trace operator.

In the following, we will neglect sccond order effects, i.c. impose v = 0 and
consider that the constitutive functions do not depend on the third invariant of the



rate of deformation tensor. Henceforth, our discussion will be limited to a subclass
of viscoplastic fluids characterized by:

o = a(D(v),p)I +B(D(v),p)D'(v)  if |[D(v)| #0,

F(o,p) <0 it D) =0, M

D(v) e C, {

where C C RY*® represents a kinematic constraint.

The above constitutive equation completely describes a rigid viscoplastic fluid
through only four elements : a (scalar) yield function F', a set C of admissible strain
rates and two scalar functions a and 3. As expected, these four elements are not
independent. In order to define a consistent rigid viscoplastic model compatibility
conditions ought to be imposed.

The first two compatibility conditions concern the flow regime. Thus, if there
is flow the associated stress o has to be outside the convex K defined through the
yield function F. In this case (i.c. in the viscoplastic regime where D # () we have
to impose that

F(a(D,p)I + 3(D,p)D',p) >0, foral DeC\DO0. (5)

This assumption is natural since the clastic effects are neglected (i.c. a rigid subdo-
main is included in the constitutive domain).

The second compatibility condition seems also to be natural. Since we model a
fluid-type behavior, we suppose that o is continuous with respect to D, i.c.

D — a(D,p), D — 3(D,p) are continuous on C \ 0. (6)

That means that small variations in the rate of deformation D # 0 will give small
variations in the stress field. Let us stress again that for a rigid-viscoplastic fluid
this property is not valid in the neighborhood of D = 0.

The third condition deals with the ”continuity” of the transition between flow
and no flow. More precisely, the stress associated to a fluid in motion which tends
to stop flowing has to approach the yield surface (i.e. the boundary of K). For the
particular form of the constitutive equation (65), the condition (2) becomes

Fla(D,p)I + 3(D,p)D',p) — 0, for D — 0with DeC\O0. (7)

The fourth and last compatibility condition yields from thermodynamic argu-
ments. It states that the dissipated power during viscoplastic flow is positive
o:D>0,ie

a(D, p)tr(D) + B(D, p)|D’'|* > 0 for all D. (8)

Our main goal is to provide procedures for determining the expressions of the
constitutive functions F, a, and A such that the model (65) is consistent (i.e. the
compatibility conditions (5-8) are satisfied). Specifically, we will use two methods.

7



The first one is Perzyna’s visco- plastic regularization approach while the second
one is based on a Maxwell type superposition of a rigid plastic material on a com-
pressible viscous fluid. We illustrate the proposed approach by providing examples
of constitutive equations obtained starting from classic yield functions by making
use of both procedures. In general, even if we start from the same yield condition,
the models obtained using these two methods are different.

Furthermore, we show that starting from certain classical yield functions, we
can construct consistent fluid-type models, while for other classical yield functions,
irrespective of the procedure followed, the constitutive functions o and 3 cannot be
determined or the resulting kinematic constraints are physically unacceptable.

We shall suppose in the following that o, 3 depend on D through its two first
invariants

d=tr(D), e=|D|, (9)

ie. @ = al(d,e,p), 3 = B(d, e, p), while the flow-no flow function F(eo,p) depends
on o through the invariants

o) i

ie. F = F(p,q,p). From (65) follows that for D # 0:

3
q= J;ﬁ(d. e,ple, p=alde,p). (11)

2.3 Perzyna-type fluids

A general procedure for extending any inviscid elastic/ plastic model such as to
account for rate effects was proposed by Perzyna. According to Perzyna's theory
(1966), viscous plastic flow follows a time-dependent flow rule and occurs only if the
stress exceeds the yield limit.

Let ¢ be a scalar function such that ¢(z) = 0 for < 0 while for x > 0, we
have ¢(z) > 0 and ¢ is monotonically increasing. Denoting by n > 0 the viscosity
coefficient, we consider the following representation of the rate of deformation

1 :

D = 5 50(F(@.p)) [A(e,p)I + B(a.p)a’ + C(a,p)o’], (12)
where F is the yield function and A, B and C are scalar functions which depend
on the stress invariants and on the density p which plays the role of hardening
parameter (sce last section for a discussion concerning other choices for the internal
variables).

An important class of materials can be derived by assuming the existence of a
viscoplastic potential, i.e. the existence of a function G(e, p) such that
JG(o.p)

Alo.p)I + B(o.p)o’ + C(e,p)o’ = — (13)



Generally, it is also assumed that flow 'is associated, i.e. that G coincides with
the yield function F. However, for granular or porous materials, the experimental
evidence suggests that the hypothesis of flow normality does not apply, and the more
general representation (12) of the rate of deformation ought to be used.

We seck to obtain a model of type (65) from (12), i.e. to deduce explicit ex-
pressions for the constitutive functions a and 3 as well as the kinematic restrictions
resulting from enforcing the compatibility conditions (5) to (8). Hence, in (12) we
neglect the influence of the third stress invariant and take C' = 0 and further assume
that the constitutive functions A and B as well as the viscosity coefficient 7 depend
on the actual density, i.c.

1
B F s Uy A (LY B vy ! .
2”(maﬁ( (p.q.p)) [A(p.q, ) + B(p,q,p)o’] (14)

Using 15and(14), we obtain for F(p,q, p) > 0 the following nonlinear system in
the unknowns p and g

S H(F(p,0, ) Alpya) = d

1 n(;) .
m\/;ﬂf’(p,q.p))ql?(p'q) = e.

Let us denote by Sg(-,-,p) : R x Ry — R x Ry, the function defined as (e,d) =
Sr(p,q,p) through (15). Let Js, be the jacobian matrix of Sg. Its determinant is

equal to 3/2/3J/(16n(p)?) with J given by

J = (¢ A0, F+¢9,A)(q¢' BO,F +qpd, B+ 6 B) — (¢' A, F + 99, A)(q¢' B8, F +q¢d,B)

(16)

For a particular choice of the constitutive functions A, B and F, the set of
admissible rate of deformation D is given by the image of the operator Sg, i.c.

C = {D € R¥*;3(p, q) with F(p,q,p) > 0, such that (d,e) = Sr(p.q,p)}, (17)

while the invertibility of Sy depends on the rank of Js, (given by J) and dim(C).
If S is invertible, i.e. for all (d,e) € C we can solve the system (15) and there
exist P and @ such that

p= P(dre! p) (18)
q= Q(d,e,p)'
then
aldie,p) = Pldiens), Bldiers) = yf 2280, (19)

Next, these expressions for @ and 3 are substituted in the compatibility restrictions

(5)-(8).



If the compatibility conditions are not satisfied, it means that it is not possible
to construct a fluid-type model (65) using the regularization method of Perzyna (i.c.
from the model (14)).

It is to be noted that if the hypothesis of associated flow rule applies and ¢(x) =
([x]+/Fo)", where [z]; = (|z| +x)/2 and F, and n are constants, i.c.

FyOF 3F, OF
Alp.q.p) = ?-a—p—(p q.p), B(p.q.p)= 2 0q =D )
then (15) is:
F? 0H 3F2 [20H
= - : for F(p,q.p) = 0, 20
27(0) ap( v 4, p) ) V39 —(p.q,p), (pg,p (20)

with H(p,q,p) = (F(p,q,p)/Fo)"*'/(n + 1). In this case the jacobian (16) has a
simple form

O*H O*H 0*H
J(p,q,0) = 2K o (P, 4.0) 55 o7 (P.q,p) — (apaq(n q.p)*]. for F(p,q.p) > 0.

(21)

It is worth noting that if F' is affine in p and g (c.g. Mises or Drucker-Prager yield
functions) then .J is always vanishing and dim(C) < 6, i.c. the flow has to satisfy
certain kinematic restrictions. However, the resulting kinematic constraints have
a clear physical meaning only for certain yield conditions. In the next subsection,
we show that in the case of the von Mises yield condition, the kinematic constraint
that ought to be fulfilled is the incompressibility condition. The use of a Drucker-
Prager yicld condition would lead to kinematic restrictions that do not have physical
meaning (see section 5 for a detailed discussion).

2.3.1 Mises fluid

Consider the Mises yield condition F(p,q) = \/gq — Kk, where & is the flow stress of

the material in simple tension or compression. For associated flow, the system (20)
reduces to

0= d

-q K)/Fol" =
The jacobian J is zero (see (21)) and the image of the operator Sg is:

= {D € R}**; trace(D) = 0}, (22)

10



i.e. the flow ought to be isochoric. Since dim(C) = 5, from (20), we cannot determine
«. In other words, p cannot be determined from a knowledge of the deformation
because of the restriction of material incompressibility. From (20) follows that ¢ =

Qe.d) = /3l + Fo(2n(p)e/Fy) /"] and (65) becomes:

B & + Fo(2n(p)| D(v)|/Fy)'/™
: o=auol
div(v) = 0, | D(v)|
lo’| < & if |[D(v)| =0,

(23)

with a undetermined. Equation (23) can also be viewed as a constitutive equation for
an incompressible viscous fluid with viscosity equal to (k+Fy(2n(p)|D(v)|/Fo)'/") /| D (v)|.

For n = 1 and & constant, (23) reduces to the three-dimensional form of the

incompressible Bingham model due to Hohenemser and Prager (see for example,
Prager and Hodge (1968)):

D(v)  if |[D(v)| #0,

diulu)= i, o=al+ i)+ o)D) EIDEI£0,

o'l < K if |D(v)| =0,

The Bingham constitutive equation (24) with flow stress x constant is the most
commonly used was used extensively to model the rate and time effects on the
deformation of metallic materials ( e.g. Batra and Lin, 1987). Bingham modecl
is also the most commonly used model to describe fluids with yield stress such as
slurries ( e.g. aluminum slurries) and waxy crude oils (see for example, Alexandrou
et al., 2003; Vinay et al., 2005).

However, a realistic description of the behavior of geological materials cannot
neglect the dependence of yielding and subsequent flow on density. To account for
this influence, Cristescu et al (2002) have used for the description of slow motion of
natural slopes a Bingham model (24) with yield limit dependent on density & = &(p).
The main limitation of such a model is that the deformation is isochoric, which is a
direct consequence of the form of the yield condition adopted.

2.3.2 Mises fluid, revisited

Implicit in the models of type (23) is the assumption of incompressibility. Also, such
models cannot account for changes in density during loading. However, experimental
studies of the dynamic behavior of cementitious materials have indicated a strong
dependence of yiclding and subsequent flow on density (see for instance experimental
data on cementitious materials reported in Malvern et al., 1990; Ross et al.,1996;
Schmidt et al., 2001 as well as Hugoniot data reported by Osborn, 1981).

To describe the high-pressure and high strain rate behavior of such materials,
we propose an extension of the Bingham model. We assume that yielding under
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deviatoric conditions is of Von Mises type with yield limit & depending on the
current density, i.c. Kk = k(p). For hydrostatic conditions, the response is described
by a pressure-density relationship of the form: p = p.(p). The specific expression of
the function p.(p) is obtained from quasi-static and dynamic laboratory data as well
as Hugoniot data. Since during unloading the reversible decrease of volume is very
small, it can be neglected and therefore the unloading process is rigid (the density
acquired at the end of the loading process is preserved during unloading). Thus, in
order to capture both the effects of compaction on shear low and changes in density
during hydrostatic loading, we consider a yield condition of the form:

P4, p) \/[ -q—h P)I5 + [p+ pelp)]2. (25)

where [z]4 = (|z| + z)/2,[z]- = (|z] = 2)/2. Next, the model is constructed using
the procedure outlined in section 3.1. Indeed, the system (20) becomes

—%(M{F(p.q.p)/&)"-‘[p+pc(p)1_ = @

27}1 j(E(@.a.0)/Fo "’[\/7(;-“ = e

Note that it can be inverted for d < 0 or
C ={D; trace(D) < 0}.

These kinematic restrictions express that the flow is compressible and the unloading
is rigid. Furthermore,

Fo(2n(p)Vd? + €2/ Fy)'/™
p=P(d,e,p) = —pe(p) + d- 2202 ’—a'z+e2/ 1

0 d? +¢e2/Fs i
e \[[n ”””\/—‘;L/F)

Further substitution into (65) leads to the following constitutive equation of a com-
pressible rigid-viscoplastic fluid:

\/—-' 1;"11 )
o [F(, 2n(p)V/ div + | D'|2/ Fp) (p) D if |D'| £0,

ford < 0

], fore#0.

Vdiv(v)? + |D'|? ID'| (26)
lo'| < k(p) if LB' =0,
Fo(2n(p)\/div(v)? + |D'|*/ F, )'/" Pe o
) = —n.(p) + liv(v if div(v) <0,
dlU('v) _<_ 0, P P (!) dw(‘v) 1 |DI' } ( )
P> —pelp) if div(v) =0.
(27)
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Figure 1: The dependence of p. (left) and of the yield limit & (right) with respect
to the volumetric strain g = p/po — 1 for concrete (data after [30]).

This model is an extension of Bingham type model (23) that captures the experi-
mentally observed density changes under severe loadings. If we set n = 1, then we
obtain:

e [2n<p) + @] D' if D] £0,

|| (28)
lo’| < k(p) if |D'| =0,
{ trace(a)/3 = —p.(p) + 2n(p)div(v) if div(v) <0
div(v) <0, (29)
trace(o)/3 > —p.(p) if div(v) = 0.

In what follows, the constitutive equation (28) will be referred to as the "revisited
Bingham fluid”.

In many solid-type models, p. and k are expressed as functions of the compaction
level (or volumetric strain) g = p/po—1 instead of the density p (here pg is the density
prior to loading). As an example, in Figure 1 is plotted a typical dependence of p.
and of the yield limit x versus the compaction level u for a concrete material(data
and explicit expressions of these functions reported by Holmquist et al., 1993). The
explicit expressions of these functions are given in section 5. Furthermore, the
revisited Bingham fluid model can be recast in the form that is generally used in
hydrocode calculations, by eliminating p between & = x(u) and p. = p.(u). This
type of dependence is also used in soil mechanics to eliminate the density as an
unknown function. For the same concrete material, the obtained relation between
the shear flow stress and pressure is represented in Figure 2.

13
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Figure 2: The dependence of of the yield limit k with respect to the pressure p for
undamaged concrete (data after Holmquist et al., 1993).

2.3.3 Modified Cam-Clay fluid of Perzyna’s type

As already mentioned, there is a critical need for developing constitutive models
that could capture the complex rheological behavior of slurries and some oils. The
fundamental question which arises concerns the flow pattern, particularly the shape
and distribution of yielded /unyielded regions.

The Modified Cam-Clay yield function developed by Roscoe and Burland, 1968
captures very well commonly observed properties of soils such as compaction/dilatancy
behavior and the tendency to eventually reach a state in which the volume becomes
constant. It’s adequacy has been tested against numerous experiments, the consen-
sus being that is most suitable for lightly overconsolidated particulate materials (for
a review on the subject, see de Borst and Groen, 2000).

In view of applications to the description of the flow of slurries, we further
examine whether a compressible viscoplastic fluid model compatible to a Modified
Cam-Clay yield condition can be constructed using the viscoplastic regularization
method.

The Modified Cam-clay yield condition is

F(p,qa.p) = VE&/M?+ (p+ pc(p)? — pelp),

where M is a constant. If we assume associated flow, the system (20) becomes

Fo . P+ p(p) -

2n(p) (F(p.g.0)/Fo) VEIMZ+ (p+p(p)? 2
L ﬁF )" oM = e
iV 2 B B TR ©
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In contrast to the above example (Mises yield condition), the system can be solved
for all (d,e) € Rx R, i.c. there are no kinematic restrictions C = Rg“. After some
algebra, we obtain:

pe(p) + Fo(2n(p) /a2 + 2M2e2 /3] Fy)'/"

V@ + 2M?e2]3

e = \sz pe(0) + Fol2n(p) /BT I3/ Fy) I
o M &+ T3

Substitution in (65) leads to the following constitutive equation:

P(d,e,p) = —pe(p) + d°<

-

pe(p) + Fo(2n(p \/dz'v(vV  2M2 D' (0)[2/3/ Fo)\/m
Vdiv(v)? + 2M?| D'(v) /3

1 M2 p.(p) + Fo(2n(p \/dw (v)? + 2M?|D’'(v)[?/3/ Fy)'/"

3 Vdiv(v)? + 2M?|D’(v)|?/3

I+

= [—pc(p) + div(v)

.

(30)
The constitutive equation (30) describes a compressible fluid with flow behavior
dependent on the first stress invariants and strain rate. If we set n = 1, we obtain
the following simplified model

(31)

2.4 Superposition method

In this section, we introduce a different procedure for determination of the explicit
expressions of the functions a(d, e, p) and 3(d, e, p) involved in the general constitu-
tive equation (65). The main assumption is that the state of stress in the material,
o, can be represented as the sum of a viscous contribution o and a contribution
S, related to plasticity effects, i.c.:

o=0c"+8. (32)
The viscous part of the stress is taken as for a classical viscous fluid,

"= f¥(D,p). (33)

15

F(p,q,p) < 0if |D(v)|

e= |:—Pc(,0] ) ( \/dw +pr2(132|ﬂ’ )|2/3)] =%
] 2M? pe(r) iy B
3 [2"(") Vdiv(v)? + 2M?[D'(v Wa] sl
! F(p,q,p) < 0if |D(v)| = 0.

D'(v) if |D(v)| #0,
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It should be noted that at difference with the stress-rate of deformation relation for
a rigid viscoplastic fluid, the constitutive function f" is continuous and vanishes for
D =0, ic.

£(D,p) = 0=£(0,p), for D—0, (34)

For the sake of simplicity we shall consider only first order fluids
£/(D,p) = A(D, p)tr(D)I + 20(D, p) D, (35)

where 1 and A are viscosity coefficients which may depend on d,e and p, i.e. A =
Ald,e,p),n = nld, e, p). For A and 7 independent of d and e, i.e. X = A(p),n = n(p),
(33) reduces to the compressible Navier-Stokes model

£Y(D, p) = Xp)dI + 2n(p)D, (36)

but other choices can also be considered in (35). For example, for n = B(p) arg sinh(Ae) /e,
with A, B > 0, we recover the Prandtl-Eyring type model and for 1 = p(p)e®, with
a=1/m—1 > —1, we obtain the Norton model. Models of isotropic fluids have
been used to describe the slow motions of soils and glaciers on natural slopes (sce
Vulliet, 2000 for an overview on the subject).

We assume that there is flow only if a yield condition expressed in terms of §
and depending on p is satisfied (for a discussion concerning other choices of the
hardening or damage parameters sce last section). We further neglect second order
effects in S as well the influence of the third invariant of §. Thus, the yield condition
is expressed as F (s, 7, p) = 0, where s = tr(S)/3 and r = 1/3/2|8’| are the first two

invariants of §. The deformation rate D is then given by
D = A[M(s,r,p)I + N(s,7,p)S' ], (37)

with F(s,r,p) <0, A >0and AF(s,r,p) =0, while M and N are scalar functions
of their arguments. From (37) follows that for D # 0, we obtain the following
nonlinear system in the unknowns s,r and A

3A M(s,r,p)= d
2 =
\/; ArN(s,7,p) = e (38)
F(s,v;p)= 0.

Let us denote by Rp(+,+,+,p) : R x Ry x Ry — R x R, the function defined by
(38), i.e. (e,d) = Rp(s,r,A,p). The set of admissible rates of deformation D is
given by the image of the operator Rp, i.e.

C ={D € R¥* 3(s,r,A) with F(s,7,p) =0, such that (d,e) = Rx(s,r,A, p)}.
(39)
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The invertibility of Ry depends on the rank of the jacobian matrix of Ry and
dim(C). If (38) is invertible, i.c. for all (d,e) € C we can solve the system (38) and
there exist S, R and A such that

s= S(d,ep)
r= R(d,e,p) (40)
A= A(d,e,p),

by combining (40), (32) and (35, we can obtain the explicit expressions for the
constitutive functions a and /3 of (65):

ald, e, p) = (\(d. e, p) + w)d + S(d,e,p),

B(d.e,p) = 2n(d, e, p) + \/.EM

e

As in the case when we make use of the Perzyna viscoplastic regularization
method, we substitute the expressions (41) in the compatibility conditions (5)-(8).
If one of these conditions is violated, we deduce that we cannot construct a fluid-type
model (65) using the superposition method (32)-(37).

In the following, we construct fluid models using the superposition approach and
compare their response with the viscoplastic fluid models presented in section 3.
In some examples we shall assume an associated flow rule, i.c. that there exists a
function F(s,r, p) such that

IF (S, p)
as
In such cases, the scalar scalar functions M, N are expressed as:

10F
3 Os

M(S,p)I + N(S,p)S" =
3 OF
M(s,r,p) = (s,7,p), N(s,r,p)= EE(S,T, p). (42)

2.4.1 Bingham Fluid
We first consider the superposition between a viscous fluid and a plastic solid obeying

2
Mises yield condition, i.e. F(s,7,p) = 7 J;— k(p). If we assume associated flow

(42), then (38) becomes
3
d=0, e=A r= \/;n(p).

This means that the flow is incompressible, i.e. the kinematic restriction coincides
with (22). Morcover, s and a are undetermined while R(d,e,p) = /3/2x(p).
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If we choose the compressible Navier-Stokes model (36) for the viscous part then

k

3(d, e, p) = 2n+ —, and we obtain the constitutive relation (24) of a Bingham fluid
{ivn

with yield limit dependent on density.

Let us note that if the flow-no flow condition is Von Mises yield function, using
either method we obtain the classic Bingham fluid model. This is not the case for
other yield conditions.

2.4.2 Bingham fluid, revisited

Next, we consider the superposition between a viscous fluid and a plastic solid that
obeys the yield condition

F(s,r,p) =[V2/3r—k(p)l++ s+ p(p))-,

where [z]y = (|z| + 2)/2,[z]- = (|z| — z)/2, and associated flow. The system (38)
becomes
d=0,e=A il s>—pp),r=V3/2k(p),

d=—-A,e=0 if s=—pp), r< 3/2k(p).

If s = —p.(p) and r = /3/2k(p), we have to consider the normal cone to the
plasticity surface and M and N are set valued functions, i.c.

d<0,e>0, ifs=—pcp), r=v3/2k(p).

The kinematic restriction is C = {D ; tr(D) < 0} , which implies that the flow
is compressible and that unloading is rigid. Furthermore, for |[D| # 0 the system
(38)can be inverted and we obtain:

S(d,e,p) = —p.lp), R(d,e,p) < @R(p), A(d,e,p) =—d ifd<0,e=0,

S(d,e,p) > —p.p), R(d,e,p) = @N(p}. A(d,e,p) =e ifd=0,e>0.

Substituting into (41) and choosing the compressible Navier-Stokes model (36) for
the viscous part, we obtain the following constitutive equation:

o' = [2n(,))+ %ﬁﬂ D' if|D|#0
lo’| < k(p) if [D'| =0,

(43)

trace(a)/3 = —pc(p) + [Mp) + 2n(p)/3])div(v) il div(v) <0

div(v) <0, {
trace(e)/3 > —p.(p) if div(v) = 0.

(44)
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Let us note that this model is different from the constitutive equation (28)-(29)
obtained using Perzyna’s approach. The difference stands in the viscous terms of
the spherical part of the stress.

Under hydrostatic conditions, most cementitious materials show a highly non-
linear pressure-volumetric strain response, the reversible decrease in volume being
very small. The experimental observations also suggest that in the high-pressure
regime, a very large increase in pressure is necessary in order to produce even a very
small change in density. Thus, the hypothesis of a "locking medium” can be made,
i.c. the density cannot exceed a critical value. This critical density p*, called locking
density, corresponds to a state in the material when all the pores and micro-cracks
are closed. The pressure level at which this density is first reached, called locking
pressure, is denoted by p* = p.(p*). Hence, for such materials a pressure-density
relationship of the following form could be considered:

{ p =plp), if p<px
p > p'a if P = ,0‘-
2.4.3 Superposed Cam-Clay fluid

Next, we consider the superposition between a viscous fluid and a plastic solid that
obeys the Modified Cam-clay yield condition F(s,r,p) = \/r2/M? + (s + p.(p))? —
p-(p) and an associated flow rule. The system (38) becomes

2

s . [ S L. o o
=4 plp) & \[2 Vool M (s +pe(p)® = PZ(p)

This algebraic system can be solved for all (d,e) € R x R,, (i.c. there are no
kinematic conditions C = RY®) and after some algebra we get:

pc(ﬂ) \/5 2 pt‘(p]
35k 8) 2= -=pilln) i@ o B =] :
(dep) = —plo) +d Ry e =3 e o rars

Finally, if the compressible Navier-Stokes model (36) for the viscous part is chosen,
we deduce the constitutive equation

o= l—Pc(P) + div(v) (,\(p) + 27?:29) ¥ \/d??v(v)z +p;(32FD'(”)|2/3)] "

(

9 g 2 Pr_(P) [ if |D
[27?(0) +3 M T 2M2|D'(v)|2/3] D'(v) |D(v)| # 0,
L F(p.g.p) <0 if |[D(v)| = 0.
(46)

Let us note that the above constitutive equation for the Cam-clay fluid, obtained
using the superposition method, is slightly different from (31) which was constructed
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using Perzyna’s approach and a static vield condition of the same functional form.
In both models, the part of the stress which is rate independent is the same, and
only the viscous contribution is different.

2.4.4 CAP fluid

Cap models are among the most widely used models for the description of the
mechanical behavior of soils. We examine herein whether a cap yield condition can
be used to construct a viscoplastic fluid-type model using the superposition method.
Thus, we superpose a viscous fluid on a plastic solid satisfying a cap plasticity
vield condition with a modified Drucker-Prager envelope (sece Katona,1984), i.c.
we consider that the yield surface is divided into three regions along the s-axis (s
being the first invariant of the plastic component of the stress tensor): the failure
surface region 3s € (—L(p),T); the cap surface region 3s € (=X (p), —L(p)) and
the tension cut-off region (3s > T. We consider the failure surface to be of a
modified Drucker-Prager form (sce Katona, 1984), i.c. r/v3 + Cexp(3Bs) — A,
where A and C are constants (A > C'). It constitutes a boundary along which the
cap surface can move (harden or soften). The cap surface is a hardening surface
in the shape of an ellipse when plotted in the space (r,—s) (sce Figure 3. It is
defined as f_t: [rQ i (pJ—L(n)}:a—(&—L(P”’ . The variable cap parameters L and X
are positions on the s axis which locate the current cap surface, while the parameter
R defines the ratio of the principal ellipse radii. The tension-cuttoff criterion is
triggered when s > 7', whereas T' is a material constant representing the threshold
of hydrostatic tensile stress at which abrupt stress release occurs due to tension
damage. Thus, we consider

3s =T, if3s>T
F(s,r,p) = r/\/§ + Cexp(3Bs) — A, iff — L(p)<3s €T
Yoz 2 _ = 2
1 [,%_ (X(p) ~ L(p))* = (35 = L(p) } el
Jo R

(47)
and an associated flow rule (see a depiction of the yield surface on Figure 3 (left).
Then the system (38) becomes

d=3Ne=0 ifs=T/3,r € [0,rr),
d = 3ABC exp(3Bs), e = A/V2 if 3s € (=L(p), T),r = V3(A + C exp(3Bs)
d=78A@3s— L(p)), ¢ = \/.-EA}‘;:«- i 35 € (=X (p), ~Llp)), Fls,r;0) =0
(48)
if the stress point (s,r) is on the smooth part of the plastic surface F(s,r, p) = 0.
In the two singular corner regions 3s = T',r = Ry and 3s = —L(p),r = Ry(p) (sce
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figure 3 left) the gradient of F is set valued and we have

BABCexp(BT) <d<3A, 0<e<A/V2 if 3s = T,r = Ry,
0 < d < 3ABCexp(~BL(p)), A/VE< e <\[EALRu(p),  if3s = —L(p),r = Ru(p)
(49)

The above algebraic system can be solved for all (d,e) € R x Ry, (i.e. there are
no kinematic conditions C = R%*?) and after some algebra, we get:

(S(d,e,p) =T/3, R(d,e,p)= if d/e > 3v/2BC exp(BT),

S(d, e, p) = z5[In(d/e) — In 3f 2BC),

R(d,e, p) = V3[A - 575zd/e] if 3v/2BC exp(BT) > d/e > 3v/2BC exp(—BL(p)),
! S(d,e,p) = —L(p)/3, R(d,e,p) = Ri(p), if 3v2BC exp(—BL(p)) > dfe > -\/Eg;%ﬁe(pg

) =
S(d,e,p) = L(p)/3 + R{,‘/_ (X(p)~L(p))d

27 c2/3+R?rF/54
X (p)=L(p))e -_\/Ew:,)>
| Bldvein)= f7c2/3+R§d’2/54 & SRR = /¢

Finally, we arrive at the following cap fluid type model

(50)

f [dw (/\(ﬂ) i QHT('O)) + S(div(v), |D'(U)|,p)] I+
{ R(dw(v} |D'(v)],0) | . 4 (BE)
[ 3 D'(v)] ] D'(v) if | D(v)| # 0,
| F(p.q.p) <0 if |D(v)| = 0,

if the compressible Navier-Stokes model (36) for the viscous part is chosen.

2.5 It does not always work

As mentioned previously, it is not always possible to obtain consistent viscoplastic
fluid formulations starting from any two-invariant yield functions. A first example
is given below.

Let F(p,q.p) = q+ptan(B)—ko(p), i.c. Drucker-Prager yield condition with con-
stant angle of friction 4 and cohesion xy dependent on the density. We take ¢(x) =
([z]4/Fo)™ and further assume non-associated flow, i.e. A(p,q,p) = Fod,G(p,q)/3
and B(p,q) = 3F,3,G(p,q)/(2q). It follows that

_i n% e—\/§ Fy aG {
d_zq(p}([F(p*q*P}h/ﬂﬂ ap(p,q), - 22n(p}(IF(p,q,p)I +/Fo)" % —(p, 9)-

If the potential is chosen of the form G(p,q) = ¢+ ptan(v), where the constant v is
the dilation angle, then from the above equation, we deduce that d = 1/2/3 tan()e.
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Figure 3: Schematic representation. Left: the cap plasticity condition with a mod-
ified Drucker-Prager form used for the cap fluid (51). Right: the cap plasticity
condition with a standard Drucker-Prager surface which violates the continuity con-
dition (6). The shaded arcas are "singular corner regions”.

This means that the set of admissible deformation rates is:

e 2
C={DeRY?; tr(D) = \/;Lan(w)[D’”. (52)
This kinematic constraint is rather artificial and severely limits the flow. Morcover,
reinforcing such a constraint would pose insurmountable numerical problems.

If we use for the flow potential another well-accepted expression (e.g. sce [2])
G(p,q) = V/q* + I3 + ptan(y’), where [y and ¥ are constants, we obtain:

d=+/2/3tan(¢)ev/1 + (lo/q)?,
which implies the following kinematic admissible set
3x3 2 ' .
C={DeRy”; tr(D) = \/;mn(gﬁ']ID |}. (53)

As in the previous case, the resulting kinematic constraints restrict drastically the
flow and are very difficult to justify or handle numerically.

Concerning the Cap fluid model (51), it is worth noting that even though the
plasticity condition is specified in terms of three functions, the inverse functions
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S and R are continuous in R x Ry \ {(0,0)}. This is a direct consequence of the
choice of an exponential dependence on the first invariant instead of the standard
Drucker-Prager expression of the envelope. Next, we show that if the standard
Drucker-Prager envelope is used then the response functions R, S are discontinuous,
which is physically unacceptable.

Indeed, if in the cap plasticity condition (47), with associated flow rule, we take
(see [20]) the standard Drucker-Prager expression for the envelope, i.c.:

F(s,r,p)=71/V3+3Bs— A if —L(p)<3s<T. (54)

(see also Figure 3 (right) then, after some algebra,we find that there are no kinematic
conditions, C = R:’S""J, and we obtain the following expressions of S and R instead
of (50):

( S(d,e,p) = T/3, R(d,e,p) = Ry if d/e > 3v/2/B,
S(d,e,p) = ~L(p)/3, R(d,e.p) = R(p) i 3V2/B > d/e > —\[3mts,

. ) s 5 (X()-LeDd
S(d,e, P) = L(p)/?: i RO\/E”W;

_ __(X(p)-L(p))e o \/E 18L(p)
! R(d,e, p) Ror/e?/3+R2d2/54" i 3331’%:‘5 2 de
(55)

Note that the functions § and R have a discontinuity on the line d = 3v/2¢/B of the
d — e plane. From (41) it follows that the constitutive functions a and 3 have the
same discontinuity with respect to D, which violates the compatibility condition

(6).

2.6 Examples of the models’ response

We illustrate the response of the models proposed for uniaxial strain compression
conditions. Suppose that in the reference configuration the material sample occu-
pies the ceylinder Cy = (0, Ly) x w. In the deformed configuration at time ¢, the
material sample occupies C; = (0, L(t)) x w (see Figure 4 top). The deformation
is supposed to be homogeneous z = L(t)X/Ly, y = Y, z = Z and the velocity in
Eulerian coordinates z, v, z is v, = L(t)z/L(t), v, = 0, v, = 0, so the only non-zero
component of the rate of deformation tensor is D,, = L(t)/L(t).

If we denote by py, the density at ¢ = 0, then at any time ¢ > 0, the density p,
the compaction factor (volumetric strain) pu = p/po — 1, and the invariants of D are
given by

L(t) 55 1LY

_[2]L()]
T po, u(t) = TON (t) = E70) =

e(t) = 3L

p(t) =

This loading process corresponds to compression of the sample material in the x
direction (see Figure 4 top).
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Figure 4: The evolution of the compaction factor t — u(t) (left) and of the equivalent
strain rate t — e(t) (right) for the second loading history.

Let us consider the following loading history: the piston which at ¢ = 0 has the
velocity V(0) = 0, uniformly accelerates in the time interval t € [0, 4] to reach a
constant velocity value V, which is kept constant for t € [ty, 4y + T, i.e. V(1) =V
and then uniformly decelerates to rcach a vanishing velocity at t = T + 2t;,. That
means that the velocity of the piston is given by L(t) = —tV/t, for t € [0, ],
L(t) = —V for t € [to,to + T) and L(t) = =V (T + 2ty — t) /to.

To examine the capability of the proposed models to describe high-strain rate
effects, we compare the response of each material for three different velocities:
V/Ly = 10s7',V/Ly = 100s~" and V/Ly = 1000s~'. We choose the constants
to and T" such as to ensure that the final compaction level fifiq = 0.06 reached in
cach experiment is the same (i.e. we take to = 1/240s, T = 1/80s for the first ex-
periment, to = 1/2400s, 7 = 1/800s for the second and t, = 1/24000s, 7" = 1/8000s
for the third one). As an example, the evolution of the volumetric strain t — p(t)
and of the equivalent strain rate t — e(t) for the second loading history, are plotted
in Figure 4. Note that in the Eulerian description the strain rate is not constant on
t € [to,to + T] even if the piston has a constant velocity.

2.6.1 Bingham fluid, revisited

First, we consider the revisited Bingham fluid model (68)-(69). The specific expres-
sions of the constitutive functions & (p) and p.(p), taken from Holmquist et al. (1993),
correspond to a concrete material (see also Figure 1 for plot of these functions). The
function p, is expressed in terms of the volumetric strain u = p/py — 1 as: p.(p) =
Hpcrush/Ut‘.fush if IS ferushs pr(ﬂ) = Peruch +(Au—#cruah)(plodc _pr.-ruch]/(ﬂiurk_ “r?ﬂwh]
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Figure 5: Left: the stress evolution ¢ — (—p(t),q(t)) of the revisited Bingham
model (68)-(69) for three loading histories. Right: a comparison between the stress
evolution t — (—p(t),q(t)) for the two revisited Bingham (BR) models, (28)-(29)
obtained using the Perzyna approach and (68)-(69) obtained using superposition
approach, and for V/Ly=1000/s.
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F(p,q, ptsin) = 0. Left: the very beginning of the stress path. The solid line repre-
sents here the initial plastic surface, i.e. F(p,q,0) = 0.

if nE [;“-crusha .buv] and pc[ﬂ) = Jll:\'l Ui = ﬁ‘lack)/( 1+ #!odx‘) + 1‘,2[(#‘- o ;”-!odc)/(l + Miock )]z +
Ks[(pt — piock)/ (1 + puock)]® if o > pa. The specific values are pou., = 16 MPa,
Plock=800 MPa, piorusn= 0.001, pyoex = 0.1, p, = 0.111 and K,=85000 MPa, K,=-
171000 MPa, K3=208000 MPa. The function x(u) depends on g through p.(u) (sce
Figure 2)

K(1) = 00v/2/3 min{Spaz. A+ B(pe(p)/o0)"} (56)

with gg=48 MPa, S,,.. =7, A =0.79, B =1.60, N = 0.61. The viscosity coeflicients
were supposed to be constants A = 0.002 MPas, = 0.001 MPas.

In Figure 5 (left) is shown the evolution of the stress in the ¢ — p plane for the
three loading rates considered. For the test at (V/Ly=10/s) and (V/Ly=100/s),
the stress curves are very close to the the static curve ¢ = \/ﬁﬁ(p). A larger
difference with respect to the static response is observed in the third experiment
(V/Ly=1000/s).

A comparison between the revisited Bingham (BR) models obtained using the
Perzyna approach (28)-(29) and the superposition method (68)-(69) is presented
in Figure 5 (right) for V//Ly=1000/s. The rate effects as well as the difference in
response between the two models is clearly observed.
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2.6.2 Cam-clay fluid

We apply the Cam-clay fluid (31) obtained using Perzyna approach to a shale (data
after Niandou, 1994). The expression of p. is: pe(st) = po(14u)"/! which corresponds
to an oily shale sample (Tournemire, France). The material constants are: M =
2.6, po = 2 MPa, [=0.02 and the viscosity coefficient is supposed to be constant 7
= 0.01 MPas.

In Figure 6 (right) we have plotted the evolution of the stress in the g—p plane for
the three loading rates. The final plastic surface, i.e. F(p,q, ptfin) = 0 is represented
by a solid line. For the first two loading rates V/Ly = 10/s and V/L, = 100/s,
the response is very close. Some difference in response is observed for an order of
magnitude increase in the loading rate (V/Ly = 1000/s). Figure 6 (left) shows the
beginning of the loading process. In this figure, the solid line represents the initial
plastic surface, i.c. F(p,q,0) = 0. The rate effects on the flow are clearly observed.
Although all the stress curves start from the initial plastic surface, their evolution is
different, the most pronounced difference being between the response corresponding
to the lowest and highest loading rates.

2.7 On the choice of internal parameters

In all the models presented, the assumption was made that the only dissipative
mechanism is plastic flow and the associated internal variable is either the density
p or the porosity/compaction level . Although the choice of the density as hard-
ening paramecter is physically sound and very suitable for an Eulerian description
of large deformation and high strain rate behavior, a more realistic description of
the irrecoverable deformation should also account for coupling between plasticity,
damage and viscous effects. A discussion of other choices for internal variables is
given in this section.

We denote by h € R" the vector of n scalar internal parameters in the Eulerian
description. All the constitutive functions F, a and 3 will depend also on the internal
vector h and the constitutive equation (65) becomes

o = a(D(v),h)I + 3(D(v),h)D'(v) if | D(v)| # 0,

(@,h) <0 if |D(w)| =0, O

D(v) € C, {F

We complete the model (57) by providing the evolution equation for the internal
variable h. We assume that the total (particular) derivative of h is a function of h
and the stretch tensor, i.e.

dh  Oh

E—EE——FU-V!:—H(D.!;). (58)
If H is isotropic with respect to D then it depends on D through its invariants. For
simplicity, we further suppose that H is a function of only the first two invariants
of D,ie. H= H(d,e,h).
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A first choice for the description of hardening parameter is the density p. In
this way, we capture the effect of pore closing/collapse on the response of geo-
logical /cementitious materials. If we set n = 1 and h = p then the evolution
equation for the hardening parameter (66) reduces to the continuity equation (12),
and H = H(d,e,p) = —pd. In many applications, the volumetric (plastic) strain
i = p/po — 1, is used instead of the density. In this case (66) becomes

gy _ 9

dt Ot

and H = H(d,e,pu) = —(p + 1)d.
Other authors (c.g. Cristescu and Hunsche, 1998) use as hardening parameter

the visco-plastic work per unit volume w, i.e. n =1, h = w, where w = o : D.
From (57) we deduce

v -Vu=—(1+ p)d, (59)

d. Ow ;
2 = _u +v-Vw = a(d, e, w)d+ 3(d, e, w)e, (60)
dt ot
with H = H(d,e,w) = a(d, e, w)d + 3(d, e, w)e*.
To capture the combined effect of plasticity and damage, we propose the following
extension of the revisited Bingham model (68)-(29):

7 — | "{(1“"5) ' . 1
a—[2n+ D ]D if |D'| #0 (61)
lo’'| < k(p,d) if |D'| =0,
{ tr(e)/3 = —p.(p) + (A + 2n/3)div(v) if div(v) <0
div(v) <0, (62)
tr(o)/3 > —p.(p) if div(v) =0,

with two internal parameters: the volumetric strain g and a scalar damage parameter
6. The damage parameter is associated to the loss of cohesive strength duce to air
pore collapse. Following Holmquist et al. (1993), we consider that the shear How
stress is of the form

K(pt, 8) = 09/ 2/3 min{S,ar, A(1 = 8) + B(pe(p)/o0) }. (63)

The function p.(u), is plotted in Figure 1 (expression given in section 6.1).
The evolution equation for p is (59) while for the damage parameter we consider
dé  dd e
—=—+4v:-Vi= 3
dt Ot Ap)

(64)

with A(p) = /2/3 max{rg, Di[(p.(u) + T)/00)”2}. Note that these evolution equa-
tions can be written in the form (66) with n = 2, h = (u,8) and H(d,e.h) =

(—(1+ p)d, e/ A(p)).
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Figure 7: Left: the evolution of the internal parameters t — (u(t),4(¢))). Right:
the evolution of the stress t — (—p(t), ¢(t)) during the second experiment (V/Ly =
100/sec) for the model with damage (dashed line) and without damage (solid line).

We further illustrate the response of this model for concrete subject to uniaxial
compression conditions. The law of variation of p.(u) is taken as that reported by
Holmquist et al. (1993), which was given in the previous section (see also Figure 1).
We take rg = 0.01, D, = 0.04, D; = 1. and for the tension cut-off pressure 7' (see 51,
we take the value reported in Holmquist et al. (1993), i.e. T'= 4.M Pa. In Figure 7
(left) is shown the evolution of the damage as a function of the compaction level p
for the loading rate V/Lo = 100/s as in the second experiment but with i, = 0.15.
Note that during loading, damage is continuously increasing until it reaches the value
din = 0.6. Figure 7 (right) shows in the p — ¢ plane, the stress variation during
the same test (V/Ly = 100/s) in the case as described by the revisited Bingham
model with damage (dashed line) and without damage (solid line). As expected,
the presence of damage causes a decrease in the yield stress.

2.8 Conclusions

A general methodology for constructing fluid-type constitutive equations for descrip-
tion of the combined effects of plasticity, damage and viscous effects on the behavior
of cementitious and particulate media when subjected to large deformations and
high strain rates was proposed. The elastic deformations were neglected and the
representation of the dynamic state of stress in the material was obtained from
classical yield conditions for plastic solids using two methods: (1) the viscoplas-
tic regularization and (2) a Maxwell type stress superposition method. Examples of
constitutive equations obtained from classical two-invariant yield conditions F' using
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both procedures are presented. In general, even if we start from the same yield con-
dition, the models obtained using these two methods are different. In the case of the
Mises yield condition which is a function only of the second invariant, using cither
model we obtain the classical Bingham fluid model. To better capture the behavior
of porous geological or cementitious materials under severe loadings (high-pressure,
high strain rate behavior), extensions of the Bingham classical model were proposed
using both procedures. Those rigid viscoplastic fluid models are compressible, their
flow-no flow threshold and subsequent flow behavior being dependent on the density
or compaction level.

We showed that for some yield conditions F', certain kinematic restrictions need
to be satisfied. In the case of the Mises yield condition, the kinematic constraint
that ought to be fulfilled is the incompressibility condition. However, for certain
classical yield functions, such as Drucker-Prager the resulting kinematic constraints
are physically unacceptable and we cannot arrive at consistent rigid-viscoplastic
fluid type formulations. For other yield conditions, such as the Cap model with a
standard Drucker-Prager envelope, the derived fluid-type model has discontinuities
with respect to the deformation rate, which makes the model inconsistent.

We illustrated the response of the proposed models for uniaxial compression
conditions and compared their respective responses.

Extensions of these models that include coupling between damage, plastic and
viscous cffects are proposed and their predictive capabilities and limitations were
discussed.
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3 Task 2: Numerical modeling of projectile pene-
tration into compressible rigid visco-plastic me-

dia
3.1 Introduction

One of the many challenges associated with modeling penetration is that very limited
experimental data are available. Although progress has been made in instrumenta-
tion and diagnostic techniques that allow accurate measurements of impact velocity
and projectile deceleration, in-target instrumentation is limited. Thus, information
concerning the stress-time response in the target during penetration is lacking (see
for example, Gran and Frew [1]). To gain insights and fundamental understanding
of the phenomena involved, numerical simulations of penetration processes play a
key role.

For modeling the deformation of the target during penctration Lagrangian and
Eulerian methods have been used (see for e.g. the survey by Hertel [2]). Each of
these methods has advantages and disadvantages as a tool to model penctration.
With Lagrangian methods, the conservation equations are solved using either finite
difference or finite element techniques on a mesh which moves with the material.
The material interfaces are tracked in a sharp fashion. However, severe deformation
leads to mesh tangling or distortion, hence considerable complexity is enjoined by
the need for remeshing. Mesh-less methods (e.g. [3]-[6]) or a combination of finite
clement methods with embedded boundary tracking and local enrichment (e.g.[7] )
have emerged in recent years. When using Eulerian methods, the conservation equa-
tions are solved using either finite difference or finite volume techniques. However,
when using such methods the main challenge is to be able to track moving material
boundaries (i.c. problems related to recognition of material interfaces or surfaces).
Such difficulties are the driving force for the development of Arbitrary Lagrangian
Eulerian(ALE) and level set methods (see for e.g. [2, 8]).

It is to be noted that the material models used in conjunction with the aforemen-
tioned methods apply mainly to penetration into metallic materials. It was shown
(sce for instance [9, 10]) that the use of an Eulerian setting and of a fluid-type
constitutive equations presents clear advantages over other methods employed for
modeling penetration in metallic materials. However, implicit in these fluid-type
models is the hypothesis of incompressibility, thus these models cannot describe
the irreversible volumetric changes observed in geologic or cementitious materials.
Indeed, from post-test observations of the density distribution in the target it can
be clearly scen that when subjected to dynamic loading, porous and particulate
materials show large irreversible volumetric and shear deformations, the behavior
being highly sensitive to the strain rate (e.g. [11, 12, 13]). Batra and Gobinath [14]
have proposed a compressible model that accounts for the rate dependence of the
shear response. Hardening effects are neglected and the pressure-density response is
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given by a gas type state equation which cannot capture plastic volumetric effects.
Recently, for modeling penetration in concrete, a purely hydrodynamic treatment
was used in [15] while LS-DYNA finite-clement simulations have been reported by
[16]. Under this grant support, computational techniques for modeling steady-state
flow of a compressible rigid viscoplastic fluid have been developed. Illustration of
the application of these methods was provided for cementitious materials considered
to obey a revisited Bingham type model [18], which accounts for plastic volumetric
deformations. The reader is refered to the journal paper Cazacu et al [17] in which
this work is presented in detail.

In the following we will present the computational methods developed for model-
ing non-steady penctration of a rigid projectile into cementitious targets. To capture
the solid-fluid transition in behavior at high strain rates observed in such media and
account for damage/plasticity couplings and how these dissipative mechanisms are
influenced by the strain rate, we consider a compressible rigid viscoplastic fluid
model, that we called Bingham revisited (see section 2.4.2 of this report and the
journal paper in which we published the model [18]).

A hybrid time-discretization is used to model the non-stationary flow of the the
target material and the projectile-target interaction, i.e. an explicit Euler method
for the projectile equation and a forward (implicit) method for the target boundary
value problem. At cach time step, a mixed finite-clement and finite-volume strategy
is used to solve the boundary value problem in the target. Specifically, algorithms
for solving the nonlinear variational problem involving the velocity field via the finite
clement approximation are developed while finite-volume technigues are adopted for
solving the hyperbolic mass conservation and damage evolution equation.

It is to be noted that when using a rigid compressible viscoplastic Quid equa-
tion, additional difficulties arise due to the non-smoothness of the plastic terms.
Moreover, since in the constitutive description for the target material a rigid un-
loading hypothesis is considered, the variational inequality to be solved has unilateral
constraints for the velocity divergence. Thus, we cannot simply make use of finite
clement techniques developed for Navier-Stokes fluids. Therefore, to solve the veloe-
ity problem, a decomposition-coordination formulation coupled with the angmented
lagrangian method, developed by [19, 20] (for a comprehensive review see also [21] )
for the Bingham fluid is adapted here. The velocity problem and the methods used
to solve it are similar to those developed in [17] for modeling steady-state flow of a
revisited Bingham fluid.

It is shown that using the material model and algorithms presented in this paper,
it is possible to provide details concerning the stress and kinematic fields in the
target. Specifically, the density changes around the penetration tunnel, the shape
and location of the rigid/plastic boundary, the extent of damage due to air void
collapse in such materials are accurately predicted. Moreover, the numerical model
is robust and computationally inexpensive. This is due to the fact that in modeling
penetration using a rigid-type model only a small zone around the projectile is
deformed and thus we can restrict the computations to a small bounded domain
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around the projectile. Another advantage of using a fluid-type approach is that the
computations are done in a fixed domain and there is no need to mesh different
domains at each time interval.

One of the many challenges associated with simulating penetration in cementi-
tious materials is related to the lack of experimental data for the high pressures and
high strain rates involved (see e.g.[22]. To assess the effects of the constants involved
in the material model that cannot be determined explicitly from experimental data,
a parametric study was also performed. Thus, we analyzed the sensitivity of the
penetration depth calculations with respect to shear and volumetric viscosities, cut-
off yield limit, and frictional constants. The results of this study provides insights
into the relative importance of the plastic and viscous effects on the penetration
process.

3.2 Constitutive model for the target material

In this section, we give an overview of the material model used for the target .
To capture the solid-fluid transition in behavior at high strain rates observed in
cementitious porous media, account for damage/plasticity couplings and how these
dissipative mechanisms are influenced by the strain rate we consider a compressible
rigid viscoplastic fluid constitutive equation. The general form, proposed in [18](see
also section 4 of the present document) is:

o = a(D(v),h)I + B(D(v),h)D'(v)  if |D(v)| # 0,

F(o,h) <0 if |D(v)| = 0, &

D(v) € C, {

In (65), o denotes the Cauchy stress tensor, D is the rate of deformation tensor,
D = D(v) = (Vv+V7Tv)/2 (v denotes the velocity field) while D' = D—tr(D)/31
is its deviator, I is the identity tensor, h € R" is the vector of n scalar internal
variables. F(e,h) is the yield function and C € RY*® represents a set of kinematic
constraints, while o and 3 are scalar functions of their arguments. The invariance
under superposed rigid body motions requires that @ and 3 are isotropic functions
of D.

The presentation of the model (65) is completed by providing the evolution
equations for the internal variables h. It is assumed that the total (particular)
derivative of h is a function of h and the stretch tensor D, i.e.

dh  h

If there is flow (i.e. in the visco-plastic regime where D # 0), then F(a(D, h)I+
B(D,h)D',h) > 0, forall D e C\O0. It should be noted that at difference with a
classic fluid constitutive equation, for a rigid viscoplastic material the constitutive

functions a and # are not defined and cannot be prolonged by continuity in D = 0.
To ensure continuous transition between flow and no-flow states, it is required that
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a(-, k), B(-, h) are continuous on C\0. The continuity of the transition between flow
and no flow reads: F(a(D,h)I+3(D,h)D',h) — 0, for D — 0 with D € C\0,
while the fact that the dissipated power has to be nonnegative leads to o @ D =
a(D,h)tr(D) + 3(D,h)|D'|* >0 forall D€C.

Two general procedures for determining the expressions of the constitutive fune-
tions F, a, and 3 such that the model (65)-(66) is consistent (i.c. the above com-
patibility conditions are satisfied) are provided in [18]. Although all the numerical
methods and techniques developed in this paper are valid for the constitutive equa-
tion (65)-(66) in its general form, in this paper we consider a specific compressible
rigid viscoplastic model. In this model it is assumed that yielding under deviatoric
conditions is of Von Mises type with yield limit & depending on two internal vari-
ables: the current density p and the damage parameter 6, i.c. n = 2, h = (p;4d).
Thus, the effect of the density on flow is taken into account while the damage pa-
rameter is associated to the loss of cohesive strength due to air pore collapse.

For hydrostatic conditions, the response is described by a pressure-density re-
lationship of the form: p = p.(p). Note that a full equation of state which gives
a complete thermo-dynamical characterization is not available for porous cemen-
titious materials (sce for example the very recent survey and experimental study
on concrete [22]). This is due to the fact that using the current testing methods
(detonation and flyer-impact testing) only data pairs of pressure-density points can
be obtained.

Data available for cementitious materials (see for instance [23])indicate a stiff
response upon unloading. Thus, the reversible decrease of volume can be neglected
and the unloading process can be considered rigid (the density acquired at the end
of the loading process is preserved during unloading). Hence, the yield condition is
of the form:

F(p,q,p,0) = ‘/I\/gq —K(p,0)]3 + [p + pc(p)]2. (67)

l 3
where [z]; = (|z| + 2)/2,[z]- = (|z] —z)/2 and p = -i%a—)—‘ g = \/g |o’|. Using
this yield function and the superposition technique (i.c. compressible Navier-Stokes
fluid superposed on an associated plastic solid described by (67)) we can deduce, (see
[18]), the following constitutive equation called the revisited Bingham fluid model.

The deviatoric part of this model is:

il 00| o iy
al'= [Zn(p) + D ]D if |D'|#0 (68)
lo’| < K(p,0) if | D'| =0,
while its spherical part is:
{ tr(e)/3 = —p.(p) + [Ap) + 2n(p) /3] div(v) if div(v) <0
div(v) <0, _ (69)
tr(e)/3 > —p.p) if div(v) = 0.
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Figure 8: Representation of the domain Dy for the tunnelling stage of penetration.

Note that the classical Bingham fluid is recovered if in (68) the incompressibility
condition (i.c. dive = 0) is imposed.

The kinematic restriction is C = {D ; tr(D) < 0} i.c. the flow is compress-
ible and unloading is rigid. In many solid-type models, p. and & are expressed as
functions of the compaction level (or volumetric strain) g = p/py — 1 instead of the
density p (here py is the initial density prior to loading). Note that (68)-(69) can be
recast in the form that is generally used in hydrocode calculations by eliminating p
between & = k(pt,6) and p. = p.(p).

3.3 Geometry and fields equations

When a penetrator impacts a semi-infinite geological, or cementitious target the
material is displaced radially and as a result a tunnel-shaped crater is formed in the
target. The entrance portion of the crater is generally produced by spallation in the
vicinity of the impact site. The crater entrance is typically wide and shallow, but it
rapidly evolves into a circular tunnel.

Our objective is to model the tunnelling phase of the penetration, when the full
length of the projectile is in the target and the target material flows around the
projectile. It is assumed that the projectile is rigid.

Let us denote by Py and 7, the domains occupied by the projectile and by the
semi-infinite tunnel in the coordinates Ozyz which are linked to the projectile (see
Figure 1 ).

Let Oz raxs be the coordinates attached to the target and let —V (¢)eg be the
velocity of the projectile at the moment ¢ > 0. The two system of coordinates
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coincide at ¢t = 0 and we have

!
T =2, Ta=1, :c;,zz—fV(s)ds.

0

The target occupies the variable domain D, which is the whole space R?* without the

t
projectile P, = {(xy, 22, 23); (1, 22,23 + / V(s) ds) € Py} and the infinite tunnel
0

!

T, = {(x1, x2,23); (21,29, 23+ [ V(s) ds) € Ty} behind it, i.e. D, = R*\ (P, UT,),
)

and it corresponds to Dy = Rl’{('PuU’IE]) in the coordinates linked to the projectile.
We denote by I’} T'? the part of the boundaries of 7; and P, which are in contact
with the target, i.c. 9D, = I'} U Iy, which corresponds to dD, = I'y UT,, in Ozy:z
coordinates.

Next, we present the equations governing the non stationary flow of a rigid
viscoplastic material described by the constitutive equations (67)and (68)-(69). In
order to write the conservation laws in the fixed domain Dy, instead of the variable
domain D,, we denote by v : [0, T] x Dy — R? the relative velocity ficld given by

v(t,z,y,2) =v(t, 1, 10, 23) + V(t)ey,,

where v is the Eulerian velocity field in D;. The other fields, i.e. the stress o, density
p and damage § will have the same notations in both systems of coordinates.
The momentum balance law in the Eulerian coordinates Oxyz reads

p(O)[O(t) + (v(t) - VIv(t) — V(t)e,] — dive(t) =0 in Dy, (70)
the continuity equation is

%2 +v-Vp=—pdiv(v), inDy., (71)

while the damage evolution law can be written as

% +v-Vé=H(p,6,D(v)) in Dy (72)
The conditions at infinity for the target in the coordinates linked to the projectile
read:

v(t,z,y,2) =V(t)e, for ||(z,y,2)|| — +oo, (73)

p(t,z,y,2)=p" O(t,x,y,2)=0 for z— —oc0. (74)

The mechanical model considered for the target material is rigid-viscoplastic.
Thus, with the exception of a domain around the projectile where viscoplastic de-
formations occur, the target material is in rigid motion. Hence, the domain Dy,
affected by the impact event, can be restricted from the whole space to a bounded
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region (depicted in Figure 1 with interrupted lines). To enable reasonable computa-
tional effort and yet ensure that we capture the viscoplastic region in its entirety (i.c.
the boundary conditions at infinity are accurately described), we limit the extent
of this domain to 5 projectile radii. This assumption appears to be supported by
experimental evidence. Indeed, post-test observations indicate that the tunnel is of
the order of the projectile diameter. For both grout and concrete targets a change
in density in the region around the penetration tunnel radially outward from the
edge of the tunnel to a distance of 1 — 1.5 projectile diameters was reported (sce
Jones et al [24]).
Using this assumption the boundary conditions at infinity (73)-(74) are replaced
by
v(t) = V(t)egon Ty, p(t) = p°, 8(t) = 0on Ty,. (75)

On the surface in contact with the tunnel, I'y, the stress vector vanishes
o(t,z)n =0, (76)

where n stands for the outward unit normal on 9D, while frictional contact is
assumed on the boundary of the projectile I's.

The mechanics of friction at high speed of sliding is very complex. Much of the
work reported in the literature is at lower speeds or pressures than those occurring
during a penetration event. In view of this, in our analysis we assume that a
Coulomb friction law applies. However, in order to capture the rate effect on the
frictional contact between the concrete target and the metallic penetrator, a slip
rate dependent friction coefficient is assumed, i.e.:

v, =0 = |oy| < Flog|,
=0 v #0 = o= —Flaniﬂ, EA)
[v¢]
where u,, = v - n is normal velocity, o, = en - n is the normal stress, v4 = v — u,n
is the tangential velocity, ¢y = & — (o - n)n stands for the tangential stress and
F is the friction coefficient. According to (77), the tangential (friction) stress is
bounded by the normal stress multiplied by the friction coefficient F. If such a
limit is not attained sliding cannot occur; otherwise the friction stress is opposite to
the slip rate. The friction coefficient will also be considered variable. Experimental
observations indicate that the friction coefficient depends on the slip rate |v| i.c.
F = F(|vy]). The simplest law of variation of F on the slip rate is a discontinuous
jump from a “static” value (for |v,] = 0) down to a “dynamic” or “kinetic” value
(for |v| # 0). In this work, we will consider a smooth and decreasing function
F = F(|v]) of the slip rate.
If we denote by M the mass of the projectile then the fluid structure interaction
equation is

MV(t) = — / o(t)n - e, (78)
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Finally, the initial conditions arc
v(0) =vo, p(0) =po, 6(0) =20y, V(0)=V (79)

where vy, pg, and d; arc the initial relative velocity, density, and damage, respee-
tively. We suppose that the initial fields are smooth and compatible with the bound-
ary conditions. i.c. no discontinuities are generated initially.

3.4 The algorithm
3.4.1 Time discretization

Let At be the time step and let us denote by v*, a*, p*, 6%, V¥ the values of
v(kAt), o(kAt), p(kAt), 6(kAt) and V(kAt). Suppose that we have computed all
these values at t = kAt. The time explicit (forward) Euler scheme for the projectile
equation (78) will then provide V*+!

vl vk | ofpn.e,. (80)

and the time implicit (bachward) Euler scheme for (70)- (72) gives the following
nonlinear equations for v**!' g**! p**! and §**!

P oM 4 Attt - okt - Atdive*t! = pfHf,  in D, (81)
P Atdiv(pF ") = pF  in Dy, (82)
65 1 AtV o4 coft = 68 + AtH (o1, 65, D(v**'))  in D,. (83)

where f, = v* + (V¥! — Vh)e,. To this set of equations, we have to add the
constitutive equations (67),(68)-(69) which link all three unknowns i.c. v**!, o1,
p**1. The conditions at the "artificial” boundary of Dy, which replace the conditions
at infinity, are

p*t! = V¥tle, on Iy, gl=p0 M =0, mla- (84)

k+1
n

k41 k+1

Moreover, u*t!, v**! okt1 and o**! have to satisfy the friction law (77).

Setting
whkH — {v € H'(Dy)® ; v=V*e, on Ty, v, =0 on Fg},
the kinematic admissible set is:
phtl = {v € Wkt dive <0 in 'Dl,},
k41 g Phtl

and the variational formulation for the velocity field v is:

/ PR (g by L ARl [ pFHRH TRt (- pF )4
Dy Dy
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A 2n(pk+l}Dr(”k+l) : (D'('U) - D.‘(Uk-H)) 4 -/I.’ a“’i(pk+l,t5k+l)(|D’(U)£ . |D!(vk+1)“

(1]

4 [ IO + a1 divertt - p(p)] div(w — o**1)
Dy

i f(l”ﬁ“l)lﬁﬁ“l(!vfl*|‘vf+l|)}2/ My (o=, (85)
Do

Iz
for all v € YA+,

3.4.2 The general scheme

Let us fix the iteration in time k. The numerical algorithm for solving the nonlinear
equations (81)-(83), consists of solving alternatively the variational inequality (85)
for the velocity field and the equations (82)-(83) for the density and damage fields.
More precisely, we will distinguish two problems : the "velocity problem” and the
"density /damage problem”.

For the velocity problem (at iteration n of the algorithm), we assume that p**' =
pEtim and 651 = gk are given, i.e. the distributions of p = p.(p*t'),n =
n(PFt), A = Ap*t!) and k = k(p**!, 6%+!) are known, and we find the velocity
vFt! = p*H1Intl 2 Y by solving the variational inequality (85).

The density /damage problem (at iteration n of the algorithm) consists in finding
the density and damage fields i.c. pf+! = p*+H1nH! and 6841 = gk+1nt! solutions of
(82) and

61 4+ Atdiv(8'o*t!) = H*™  in Dy, (86)

where HE™ = §F + At[H(pF+In, 6541n D(vF+1)) + 851 divoF+!]) assuming that
vi+! = pF+intl g known.

Since we will suppose that the time iteration is fixed, in the following we will
omit the subscript k£ + 1. Moreover, in order to simplify the notations, we will also
omit the subscript n + 1.

3.4.3 The velocity problem

It is to be noted that in the case of a rigid compressible viscoplastic fluid, additional
difficulties arise from the non differentiability of the plastic terms and from the
unilateral constraints on the velocity divergence. That means that we cannot simply
make use of the finite element techniques developed for Navier-Stokes fluids (see for
instance [25, 26]). To solve the velocity problem, a decomposition-coordination
formulation coupled with the augmented lagrangian method (see [19, 20]) will be
adapted for the material model considered (67),(68)-(69). After time discretization,
the variational formulation in terms of velocities is similar to that corresponding
to the stationary flow of a revisited Bingham fluid given in [17]. Although the
numerical techniques developed here for the velocity problem are very close to that
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proposed in [17], in the following we present its main features and refer the reader
to [17] for further details.

Dy is discretized by using a family of triangulations (7}, ), made of finite elements
(of degree 2), where h > 0 is the discretization parameter representing the greatest
diameter of a triangle in 7. The finite clement space W, which is an internal
approximation of W will be denoted by W, while V,, = VI W,,. Then, the velocity
problem is discretized by considering v), € V,, which satisfies the variational inequal-
ity (85) for all v € V,. In order to simplify the notations, we shall omit throught
this subscetion the index h.

For all w € V,, we define J,, : V), — R as

Jw(v) = [DU §|*u|2 =3 At{/vu n|D'(v)* + /Du (% + g)(div v)? + /nu K| D' (v)|+

F(lw,l)lo,,(w)lIv,]+Ap(w-V)w-v—/ pdivv}—/p pf -v. (87)

I'a D

and rewrite the velocity problem as a quasi-variational problem

v eV, Jy(v)= minlJ,(v). (88)
vEV),

To reduce the quasi-variational problem to a sequence of minimization problems,
we use the following iterative algorithm (A4) : given v/~' € V, find v’ € V,, the
solution of the following minimization problem for J;(v) = J,,-1(v)

v EV, Ji@)= fé{fl Jj(v). (89)

Since J; is not Gateaux differentiable, one can use a regularization technique(sce
for instance [27, 28]). With this technique, the material is not completely rigid
anymore, and so it is difficult to capture accurately the shape of the rigid zone.
To overcome this difficulty and describe the rigid/viscoplastic boundary sharply,
we adapt the decomposition-coordination formulation coupled with the angmented
lagrangian method originally introduced for the incompressible Bingham fluid in [19,
20]. On the other hand, for the frictional terms, which are also non-differentiable, we
shall usc a classical regularization technique because in the applications considered
(penetration into geological materials) the slip rate is always non-zero.

Let us consider the spaces of lagrangian multipliers: A, , which denote tensor
valued polynomial functions of degree one on each triangle, and ©,, which denote real
valued polynomial functions of degree one, respectively . The augmented lagrangian
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ﬁj:th&hxethh—rRis:

A
£,'(v.a"9,-r}:/ |v]2+At{/ 7}{'7|2 f (2+;—I)92+/ K|y|—
Dy Do
1

.v .
/ po +/ Flvi ™ lon(o’™ 1—"’*—‘+] o7 WY &
Do I w2+ Do

D'(v)—7):0’ 0 — div -
/Do( (v) "y)cr-t-/pa( ivv) trace(o) } /Dovar

D [p, ID'(®) =I* + i [p, | 0 — divol®.

(90)
where r; and rp are strictly positive constants. Here 4 € Ay, stands for D'(v), 0§ €
O, stands for divw, and & € A, is a lagrangian multiplier. Thus, the minimization
problem (89) becomes: find v/ € Vy,, 0’ € Ay, # € O, and 47 € Ay, such that

sup L;(v?,0,0,7) < L;(v*, 07,67, 47) < in\g Li(v,0’,0,%). (91)
0.0y vEVHL

In order to solve the above saddle point problem, we use an Uzawa-type algorithm
(UA). The interest in using this algorithm is that it transforms the non-differentiable
problem into a sequence of completely standard computations.

Let first define the functions fy and fp, useful in the description of the algorithm:

3p(p) +tro

1 K(p, 5)] y
og,a) = 1- o, o,a)=— i 92
Iole.a) 2n(ﬂ)+a[ o] fule8) = =350 + 2nip) v a) " P
where [z], = (z+|z|)/2 and [z]_ = (|z| =) /2 are the positive and the ncgat.wc part

of [z], roqpoctwolv The (UA) algorithm, starts by choosmga" L= gi-1 g~ ! = ¢!
and 5 = 4’~! as initial guosses At thc iteration i, o7~} , )"}, 6~} arc alrcady
computed and we look for v?~' 77! 477 #7"

First, we compute ’U':_] solving the following quadratic minimization problem

vl EWh,  Li(vl ol 60 vn) = inf Lu(v, 0001 800,70

]

Then, we compute explicitly 7{"1 and H{_l through the functions fy and f,
v = fploili + 2rpD(w] ), 2rp), 87" = fu(ols) + 2ruD(v])). 2ru)
and we update o' through the following formulas:
(67" = (@) + 2rp(D'(wi™) = 7 7),
trace(a? ') = trace(o? ")) + 2ry (diveol ' — #7").

&S '-:
||"-’:T '] “L-‘(Dn] iy

||v)” |IL=(v.,)

small enough. Then we update: v/ = -uf:l.aj = crfe_i,o-’ = ﬂf, "and 47 = "r,.- . In
) ]

The (UA) algorithm stops at i = i when the error e =
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the numerical computations, when the solution v'~2 is close to v/~! (for instance
when At is small enough), a single pass of Uzawa-type algorithm (i.c. ¢ = 1) can
be enough to satisfy the stop criterion in i. This fact reduces significantly the total

computation time. _
|97 — v~ | L2 (py)

The algorithm (1A) stops at j = j°, when the crror is small
||’uJ||L’(Du}

enough.

3.4.4 The density/damage problem

We will use a finite volume method (see for instance [29]) to discretize the continuity
equation (82) and the damage evolution equation (86). Let denote by K, the finite
volume mesh, which is given by a family of disjoint polygonal connected subsets of
R® such that D is the union of the closure of the elements of Ky; h is the greatest
diameter of a control volume in K,. The finite volume mesh K;, may coincide (or
not) with the finite element triangulation 7;,. In the simulations presented in the
next section K, = 7.

The finite volume discrete space is the space of piccewise constant functions, i.c.
we are looking for the solution pp of (82) and 6y, of (86) as {pnx, K € K;} and
{6nr, K € K)}, respectively. In order to simplify the notations, throughout this
subsection we omit all the indexes h.

Let us consider two control volumes K, P € K, with a common interface Iy =
?ﬂﬁ. Let m be the unit normal vector to I p oriented from K to P. Then, we
define the flux F(K, P) at the interface Ixp as

F(K,P) =/ [v-n],.

Ikp

Note that at least one of the two fluxes F(K, P) and F(P, K) is vanishing. If we
denote by N(K) the set of all neighbors of the control volume K, then the finite
volume numerical scheme for (82) and (86) can be written as two linear algebraic
systems for the unknowns (pk )kex, and (0x)kex,

m(K)px + At Z F(K,P)pk — F(P,K)pp = m(K)p}., forall K € K. (93)
PEN(K)

m( K)oy + Al Z F(K,P)ox—F(P,K)ép = m(K)H*", for all K € K,. (94)
PeN(K)

If a volume control L corresponds to a node which is on the boundary I';,. then
we set pp = pg,dp = 0 and we eliminate the corresponding equation.
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Figure 9: The finite clement mesh.

3.5 Numerical results

In this section, we apply the material and computational model developed to simu-
late the tunneling phase of penetration into a concrete target of a rigid projectile.
The simulations correspond to an impact velocity of V; = 500 m/s and a projectile
of mass M = 6 kg.

3.5.1 Geometrical and physical settings

Preliminary numerical simulations, in which a part of the tunnel was considered in
Dy have shown that the material behind the projectile is rigid and thus does not
affect the computations. Hence, to reduce the computational efforts, the control
volume Dy is chosen such that it does not touch the tunnel, i.e. I'; = 0.

The finite element mesh of the domain Dy in cylindrical coordinates (in the Orz
plane), is plotted in Figure 9. It has 33169 nodes and 167666 triangular elements.
The finite volume mesh may coincide with the finite element triangulation.

In a computation of the entire penetration process, the initial conditions for the
tunnelling phase should correspond to the final state attained in the previous phase,
called "sabot impact phase” (i.e. the phase when the projectile is fully embedded
in the target and the pusher plate hits the target and strips off). However, in
order to compute this state, it is necessary to model all the phases of penctration
process(including the nose penetration phase and partially restrained penetration
phase corresponding to chipping and cratering at the point of impact), which is
beyond the scope of the present paper. Thus, in this work we consider that the
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initial conditions vy, py, dy arc given by the stationary solution corresponding to the
striking velocity Vi = 500 m/s. The solution of the stationary problem is computed
using the techniques developed in our previous work [17].

The time interval for the computations, [0, 7], is chosen such that at ¢ = 7', the
velocity of the projectile is :V(T) = V,,i, = 50 m/s. This choice of V,,;, is related
to the fact that for very low velocities (i.e. V(t) < Vi = 50 m/s) elastic effects,
which were neglected in our model, become important with respect to the plastic
ones. Note however that the phase of the process which is not modeled in this work
(i.e. for V(¢) < Vi = 50 m/s) corresponds to less than 5 % of the entire trajectory.

The specific expressions of the constitutive functions &(p,d) and p.(p), involved
in the material model (equations (68)-(69)) are taken from Holmquist et al. [30].
The function p, is expressed in terms of p = p/p® — 1 as:

Perush

Pr.{ﬂ) =M if M S Herushs

Herush

t = terush)(Plock — Peruc
Do) = Porus + LS ek o)

if H € [f-f-rru:h’! 1 ,U.I L
Hiock — Herush ‘

2 3
K I Hlock +h~ [.u .b”'fm'k] + I{;; [.u’ .u'fmi':|

\ if 0 > ..
1+ pock 1+ iock 1 + ek

pe(;u) =
(95)
The values of the material constants involved in the above equation are: pe. =
16 MPa, piosk = 800 MPa, ftorush= 0.001, pyoex = 0.1, . = 0.111, K;= 85 GPa,
K,=-171 GPa, and K3=208 GPa (scc [30]).
The yield limit in shear, x(p,d), which depends on both the compaction level
and damage is expressed as

k(1t,8) = 09/2/3 min{S,az, A(1 = 8) + B(pe(pt)/o0)" }. (96)

with op= 48 MPa, S0 = 7, A = 0.79, B =1.60, and N = 0.61. Following [30], it
is assumed that the loss of cohesive strength of the concrete material is related to
damage from irreversible deformation, which evolves according to the following law:

06 _ | D'(v)|

a+v-V6 Alp)

(97)

where A(u) = /2/3max{rg, D[(p.(p) +T')/0¢]”?}, where ry, Dy, D, are constants
(ro = 0.01, D, = 0.04, Dy = 1 for the given material) and 7" is the maximum tensile
hydrostatic pressure that the material can withstand. For the conerete material
studied, T'= 4 MPa . Note that using the continuity equation and the definition of
jt. we have:

o . .
77y +v-Vu=—(1+ p)div(v),

Thus, the model for concrete is of the general form (66) with n = 2, h = (u, ) and

H(D(v),h) = (=(1 + p) div(v) , [D'(v)|/A(n))-
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Figure 10: Penetration depth as a function of time for different time steps.

The volume and shear viscosity cocfficients are considered constant and have the
reference values A = 0.002 MPa-s and = 0.001 MPa-s.
Frictional contact is assumed on the boundary I'; of the projectile (see Figure
1). To account for rate effects on the frictional contact between the concrete target
and the metallic penetrator, a decaying exponential dependence on the slip rate
proposed in [31].
F(v) = Foo + exp(—csv/v0)(Fo — Foo)-

was considered. In the above equation, F, represents the static value of the friction
coefficient, while F, is its dynamic value, while ¢y is a constant. Since experimental
determination of the values of these coefficients is very difficult, the values of these
coefficients were set to: Fy, = 0.02, Fy = 0.2, vo = 1 m/s and ¢; = 0.01.

The boundary condition u,, = 0 prescribed on the projectile is accurate every-
where with the exception of two small zones. The first one is located on the nose of
the projectile. In this zone, fracture in the target material could create a free bound-
ary. A second zone, which is located on the shank of the projectile, corresponds to
the separation between the target material and the projectile. The formulation and
solution of these two free boundary problems is beyond the scope of this study.
However, the influence of these two zones on the resistance to penetration seems to
be very small.

3.5.2 Time step sensitivity

Let first check the time step sensitivity of the proposed explicit/implicit discretiza-
tion scheme. To this end, simulations were performed using time steps At varying
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Horm of the Deformation Tensor Horm of the Deformation Tensor

Figure 11: The distribution of the deformation rate |[D(v)| ( ') in the target.
Left: at the initial stage of the computations (t = 0,V = 500m/s). Right: at the
final stage of the computations (t = 1.85ms, V' = 50m/s).

from 5 p s to 100 g s. Figure 10 shows the evolution of the penetration depth D, :

D,(t) :;/ Vi(s), ds
0

versus time for different time steps At. It is clear that even for a coarse time step
At = 50us, which corresponds to only 36 time iterations, the penetration depth is
accurately predicted. However, for time steps At larger than 100us the time dis-
cretization error can be important. We conclude that the time discretization scheme
is robust and, since we can use a small number of time iterations, the computational
cost is low.

3.5.3 Fields distribution in the target

In Figure 11 is shown the distribution of the deformation rate |D(v)| in the target
corresponding to the initial and final stages of the computations, respectively for an
impact velocity of 500 m/s. It is seen that a viscoplastic zone develops around the
penetrator. Outside this zone there is no deformation, hence the target is rigid, i.c.
|D(wv)| vanishes. It can be observed that the maximum deformation rate is reached
on the nose tip. The visco-plastic zone is diminishing during the penetration process.

Figure 12 (left) shows the distribution of density in the target at ¢ = 0.925ms, an
intermediate time in the computation. Note the existence of three distinet zones: (1)
an (almost) incompressible zone around the penctrator where the concrete is almost
fully compacted (i > p.) ; (2) a compressible zone where the density is greater than
po, the density of the intact material, and (3) a zone that remains unaffected by the
impact event where the density is everywhere equal to py. It is worth noting that
all the particles ahead of the projectile which are at a distance from the centerline
less than the projectile radius will enter the fully compacted zone (1).

In Figure 12 (right) is depicted the distribution of damage (parameter §) in the
target at an intermediate time of the computation: ¢t = 0.925ms. Fully damaged
state corresponds to 6 = 1 while 4 = 0 corresponds to no-damage. Let note that
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Figure 12: Left: the distribution of the density p ( kg/m®) in the target at ¢ =
0.925ms. Right: the distribution of damage J in the target at { = 0.925ms.

Figure 13: The distribution of the rate of volumetric deformation dive ( s™') in the
target. Left: at the initial stage of the computations (t = 0,V = 500m/s). Right:
at the final stage of the computations (t = 1.85ms,V = 50m/s).

according to the model, a large zone of the target is fully damaged. The extent
of the fully damaged zone varies little during the penetration process (i.e. there is
little variation with V (¢)).

The distribution of the rate of volumetric deformation divwv at the initial and
final stages of the computations are plotted in Figure 13. We note that around the
penetrator an almost fully compacted state is achieved, the material being almost
incompressible. The maximum compaction is reached in the nose zone, ahead of the
projectile.

Let us analyze now the stress distribution in the target and determine the zones
where tensile failure may occur. It is assumed that concrete tensile failure can be
modeled with the classic maximum tensile strength criterion (see [32]), i.e. the ma-
terial fails if the maximum of the principal stresses reaches a critical limit denoted
o. From the data reported in [30] oy = 4 MPa. From the analysis of the stress
distribution in the target, we found that the only principal stress which can have
positive values (i.e. is tensile) is gy (see regions in green in figure 14). As shown
in figure 14 tensile failure occurs in a wide region (colored in red) ahead of the
projectile. This region is smaller for low projectile velocities i.e. at the end of the
penetration process. From this analysis, fundamental understanding of the stability
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Figure 14: The distribution of ogg in the target. In green the region which are in
tensile (ogp > 0) and in red the regions where tensile failure occurs (og9 > oy).

Left: at the initial stage (¢ = 0,V = 500m/s). Right: at the final stage of the
computations (¢ = 1.85ms, V = 50m/s).

of the penetrator trajectory can be gained. Indeed, since the tensile failure could
occur only along Ozr planes, orthogonal to ey, which are not symmetric with re-
spect to the penetrator centerline, anisotropy is generated in the target. Trajectory
deviations, observed at high penetration velocities, may be related to this induced
anisotropy.

3.5.4 Parameter sensitivity of the penetration depth

As already mentioned, one of the many challenges associated with modeling penctra-
tion is that only very limited experimental information such as projectile trajectory
and deceleration data can be gathered during penetration. To date, there is limited
data from which the yield strengths may be inferred and thus the cut-off yield limit
Sinaz involved in the expression (96) of the shear yield limit & cannot be determined
explicitly. Likewise, it is very difficult to evaluate experimentally the viscous coef-
ficients A and 7, and the coefficient ¢y, involved in the friction law. Because of the
lack of test data, a parametric study was conducted to estimate the sensitivity of
the depth of penetration predictions to these constants.

First it was assessed the importance of plastic versus viscous cffects on the pen-
etration depth. To better analyze these effects, friction was completely neglected,
ie. weset F =0.

To estimate the influence of viscosity on the penetration depth, we have set all
the parameters involved in the expression of k, the yield limit in shear, and of p.
to be equal to the reference values and we have performed a series of numerical
simulations in which we varied the values of the viscous parameters 7 and A. In
Figure 15 are plotted the evolution of the penetration depth ¢ — D,(t) with time
for different values of the shear viscosities 7. In all these calculations, the volume
viscosity A was held constant (i.e. equal to the reference value). It is clearly seen
that for 7 less than 1000 Pa-s, the plastic properties of the target are dominant while
the viscous effects are negligible.
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Figure 15: Evolution of penetration depth ¢ — D,(t) for different shear viscosities
.

However, for n greater than 1000 Pa-s, the viscous effects are more pronounced.
Indeed, in the range of 10* — 10° Pa-s a variation of two orders of magnitude of the
value of i gives rise to an order of magnitude variation in penetration depth .

We have also computed the evolution of the penetration depth ¢t — D,(t) for
different values of the volume viscosity A in the range of 10? — 10° Pas. In all the
calculations, the shear viscosity 7 was held constant (equal to a reference value).
We have found that the volume viscosity has no influence on the penetration depth.
An explanation of this insensitivity to the volume viscosity could be the fact that
around the projectile the target material is almost incompressible (see figures 12
and 13), hence the volume strain rate div(v) is very small. That means that the
stress distribution around the projectile is no affected by the volume viscosity A
which multiplies div(v). Since the resistance force, involved in the calculation of the
penetration depth, is computed based only on the distribution of the stress tensor
o on the projectile surface, we can deduce that one cannot expect any variation of
the resistance force with respect to the volumetric viscosity A.

In addition, since it is very difficult to determine experimentally the viscosity
coefficients of concrete for dynamic loading (high rate of deformations and high
stresses), the sensitivity analysis performed is important in selecting the numerical
values of these constants that will provide the best fit to the penetration depths
which are directly measured in penetration tests.

In order to see the effects of the plastic parameters, we set the the viscous param-
eters A and 7 equal to the reference values and we performed a series of numerical
simulations for different values of the cut-off yield limit S,,,., parameter involved
in the expression of the yield limit & which cannot be obtained from experiments in
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Figure 16: Evolution of penetration depth ¢ — D,(t) for different values of the
cut-off yield limit S, ...

an explicit manner. As in the previous calculations, we have completely neglected
friction i.e. we took (F = 0).

In Figure 16 is plotted the evolution of the penetration depth t — D,(t) for
different values of the cut-off yield limit S,,,,. Note that for S,,,, greater than
9, there is little influence on the penetration depth. That means that near to the
projectile, the pressures B(p.(u)/oo)" are less than the cut-off value S,ur. If Spar
is less than 9, then S,,,. constitutes a limit on the strength that can be developed
in the material (i.e. really works as a cut-off value for the yield strength). In this
case, it was found that the penetration depth is very sensitive to the yield stress.
Indeed, if S,,,. is three times smaller then the final penetration depth is three times
larger.

Next, the effect on the penetration depth of the coefficient ¢y, involved in the
slip rate weakening friction law was analyzed. To this end, we held all the other
parameters constant (i.c. we set Fy and F,, and all the coefficients involved in the
model for the target equal to reference values). In Figure 17 is plotted the evolution
of penetration depth t — D,(t) for different values of ¢;. We note that if ¢ is
greater than 0.01 it doesn’t have any effect on the final penetration depth. In this
case, the friction coefficient reaches its dynamical value F,, almost at every point
on the projectile. If ¢y is less than 0.01, then the slip rate weakening of the friction
coefficient becomes apparent, i.e. the penetration depth is also sensitive to the value
of the static friction coefficient F.
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Figure 17: Evolution of penctration depth ¢ — D,(t) for different values of the
exponential decrease coefficient ¢y, involved in the slip rate weakening friction law.

4 Conclusions

We have developed computational methods for modeling the penetration of a rigid
projectile into porous geological and cementitious targets. To capture the solid-fluid
transition in behavior at high strain rates observed in such media and account for
damage/plasticity couplings and how these dissipative mechanisms are influenced
by the strain rate, a compressible rigid viscoplastic fluid constitutive equation was
considered. A hybrid time-discretization was used to model the non-stationary flow
of the target, i.e. an explicit Euler method for the projectile equation and a forward
(implicit) method for the target boundary value problem. At each time step, a mixed
finite-clement and finite-volume strategy was used to solve the "target” boundary
value problem.

Specifically, variational formulations and algorithms for solving the minimiza-
tion problems with non-linear constraints for the velocity field via the finite element
approximation were developed while finite-volume techniques were adopted for solv-
ing the hyperbolic mass conservation and damage evolution equations. Since in
the constitutive description of the target material a rigid unloading hypothesis was
considered, the variational inequality to be solved has unilateral constraints for the
velocity divergence. Additional difficulties were related to ensuring incompressibility
in the regions where the material is unloading. Also, due to plastic and frictional
contributions, the resulting functional is not smooth. To overcome these difficulties,
the decomposition-coordination formulation coupled with the augmented lagrangian
method proposed for the incompressible Bingham fluid by [19, 20] was adapted for
the material model considered in this work.
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Numerical simulations of penetration into conerete were performed. It was shown
that using the model and numerical techniques presented in this paper, it is possible
to predict the density changes around the penetration tunnel, the shape and location
of the rigid/plastic boundary, the extent of damage due to air void collapse in
such materials. According to our calculations, tensile failure occurs ahcad of the
penetrator and along planes which are not symmetric with respect to the penetrator
centerline. This induced anisotropy may explain trajectory deviations.

One of the many challenges associated with simulating penetration in cemen-
titious materials is related to the lack of experimental data for the high pressures
and high strain rates involved. Thus, some of the constants involved in the model
cannot be determined directly from experimental data. A parametric study was per-
formed to asses the sensitivity of the predicted penetration depth to these constants
(i.e. to shear and volumetric viscosities, cut-off yield limit, and dynamic friction
cocfficients). The results of this parametric study provides insights into the relative
importance of the plastic and viscous effects on the penetration process. Finally, by
conducting a time step sensitivity study it was shown that the numerical model is
robust and computationally inexpensive.
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