Single Battlefield Fuels (SBF) Made From Unconventional Resources

Material Issues – An Army Perspective

National Materials Advisory Board Meeting
April 25, 2007
Plenary Session II – Materials for Power and Energy

Patsy A. Muzzell
Assured Fuels Team
TARDEC National Automotive Center

UNCLASSIFIED: DISTRIBUTION STATEMENT A:
Approved for public release; distribution is unlimited.
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 APR 2007</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Battlefield Fuels (SBF) Made From Unconventional Resources Material Issue - An Army Perspective</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muzzell, Patsy A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>REDCOM TARDEC 6501 E 11 Mile Road Warren, MI 48397-5000</td>
<td>17078</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TARDEC</td>
<td>17078</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>The original document contains color images.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>b. ABSTRACT</td>
<td>c. THIS PAGE</td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
<td></td>
</tr>
</tbody>
</table>

UU

11

unclassified

unclassified

unclassified

<table>
<thead>
<tr>
<th>Standard Form 298 (Rev. 8-98)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prescribed by ANSI Std Z39-18</td>
</tr>
</tbody>
</table>
Kerosene-type fuels
- JP-8/F-34
 - MIL-DTL-83133
- JP-5/F-44
 - MIL-DTL-5624
- Jet A-1/F-35
 - ASTM D 1655 (U.S.)
 - Defence Standard 91-91 (most ROW)

Diesel fuels
- No. 2-D and No. 1-D
 - A-A-52557 (CID*)
 - ASTM D 975
- F-76 (mil-spec marine distillate fuel)

*Commercial Item Description
- Tactical/combat vehicle fleets
- CE & MHE
- Other Equipment
 - Fuel storage, distribution, handling
 - Power generation
 - Future
- Army aircraft and watercraft
Petroleum-derived fuels will be around for years, such as JP-8 (current SBF).

However, non-petroleum derived fuels will increasingly make their way into the fuels supply, typically as blends:
- Semi-synthetic jet fuel (partly FT IPK*) used at Johannesburg International Airport
- E-85 ethanol fuel, biodiesel fuel blends (B1 - B20)

Key reasons for blends (excluding energy policy drivers):
- Limited volumes of unconventional fuels
- May allow an otherwise unfit-for-use fuel to be used in existing equipment (or slightly-modified equipment)

* FT IPK is Iso-Paraffinic Kerosene – discussed in separate slide
Unconventional SBF on the Horizon

• Fischer-Tropsch (FT) derived

• BioJet
 – Synthesized from crop oils via thermal, and/or catalytic, and/or enzymatic processing [BioJet per DARPA BAA 06-43]
 – How compatible will this fuel be with existing equipment? Need samples for characterization of fuel – starting point to determining compatibility

• Other?
FISCHER-TROPSCH (FT) TECHNOLOGY

Coal + Biomass
Natural Gas
Coal
Pet Coke
Biomass Wastes

Synthesis Gas Production

FT Liquid Synthesis

Product Recovery

Power Generation

Tail Gas

Oxygen Plant

An Option

CO

H₂

Hydrogen Separation

Liquid Fuels

Wax

Hydrocracking

Wax

Hydrogen Recover

Liquid Fuels

Transportation Fuels

CO₂ to Sequestration

O₂

Air

Hydrogen
Fischer-Tropsch Derived Kerosene

• FT synthesis step – product variations possible based on FT reaction parameters (catalyst, temperature, pressure, etc.)
 – Product typically contains only paraffins, mostly normal paraffins; many paraffins of long chain lengths (“waxy”)
 – Possible to produce product containing other species such as aromatics, olefins

• Upgrading step
 – Hydrocracking breaks up long chains into kerosene boiling range compounds
 – Hydroisomerization rearranges chains from n-paraffins to isoparaffins yielding kerosene meeting JP-8 freeze point requirement

• FT kerosene compositions meeting JP-8 freeze point requirement
 – FT Iso-Paraffinic Kerosene (FT IPK) – containing no aromatics
 – Possible to also produce FT-derived kerosene that containing aromatics
Fuel Leaks Possible From Sudden Switch to Lower Aromatic Content Fuel

- Some elastomers affected by change in fuel solvency (esp. aromatics in fuel)
 - Swelling: absorption of aromatic solute
 - Shrinkage: purging of aromatic solute
- Affected elastomers include Nitrile, common in Military fuel distribution system sealing applications
- Low aromatic fuels becoming more prevalent
 - Ultra-low sulfur diesel fuel
 - FT fuels
- Introducing lower aromatic fuels into existing equipment may result in some fuel leaks
- Mitigate risk of leaks through use of
 - Unaffected elastomers
 - Fuel blends

![Graph showing volume changes with switches between Synthetic FT "JP-8" & JP-8](image)

Switch #	Average Volume Change (%)	Fuel Aromatic Content
1 | FT "JP-8" | 0% vol.
2 | JP-8 | 18% vol.
3 | FT "JP-8" | 0% vol.
4 | JP-8 | 18% vol.
5 | FT "JP-8" | 0% vol.
6 | JP-8 | 18% vol.

Data courtesy TARDEC Lab

SAE Paper No. 2007-01-1453, April 2007
“The Effect of Switch-Loading Fuels on Fuel-Wetted Elastomers”
(by TARDEC and SwRI™ authors)
Hydrocarbon Types In FT IPK (Iso-Paraffinic Kerosene)

- n-alkanes (10%)
- Alkanes, branched (90%)
- Zero aromatics
- Zero sulfur
- No heteroatoms

FT IPK is paraffinic – contains mostly isoparaffins whereas Petroleum-derived fuels are rich in aromatics, cycloparaffins, and hetero-compounds

Some of these are polar compounds (N, O), typically trace amounts, responsible for much of a fuel’s inherent lubricity
Fuel Lubricity Critical for Performance of Fuel-Lubricated Rotary Injection Pumps

- Some vehicles have fuel-lubricated fuel pumps
 - HMMWV (high density vehicle in Army ground vehicle fleet)
 - Some others (smaller populations in Army fleet)

- Test rig testing
 - HMMWV pump with hardened components: FT IPK lubricity appears adequately improved with use of Military approved lubricity improver
 - Other fuel-lubricated pumps (testing in progress—one common to Army and Navy)

HMMWV Rotary Injection Pump Test Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Pump</th>
<th>Duration (hours)</th>
<th>Pre-test (mm)</th>
<th>Post-test (mm)</th>
<th>Change (mm)</th>
<th>Lubricity additive (CI/LI) treat level in FT IPK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>95.6</td>
<td>5.017</td>
<td>5.113</td>
<td>0.096</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>150.7</td>
<td>5.017</td>
<td>5.085</td>
<td>0.068</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>500</td>
<td>5.017</td>
<td>5.024</td>
<td>0.007</td>
<td>12 (minimum treat level)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>500</td>
<td>5.017</td>
<td>5.011</td>
<td>-0.006</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>500</td>
<td>5.017</td>
<td>5.022</td>
<td>0.005</td>
<td>22.5 (maximum treat level)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>500</td>
<td>5.017</td>
<td>5.019</td>
<td>0.002</td>
<td></td>
</tr>
</tbody>
</table>

*= Roller-to-Roller Dimension Pump Assembly Specification is 5.017 cm ± 0.001 cm

Treated fuel tests run 500 hrs with minimal wear – indicative of acceptable field performance

chipped roller shoe

Excessive wear occurred with untreated fuel.

Data courtesy of SwRI™
Concluding Remarks

• Fueling-up with unconventional SBF
 – Early use most likely in blends with petroleum fuel
 • Use of blends minimizes/eliminates fitness-for-use issues
 • Early acceptance by users critical when introducing new fuel
 – Strategic fueling flexibility would be enhanced by establishing the capability for freely interchangeable use of current SBF (JP-8) and unconventional SBF (not as a blended fuel)

• Determining fitness-for-use in existing equipment
 – Current SBF specifications evolved from history of use with petroleum-based fuels; are not performance-based specifications
 – An unconventional fuel may have properties meeting the chemical / physical property requirements found in these specifications, but not be fit-for-use