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ABSTRACT

An apparatus to study the generation of plasma in air was designed, fabricated,
and assembled. A 400-liter test cell was developed to study plasma in air which has a
pressure that can be varied from standard atmospheric pressure at sea level to 1 mTorr
at 300,000 ft. Plasma is generated by impact ionization of air due to bombardment by a
100-keV electron beam. Microwave diagnostics quantify electron number density and
optical diagnostics quantify ozone production. A particle in cell plasma code (MAGIC)
and an air-chemistry code are used to quantify beam propagation through an electron-
beam transmission window into air and the volumetric ionization rate within the test cell.
Sensors were developed to monitor beam current incident on a transmission window
and the resulting plasma formed in air on the transmission side of the window.
Diagnostics from multiple sensors are acquired simultaneously for studies of power
required to generate and maintain plasma in air on the timescale of 1 ms.
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| INTRODUCTION

The overall goal of investigating the power required to generate and sustain
electron-beam produced plasma in air was advanced with an apparatus designed to
study power and air chemistry issues. The apparatus consists of an electron-beam
source, a transmission window system, an air-plasma test cell, RF diagnostics, optical
diagnostics, and a data acquisition system. The apparatus progressed from concept,
specifications, component orders, assembly, testing, and refinement.

The overall investigation of electron-beam generated air plasma resulted in the
development of an air plasma test cell integrate with an electron beam source,
diagnostics, and an air-chemistry simulation code. This instrument and the associated
controls and diagnostics provide an apparatus to quantify air-plasma generation in air
with a pressure ranging from 1 mTorr to 760 Torr. At the start of this project there was
an empty laboratory. An air-plasma test cell was designed, fabricated, and installed.
An electron beam source was specified ordered and installed. To port the electron gun
into the test cell a transmission window and beam current monitoring system was
designed and installed. Beam propagation through the transmission window into air is
modeled using MAGIC, a PIC plasma simulation code from ATK Technologies. An air-
chemistry code is used to convert beam current estimates in the test cell to electron
densities and air species concentrations. RF diagnostics and an ozone detection
system were developed and installed.

Nonequilibrium plasma has been theoretically estimated by Vidmar (1990) to
require less power to generate and sustain than a plasma in thermal equilibrium. The
experimental work of Macheret et al (2001) for ambient air at 700 K, Adamovich (2001)
for optically pumped CO/Ar/O, and CO/Ar/N2 mixtures at 700 K, Yu et al (2002) for air at
2,000 K, and Stark and Schoenbach (2001) for air at 2,000 K consistently demonstrate
that a nonequilibrium plasma requires less power for bulk gas temperature significantly
above ambient. The electron beam air-plasma apparatus has the capability to generate
a nonequilibrium plasma for which the bulk gas remains at ambient temperature.

The DoD has found air plasma applications ranging from coating of implants,
plasma surgery, bio-decontamination, hydrodynamic flow control on aerodynamic
surfaces, supersonic shock-wave mitigation, plasma assisted combustion in aircraft
engines, RF effects, and agile plasma mirrors. These applications cover the range of
altitudes from sea level to 300,000 ft with electron densities from 10'° to 10"
electrons/cm®. Electron beam plasma generation is the most efficient system known
requiring an average expenditure of 34 eV per electron-ion pair. Preheating of air is
unnecessary and air temperature for short pulses remains at the ambient air
temperature. For large volumetric and airborne applications electron-beam ionization
can fill large volumes and large angle scattering in air provides a means of filling
irregular shapes and regions not directly exposed to the electron beam. The plasma
generated is generally nonequilibrium where the bulk gas temperature remains near
ambient and the electron temperature is many times larger.



Il TECHNICAL APPROACH

A. Air Plasma Test Cell

The air-plasma test cell was designed to facilitate a wide range of diagnostics and
accommodate 1mTorr to 760 Torr operation, as well as high vacuum to facilitate
calibration of the electron gun source and leak detection. The drawings in Fig. 1 and 2
quantify the design which anticipated a number of ports of different diameters positioned
on the midplane of the test cell. These ports are currently populated with equipment
devoted to RF diagnostics, laser absorption spectroscopy, emission spectroscopy,
ozone absorption spectroscopy, and mass spectroscopy. The installed test cell with
annotated specifications appears in Fig 3.
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Figure 1. Upper flange of test cell.
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Figure 2. Main body of test cell.

The port specifications noted in Fig 2 have evolved since the fabrication of the test
cell. RF diagnostics are between the ports at 0° and 180°, an a mass spectrometer is
being attached to the port at 270°. The cell sits on a sturdy stand with vacuum pumps
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Figure 3. Installed test cell with specifications.

directly below. An I-beam and chain-hoist system were installed in the air-
plasma laboratory to facilitate removal of the electron gun, lead shielding, and upper
flange, which together exceeded 700 Ibm.

B. Electron-Beam Source 3

An electron beam source was specified and procured from Kimball Physics of
Wilton, NH. The unit in Fig. 4 is a custom design and has now become a product
referred to as a EGH-8201 Electron Gun and EGPS-8201 power supply. The electron
gun is operated at an energy of 100 kV with a maximum beam current in excess of 20
ma and arbitrary pulse generation with 100 ns rise/fall time. In normal operation the end
of the electron gun is sealed off with a transmission window to keep the vacuum in the
electron gun below 107 Torr. Initial operation of the electron gun had a high level of
maintenance and repair as many components failed due to spurious current surges in
the electron gun while performing high-voltage conditioning. A problem arose at 50 kV
that necessitated return of a high voltage junction box to Kimball to replace a high-
voltage isolation transformer and associated components. Approximately 100 Ibm of
lead shielding is used around the perimeter of the electron gun and so reduces the
background radiation level to approximately twice background above the perimeter of
the 44 in upper flange. One meter further away from the flange are operating consoles
where the background radiation remains normal during operation.
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Figure 4. High-voltage rack and electron gun mounted to upper flange of test cell.

One major shortcoming of the EGH-8201 Electron Gun and EGPS-8201 power
supply is the beam current monitoring design, which is for steady state operation. For
microsecond and millisecond operation the Kimball current meters that monitor current
flow from a high-voltage power supply do respond quickly enough. For short pulses the
charge involved is a small fraction of the charge stored within the high-voltage cabling of
the system. A solution for real-time current monitoring is addressed in the next section.



C. Transmission Window

The porting of an electron beam from the source through a transmission window is
sketched in Fig. 5. The electron beam passes through a 60-mm aperture that defines
the maximum beam diameter downstream. The beam then impinges on a nickel mesh
with 98% transparency that is mounted in a Teflon insulator. Part of the beam is
stopped by the mesh and so provided a signal that is proportional to the beam current.
Most of the beam continues and passes through an aluminum honeycomb covered with
a thin aluminum foil. The foil honeycomb and O-ring seals (not shown in Fig. 5) are
compressed with an aluminum clamping ring with mounting bolts insulated from ground.
The overall signal associated with the foil window consists of the current stopped by the
foil and honeycomb plus the current associated with secondary electron generation on
the foil and honeycomb and the shunt resistance from the foil surface to ground
associated with the air plasma.
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Figure 5. Transmission window and current sensors.

The 2-mil nickel is visible in Fig. 6 as well as the honeycomb structure on the
opposite side of the Teflon insulator and the bottom side of an aluminum clamping ring.



The electrical connection for the mesh is made through the Teflon ring and sealed with
the brass electrode visible in Fig. 6. This assembly is turned upside down and a
transmission window foil is placed over the honeycomb and sealed with an O-ring
between the Teflon and the foil.

Figure 6. Mesh sensor mounted in Teflon insulator connected to brass feedthrough.

The 1-mil aluminum transmission window foil made from Alloy 1100-O shown in
Fig. 7 is held in place with an aluminum clamping ring which is bolted to the lower
surface of the upper flange in Fig. 1 and 3. The electron gun is mounted on the
opposite side of the upper flange and evacuated to a high vacuum for electron
acceleration. The honeycomb provides mechanical support against the loading due to
atmospheric pressure. The mechanical design has been tested with atmospheric
pressure loading for hundreds of hours without any sign of honeycomb failure.

Transmission window failures have occurred due to overheating the foil which
results in a pinhole leak. Aluminum foils of alloy 1100-O in thicknesses of 0.75 mil and
0.50 mil have been tried but stress related pinholes appeared several days after
evacuation. These failures suggest that a material with high tensile strength would
survive. Aluminum alloys 2024-T3, T4, T351, and T361 and 5052-H32, H34, H36, and
H38 have tensile strengths between 5 and 10 times that of alloy 1100-O. Obtaining
higher strength alloy foils is difficult.



Figure 7. Aluminum transmission window loaded with atmospheric pressure.

In operation the system is calibrated with the honeycomb and foil removed and a
graphite plate with a fluorescent coating placed on the bottom of the air-plasma test cell
and insulated from ground. The system is evacuated and pumped to approximately 1.5
x 107 Torr. The electron source is operated in a pulsed mode and the mesh voltage
and graphite plate signal developed across load resistors are monitored as a function of
electron source operating parameters: filament voltage and current. The graphite plate
captures all the current flowing through the mesh and the optical pattern on the graphite
plate confirms the beam is confined to a circular pattern on the plate.

The honeycomb and foil are installed. The mesh signal is then used to determine
the beam current incident on the honeycomb and foil. The subsequent propagation of
electrons through the foil into the test cell is modeled using a computational particle in
cell code.

D. MAGIC Modeling.

A particle in cell simulation program from ATK Mission Research commonly called
MAGIC was used to simulate the passage of electrons through the transmission window



foil and air in the test cell. The Appendix contains a chart of the modeling geometry and
several representative plots of beam propagation at 10 Torr and 150 Torr as well as
contour plots of beam current density as a function of depth into the test cell, see
Appendix A-2. The results of this simulation effort appear in Fig. 8 for a 10-ma electron-
beam current incident on the transmission window foil.
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Figure 8. Mid plane ionization rate, beam current, and radial distribution.

The volumetric ionization rate in Fig. 8 represents the peak ionization rate for a
radial distance r = 0.0 m. The formulas for the radial ionization rate R(r), in electron-ion
pairs per m’-s, and the radial current distribution J(r) in A/m? appear in Fig. 8. The
quantity dE/ds is the energy loss in aluminum in J-m?/kg, p is the density of aluminum in
kg/m®, (E)) is the average energy to produce an electron-ion pair in air in J, e is the
electron charge in C, J, is the maximum current density in A/m?, and r, is the 1/e radius
of the current density in m. An exponential radial distribution was deduced from contour
plots on the mid plane, such as the ones in the Appendix. The Gaussian electron-beam
radial profile incident on the transmission window is transformed into non-Gaussian
radial profile, because of electron scattering in the foil. At the mid plane of the test cell
the contour-plot patterns in Appendix A have degraded to an extent that a Gaussian
pattern is no longer present. An exponential profile is used instead.

E. RF Diagnostics.

A microwave absorption and phase measurement system was developed and
installed in the air-plasma test cell within two large 8-inch CF nipples. The hardware to
adapt the horns ‘o the nipple is sketched in Fig. 9 and one of the nipples is shown in
Figs. 3 and 4. D=tails of the absorption and phase measurement technique are in
Vidmar et a/ (2006). The system operates at 10 GHz. Direct reflections from the curved
cell wall proved to produce a strong reflection that adds to the direct (one-pass) signal
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Figure 9. RF horn mounting fixture detail.

propagating through the test cell.

A 2-ft square panel of laminate absorber was used with a hole cut in the center for
each of the 8-inch nipple and RF horn assemblies. The magnitude of signal reduction is
evident in Fig. 10, as measured by a network analyzer operating in the time domain.
The primary peak in Fig. 10 is the main signal propagating through the test cell. This
peak has some siructure that is due to minor reflections of cabling and connectors. The
first peak 33.6 dB below the direct sign is due to reflection from the curved surface of
the test cell covered with laminate absorber. The 33.6 dB signal is present in the phase
detector along with the direct signal, which limits the phase resolution to approximately
1.2 deg.
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F. Ozone Detection.

The generation of ozone is a major byproduct of impact ionization of air with an
electron beam. lIis concentration and rate of increase provides data on the O
concentration, because the theoretical production rates of O; depends on the O
concentration. Measuring ozone is easier than measuring O directly. A White cell, as
shown in Fig. 11, monitors the light passing through a 25 nm wide band-pass filter
centered on 253.7 nm. This filter is close to the peak of ozone absorption. Figure 12
shows the detector and filter hardware details.

Ozone Test
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Quartz R Pressure
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Glass
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_____ LIGHT BEAM BATH

Figure 11. White cell mounted in air-plasma test cell for ozone measurement.
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G. Multichanne! Simultaneous Data Acquisition.

The operation of the air-plasma test cell involves the simultaneous generation of
an electron beam and monitoring sensors to record subsequent information as noted in
Table 1. A short tricger pulse is used to simultaneously trigger two 4-channel digital
sampling oscilloscopes that monitor the experiment for a few milliseconds. The mesh
sensor voltage and transmission window signal quantify beam current and via MAGIC
the ionization rate on the mid plane. The RF propagation path and optical signal paths
cross the plasma on the mid plane of the test cell. The RF signals monitor both power
absorption and 10 GHz phase from an I-Q detector. The ozone detector monitors light
absorption and is uscd to quantify ozone production. In addition to these sensors, a
spectrometer monitors optical emissions of nitrogen and will eventually provide real-time
data.

Table 1 Multichannel diagnostics.

Channel 1 Trigger Pulse to Electron Gun

Mesh Voltage to Monitor Beam Current
Transmission Window Foil

RF Power Absorption

RF I-Channel Phase

RF Q-Channel Phase

Ozone Signal

Nk WwiN

11



Il RESULTS
The major research results are the following:
e An experimentzal test facility consisting of a 100-keV electron gun and a 400-liter air-
plasma test cell wi'h microwave, optical, and electronic diagnostics has been developed

for studies of air-p/asma generation at pressures from 1 mTorr to 760 Torr.

* Preliminary mezsurements have been made with all sensors and improvements to
the infrastructure associated with reliable electron source operation are progressing.

12
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MAGIC TEST CELL GEOMETRY

The air-plasm = test cell and electron beam transmission window were modeled in
Cartesian coordinates. The side view in Fig. A1 is a two dimensional, y-z plot for x = 0
cm. The electron bcam enters a vacuum section 6 cm in diameteratz=0cm. A
Teflon insulator supports an aluminum clamping ring connected to ground via a load
resistor. The trans nission window is at z =5 cm. The mid plane is half way into the
tank and has z = &' 5 cm (12 inch).
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Figure A1. Geometry of air-plasma test cell used for MAGIC modeling.
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MAGIC DIAGNOSTIC DATA
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Figure A2. Propagation in 10 Torr air.
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Figure A3. Propagation in 150 Torr air.
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Fiqure 5. Electron beam current density on plane z = 10.51 cm.
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Figure AL Electron beam current density on mid plane z = 30.56 cm.
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Figur: A7. Electron-beam energy versus distance at 10 Torr.
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Figurz A8. Electron-beam current versus distance at 10 Torr.



