Award Number: DAMD17-03-1-0203

TITLE: Clinical and Molecular Consequences of NF1 Microdeletion

PRINCIPAL INVESTIGATOR: Karen Stephens, Ph.D.

CONTRACTING ORGANIZATION: University of Washington
Seattle, Washington 98105-6613

REPORT DATE: May 2007

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Clinical and Molecular Consequences of NF1 Microdeletion

Karen Stephens, Ph.D.
E-Mail: millie@u.washington.edu

University of Washington
Seattle, Washington 98105-6613

We have developed rapid and sensitive assays for the detection and mapping of both the common 1.4 Mb NF1 microdeletion and novel microdeletions; our subjects carrying microdeletions have contributed to diverse collaborations including development of a mouse model of plexiform neurofibroma tumorigenesis and the conservation of recombination hotspots. Our hypothesis that genome instability occurs during NF1-tumorigenesis continues to be supported by our findings. First, somatic instability leading to uniparental isodisomy and homozygous NF1 inactivation in NF1-related leukemias, which add to our understanding of leukemogenesis and identifies chromosomal regions were somatic recombination may be favored. Second, we localized neurofibromin to the centrosome in normal and malignant epithelial cells. Third, our preliminary observations show that centrosomes appear abnormal in NF1-derived neurofibromas, suggesting a potential new function for neurofibromin in normal centrosome function and in maintaining genome stability.
Table of Contents

Introduction .. 4

Body .. 4

Key Research Accomplishments .. 9

Reportable Outcomes ... 10

Conclusions .. 10

References .. 12

Appendices ... 13

Contents of appendices
Manuscripts attached:
 In our last progress report, this paper was submitted as a preprint. The final publication is attached.
 In our last progress report, this paper was submitted as a preprint. Electronic proofs of the final publication are attached; pdfs of chapters were not provided to the authors. The proofs have all the content of the final publication.
Introduction

About 5-10% of patients with neurofibromatosis type 1 (NF1) are heterozygous for a contiguous gene deletion that includes the entire *NF1* gene. Although limited in scope, previous studies provide compelling evidence that microdeletion patients show early onset and large numbers of cutaneous neurofibromas, and a higher frequency of plexiform neurofibromas, malignant peripheral nerve sheath tumors, and other solid tissue malignancies. We propose to perform systematic, comprehensive clinical and molecular studies of subjects with *NF1* microdeletion to examine the gene(s) responsible for the severe tumor phenotype of microdeletion patients. The specific aims of this research are 1) To determine the clinical spectrum, genotype/phenotype correlations associated with heterozygosity for an *NF1* microdeletion. Genomic DNA of NF1 subjects will be examined by a multi-step screening protocol to identify germline microdeletion carriers, to map the extent of each deletion. We will correlate molecular data with the results of a comprehensive clinical evaluation of deletion and nondeletional NF1 control subjects. 2) To determine if cutaneous neurofibromas of germline *NF1* microdeletion patients show evidence of genomic instability or homozygous *NF1* microdeletion that may contribute to the early onset of neurofibromagenesis. Primary neurofibroma tissue from microdeletion patients will be analyzed to determine the presence and nature of 2nd hit mutations and whether these cells exhibit characteristics of genomic instability. 3) To screen candidate modifier genes in the *NF1* microdeletion region for mutations in subjects with early onset cutaneous neurofibromas who are not carriers of an *NF1* microdeletion. 4) To employ the newly developed FLASH technology to interrogate the *NF1* microdeletion region and construct a physical map that will determine, the sequence of all of the genes, unique noncoding regions, and paralogs (including the putative *NF1* duplicated gene) of the *NF1* microdeletion region.

Body

The original STATEMENT OF WORK and progress to date described below.

Preface: This is a progress report for year 4 (rather than a final report) because a request for a no-cost extension is under consideration by Dr. Naba Bora and the staff of the CDMRP Neurofibromatosis Program. Earlier this year, I discussed with Dr. Bora imminent changes in my academic appointment at the University of Washington, which involved transfer to a new department and new responsibilities that are outside of the field of neurofibromatosis basic research. At Dr. Bora’s request, and our mutual desire that the remaining funds in this grant be used to advance neurofibromatosis research, I submitted a a no-cost extension, along with a slightly modified SOW and subcontract of research activities to the University of Florida, laboratory of neurofibromatosis expert Dr. Margaret Wallace. This request is under consideration. Therefore, this progress report will summarize progress in my laboratory from April, 2006 until Jan, 2007 when my neurofibromatosis bench experiments ceased. Since that time data analysis and manuscript writing activities are on-going.

Year 1, Months 1-8: Statement of Work in original grant application (underlined) and progress to date:

- Develop a clinical database, train personnel to use.
 Completed and described in previous progress reports.
- Design and test clinic evaluation forms for patient assessment.
 Completed and described in previous progress reports.
• Design STS primers for interrogation of fosmid library.
Completed. Our analyses of 4 different data sources of genomic sequences (detailed in last year’s progress report) did not support the presence of tandem NF1 duplications at 17q11.2. Therefore, there is no valid scientific basis for further work on aim #4 (a project that was to be supported by the University of Washington Genome Center and performed at no cost to this grant).

Years 1-2 Statement of Work in original grant application (underlined) and progress to date:

• Enroll new patients in the study.
Completed. No new patients will be enrolled. Existing pathological specimens will be analyzed. Enrollment of patients was significantly delayed by the time required for the Army HSRRB to approve our application (submitted July 2003, approved February, 2004) and has remained a delaying factor in our research. We currently have enrolled about 50 subjects. These are in addition to existing DNAs from other previously ascertained patients and anonymous DNAs. If the no-cost extension and subcontract to the University of Florida is granted, the number of patients available for the study will increase significantly by the large cohort of NF1 patients ascertained by Dr. Wallace.

• Screen for NF1 microdeletion patients, map extent of deletions, develop new deletion junction assays as needed.
Completed. In last year’s progress report, I described 3 types of assays that were developed and validated.

1) PCR-based assays to detect the recurrent 1.4 Mb deletions at PRS1 and PRS2 recombination hotspots.
These two assays rapidly detect the majority (~70%) of NF1-REP-mediated microdeletions. Therefore these data and the assays we developed can be used for rapid detection and diagnosis of NF1 microdeletion carriers in either the research or clinical setting. A manuscript of these data is being revised by Dr. Stephens at this time. These data were originally submitted (to separate journals) for publication concurrently with the Forbes et al (6) manuscript. These manuscripts “crossed” in the mail, with one accepted and one rejected at their respective journals. Forbes et al. was accepted and published; however, because it summarized some of these, we must now repackage these data so they will complement, and not repeat the data described in Forbes et al (6).

New multi-center collaboration to study recombination hotspots in NF1 microdeletion subjects identified by the above assays.
DNAs of the subjects with recombination breakpoints at PRS1 and PRS2 were shared with the laboratory of Dr. Eric Legius (University Leuvin, Belgium) to contribute to a large study analyzing the conservation of hotspots in the REPs. This study found evidence for shared hotspots of recombination among the REPs. REP19, originally discovered by us on chromosome 19p (5), contained hotspots in the same place as the nonallelic recombination hotspots in NF1-REP-1 and NF1-REP-M that flank the NF1 gene. These data are detailed in De Raedt T, Stephens M, Heyns I, Brems H, Thijs D, Messiaen L, Stephens K, Lazaro C, Wimmer K, Kehrer-Sawatzki H, Vidaud D, Kluwe L, Marynen P, Legius E. Conservation of hotspots for recombination in low-copy repeats associated with the NF1 microdeletion. Nature Genet 38:1419-1423, 2006 (see Appendix for pdf of publication).

New application of assays: These assays facilitated collaboration between us and with Drs. Margaret Wallace and David Muir (University of Florida), which resulted in development of a model for the study of plexiform neurofibroma tumorigenesis. In this research an NF1 tumor-derived Schwann cell line was
chosen for xenografts into the peripheral nerve of scid mice. Our deletion specific assays were instrumental in screening NF1 tumor-derived cell lines in order to make a judicious choice on the one chosen for xenograft studies. The model facilitates testing of potential therapeutic interventions in a relevant cellular environment. This work is described in the recently published article Perrin GQ, Fishbein L, Thomson SA, Thomas SL, Stephens K, Garbern JY, Deries GH, Yachnis AT, Wallace MR, Muir D. Plexiform-like neurofibromas develop in the mouse by intraneural xenograft of an NF1 tumor-derived Schwann cell line. J Neurosci Res 85:1347-1357, 2007 (see Appendix for pdf of article).

2) Assays to detect microdeletions at unique regions, not at the recombination hotspots. These assays employed real-time competitive PCR to measure gene dosage. Studies completed, with disappointing results. In last year’s progress report we gave an extensive and detailed description of a series of new quantitative PCR (qPCR) assays at 5 loci that we developed to detect NF1 regional deletions. As detailed last year, every aspect of these assays was sound: reproducibility and low intra- and inter-assay variation on bona fide disomic and monsomic NF1 patients. Importantly, the approximated 95% confidence limits (measured as ± 2 S.D.) for the range of normal and deleted values did not overlap. Inter-assay variations at each locus demonstrated distinct value ranges for normal and deleted (i.e., disomy and monosomy). These assays were used to screen >250 patients for novel deletions in/near NF1 and about 10 positives were identified. Surprisingly, the putative deletions were not confirmed by FISH and/or polymorphic marker analysis (including family members when available). We spent considerable time and energy last summer and fall trouble-shooting and trying to rescue the assays. After considerable work repeating assays, redesigning assays, repurifying template DNA, etc., we have come to the final, but difficult, conclusion that for reasons that cannot be determined, these assays are not reproducible nor reliable when applied on a large scale to unknown patient samples. In the interim, new techniques have been developed by others, such as multiplex ligation probe amplification that have been successfully applied to determine copy number at the NF1 locus. Therefore, it is unreasonable to spend further resources on this assay. Failure of this assay was a major disappointment for the laboratory.

• Ascertain NF1 subjects that show early onset cutaneous neurofibromas that do not carry microdeletions. To date we have identified 5 such patients, including one family that appears to have early onset cutaneous neurofibromas. I will no longer be enrolling patients at the University of Washington for these studies. However, if the no-cost extension and subcontract of research to the University of Washington is approved, Dr. Wallace will combine her subjects of similar phenotype with our 5 subjects and continue this work. Our combined subjects will make this a more robust study.

• Determine conditions for immunohistochemistry, test and choose optimal antibodies. This work relates to Aim #2 - To determine if cutaneous neurofibromas of germline NF1 microdeletion patients show evidence of genomic instability. There are several types of genomic instability that can be detected in cells, and an important type is centrosome abnormality, which leads to abnormal mitoses and consequent losses and gains of chromosomes. We propose that this might be a mechanism in NF1-related tumorigenesis because

1) As are detailed in our progress report last year, we found that neurofibromin localizes to the centrosome in human primary keratinocytes, several simple epithelial cell lines, and mouse 3T3 fibroblasts. To examine more pathologically-relevant cells, we obtained normal cultured Schwann
cells (complements of Dr. David Muir, University of Florida) and found no nuclear localization of neurofibromin. A few months ago, we extended this study to examine primary cultured Schwann cells from a nonlesional, nontumor sciatic nerve site obtained at autopsy of a subject with neurofibromatosis, who was heterozygous for the 1.4 Mb NF1 microdeletion and died of an MPNST (complements of Dr. Margaret Wallace). These cultured cells also did not have centrosomal-neurofibromin.

- 2) Centrosome abnormalities in size, number, and structure are hallmarks of many solid and hematologic malignancies and pre-malignant neoplasms (10-13). In last years’ progress report, we documented neurofibromin co-localization to the abnormally structured and clumped multi-centrosomes in squamous cell carcinoma cell lines. More importantly, we have documented and confirmed the presence of abnormally structured and clumped multi-centrosomes in one dermal neurofibroma from an NF1 patient with a ~1 kb microdeletion (see figure below). This observation poses several important questions, which will be addressed in experiments incollaboration with Dr. Margaret Wallace, if the no-cost extension and subcontract to the University of Florida is approved. The questions are whether other neurofibromas (from NF1 deletion and/or intragenic mutation patients) also show abnormal and multipolar mitoses and in particular, whether neurofibromin localizes to the abnormal centrosomes. The centrosome structure will be important to examine in MPNST tissues and cell lines, particularly because they show significant aneuploidy, which could be direct result of centrosome dysregulation. We will share our antibodies, and tumor blocks, with Dr. Wallace, who also has MPNST cells from NF1 patients and primary tumors that will extend our small collection to make the study more robust. She has experience in immunofluorescence and neurofibrom antibodies and has published previously in this area. These studies will provide new insight into neurofibromagenesis and transition to malignancy and have the potential for identifying a tumorigenesis a marker for the transition from the benign to the malignant process.

![Immunofluorescence of an NF1-related neurofibroma showing a DAPI (blue) stained nucleus and FITC (green) stained centrosomes (anti-γ-tubulin), which are abnormal in number and arrangement. Note that the central cell in the left figure gives the appearance of being in early metaphase. If so, the centrosomes would be expected to lead to a multi-polar spindle and abnormal chromosome segregation.](image)

- **Genomic instability during leukemogenesis in children with NF1.** Completed. Related to our work on genomic instability in NF1 solid tumors, we recently published our discovery of interstitial uniparental disomy as a novel mechanism of genomic instability during

In summary, these data suggest that the cases with interstitial uniparental isodisomy arose in a leukemia-initiating cell by double homologous recombination events at intervals of preferred mitotic recombination. Homozygous inactivation of NF1 favored outgrowth of the leukemia-initiating cell. Our studies demonstrate that LOH analyses of loci distributed along the chromosomal length along with copy-number analysis can reveal novel mechanisms of LOH that may potentially identify regions harboring “cryptic” tumor suppressor or modifier genes whose inactivation contribute to tumorigenesis.

Year 2 Statement of Work in original grant application (underlined) and progress:

• Screen subjects with early onset cutaneous neurofibromas that are heterozygous at NF1 for somatic mosaicism for an NF1 microdeletion. The cells are ready and will be analyzed by FISH. These experiments were delayed due to the transition to my new academic appointment. Assuming the no-cost extension and subcontract are granted, Dr. Wallace and I will establish a collaboration with Dr. Karen Swisshelm, a cytogeneticist at the University of Colorado, to perform FISH analyses to rule out mosaicism for an NF1 microdeletion.
• Construct STS-content maps, sequence fosmids, and construct haplotypes. This is part of Aim #4, which is not reasonable to pursue as described above.
• Obtain cutaneous neurofibromas from NF1 microdeletion adults. To date we have obtained neurofibromas from two microdeletion patients, including multiple neurofibromas from one of the patients. In addition, we have obtained MPNST from one of these patients. Samples are frozen in OCT. These will be examined by immunofluorescence for centrosome abnormalities. These are the samples that Dr. Wallace will analyze. No more tumor specimens will be obtained from patients at the University of Washington for these studies.
• Perform immunohistochemistry and nucleic acid extraction of neurofibromas. Results of immunohistochemistry are described above. DNA has been purified from neurofibromas; our specimens will be combined with those of Dr. Wallace to increase robustness of the studies.
• Assemble data on clinical spectrum of NF1 microdeletion patients; write manuscript.
We have not identified sufficient new deletion patients to date. Our collaborator, Dr. Mautner in Germany, has a large patient population and many NF1 deletion patients. I will share the phenotypic data and deletion data of the few newly-identified patients with Dr. Mautner (anonymously as approved by the IRB) to be combined with his data. Hopefully, our data will contribute to his study and conclusions. No further work will be done on this objective.

Year 3 Statement of Work in original grant application (underlined) and progress:

• Screen JJAZ1 gene for inactivating mutations in subjects with early onset cutaneous neurofibromas who are heterozygous at NF1.
We developed PCR and sequencing primers and have completed sequencing of the JJAZ1 gene in 5 patients with early onset cutaneous neurofibromas who are heterozygous for the NF1 gene. These data are currently being analyzed by Dr. Stephens. She has setup the reference files and other documentation necessary to employ the MutationSurveyor software program that rapidly detects mutations. We will share our primers and sequencing protocol with Dr. Wallace, who will extend this study by sequence analysis of JJAZ1 in DNAs of subjects of similar phenotype in her cohort.
• Continue to obtain cutaneous neurofibromas from NF1 microdeletion adults.
No more tumors will be collected. All patient recruitment and specimen collection will be terminated at
the University of Washington. We have a pending modification to our IRB to continue analyzing existing
pathological samples, but to terminate patient recruitment. Upon approval, appropriate similar documents
will be filed with the Army IRB.
• Continue to perform immunohistochemistry of neurofibromas, MPNST, and tumor cells.
Experiments will continue in the laboratory of Dr. Margaret Wallace, if the pending subcontract is
granted.
• Perform microsatellite instability studies on neurofibromas tissue.
This study was not complete at the University of Washington. We will send the primers and protocols and
DNA specimens to Dr. Wallace, who will extend the study by including appropriate specimens from her
cohort.
• Identify 2nd hit NF1 mutations in neurofibroma.
Dr. Wallace will complete this aim if time allows. However, it is not the most important of the objectives
that remain.
• Continue fosmid analysis of NF1 region; construct new libraries if needed.
This is part of Aim #4, which our data described above indicate is not necessary to pursue.

Year 4 Statement of Work in original grant application (underlined) and progress:
• Submit clinical information on NF1 microdeletion patients to the National Neurofibromatosis
 Foundation International Database.
Dr. Stephens is assembling the phenotypic data in an appropriate format to submit to Dr. Friedman.
• Analyze data for phenotype/genotype correlations and prognostic utility.
Will not be completed. Phenotype/genotype data from our patients will be shared with Dr. Mautner to
contribute to his continuation of these studies.
• Analyze the complete sequence of the NF1 microdeletion region for new genes and paralogs.
This is part of Aim #4, which our data described above indicate is not necessary to pursue.
• Perform comparative mapping of final human sequence with that of the mouse.
This is part of Aim #4, which our data described above indicate is not necessary to pursue. Furthermore
this work has been completed and published by us and our collaborators (15).

Key Research Accomplishments for this year
• Consistent with our hypothesis of genomic instability during NF1-related tumorigenesis, we have
 shown that loss of NF1 heterozygosity in NF1-related leukemias occurs primarily by a novel
 mechanism of interstitial uniparental disomy with clustered breakpoints. This work has now been
 published, see reprint in Appendix. (. Stephens K, Weaver M, Leppig KA, Maruyama K, Emanuel
 PD, Le Beau MM, Shannon KM. Interstitial uniparental isodisomy at clustered breakpoint intervals is
• Consistent with our hypothesis of genomic instability during NF1-related tumorigenesis, we have
 demonstrated that neurofibromin localizes with the centrosome in normal primary cells, cell lines, and
 malignant cell lines mostly of epithelial origin. We also demonstrated that Schwann cells from
 normal nerves, and from the nonlesional nerve of an NF1 patient with MPNST, do not have
 neurofibromin in the centrosomes. However, because of cellular interactions in the tumor
 microenvironment, this does not rule out a role for either centrosome dysregulation or
 neurofibromin/centrosome interactions in tumors of NF1 patients.
• Our preliminary data suggest that cells (of unknown type) in a neurofibroma from an NF1 microdeletion patient have abnormal centrosome regulation, as demonstrated by structurally abnormal and/or multipolar mitoses. This suggests a possible role for centrosome dysregulation in neurofibromagenesis. This discovery also poses the new and exciting possibility that neurofibromin haploinsufficiency or deficiency in some tumor cell types may be contributory to centrosome dysregulation and aneuploidy during tumorigenesis.

Reportable Outcomes

Manuscripts (see Appendices)

Presentations

Conclusions
We have developed rapid and sensitive assays for the detection and mapping of both the common 1.4 Mb NF1 microdeletion and novel microdeletions. These assays facilitated identification of patients of the same genotype for basic research on recombination hotspots and clinical studies on genotype/phenotype and genomic instability during tumor development. We have collected tumors from NF1 microdeletion carriers, which are now being examined for mutations and genomic instability. We published a new mechanism of genomic instability for NF1-related leukemias that involves interstitial uniparental isodisomy at clustered breakpoints in the ancestral leukemic cell. These data suggest somatic recombination is favored at specific chromosomal regions, which leads to neurofibromin-deficient tumor ancestral cells(s). We have extended our investigation on genomic instability of primary NF1-related neurofibromas, which suggest that centrosomes are abnormal in number and structure; although the type(s) of cells with these defects is unknown. These data, along with our data showing neurofibromin localizes to the centrosome in at least some primary cells and cell lines, suggests neurofibromin may have a normal function in centrosome regulation, which is disrupted during tumorigenesis. We are currently analyzing more data regarding genomic instability and plan to continue this work in collaboration with Dr. Margaret Wallace. So what? We have made significant contributions to our understanding of
germline and somatic rearrangements that contribute to NF1: Assays for detection of germline NF1 microdeletions were developed. The novel mechanism of somatic NF1 loss in NF1-related leukemias add to our understanding of leukemogenesis and identifies chromosomal regions were somatic recombination may be favored, which could have implications for tumorigenesis of solid neoplasms. The localization of neurofibromin to the centrosome in at least some cells, along with the observation that centrosomes appear abnormal in NF1-related neurofibromas, implicates neurofibromin in normal centrosome function and in maintaining genome stability. These observations will be critical to follow up in pathologically-relevant cells and in tumors.
REFERENCES

Appendices
Interstitial uniparental isodisomy at clustered breakpoint intervals is a frequent mechanism of \textit{NFI} inactivation in myeloid malignancies

Karen Stephens, Molly Weaver, Kathleen A. Leppig, Kyoko Maruyama, Peter D. Emanuel, Michelle M. Le Beau, and Kevin M. Shannan

To identify the mechanism of loss of heterozygosity (LOH) and potential modifier gene(s), we investigated the molecular basis of somatic \textit{NFI} inactivation in myeloid malignancies from 10 children with neurofibromatosis type 1. Loci across a minimal 50-Mb region of primarily the long arm of chromosome 17 showed LOH in 8 cases, whereas a less than 9-Mb region of loci flanking \textit{NFI} had LOH in the remaining 2 cases. Two complementary techniques, quantitative polymerase chain reaction (PCR) and fluorescence in situ hybridization (FISH), were used to determine whether the copy number at loci that showed LOH was 1 or 2 (ie, deleted or isodisomic). The 2 cases with LOH limited to less than 9 Mb were intrachromosomal deletions. Among the 8 leukemias with 50-Mb LOH segments, 4 had partial uniparental isodisomy and 4 had interstitial uniparental isodisomy. These isodisomic cases showed clustering of the centromeric and telomeric LOH breakpoints. This suggests that the cases with interstitial uniparental isodisomy arose in a leukemia-initiating cell by double-homologous recombination events at intervals of preferred mitotic recombination. Homozygous inactivation of \textit{NFI} favored outgrowth of the leukemic-initiating cell. Our studies demonstrate that LOH analyses of loci distributed along the chromosomal length along with copy-number analysis can reveal novel mechanisms of LOH that may potentially identify regions harboring “cryptic” tumor suppressor or modifier genes whose inactivation contributes to tumorigenesis. (Blood. 2006;108:1684-1689)

© 2006 by The American Society of Hematology

\textbf{Introduction}

Tumor suppressor gene (TSG) inactivation commonly occurs by sequential somatic inactivation of both alleles or, in individuals who inherit a germline mutation, by a somatic mutation in the single normal homolog. In both groups of patients, somatic inactivation is frequently associated with loss of heterozygosity (LOH) at the TSG locus and at flanking loci.1,2 Defining the minimal chromosomal region with LOH in a collection of tumors has been a successful strategy for mapping and cloning TSGs. LOH can occur by multiple mechanisms as demonstrated by the extensive analyses of retinoblastomas, which identified \textit{RB1} intragenic deletions, segmental chromosomal deletions, loss of the entire chromosome, or mitotic recombination.3,4 While hundreds of TSGs have been identified, LOH studies typically focus on the TSG and/or closely flanking loci. For most TSGs, remarkably little is known about the extent and underlying mechanism(s) of LOH in tumor tissues.

In this study, we sought to examine the extent and mechanism of LOH in myeloid leukemias from children affected with neurofibromatosis 1 (\textit{NFI}). The gene responsible for this disorder, \textit{NFI} at chromosome band 17q11.2, encodes neurofibromin, a GTPase-activating protein that negatively regulates the biochemical activation of p21ras (Ras) family members (reviewed in Boguski and McCormick5 and Donovan et al6). Germline \textit{NFI} mutations cause NF1, a dominant familial cancer syndrome that affects about 1 in 4000 people. Clinical features of NF1 include neurocutaneous abnormalities, learning disabilities, and a predisposition to specific benign and malignant tumors (reviewed in Friedman and RICCARDI7). Children with NF1 are at a markedly increased risk of developing myeloid malignancies, particularly juvenile myelomonocytic leukemia (JMML).8 JMML is an aggressive myeloproliferative disease (MPD) characterized by monocytosis, thrombocytopenia, splenomegaly, and by malignant infiltration of the skin, lymph nodes, lungs, liver, and other organs (reviewed in Arico et al9 and Emanuel et al10). Together, the biochemical activity of neurofibromin and the dominant cancer predisposition seen in affected persons suggests that \textit{NFI} functions as a TSG. Indeed, LOH at the \textit{NFI} locus occurs in JMML and in other NF1-associated cancers (reviewed in Side and Shannan11). Similarly, tumorigenesis in heterozygous \textit{NFI} mutant mice is associated with loss of the wild-type \textit{NFI} allele.12,13 Consistent with the Knudson model of
familial cancer genes, tumors from individuals with familial NF1 invariably show loss of the allele inherited from the unaffected parent (reviewed in Side and Shannon). Somatic intragenic NF1 mutations have been identified in primary neoplasms, (reviewed in Steffen) providing compelling evidence that functional inactivation of NF1 is central to tumorigenesis. Deregulated Ras signaling has been reported in tumors from NF1 patients and NF1 mutant mice. These data are consistent with the idea that the tumor suppressor function of NF1 is related to the ability of neurofibromin to negatively regulate Ras output (reviewed in Side and Shannon, Cichowski and Jacks, and Dasgupta and Gutmann).

In the course of investigating the extent and mechanism of LOH at the NF1 locus in myeloid malignancies, we unexpectedly identified interstitial isodisomy for a large segment of chromosome 17 as a frequent underlying genetic mechanism. Remarkably, the LOH breakpoints clustered within centromeric and telomeric marker intervals in these leukemias. To our knowledge, this is the first report of interstitial isodisomy as a frequent mechanism of somatic TSG inactivation. These data have implications for uncovering novel TSGs and for understanding pathogenic mechanisms that contribute to the development of hematopoietic malignancies as well as solid tumors.

Patients, materials, and methods

Patients

Clinical descriptions, LOH, and mutation analyses of the NF1 gene have been reported for most of the patients. Selected demographic and laboratory data are summarized in Table 1. Additional patient characteristics from previous reports are in Table S1, available on the Blood website (see the Supplemental Materials link at the top of the online article). Study procedures involving human subjects were approved by the University of California at San Francisco (UCSF) Committee for Human Research. Informed consent was provided according to the Declaration of Helsinki.

NF1 gene dosage assay

This assay measures the copy number of NF1 exon 32 by quantitating polymerase chain reaction (PCR) amplicons relative to those of a competitively amplified disomic control locus. Validation of the assay on nonmalignant DNA demonstrated that NF1 dosage gave dosage values of 0.98 ± 0.03 SD, while monosomy gave values of 0.45 ± 0.04 SD (SD indicates standard deviation). A range involving 2 SD was used to predict gene copy number (Table 1, † footnote). Briefly, the assay is a quantitative, competitive PCR adapted from the method of Celis et al. Assay conditions are available upon request.

FISH

Metaphase chromosome preparations of immortalized lymphoblastoid cells from patient 1 were prepared and hybridized as described previously. The bacteriophage P1 probe P1-12 contains approximately 55 kb of sequence from NF1 intron 27. Bacterial artificial chromosome (BAC) clone 1000G221 (17q25) was identified by hybridization of D17S928 agranulocytes to filter arrays of the RPCI-11 human male BAC library, segment 4 (Roswell Park Cancer Institute, Buffalo, NY). Hybridization signals were detected using a commercial system (Vector Laboratories, Burlingame, CA). Chromosomes were banded using Hoechst 33258-actinomycin D staining, counterstained with propidium iodide, and signals visualized by fluorescence microscopy using a dual-band pass filter (Omegaa, Bättchelor, VT). Images in Figure 2A-B were visualized using a Zeiss Axioskop 2 plus microscope (Carl Zeiss, Thornwood, NY) equipped with a 100×/1.2 numeric aperture (NA) oil objective. Images were acquired using Spot software version 3.5.9 (Diagnostic Instruments, Sterling Heights, MI) and were processed using Adobe Photoshop software (Adobe Systems, San Jose, CA).

Cryopreserved bone marrow samples were thawed and cultured at 1 × 10⁶ cells/mL for 24 hours (90% RPMI 1640/10% fetal bovine serum, 100 U/mL penicillin, 100 μg/mL streptomycin, and 10 mM HEPES) at 37°C in 95% air/5% CO₂. Following incubation, the cells were exposed to hypotonic KCl (0.75 M for 8 minutes at 37°C), fixed in absolute methanol-glacial acetic acid (3:1), and air-dried on slides. NF1 probes were P1 bacteriophage clone P1-9, which spans approximately 65 kb of the NF1 gene, including exons 3-11, and clone P1-12 (Centromere-specific probes for chromosomes 7 and 17 (CEP7-Spectrum Green and CEP17-Spectrum Green; Abbott Molecular, Abbott Park, IL), and the P1-derived artificial chromosome (PAC) clone P263P1 (Genome Systems, St Louis, MO) were hybridized as controls. P263P1 was isolated by screening the PAC library using primers for D5S479, and contains an insert of 70 kb derived from 5q31. Labeled probes were prepared by nick-translation using Bio-11-dUTP (Enzo Diagnostics, New York, NY) or digoxigenin-11-dUTP (Boehringer Mannheim, Indianapolis, IN). Interphase fluorescence in situ hybridization (FISH) was performed as described previously. Hybridization of

Table 1. NF1 gene dosage in bone marrows of children with NF1 and malignant myeloid disorders

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Sex</th>
<th>Age at onset, mo</th>
<th>Diagnosis</th>
<th>NF1 mutation</th>
<th>LOH at NF1 locus</th>
<th>NF1 gene dosage value†</th>
<th>Predicted NF1 gene copy no.‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>9</td>
<td>MPS</td>
<td>Paternal</td>
<td>Maternal</td>
<td>0.99</td>
<td>Disomy</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>10</td>
<td>AMI</td>
<td>Paternal</td>
<td>Maternal</td>
<td>0.93</td>
<td>Disomy</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>24</td>
<td>Monosomy 7</td>
<td>Unknown</td>
<td>Maternal</td>
<td>0.96</td>
<td>Disomy</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>14</td>
<td>JMML</td>
<td>Maternal</td>
<td>Maternal</td>
<td>0.96</td>
<td>Disomy</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>30</td>
<td>JMML</td>
<td>Maternal</td>
<td>Maternal</td>
<td>0.94</td>
<td>Disomy</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>10</td>
<td>Monosomy 7</td>
<td>Maternal</td>
<td>Maternal</td>
<td>0.97</td>
<td>Disomy</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>15</td>
<td>Monosomy 7</td>
<td>Paternal</td>
<td>Maternal*</td>
<td>0.90</td>
<td>Disomy</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>18</td>
<td>MPS</td>
<td>Paternal</td>
<td>Maternal*</td>
<td>0.85</td>
<td>Disomy</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>60</td>
<td>JMML</td>
<td>Maternal</td>
<td>Maternal</td>
<td>0.57</td>
<td>Monosomy</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>19</td>
<td>Monosomy 7</td>
<td>De novo</td>
<td>Maternal*</td>
<td>0.48</td>
<td>Monosomy</td>
</tr>
</tbody>
</table>

Clinical descriptions, LOH, and NF1 mutation analyses have been reported previously for most of the patients. Data from this study employing quantitative PCR at NF1 gene segment.

† Measured in un fractionated bone marrow cells except in patients 3 and 9, for whom leukemic cells in peripheral blood were used.

‡ Predicted gene copy number based on NF1 gene dosage values. Validation of the assay on nonmalignant DNA demonstrated that NF1 dosage gave dosage values of 0.98 ± 0.08 SD, while monosomy gave values of 0.46 ± 0.04 SD. A range involving 2 SD was used to approximate a 95% confidence interval. Therefore, values from 0.82 to 1.14 predicted disomy, and values from 0.26 to 0.68 predicted monosomy.
probes labeled with either biotin or digoxigenin was detected with fluorescein-conjugated avidin (Vector Laboratories) and rhodamineconjugated antidigoxigenin antibodies (Boehringer Mannheim), respectively. Nuclei were counterstained with DAPI. The slides were randomized and examined by 2 observers in a blinded fashion, with 500 cells scored by each observer for each probe. We established control values by hybridizing the probes to cryopreserved bone marrow cells from patients in remission (C1, AML-M4) or with myeloid leukemias that retained heterozygosity at NFI (C2-C5 in Table S2). The cutoff value was set as the mean ± 3 SD.

The distribution of hybridization signals per nucleus for the CEP17 probe was determined in bone marrow cells from healthy control individuals (n = 10; Table S2).

Mapping the LOH region

Polymorphic loci were genotyped by PCR. LOH at the NFI locus was evaluated by PCR analysis of at least 1 informative intragenic site including exon 5, intron 27A AtmAluI, and intron 38. LOH was determined by comparing the genotype of the patient's tumor DNA to that of peripheral blood DNA of the patient's parents. For patients 1, 4, 5, 9, and 10, normal tissue or an Epstein-Barr virus (EBV)-transformed cell line was available to confirm a constitutional genotype with biparental inheritance of NFI alleles.10,23 Segregation of alleles from parents to child for multiple informative loci on autosomes other than 1 was consistent with parentage as stated for each case (data not shown). Physical distances between chromosome 17 loci are based on the May 2004 assembly of the human genome (http://genome.ucsc.edu).

Results

Delineation of a large region of isodisomy in an NFI-1-associated MPD

Previous molecular analysis of bone marrow cells from children with NFI revealed LOH at NFI in CD34+ cells in 3 informative cases, whereas lymphoblasts immortalized by EBV retained heterozygosity in 2 of these patients.18 The remaining child with LOH at NFI in EBV-transformed lymphoblasts was a 9-month-old boy with an unusual MPD and loss of the maternal NFI allele (Table 1, patient 1).18 The retained paternal allele carried a de novo R1276X mutation (Table S1) that encoded a truncated protein lacking the GTPase-activating protein (GAP) domain.19 We performed extended LOH analyses of chromosome 17, which demonstrated loss of maternally derived alleles from D17S975 to 17q11.2 to D17S1830 at 17q25.3, a segment of 50.3 Mb (Figure 1). Although a deletion of this size is readily detected by cytogenetic techniques, the bone marrow and lymphoblastoid cells of patient 1 had a normal 46, XY karyotype. These data suggested that the 50.3-Mb LOH region was not deleted, but present on both chromosome 17 homologs. To address this possibility, the lymphoblastoid cells were analyzed by FISH with an NFI intron 27b probe.21 Hybridization signals were detected on both chromosome 17 homologs (Figure 2A). Together, these data suggest that a 50.3-Mb interstitial interval of the maternal chromosome had been replaced with a homologous paternal DNA segment, resulting in homozygosity for the mutant R1276X NFI allele (Figure 1). FISH with a BAC harboring the D17S928 locus confirmed that the heterozygous 17qter segment had not translocated elsewhere in the genome of the leukemic clone (Figure 2B). Taken together, these data confirmed interstitial isodisomy.

Figure 1. LOH at chromosome 17 loci in NFI-1-associated myeloid malignancies. Ideogram and schematic of chromosome 17 showing the loci that were screened for LOH. For each tumor, a bar shows the single chromosome 17 that underwent LOH with informative loci (red marks), segments showing biparental inheritance (B), segments that underwent LOH (L), segments where a recombination event occurred (R), and qter segments that lacked informative loci (?). Below the schematic, the parental origin is given for the isodisomic and deleted regions for each tumor. For patients 1, 2, 3, and 8, the maternal homolog is shown with the region of paternal isodisomy indicated in black. For patients 4 through 7, the paternal homolog is shown with the region of maternal isodisomy indicated in black. LOH in patients 9 and 10 occurred by intra-chromosomal deletion indicated in black. Additional chromosome 17 loci that were tested, but not informative, are not shown. Physical distances (rounded to the nearest tenth of a megabase) are based on the May 2004 assembly of the human genome (http://genome.ucsc.edu), in which the length of chromosome 17 is given as 78 774 742 bp.

Uniparental isodisomy is a frequent mechanism of LOH in NFI-1-associated leukemias

The unexpected findings in patient 1 prompted us to use a quantitative NFI gene dosage PCR assay to assess NFI copy numbers in 9 additional NFI-1-associated leukemia specimens with LOH at NFI.17-19 Bone marrow DNA from patient 1 (Table 1) and from the normal tissue of his parents (data not shown) gave NFI gene dosage values ranging from 0.91 to 1.08, which are consistent with disomy. Surprisingly, the NFI dosage values for 7 of the 9 remaining NFI-1-associated myeloid malignancies were also consistent with disomy, whereas 2 cases had values consistent with monosomy (Table 1). Cytogenetic bone marrow specimens were available from 5 of these patients for copy number confirmation. FISH analyses using a chromosome 17 centromere-specific probe (Cep17) and 2 NFI probes (P1-9 and P1-12) provided physical confirmation that the leukemias of all 4 cases in which the dosage assay predicted disomy contained 2 NFI alleles (Figure 2D; patients 3-6 in Table S2). By contrast, the bone marrow of patient 10 demonstrated monosomy for NFI with 2 signals in 67% and 1 signal in 29% of cells (Figure 2D and Table S2), which was also consistent with the gene dosage assay (Table 1). To confirm that the cells being examined were from the malignant clone with LOH at NFI, a chromosome 7-specific probe (Cep7) was hybridized to bone marrow cells of patient 3, who had monosomy 7 and was disomic at NFI as measured by both gene dosage and FISH (Table 1, Figure 2D, Table S2). As expected, dual-color FISH
Figure 2. FISH analysis of NF1-associated myeloid malignancies. (A-B) Metaphase spreads of EOB-transformed cells from patient 1 that were hybridized with NF1 probe P1-12 (A) and BAC clone 1000G21, which contains the D17S926 locus at 17q25 (B). Each of 20 metaphase cells examined showed signals on both chromosome 17 homologs, consistent with disomy. The chromosome 17 homologs were identified by Hoechst-stainnonylin D staining, which reveals a G-banding-like pattern. (C) Dual-color FISH performed by cohybridizing a digoxigenin-labeled probe P1-12 (red signal) and an α-satellite probe specific for the centromere of chromosome 7 (CEP7, SpectrumGreen), which showed monosomy 7 and NF1 disomy in bone marrow cells from patient 3. Interphase nuclei were counterstained with DAPI, and the slides mounted with PPO antifade solution. Images were visualized using a Zeiss Axiopt microscope equipped with a 63×1.25 NA el Plan Neofluar lens, Optipix setting 7.6. Images were acquired using a Photometrics Cool charge-coupled device CCD camera (Photometrics, Tucson, AZ) and NIH Image software (National Institutes of Health, Bethesda, MD). A and B were processed using Adobe Photoshop. (D) Graphical summary of interphase FISH analyses of myeloid leukemia cells with NF1 (red triangle) and control probes. Probe 228P1 is a 70-kb PAC clone containing 228S197 (chromosome band 5q31; yellow squares), and CEP17 is a centromere-specific probe for chromosome 17 (green circles), and CEP7 is a centromere-specific probe for chromosome 7 (blue diamond). C1 is a cryopreserved bone marrow sample from a patient with ALL-M4 in complete remission. Control samples C2 through C5 are cryopreserved bone marrow samples from 4 children with myeloid leukemias that retained heterozygosity at the NF1 locus. The mean distribution of signals for the chromosome 17 centromere-specific probe was determined by the interphase analysis of bone marrow cells from 10 healthy individuals. This graph is a summary of data given in Table S2.

revealed monosomy 7 in cells that also had 2 structural NF1 alleles (Figure 2C–D and Table S2). Together these studies demonstrate that LOH at NF1 in myeloid malignancies is preferentially associated with isodisomy of a chromosome segment carrying the mutant NF1 allele.

Clustering and parental origin of chromosome 17 LOH breakpoints

Each of the 8 leukemias with isodisomy at NF1 showed a large segment of LOH that minimally ranged from 50 to 52.7 Mb (Figure 1). Among these cases, both the proximal and distal LOH breakpoints were clustered. In all 8, the centromeric breakpoints mapped to a maximum interval of 4.9 Mb (6% of the chromosome 17 length of 78.77 Mb) between D17S959 and D17S1294. In some leukemias, additional informative markers narrowed the breakpoint interval, as in patient 5 with a 2-Mb interval between D17S1872 and D17S975. With the exception of case 6, the minimum common breakpoint region is 2 Mb and is delineated by D17S33 and D17S975. The distal breakpoints in patients 1, 2, 3, and 6 were clustered between D17S1830 and D17S928, an interval of 2.4 Mb (Figure 1). Lack of informativeness at D17S928 and other 17pter loci tested precluded determining whether the large LOH segments in the tumors of patients 4, 5, 7, and 8 were isodisomic.

The bone marrows of patients 9 and 10 had LOH at loci flanking the NF1 region. The leukemias of these 2 patients showed structural deletions that included the NF1 locus as determined by gene dosage (Table 1) and FISH data (Figure 2D; Table S2). The centromeric breakpoints mapped to a 1.2-Mb interval between D17S1294 and NF1 intron 38 and the telomeric breakpoints were in a 7.5-Mb interval between D17S1800 and D17S250. These data are consistent with an interstitial deletion ranging from 268 kb (NF1 ex38 to D17S1800) to 9 Mb (D17S1294 to D17S250).

The bone marrows of patients 1, 2, 3, and 8 lost chromosome 17 maternal alleles and were isodisomic for a paternally derived DNA segment, whereas the cells of patients 4 through 7 lost paternal alleles and were isodisomic for a maternally derived interval of comparable length (Figure 1). In each patient with familial NF1, the isodisomic segment was derived from the parent with NF1 (Tables 1, S1). The bone marrow of patient 10, who had de novo NF1, showed loss of the maternal NF1 allele (Table 1; Figure 1B). These data infer that patient 10 carried a germline mutation of the paternal NF1 allele and underwent somatic deletion of the normal maternal NF1 allele, which is consistent with the reported parental predisposition for NF1 germline mutations.

Discussion

Our analyses of myeloid malignancies from children with NF1 uncovered 2 distinct mechanisms underlying inactivation of the normal NF1 allele: interstitial isodisomy and interstitial deletion (Figure 3A). The somatic interstitial deletions involving NF1 are of interest as they may occur by a mechanism similar to that identified in constitutional and somatic mosaic NF1 microdeletions in normal (monosomy) tissues. In these cases, the deletions are 1.2 to 1.4 Mb and occur by nonallelic homologous recombination between pairs of high-identity, low copy number repeat (LCR) elements that flank the NF1 gene (reviewed in Stephens). Microdeletions mediated by germine or somatic recombination between different LCR pairs both involve the entire NF1 gene and the D17S1800 locus, which are deleted in the tumors of patients 9 and 10. A mechanism of LCR-mediated recombination could be tested by precise mapping of the deletion breakpoints by single nucleotide polymorphism (SNP) mapping in the myeloid malignancies. Alternatively, the length of these somatic microdeletions in myeloid malignancies may be constrained if a 50% reduction in the expression of a critical flanking gene(s) inhibited outgrowth of the leukemic clone.

While segmental or interstitial uniparental isodisomy has been reported in constitutional rearrangements (reviewed in Viana-Morgante), we were surprised to find that interstitial isodisomy for 50 to 52.7 Mb of chromosome 17 is a common mechanism underlying LOH in NF1-associated myeloid malignancies. The leukemias of each of the 4 patients (1, 2, 3, and 6 in Figure 1) in whom D17S928 was
idiopathic myelofibrosis (CIMF). An unexpected and intriguing result of these studies was the finding of biallelic mutations in approximately 30% of the PV specimens. The underlying genetic mechanism in these cases was a mitotic recombination that led to loss of the normal JAK2 allele and resulted in isodisomy for a segment of the short arm of chromosome 9 estimated to span approximately 40 cM. The most telomeric marker studied showed LOH in many cases, which is consistent with a single recombination event. We did not prove that the isodisomic regions were interstitial in patients 4, 5, 7, and 8 due to a lack of informative polymorphic markers near 17qter (Figure 1), and it is therefore possible that isodisomy resulted from a single recombination event in 1 or more of our cases. Similarly, it is possible that studies with additional markers near 17qter would uncover double-mitotic recombination events in some PV samples. Whereas biallelic NFI inactivation deregulates Ras signaling in response to hematopoietic growth factors, it is less obvious why loss of the normal JAK2 allele and isodisomy of the mutant homolog would confer a growth advantage beyond that of a dominant heterozygous mutation. Since JAK2 molecules that are recruited to activated growth factor receptors transphosphorylate each other, it is possible that the normal protein has a dominant interfering activity that impairs the ability of mutant JAK2 to deregulate downstream effectors. Consistent with this idea, Jones et al. found that coexpressing wild-type and mutant JAK2 proteins restored erythropoietin-dependence in the Ba/F3 pro-B-cell line.

A broad implication of our work and of the recent studies of JAK2 mutations in MPD is that segmental uniparental isodisomy may be a frequent but unrecognized mechanism in human cancers. Although isodisomy of a 25-cM interval was first described in children with Down syndrome who developed acute lymphoblastic leukemia by Rogan et al., this genetic mechanism has received limited attention in hematologic malignancies until recently. The availability of automated allelotyping and the use of SNP and high-density arrays have been developed for high-resolution analyses of allelic losses and gains in tumors. Interestingly, a number of investigators are now identifying regions of isodisomy in acute myeloid leukemia. Our data extend these studies by showing that inactivation of a known myeloid TSG is frequently associated with acquired uniparental disomy. Importantly, DNA segments that are associated with partial or interstitial isodisomy will appear normal when examined by conventional cytogenetic analysis, FISH, or comparative genomic hybridization, making these approaches of limited use for cancers where LOH results in isodisomy. Together, LOH and copy-number analyses provide the opportunity to define new genetic mechanisms of somatic mutation, mitotic recombination sites, putative modifying or imprinted genes, and/or correlations between tumor genotype and neoplastic transformation. In addition, mono- or biallelic expression from a locus (loci), other than the TSG itself, could affect the efficacy of putative therapeutic agents.

Acknowledgments

We thank Virginia P. Sybert and Eric Sievers for referring patient 1, Melvin H. Freedman for bone marrow samples, Michael Dorschner for BAC1000G21, and Elizabeth M. Davis and Rafael Espinosa III for technical assistance.
References

17. Kaira K, Poddanaghi DC, Olson K, Shannon KM. Genetic analysis is consistent with the hypothesis that NF1 influences myeloid cell growth through p21ras. Blood. 1994;84:3435-3439.

Chapter 20

The Neurofibromatoses

Karen Stephens

Neurofibromatosis type 1 and neurofibromatosis type 2 are two distinct genetic disorders that predispose to the development of tumors primarily of the nervous system (Table 20-1). A recently recognized third form of neurofibromatosis, known as schwannomatosis, is not included in this review, as molecular genetic testing is unavailable for this disorder.

NEUROFIBROMATOSIS TYPE 1
Molecular Basis of Disease

Neurofibromatosis type 1 (NF1) is an autosomal dominant progressive disorder with high penetrance but extremely variable expressivity (reviewed in References 1, 3, and 4). The cardinal features are café au lait macules, intertrigenous freckling, Lisch nodules, and multiple neurofibromas, although numerous other features and complications are common. Criteria for a diagnosis of NF1 were established in 1987 by a consensus meeting of the National Institutes of Health diagnostic criteria and are widely used. Neurofibromas are benign nerve sheath tumors that arise on peripheral nerves. Cutaneous neurofibromas develop in virtually all cases of NF1, typically appear in the second decade of life, grow slowly, increase in number with age, and are considered at low risk for transformation to a malignant peripheral nerve sheath tumor (MPNST; previously known as neurofibrosarcoma). In contrast, diffuse plexiform neurofibromas and deep nodular plexiform neurofibromas are considered at increased risk for transformation to MPNST. Individuals affected with NF1 have a lifetime risk for MPNST of 8% to 13%. Other neoplasms epidemiologically associated with NF1 include medulloblastoma, pheochromocytoma, astrocytoma, and adenosarcoma of the ampulla of Vater. Primarily children affected with NF1 are at increased risk for optic pathway and brainstem gliomas, rhabdomyosarcomas, and malignant myeloid leukemias. NF1 patients are also at increased risk for a second malignancy, some of which may be treatment related.

NF1 is caused by inactivating mutations of 1 copy of the NF1 gene resulting in haploinsufficiency for the gene product neurofibrin (Table 20-1). About 85% to 90% of constitutional mutations are nonsense, splicing, and missense; they are distributed throughout the gene, although some exons appear to be mutation rich (Figure 20-1). An estimated 5% of mutations are large contiguous gene deletions typically of 1.4 megabases (Mb) that delete 1 entire NF1 allele (reviewed in Reference 7). About one half of cases are familial (inherited from an affected parent) and one half are sporadic, resulting from a de novo NF1 mutation. An unknown fraction of sporadic cases are due to postzygotic mutation of the NF1 gene, which complicates mutation detection and counseling issues. Neurofibrin functions as a negative regulator of the RAS oncogene by stimulating the conversion of active guanosine 5'-triphosphate (GTP)-bound RAS to the inactive guanosine 5'-diphosphate (GDP)-bound form by hydrolyzing GTP. Biochemical, cell culture, and genetic studies in both NF1 patients and mouse models are consistent with a model whereby a somatic mutation inactivates the remaining functional NF1 gene (leading to increased activated RAS) in a progenitor Schwann cell as an early, probably initiating, event in the development of neurofibromas (reviewed in Reference 8). Biallelic inactivation of NF1 also occurs in other types of progenitor cells that give rise to NF1-associated tumors such as glioma and myeloid malignancies.

Clinical Utility of Testing

A diagnosis of NF1 can almost always be made based on clinical findings, particularly after 8 years of age. Clinical DNA-based testing is available from many licensed clinical laboratories (see GeneTests, http://www.genetests.org/). Testing is not typically used for diagnostic purposes, but can be useful for confirming a clinical diagnosis, reproductive counseling, and prenatal or preimplantation diagnosis. Blanket recommendations for diagnostic testing for NF1 cannot be made because the sensitivity of clinical
Table 20-1. Comparison of Features of the NF1 and NF2 Disorders

<table>
<thead>
<tr>
<th>Feature</th>
<th>Neurofibromatosis 1</th>
<th>Neurofibromatosis 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternate name</td>
<td>Peripheral neurofibromatosis von Recklinghausen</td>
<td>Central neurofibromatosis, bilateral acoustic neuroma</td>
</tr>
<tr>
<td>OMIM accession number*</td>
<td>NF1</td>
<td>NF2</td>
</tr>
<tr>
<td>Mode of inheritance</td>
<td>Autosomal dominant</td>
<td>Autosomal dominant</td>
</tr>
<tr>
<td>Frequency of disorder</td>
<td>1/3000–1/4000</td>
<td>1/25,000</td>
</tr>
<tr>
<td>Fraction of sporadic cases</td>
<td>3%–50%</td>
<td>5%–50%</td>
</tr>
<tr>
<td>Gene symbol</td>
<td>NF1</td>
<td>NF2</td>
</tr>
<tr>
<td>Chromosomal location</td>
<td>17q11.2</td>
<td>22q11.2</td>
</tr>
<tr>
<td>Gene size; transcript size</td>
<td>150 kb; 111 kb</td>
<td>111 kb; 24 kb</td>
</tr>
<tr>
<td>GeneBank accession no. (gene; OMIM)</td>
<td>NF1:07799, NM_000267</td>
<td>NF1:07799, NM_000267</td>
</tr>
<tr>
<td>Number of exons</td>
<td>61</td>
<td>17</td>
</tr>
<tr>
<td>Tissue expression pattern</td>
<td>Widely expressed</td>
<td>Widely expressed</td>
</tr>
<tr>
<td>Protein product (size; no. of residues)</td>
<td>Neurofibromin (220 kDa; 2816)</td>
<td>Merlin; also known as schwannomin (65 kDa; 555)</td>
</tr>
<tr>
<td>Normal functions of protein</td>
<td>Tumor suppressor, negative regulator of ras oncogene</td>
<td>Tumor suppressor; associates with proteins of the cytoskeleton</td>
</tr>
<tr>
<td>Commonly associated tumors</td>
<td>Neurofibromatosis, optic pathway and brainstem gliomas</td>
<td>Bilateral vestibular schwannoma, schwannomas of other central and peripheral nerves, meningiomas</td>
</tr>
<tr>
<td>Animal models</td>
<td>Mouse, fruit fly</td>
<td>Mouse, fruit fly</td>
</tr>
</tbody>
</table>

1 Alternative splicing produces transcripts of varying lengths.
2 See Gene Lyon Human (https://www.gene lyon human.org) for a compilation of, and hyperlinks to, gene, protein structure, and genomic resources.

Figure 20-1. NF1 and NF2 genes: genomic structure and mutations. (A) At the top is a schematic of the NF1 gene region at chromosome segment 17q11.2. The 35-kb NF1 gene is flanked by two distinct sets of directly oriented paralogs. The 51-kb paralogs NF1REP-P1 (greenly termed NF1REP-P1 and NLREP-P1, orange boxes), and the 46-kb NF1REP-P2 (greenly termed NF1REP-P2 and NLREP-P2, yellow boxes) are shown. Homologous recombination between NF1REP paralogs results in a recurrent 1.4-Mb microdeletion, while recombination between the NF1REP-P1 paralogs results in a recurrent 1.2-Mb microdeletion. The 50 exons of NF1 are represented by boxes (not to scale), except as indicated. The GRD (exons 21–27a) and a cysteine-serine-rich domain with 3 cysteine pairs suggestive of AP binding (exons 11–17) are indicated. Gray boxes indicate alternatively spliced exons that vary in abundance in different tissues. Mutations have been identified in virtually every exon. Exons where mutations are apparently in greater abundance than expected are indicated (green boxes). In one study, exons 7, 10a, b, c, 21–27a, 27, and 37 accounted for 30% of mutations, 15 of which were in exons 10a, b, and c, which harbor 3 recurrent mutations, including Y489C, which alone accounts for approximately 2% of mutations. Blue boxes indicate exons that have clusters of missense or single base or complex deletion mutations, or both. Some of the recurrent, although still infrequent, mutations are given below the exons. (B) The 17 exons of the NF2 gene are represented by boxes (drawing not to scale), and the exon numbering is sequential. The protein 4.1-homology domain thought to mediate binding to cell surface glycoproteins (exons 2–8), the coiled-coil domain (exons 9–15), and the unique C terminus (exons 16–17) are shown. Gray boxes indicate alternatively spliced exons; the inclusion of exon 16 creates an alternate termination codon resulting in a slightly truncated protein. Mutations have been identified involving each exon except for 16. Selected recurrent mutations found in a limited survey of references cited in the text are indicated. In several studies, R5STX occurred in 8% of familial constitutional mutations.
diagnosis for NF1 is very high and the sensitivity of molecular testing is not 100%. Furthermore, benefits of diagnostic testing are subjective and may differ from family to family. Early planning is necessary for couples considering prenatal diagnosis using amniocytes or chorionic villus tissue or preimplantation diagnosis. These tests are available only when the pathogenic familial germline mutation (or the predisposing haplotype in the case of linkage testing) has been identified previously in an affected parent, a process that can require weeks or months.

The primary genetic counseling issue related to molecular testing of NF1 is the inability to predict the severity or course of the disorder in a patient or fetus. Even among family members who carry the same NF1 mutation, there can be considerable variation in clinical manifestations and complications. For the majority of cases, there is no correlation between genotype and phenotype. For the approximately 5% of individuals who carry a constitutional NF1 deletion (most commonly 1.4 Mb), there is a 2-fold increased lifetime risk of MPNST, a predisposition to childhood overgrowth, an early age of onset with excessive numbers of cutaneous neurofibromas, numerous internal neurofibromas, learning disabilities, vascular anomalies, and astrocytomas (References 7 and 11 to 14 and references therein). A recommendation for routine testing for NF1 microdeletion has been proposed, with follow-up for increased suspicion for MPNST.

NF1 testing may be useful to confirm a diagnosis in a patient with equivocal findings, such as child who has a few café au lait macules and carries a presumptive diagnosis of NF1. In such cases, it is important to realize that the sensitivity and specificity of testing patients who do not fulfill the NIH diagnostic criteria for a diagnosis of NF1 is unknown but is likely to be quite low.

For unaffected parents of a child with sporadic NF1, recurrence risk is a concern. Although thought to be rare, germline mosaicism has been reported in an asymptomatic parent of a child with sporadic NF1. Therefore, there is a small, but unknown, increased risk of recurrence even if the child’s pathogenic mutation is not detected in the genomic DNA from parental leukocytes. Although the frequency is unknown, sporadic NF1 cases with postzygotic mutations resulting in somatic mosaicism may not be as rare as once thought. One study suggests that among NF1 microdeletion cases, the frequency of somatic deletion may be very high (~40%). Assuming that 10% of NF1 cases have microdeletions, a frequency of 4% mosaicism is expected in the general NF1 population. This is certainly an underestimate, as it does not consider mosaicism for intragenic NF1 mutations. Mosaic individuals carry the NF1 mutation in only a fraction of their cells, depending on the developmental interval and the cell type in which the mutation occurred. The phenotype of mosaic individuals ranges from localized (segmental) disease to mild or severe generalized disease. The sensitivity of mutation detection may be lower due to an increased signal to noise ratio, that is, a low level of a mutant allele in a background of 2 normal NF1 alleles. Offspring that inherit an NF1 mutation from a parent with mosaicism, however, will have a constitutional NF1 mutation and may have more severe disease than their mosaic parent. Genetic counseling regarding the clinical and reproductive implications of NF1 mosaicism is highly recommended.

Available Assays

Mutation of the NF1 gene is the only known cause of the disorder. Molecular tests for diagnostic, prenatal, and preimplantation diagnosis are available. The choice of assay and testing laboratory depends upon the reason for referral and mutation types and detection rates of their assay(s).

Fluorescent in situ hybridization (FISH; see chapter 2) with NF1 probes of either metaphase or interphase white blood cells is the optimal test to rule out or confirm the approximately 5% of cases due to a submicroscopic NF1 microdeletion (Figure 20-1). In the future, a first-tier test may employ an NF1 deletion junction-specific polymerase chain reaction (PCR) assay. The recent availability of high-resolution genomic microarrays of the NF1 deletion region will facilitate clinical testing by array-comparative genomic hybridization (CGH), which may become clinically important in the future if deletions involving a subset of genes predispose to certain manifestations. The sensitivity of deletion-specific PCR and array-CGH assays to detect low-level NF1 deletion mosaicism will need to be determined. Routine cytogenetic analysis is of limited clinical utility, as the NF1 microdeletions are submicroscopic, and translocation and rearrangement involving NF1 are extremely rare.

Linkage analysis is an indirect test that tracks the inheritance of the mutant NF1 allele in members of a family. This may be the quickest, most economical NF1 test for at-risk individuals and fetuses of families that fulfill the testing criteria. The primary requirement is the availability and cooperation of multiple family members whose NF1 status is known by detailed clinical evaluation. Multiple NF1 intragenic polymorphic markers are available that facilitate identification and tracking of the predisposing haplotype in a family and provide the specificity for linkage testing.

Efficient detection of subtle intragenic NF1 gene mutations, for purposes of diagnostic testing or mutation typing for prenatal or preimplantation diagnosis, is complicated by the large number of exons and large size of the gene (Table 20-1), variation in type and distribution of mutations, and large fraction of private mutations. About 70% to 80% of mutations result in a premature translation termination codon, with nonsense and splicing defects being
the most common.21 These mutations can be detected by the protein truncation test (PTT; see chapter 2), which detects truncated neurofibromin polypeptides synthesized by in vitro translation of multiple overlapping \textit{NFI} complementary DNA (cDNA) segments. A detection rate of about 85\% can be attained with an optimized PTT testing protocol (see below). The majority of such mutations are private to each individual or family, although there are recurrent mutations that may account for, at most, a few percent of cases (Figure 20-1).

About 10\% of \textit{NFI} mutations are missense or in-frame insertions or deletions of a few nucleotides,21,22 some of which show clustering (Figure 20-1). Their identification requires direct sequence analysis of \textit{NFI} exons and splice junctions in genomic DNA or cDNA segments. Prospective testing of \textit{NFI} subjects by direct genomic sequence analysis revealed a detection rate of 89\%, which is more streamlined than PTT testing and allows for automation.23 Various mutation scanning techniques of \textit{NFI} genomic or cDNA are also employed by clinical laboratories, including denaturing high-performance liquid chromatography (DHPLC), temperature gradient gel electrophoresis (TGGE), single-strand conformation polymorphism (SSCP), and heteroduplex analysis (HA; see chapter 2). Although high detection rates are reported in the literature using DHPLC (72\%-95\%),24,25 it is important to realize that the detection rates for mutation scanning protocols will be laboratory specific due to the degree of optimization of the specific technique. A survey of clinical laboratories is recommended prior to sample submission. DHPLC has the advantages of using genomic DNA and high-throughput capability compared to the cDNA/gel-based PTT; however, a recently reported high-throughput PTT may be available for clinical testing in the future.26

Interpretation of Test Results

The detection of a truncated neurofibromin polypeptide by PTT can result in false positives.27 High specificity requires identifying the underlying mutation at the genomic DNA or cDNA level, or both, since false positives can arise during sample handling (see below). The interpretation of missense and subtle in-frame alterations as pathogenic mutations rather than neutral polymorphisms is complicated by the lack of a functional assay for neurofibromin. Apparent recurrence of a putative mutation requires careful study of the literature, since not all \textit{NFI} mutational studies sequenced the entire gene. No comprehensive \textit{NFI} mutation database is available; however, some mutations have been submitted to the Human Gene Mutation Database (http://archive.uwcm.ac.uk/uwcm/mg/hgmd0.htm), and the largest \textit{NFI} database is actively managed and analyzed by Jan Friedman (http://www.medgen.ubc.ca/friedmanlab). Although most likely rare, affected family members with different independent \textit{NFI} inactivating mutations have been reported,27 presumably a reflection of the high mutation rate of the gene ($\sim 10^{-5}$ gamete/generation). The interpretation of FISH with \textit{NFI} probes can be complicated by mosaicism for an \textit{NFI} microdeletion; therefore, an appropriate number of cells must be analyzed.28 The frequency of mosaicism for an \textit{NFI} mutation is not known; however, this is likely the underlying mechanism for patients with segmental or localized signs of the disorder.

Laboratory Issues

Optimal detection of mutations that predict a truncated neurofibromin polypeptide occurs when the nonsense-mediated decay pathway is at least partially inhibited, thereby increasing the ratio of mutant transcripts with a premature termination codon to normal transcripts. A protein synthesis inhibitor, such as puromycin, in the culture medium is effective for EBV-transformed lymphoblasts or phytohemagglutinin-stimulated primary lymphocytes.29,30 Furthermore, blood handling and shipping protocols must be used to reduce false positives in PTT resulting from environmental effects such as cold shock31 or delay in messenger RNA isolation.23,24 There is no standardized proficiency program of interlaboratory comparison for \textit{NFI} testing; performance assessment must be conducted by participation in ungraded proficiency survey programs, split sample analysis with other laboratories, or other suitable and documented proficiency-testing methods. No \textit{NFI} testing kits, probes, or controls are approved or cleared by the Food and Drug Administration. Intronics primers for amplification of \textit{NFI} exons and associated splice junctions that apparently do not coamplify the \textit{NFI} pseudogene fragments have been reported.32,33 Two other factors require consideration during test development and interpretation. Reports in support of,34 and in opposition to,35 an apparent tandem duplication of the \textit{NFI} gene region have been published. In addition, transcriptional activity from \textit{NFI} pseudogenes or pseudogene fragments has been reported.36 Some issues related to \textit{NFI} testing have been reviewed recently.42

NEUROFIBROMATOSIS TYPE 2

Molecular Basis of Disease

The development of bilateral vestibular schwannomas is a hallmark of neurofibromatosis type 2 (NF2). Other commonly associated tumors include schwannomas of other central, spinal, and peripheral nerves and meningiomas (reviewed in References 1 and 35 to 38). This is a life-threatening disorder due to the location of the tumors, along with the propensity for development of multiple
tumors. Most patients become completely deaf and can have poor balance and vision, and weakness. The mean age of onset is 18 to 24 years and the mean age of death is 36 years. The age at onset of symptoms and age at diagnosis are predictors of vestibular schwannoma growth rates and risk of death (Reference 39 and references therein). Ependymomas and astrocytomas occur less frequently and are usually indolent central nervous system tumors. Patients affected with NF2 are at minimal increased risk for malignancy. Juvenile posterior subcapsular cataract is a common nontumor manifestation. The disorder may be underdiagnosed in children who present with ocular and skin manifestations. Early diagnosis improves management, which is primarily surgical and radiological. Modifications to the criteria for diagnosis of NF2, initially established by the 1987/1991 National Institute of Health Consensus Conference, have been proposed to increase the specificity. A consensus statement on management of the NF2 patient and family was recently published.66 NF2 is caused by haploinsufficiency for the tumor suppressor merlin (also known as schwannomin), the protein product of the NF2 gene (Table 20-1). About one half of patients are the first case of NF2 in the family. These sporadic cases result from de novo mutation of the NF2 gene, a significant fraction of which are postzygotic mutations that result in mosaicism. The majority of constitutional mutations are private, predict the truncation of merlin, and are distributed throughout the gene (see below). In NF2 patients, a vestibular schwannoma develops from a progenitor Schwann cell that carries a somatic inactivating mutation in the single remaining NF2 gene. Merlin is a protein of the cytoskeleton whose normal function remains to be determined, although it is known to associate with transmembrane proteins important in adhesion, proteins involved in signaling pathways, and cytoskeletal proteins (reviewed in Reference 42).

Clinical Utility of Testing

DNA-based clinical testing for NF2 is available (see GeneTests, http://www.genetests.org) and primarily is used for presymptomatic testing of at-risk individuals, typically young children of an affected parent. An early diagnosis of NF2 may improve outcome, and at-risk children who did not inherit the NF2 mutation can be spared worry, costly brain imaging, and audiologic screening. Genetic counseling is recommended prior to testing presymptomatic at-risk children. Testing is also useful to confirm a clinical diagnosis, which may be most helpful in sporadic cases of NF2, particularly children who present with ocular or skin manifestations or adults with equivocal findings or mild disease. Some of these cases may be mosaic for an NF2 mutation, as the estimated frequency of mosaicism is high (16.7-24.8% of sporadic cases).41 Genetic counseling regarding the clinical and reproductive implications of NF2 mosaicism is recommended.42 Testing is also useful for reproductive counseling and prenatal or preimplantation diagnosis.43 Prenatal diagnosis of NF2 using amniocytes or chorionic villus tissue is available only in cases where the pathogenic NF2 germline familial mutation (or predisposing haplotype in the case of linkage testing) has been identified previously in an affected parent. For preimplantation genetic diagnosis, the specific parental NF2 mutation must be known. Prepregnancy planning is important for couples considering prenatal diagnosis or preimplantation diagnosis. For sporadic NF2 patients undergoing surgery, it is advisable to freeze a portion of the tumor, which may be valuable at a later date for mutation identification if the patient is mosaic.

The primary genetic counseling issues regard predicting the course of the disorder and recurrence risks. There are genotype-phenotype correlations, but they cannot predict the age of onset or the course of disease for an individual patient. About 50% of NF2 mutations are nonsense or frameshift, with about 24% splice site, 11% to 30% submicroscopic deletion, and 5% missense.44 Typically, constitutional frameshift and nonsense mutations are associated with more severe NF2, defined by earlier age at onset and higher frequency and mean number of tumors.45 Constitutional missense and small in-frame mutations are associated with mild disease,46 and mutations in splice donor and acceptor sites result in variable clinical outcomes.47 Interestingly, individual individuals with NF2 splice-site mutations in exons 1 through 5 had an earlier age at onset and greater numbers of intracraniial meningiomas compared to those with splice-site mutations in exons 11 through 15 (Figure 20-1b).48 The type of constitutional NF2 mutation is also correlated with the number of NF2-associated nonvestibular nervous system tumors including intracranial meningiomas, spinal tumors, and peripheral nerve tumors.49 Individuals with constitutional nonsense or frameshift NF2 mutations had significantly more of these tumors than individuals carrying missense, splice-site, or deletion mutations or somatic mosaicism.

Recurrence risks for asymptomatic parents of an affected child are unknown but are somewhat greater than the population risk, due to the possibility of germline mosaicism in a parent.50 For mosaic patients, the risk of transmitting NF2 to offspring is ≤50%, depending on the proportion of gametes that carry the NF2 mutation.51 Offspring that do inherit the mutation, however, will have a constitutional NF2 mutation and may have more severe disease than their mosaic parent. Testing asymptomatic parents of a child with NF2 has the potential to identify a mosaic mutation.

Available Assays

Mutation of the NF2 gene is the only known cause of this disorder. Linkage analysis is clinically available for at-risk individuals and fetuses with multiple family members of
unambiguous clinical status regarding NF2 disease who are willing to participate in the testing process. The availability of highly informative intragenic NF2 polymorphisms increases the specificity of this method. For certain families, linkage analysis will be the most cost- and time-effective test that gives a definitive diagnosis. It can sometimes be an option when mutation-scanning or sequencing test results are negative. See "Interpretation of Test Results," below, for cautions regarding linkage test interpretation.

Identifying an NF2 mutation typically requires a multi-pronged testing protocol due to the high frequency of private constitutional mutations, the high frequency of postzygotic mutations, the different types of NF2 mutations, and the distribution of mutations throughout the gene. Wallace et al.36 (Figure 20-1b) describe a comprehensive testing service that includes 4 PCR reactions using a meta-PCR technique to link the amplicons into chimeric concatamers for direct sequencing, gene dosage PCR for deletions, loss of heterozygosity (LOH) studies, and subsequent sequencing of the gene in tumor tissue. In prospective studies, this approach yielded an 88% detection rate in familial NF2 cases and a 59% detection rate in sporadic NF2 cases. Direct sequencing or exon-scanning techniques (e.g., SSCP, TGE, and HA; see chapter 2) of DNA from peripheral leukocytes, followed by direct sequencing to identify the underlying NF2 mutation, generally have a lower detection rate.37,38,39 The detection rate of either sequencing or exon scanning methods is significantly lower (34-51%) in sporadic cases in part due to the high frequency of postzygotic NF2 mutations, which can be masked by the presence of normal alleles.40,41,42,43 The mutation detection rate of mosaic cases can be increased significantly by analysis of tumor tissue (see below).

Because schwannomas are clonal tumors with minimal cellular admixture, NF2 mutations can be detected at high frequency in tumor tissue. Testing of tumor tissue is available clinically (see GeneTests, http://www.genetests.org/) and is most useful in cases where a mutation is not detected in primary lymphoblasts, where clinical manifestations are suggestive of somatic mosaicism, or where constitutional tissue is unavailable.44,45,46 Mohyuddin et al.47 nearly doubled the mutation detection rate among mosaic cases using vestibular schwannoma tissue rather than peripheral leukocytes. Mutations are likely to be germline (rather than somatic) if the identical mutation is detected in 2 or more pathologically or anatomically distinct tumors or if a tumor shows LOH for NF2 intragenic or flanking loci, while constitutional tissue is heterozygous at these loci. Mutation analysis of tumor tissues is expected to have the greatest sensitivity for NF2 somatic mosaic mutations48 and sporadic cases with negative results from mutation scanning or sequencing tests.49

Efficient detection of the 11% to 30% of constitutional NF2 deletions (typically multiexonic in nature) has been accomplished using numerous techniques, including FISH, various gene dosage PCR assays, multiplex ligation-dependent probe amplification (MPLA), and high-resolution genomic arrays.50,51-53

Note that for mutation scanning tests and deletion-detection assays, detection rates will be laboratory specific due to the varying degrees of optimization of the technique; therefore, a survey of testing laboratories is recommended prior to sample submission.

Interpretation of Test Results

Interpretation of the results of exon-scanning tests requires identifying the underlying NF2 mutation at the genomic DNA or cDNA level, or both, to avoid false positives. Functional assays for Merlin have been developed that can provide insight into the interpretation of nonsense and subtle in-frame alterations as pathogenic mutations rather than neutral polymorphisms.54-56 However, such assays may not be part of a clinical testing protocol. An international NF2 mutation database is available (Neurofibromatosis 2 (NF2) Mutation Databases, http://uwcmmls.uwcm.ac.uk/uwcm/mg/nf2/), and this site also recognizes the United Kingdom population-based registry. Some mutations are also detailed in the Human Gene Mutation Database Cardiff (http://archive.uwcm.ac.uk/uwcm/mg/hgmdc0.html). Somatic mosaicism or NF2 gene deletions must be considered in patients who have a negative mutation test using DNA from peripheral leukocytes, regardless of the severity of their manifestations. The risk of recurrence from mosaic parent to offspring is considered very low if an NF2 mutation cannot be identified in the parent.57 NF2 linkage tests should consider excluding the first affected member in a family; if they are mosaic, the linkage results will be misleading in the next generation.58 For similar reasons, linkage analysis for presymptomatic testing of subjects in this "next" generation should be performed with caution.

Laboratory Issues

There is no standardized proficiency program of interlaboratory comparison for NF2 testing. Performance assessment must be conducted by participation in ungraded proficiency survey programs, split sample analysis with other laboratories, or other suitable and documented proficiency-testing methods. No NF2 testing kits, probes, or controls are approved or cleared by the Food and Drug Administration. Direct gene sequencing may not be the optimal test to detect NF2 mosaic mutations in lymphoblasts, since reliable detection of a low-level point mutation will be difficult. Exon-scanning techniques that are semiquantitative, such as TGE, will detect relative intensity differences between heteroduplexes and homoduplexes that suggest possible mosaicism.59 Depending on age, fixation, and storage conditions, some tumors may not yield nucleic acid of sufficient quality for mutational analysis.
References

QUERY FORM

During the preparation of your manuscript for publication, the questions listed below have arisen. Please attend to these matters and return this form with your proof.

Many thanks for your assistance.

<table>
<thead>
<tr>
<th>Query References</th>
<th>Query</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Au: I've spelled out CGH in the 3rd sentence, okay?</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Au: In the penultimate sentence, can you reference a particular section rather than saying “below”?</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Au: Can you point to a particular section rather than say “below” in the 2nd sentence?</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Au: Please spell out EBV in the 2nd sentence.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Au: In the 4th sentence, refer to a section rather than “below”?</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Au: In the last sentence, can you refer to a particular section instead of “below”?</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Au: Can you confirm multiplex ligation-dependent probe amplification in the last sentence? In earlier chapters, MPLA is defined as multiplex ligation probe amplification.</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Au: Can you update ref. 7?</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Au: Please provide volume and page numbers for ref. 20.</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Au: Please give full surname for 2nd author in ref. 36.</td>
<td></td>
</tr>
</tbody>
</table>
Conservation of hotspots for recombination in low-copy repeats associated with the NF1 microdeletion

Thomas De Raedt1, Matthew Stephens2, Ine Heyns1, Hilde Brems1, Daisy Thijs1, Ludwine Messiaen3, Karen Stephens4, Conxi Lazaro5, Katharina Wimmer6, Hildegard Kehrer-Sawatzki7, Dominique Vidaud8, Lan Kluve9, Peter Marynen1 & Eric Legius1

Several large-scale studies of human genetic variation have provided insights into processes such as recombination that have shaped human diversity. However, regions such as low-copy repeats (LCRs) have proven difficult to characterize, hindering efforts to understand the processes operating in these regions. We present a detailed study of genetic variation and underlying recombination processes in two copies of an LCR (NFIREPα and NFIREPc) on chromosome 17 involved in the generation of NF1 microdeletions and in a third copy (REP19) on chromosome 19 from which the others originated over 6.7 million years ago. We find evidence for shared hotspots of recombination among the LCRs; REP19 seems to contain hotspots in the same place as the nonallelic recombination hotspots in NFIREPs and NFIREPc. This apparent conservation of patterns of recombination hotspots in moderately diverged paralogous regions contrasts with recent evidence that these patterns are not conserved in less-diverged orthologous regions of chimpanzees.

Recombination in LCRs is particularly interesting because crossovers that occur between two nearby copies of an LCR (generally referred to as nonallelic homologous recombination; NAHR) result in deletion or duplication of the region between the copies and are often associated with genomic disorders such as Charcot-Marie-Tooth type 1A, hereditary neuropathy with liability to pressure palsy, Williams-Beuren syndrome and neurofibromatosis type 1 (NF1). These NAHR events have sometimes been observed to cluster in relatively short hotspots1-3, but otherwise, little is known about recombination in LCRs, including the extent to which patterns of recombination are shared across different copies of the same LCR and whether hotspots for NAHR also correspond to hotspots for nonallelic homologous gene conversion (NAHGC) and/or allelic homologous recombination (AHR). In principle, one can obtain considerable insight into these questions through studying patterns of genetic variation in LCRs.

However, because of high sequence identity, accurate genotyping of SNPs in LCRs is not straightforward, and when such SNPs are typed in high-throughput genotyping projects, the obtained genotypes are often inaccurate and show non-Mendelian inheritance or lack of Hardy-Weinberg equilibrium. As a result, virtually no reliable data are available on population genetic variation in LCRs.

We therefore undertook a detailed sequencing-based study of the patterns of genetic variation in three copies of an LCR, of which two are associated with the NF1 microdeletion. Supplementary Figure 1 online gives a schematic overview of the NF1 microdeletion region and its LCRs, NFIREPs and NFIREPc (on chromosome 17) and REP19 (on chromosome 19). Two types of recurrent NF1 microdeletions have been described. Type 1 NF1 microdeletions are typically 1.4 Mb in length and of meiotic origin4. In individuals with type 1 NF1 microdeletions, the deletion breakpoints tend to cluster in two regions called PRS1 (ref. 5) and PRS2 (ref. 6) (Supplementary Fig. 1). Regions paralogous to PRS1 and PRS2 are also present in REP19 (Supplementary Fig. 1) but with about 12 kb of extra sequence inserted between them compared with NFIREPs and NFIREPc. Type II NF1 microdeletions are less frequent, have a length of 1.2 Mb and are mitotic in origin; their breakpoints tend to cluster in a different segment of the LCRs6.7. Supplementary Figure 1 gives an overview of the repeat content of the different LCRs and the location of the typed SNPs.

To better characterize NAHR in NFIREPs and NFIREPc, we accurately mapped the location of the breakpoints in 60 individuals with type I NF1 microdeletions ascertained in an unbiased manner. The results (Fig. 1) confirmed the presence of two clusters of breakpoints: a larger cluster in PRS2 (3.4 kb, containing 40/60 breakpoints) and a smaller cluster in PRS1 (1.8 kb, containing 13/60 breakpoints). This suggests the presence of hotspots for the initiation of NAHR in PRS1 and PRS2, in either one or both of NFIREPs and NFIREPc.

The effect of NAHGC will be to 'insert' a small segment of one LCR into another LCR. Thus, frequent NAHGC would tend to lead to

1Department of Human Genetics, Catholic University Leuven, Leuven, Belgium. 2Department of Statistics, University of Washington, Seattle, Washington, USA. 3Laboratory Medical Genetics, Department of Genetics, University of Alabama, Birmingham, Alabama, USA. 4Department of Medicine, University of Washington, Seattle, Washington, USA. 5Institut Català d'Oncologia-Instituto de Investigación Biomédica de Bellvitge, L'Hospital de Llobregat, Barcelona, Spain. 6Department of Human Genetics, Medical University of Vienna, Vienna, Austria. 7Department of Human Genetics, University of Ulm, Ulm, Germany. 8Laboratoire de Génétique Moléculaire, Institut National de la Santé et de la Recherche Médicale U745, Université Paris S, Paris, France. 9Laboratory for Tumor Biology and Development and Malformation, University Hospital Eppendorf, Hamburg, Germany. Correspondence should be addressed to E.L. (Eric.Legius@uz.kuleuven.ac.be).

Received 6 July; accepted 16 October; published online 19 November 2006; doi:10.1038/ng1920
'shared' SNPs that are polymorphic in both LCRs. We therefore assessed relative rates of NAHGc in three regions (900 bp in PRS1, 1,500 bp in PRS2 and 800 bp in a region between PRS1 and PRS2) by sequencing these regions in both NFI1REPA and NFI1REPC (Supplementary Table 1 online) and determining how many of the identified SNPs were 'shared' (that is, polymorphic in both NFI1REPA and NFI1REPC). In total, we identified 28 SNPs in NFI1REPA and 26 in NFI1REPC in the three specified regions. Of these, 12 were shared, providing strong evidence for NAHGc (the probability of 12 or more SNPs being shared if one draws 28 and 26 SNPs independently at random from 3,200 bp is $P = 2.2 \times 10^{-18}$). The region sequenced in PRS1 contained a higher proportion of shared SNPs (9/22) than the region sequenced in PRS1 (2/9), which contained a higher proportion than the intervening region (1/11; Table 1). Although only the difference between PRS1 and the intervening region approached statistical significance ($P = 0.066$), the results are consistent with the possibility that the rates of NAHGc vary in a similar way to rates of NAHR; that is, the highest rate is found in PRS2, an intermediate rate in PRS1 and a lower rate in the intervening region, just as hotspots for allelic homologous gene conversion (AHGC) have been found to coincide with hotspots for AH in the MHC and PAR1 regions. This would be expected if NAHGc and NAHR were two alternative resolutions of a Holliday junction formed after a double-strand break, and if the hotspots for NAHR were due to an increased rate of double-strand break formation. Sequencing the same three regions in REP19, we did not find any SNPs shared with either NFI1REPA or NFI1REPC, and thus, as expected, there is no evidence for any ongoing genetic exchange between NFI1REPA or NFI1REPC and REP19.

In order to assess patterns of AH, we first identified and typed SNPs in each of the three LCRs in 43 trios (parents plus child). We typed a total of 20 SNPs in the 33-kb region surrounding PRS1 and PRS2 in NFI1REPA and NFI1REPC. In REP19, where an additional 22 kb is found between PRS1 and PRS2, we typed 16 SNPs surrounding PRS1 and 12 SNPs surrounding PRS2 (Supplementary Table 2 online; LD patterns are shown in Supplementary Fig. 2 online). We then used a statistical approach based on the observed haplotype data to assess the evidence for AH hotspots at PRS1 and PRS2 in each of the LCRs. Specifically, as in ref. 11, we specified PRS1 and PRS2 as locations for potential hotspots and used the statistical method to estimate the background population-scaled recombination rate (θ) and the relative intensity of recombination in the hotspot segments (h). Thus, $\theta = 1$ corresponds to no hotspot; we will refer to λ between 1 and 10 as a "weak" hotspot and $\lambda > 10$ as a "strong" hotspot. To summarize the strength of the evidence for either a strong or weak hotspot, we use the Bayes factor (BF), which is the probability of obtaining the data under the model that a weak or strong hotspot is present divided by the probability of obtaining the data under the model that no hotspot is present. Thus, a BF of >1 is evidence for a hotspot, and a BF of 10 means that the data are ten times more likely under a hotspot model than under a model without a hotspot, which might be considered strong evidence for a hotspot. The results are summarized in Table 1. One explanation for the different results for NFI1REPA and NFI1REPC (BFs ranging from 1.3–3.2) as compared with REP19 (BFs of 10.1 and 14.835) is that the polymorphism data for the former are comparatively uninformative about the presence or absence of a hotspot. This is suggested by results shown in Supplementary Figure 3 online, which demonstrates little difference between the prior and posterior distribution of λ. In contrast, the polymorphism data in REP19 are substantially more informative and provide strong evidence for a hotspot of some kind in both PRS1 and PRS2 (BF > 10,000 (strong hotspot) in PRS1, and BF = 10.1 (weak hotspot) in PRS2). Further, when we repeated these analyses for the REP19 data without prespecifying the location of the hotspot and allowing the statistical method to estimate the location, the estimated hotspot locations corresponded very closely to the regions paralogous to PRS1 and PRS2 (Fig. 1). (The estimated positions of the AHR and NAHR hotspots are, respectively, 6973–9509 and 7682–9525 for PRS1 and 5567–7316 and 4394–7564 for PRS2.)

Table 1 Number of SNPs across the different regions of the LCRs

<table>
<thead>
<tr>
<th></th>
<th>PRS1 (900 bp)</th>
<th>PRS2 (1,500 bp)</th>
<th>Region between hotspots (800 bp)</th>
<th>Total (3,200 bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFI1REPA only</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>NFI1REPC only</td>
<td>3</td>
<td>8</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>Shared NFI1REPA/<SUP>a</SUP></td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>REP19 only</td>
<td>6</td>
<td>11</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>Shared 17/19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

^aNFI1REPA only: total number of nucleotide positions polymorphic only in NFI1REPA and not at the paralogous position in NFI1REPC. NFI1REPC only: total number of nucleotide positions polymorphic only in NFI1REPC and not at the paralogous position in NFI1REPA. Shared NFI1REPA/^a: number of nucleotide positions polymorphic in NFI1REPA and at the paralogous position in NFI1REPC. REP19 only: total number of nucleotide positions polymorphic only in REP19 and not at the paralogous position in NFI1REPA or NFI1REPC. Shared 17/19: total number of nucleotide positions polymorphic in REP19 and at the paralogous position in NFI1REPA or NFI1REPC.
Table 2 Background recombination rates and λ values in the PRS1 and PRS2 regions of the LCRs

<table>
<thead>
<tr>
<th></th>
<th>NFIREPa</th>
<th>NFIREPc</th>
<th>REP19</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRS1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO. > 100</td>
<td>0.707</td>
<td>0.564</td>
<td>1.00</td>
</tr>
<tr>
<td>PO. > 100</td>
<td>0.393</td>
<td>0.326</td>
<td>0.989</td>
</tr>
<tr>
<td>BF(weak)a</td>
<td>3.2</td>
<td>1.8</td>
<td>327c</td>
</tr>
<tr>
<td>BF(strong)a</td>
<td>2.0</td>
<td>1.0</td>
<td>14,833d</td>
</tr>
<tr>
<td>Median λ</td>
<td>5.47</td>
<td>1.78</td>
<td>152</td>
</tr>
<tr>
<td>Background recombination rate</td>
<td>1.31×10^{-4}</td>
<td>6.41×10^{-4}</td>
<td>PRS1: 1.48×10^{-4}</td>
</tr>
<tr>
<td>(90% confidence interval)</td>
<td>(2.3×10^{-5}) to (1.0×10^{-5})</td>
<td>(3.8×10^{-5}) to (3.8×10^{-5})</td>
<td>PRS2: 5.9×10^{-4} to (1.9×10^{-4})</td>
</tr>
<tr>
<td>PRS2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO. > 100</td>
<td>0.719</td>
<td>0.832</td>
<td>0.865</td>
</tr>
<tr>
<td>PO. > 100</td>
<td>0.429</td>
<td>0.327</td>
<td>0.412</td>
</tr>
<tr>
<td>BF(weak)a</td>
<td>3.1</td>
<td>1.3</td>
<td>10.1b</td>
</tr>
<tr>
<td>BF(strong)a</td>
<td>2.2</td>
<td>1.1</td>
<td>4.6</td>
</tr>
<tr>
<td>Median λ</td>
<td>7.23</td>
<td>1.66</td>
<td>7.99</td>
</tr>
</tbody>
</table>

aProportions of the 50,000 iterations with $\lambda > 1$ or $\lambda > 10$. bBF comparing the model 'weak hotspot' versus the model 'no hotspot'. cBF comparing the model 'strong hotspot' versus the model 'no hotspot'. dBF values > 10: strong indication in favor of a hotspot.

The high informativeness of the population data in REP19 compared with NFIREPa and NFIREPc could be due to several factors, including the greater number of SNPs available (28 in REP19 versus 20 in NFIREPa and NFIREPc) and the higher average minor allele frequency (average minor allele frequency of 29.8% in REP19 compared with 18.0% in NFIREPa and 14.7% in NFIREPc)12,13. It is also possible that differences in the background recombination rates14 in the different regions could contribute to different power to detect hotspots, as the estimated background recombination rate (ρ) differs in the three LCRs. The estimate of ρ is about two times higher in NFIREPa (1.31×10^{-4}) compared with NFIREPc (6.41×10^{-5}). The background recombination rate for REP19 PRS1 is 1.48×10^{-4} (comparable to NFIREPa), whereas the background in REP19 PRS2 is higher (5.9×10^{-4}). It is possible that, due to the formation of deleterious microdeletions, a selective pressure against recombination exists in the LCRs of chromosome 17, reducing the historical recombination signature in the region.

Although it is notable that hotspots for AHR in REP19 identified from population data seem to occur in the same locations as the PRS1 and PRS2 hotspots for NAHR identified from individuals with NFIRE microdeletions, it is also worth noting that the estimated relative intensities of the hotspots identified from the two approaches differ appreciably. Intensities of the NAHR hotspots, computed by comparing the frequency of deletion breakpoints occurring in each hotspot versus the population, are 28.7 for PRS1 and 46.7 for PRS2. (Note that these estimates are likely biased slightly upward because the locations of the breakpoint hotspots were based on the observed NAHR events.) In contrast, estimated intensities of these hotspots from the REP19 population data are 152 and 8, respectively. In addition, in REP19, the population data suggest a lower average rate of AHR in the region surrounding PRS2 than in the region surrounding PRS1 (Supplementary Fig. 3), whereas the microdeletion data suggest the reverse for NAHR in chromosome 17. Although some of these discrepancies could be due to imprecision of the estimated intensities and deviations from modeling assumptions, other factors could also have a role. For example, the NAHR data measure the current recombination rate (microdeletions being formed), whereas population genetic data reflect the average historical recombination rate, and differences can exist between current and historical recombination rates15. Other factors that could influence the relative intensity of the recombination hotspots include the fact that REP19 contains 22 kb of additional sequence inserted between PRS1 and PRS2, or that differences in methylation pattern could result in a different DNA folding in each LCR (epigenetic effects).

In summary, the mapping of NF1 microdeletion breakpoints (Fig. 1) and the presence of NAHR give a clear view that sites of NAHR in (at least one of) NFIREPa and NFIREPc are not randomly distributed and are located in two distinct hotspots. Population genetic data in both NFIREPa and NFIREPc are not very informative for a hotspot of AHR but do not argue strongly against the presence of hotspots in either NFIREPa or NFIREPc. Population genetic data in the paralogous regions of REP19 provide strong evidence for hotspots of AHR. The initial duplication of the LCR from chromosome 19 to the NF1 region took place before the human-gorilla split, about 6.7 million years ago16. Conservation of AHR hotspots in REP19 with NAHR hotspots in NFIREPa and NFIREPc in sequences that have been evolving separately for such a long time is notable, as hotspots for recombination in humans do not seem to be highly conserved in chimpanzees17,18. Others19 have investigated the fine-scale recombination rate of three 500-kb regions both in humans and chimpanzees. Eighteen hotspots for recombination were found in humans, and of these, only one may correspond to a site of historical recombination in chimpanzees. Although it could be that we have simply found hotspots that happen to be conserved by chance, it is also possible that patterns of recombination in orthologous regions between humans and chimpanzees are less evolutionarily stable than patterns of recombination in paralogous regions. This could be due, for example, to differences in the recombination machinery or in epigenetic factors in the two species17,18. This potential role in hotspot evolution for distal regulators of recombination or epigenetic factors has been suggested before when looking at the presence or absence polymorphism of a human recombination hotspot19. Examining whether the AHR hotspots in PRS1 and PRS2 are present in the chimpanzee orthologs could help distinguish among these competing explanations.

METHODS

Samples. We collected DNA samples extracted from blood leukocytes from 43 nuclear families (trios). In addition, genomic DNA from 70 individuals was available for full sequencing of three regions in each LCR investigated. All individuals were of Flemish origin and gave their informed consent, and all experiments were approved by the ethical commission of the medical faculty of the Catholic University of Leuven.

Specific PCR amplification of sequences from the three different copies of the LCRs. Using the Expand Long Template PCR system (Roche), we amplified each copy of the LCR in fragments of a maximum of 5 kb. Primers were chosen to end on paralogous sequence variants (PSVs) in such a way that only one copy of the LCR would be amplified. Genotypes from some SNPs showed problems with mendelian inheritance and Hardy-Weinberg equilibrium. Primer positions of the relevant PCR fragments were sequenced in all individuals, and the PSV sites used for the LCR-specific amplification proved to be polymorphic and hence not LCR specific. In these cases, new primers were designed using other PSVs in the vicinity that were not polymorphic in
our set of 43 families. With the new primer sets, there were no longer problems with mendelian inheritance or Hardy-Weinberg Equilibrium. A complete list of primers is available in Supplementary Table 3 online.

Detection of type 1 NFI microdeletion breakpoints. We amplified, nonspecifically, fragments from both NFIRePs and NFIRePc; simultaneously during the same PCR reaction and sequenced PSVs at several sites throughout the LCR. In an individual with a microdeletion, one typically amplifies three different fragments, one derived from the normal NFIRePs, one derived from the normal NFIRePc and one derived from the hybrid NFIRePs/NFIRePc on the chromosome 17 with the microdeletion. By simply scoring the relative copy number of both nucleotides of the PSV, one can determine if the breakpoint is located centromeric of the PSV investigated (NFIReP-specific nucleotide has a higher relative intensity on sequencing readout) or telomeric of the PSV (NFIRePc-specific nucleotide has a higher relative intensity) (Supplementary Fig. 4 online). In this way, the interval where the breakpoint is located can be narrowed to an interval between two PSVs.

SNP discovery. In NFIRePs and NFIRePc, 31 kb of the 33 kb region investigated in the three LCRs were fully sequenced, and about 22 kb were sequenced in REP19 (Bigye Terminator Sequencing Kit v5.1, Applied Biosystems) in ten random individuals for SNP discoveryINGLE. The sequenced region was re-sequenced in NFIRePs and NFIRePc with the amount of content. All SNPs typed in the 43 families were submitted to the dbSNP database. Supplementary Table 2 gives an overview of all the SNPs typed in the different LCRs together with the minor allele frequency. In addition, three smaller regions in the different LCRs were fully sequenced in 70 unrelated individuals (300 bp in PRS1, 1,500 bp in PRS2 and 800 bp in a region between PRS1 and PRS2). The number of SNPs shared between different LCRs was counted. Supplementary Table 1 gives an overview of the total number of SNPs and the number of SNPs shared between LCRs.

SNP typing. A total of 68 SNPs (20 in NFIRePs and 16 in the PRS1 region of REP19 and 12 in the PRS2 region of REP19) were typed in the 43 nuclear families and were submitted to the dbSNP database (Supplementary Table 2). The SNPs were typed by direct sequencing (Bigye Terminator Sequencing Kit v5.1, Applied Biosystems) or by SNaPshot analysis (Applied Biosystems) on the LCR-specific amplified PCR products. Because of the high sequence identity between the different copies of the LCR and the inherent problems of specific amplification of the LCRs, extraneous precautions were taken to avoid misamplification. None of the SNPs in this report showed problems with mendelian inheritance, and all genotypes are in Hardy-Weinberg equilibrium.

SNPs with a frequency lower than 4% were not included in the data analysis.

Haplotype analysis. For each copy of the LCR, the 172 parental haplotypes were estimated from the genotype data of the 43 trios using PHASE v2.1.1 (refs. 9,10,20–22). These estimated haplotypes were assumed to be known without error for subsequent analyses. We then used PHASE to assess the evidence for the presence of AHR hotspots in the three LCRs (NFIRePs, NFIRePc and REP19) at the location of the NAHR hotspots (PRS1 and PRS2) in NFIRePs and NFIRePc. The boundaries of PRS1 and PRS2 were chosen in such a way that they encompassed 90% of the breakpoints located in the PRS1 and PRS2 area, respectively. Based on the haplotype data, PHASE estimates the overall background recombination rate (p) and the relative intensity of any hotspots (λ). For example, λ = 1 corresponds to a hotspot, while λ = 10 corresponds to a hotspot where recombination occurs at a rate 10 times higher than in the surrounding sequence. The program makes a number of iterations (for example 10,000), and each iteration produces a sampled value of p and λ. We assumed the following prior distribution on λ with probability 0.5, λ = 1 (that is, no hotspot); otherwise a hotspot is present (λ > 1) and log(10λ) is uniform in the range 0–3. The number of iterations that provide a sampled value of λ > 1 indicates the strength of the evidence for a hotspot. For our analysis, we used five different seeds, each time making 10,000 iterations, to provide a total of 50,000 samples. The numbers shown in Table 2 reflect the proportion of iterations where λ > 1 or λ > 10, with 1 < λ < 10 being considered a weak hotspot, and λ > 10 being considered a strong hotspot. For the prior on λ we assumed (see above) the prior probability of no hotspot is 0.5, the prior probability of a weak hotspot λ > 1 is 0.75 and the prior probability of a strong hotspot is 1/3. The evidence for a weak or strong hotspot is measured using the Bayes factor (BF). The BF is the probability of obtaining the data under the model that a weak or strong hotspot is present divided by the probability of obtaining the data under the model that no hotspot is present. A BF of 10 indicates that the data are ten times more likely to be obtained if there is a hotspot than if there is no hotspot. The BF is calculated as follows: BF(weak) = P(weak hotspot) / P(no hotspot) = 0.5 / (1/10), and BF(strong) = P(strong hotspot) / P(no hotspot) = 0.5 / (1/100), where P(α) is the percentage of iterations observed under condition α and 0.5, 1/10 and 1/100 are the prior probabilities of finding 'no hotspot', a 'weak hotspot' or a 'strong hotspot', respectively.

For the REP19PRS1 and REP19PRS2 regions, a second analysis with PHASE was performed, assuming that one AHR hotspot was present in each region without specifying the exact location of the AHR hotspot.

Statistical analysis. The number of observed shared SNPs between the different copies of the LCR was compared with the expected number by the binomial distribution. The a priori probability was calculated as the number of SNPs per bp present in the copy of the LCR to which the other LCR was compared. The z-level was Bonferroni corrected.

Statistical analysis software and URLs. PHASE can be found at http://www.stat.washington.edu/stephens/software.html. All input files for PHASE and all derived haplotypes are available in Supplementary Table 4 online.

Note: Supplementary information is available on the Nature Genetics website.

ACKNOWLEDGMENTS

The authors thank T. de Reuwel and B. Roza for critically reading the manuscript. T.D. is supported by the Emmanuel Vanderschueren Fonds. M.S. is supported by US National Institutes of Health grant RO1HG/LM02585-01. E.L. is a part-time clinical researcher of the Fonds voor Wetenschappelijk Onderzoek Vlaanderen (FWO). This work is also supported by research grants from the Fonds voor Wetenschappelijk Onderzoek Vlaanderen (G.0068.02; E.L.; G.0970.06; P.M.); the Interuniversity Attraction Poles (IAP) granted by the Federal Office for Scientific, Technical and Cultural Affairs, Belgium (2002-2006; P.235; E.L.; P.M. and E.L.); and by a Concerted Action Grant from the Catholic University of Leuven and by the Belgian Federation against Cancer (SCI2008-33 to E.L.).

AUTHOR CONTRIBUTIONS

This study was coordinated by T.D., P.M. and E.L.; the manuscript was written by T.D., M.S. and E.L.; breakpoint detection was performed by T.D., I.H., H.B., L.M., K.S., C.L., K.W., H.K., D.V. and L.K.; SNP detection and typing was performed by T.D., I.H., H.B. and D.T. and computational analysis was performed by T.D. and M.S.

COMPETING INTERESTS STATEMENT

The authors declare that they have no competing financial interests.

Published online at http://www.nature.com/naturegenetics
Reprints and permissions information is available at http://npg.nature.com/reprintsandpermissions

Plexiform-Like Neurofibromas Develop in the Mouse by Intraneural Xenograft of an NF1 Tumor-Derived Schwann Cell Line

George Q. Perrin,1,2* Lauren Fishbein,3 Susanne A. Thomson,3 Stacey L. Thomas,7,8 Karen Stephens,9 James Y. Garbern,10 George H. DeVries,8,11 Anthony T. Yachnis,4 Margaret R. Wallace,3,5 and David Muir1,2,6

1Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida
2Shands Cancer Center, College of Medicine, University of Florida, Gainesville, Florida
3Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida
4Department of Pathology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
5Department of Pediatrics, Genetics Division, College of Medicine, University of Florida, Gainesville, Florida
6Department of Pediatrics, Neurology Division, College of Medicine, University of Florida, Gainesville, Florida
7Neuroscience Program, Loyola University Medical Center, Maywood, Illinois
8Hines VA Hospital, Hines, Illinois
9Department of Medicine, University of Washington, Seattle, Washington
10Department of Neurology, Wayne State University, Detroit, Michigan
11Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois

Plexiform neurofibromas are peripheral nerve sheath tumors that arise frequently in neurofibromatosis type 1 (NF1) and have a risk of malignant progression. Past efforts to establish xenograft models for neurofibroma involved the implantation of tumor fragments or heterogeneous primary cultures, which rarely achieved significant tumor growth. We report a practical and reproducible animal model of plexiform-like neurofibroma by xenograft of an immortal human NF1 tumor-derived Schwann cell line into the peripheral nerve of nude mice. The S100 and p75 positive sNF94.3 cell line was shown to possess a normal karyotype and have apparent full-length neurofibromin by Western blot. These cells were shown to have a constitutional NF1 microdeletion and elevated Ras-GTP activity, however, suggesting loss of normal neurofibromin function. Localized intraneural injection of the cell line sNF94.3 produced consistent and slow growing tumors that infiltrated and disrupted the host nerve. The xenograft tumors resembled plexiform neurofibromas with a low rate of proliferation, abundant extracellular matrix (hypocellularity), basal laminae, high vascularity, and mast cell infiltration. The histologic features of the developed tumors were particularly consistent with those of human plexiform neurofibroma as well. Intraneuronal xenograft of sNF94.3 cells enables the precise initiation of intraneural, plexiform-like tumors and provides a highly reproducible model for the study of plexiform neurofibroma tumorigenesis. This model facilitates testing of potential therapeutic interventions, including angiogenesis inhibitors, in a relevant cellular environment. © 2007 Wiley-Liss, Inc.

Key words: neurofibromatosis; neurofibroma; angiogenesis; plexiform; xenograft

Neurofibromatosis type 1 (NF1) is a common autosomal dominant condition caused by disruptive mutations in the NF1 gene, which encodes the GAP-related protein neurofibromin. These mutations result in absent or abnormal neurofibromin, which is associated with a high frequency of peripheral nerve sheath tumors called neurofibromas (Gutmann et al., 1991). Plexiform neurofibromas are often congenital, typically involve large nerves, can become very large, and when large, may cause serious functional impairment. Because they often occur on critical nerves and are not discrete masses, surgical removal is rarely complete. Recurrence is associated with increased morbidity and mortality, with progression to malignancy occurring in about 6% of NF1 patients. Although neurofibromas show marked cellular heterogeneity, Schwann cells (SCs) are the major

Contract grant sponsor: National Institutes of Health Training; Contract grant number: T32-CA09126-27; Contract grant sponsor: U.S. Department of Defense; Contract grant number: DAMD 17-01-17077, DAMD 17-03-1-0224.

*Correspondence to: George Q. Perrin, PhD, Dept. of Neuroscience, Box 100244, University of Florida College of Medicine, Gainesville, FL 32610-0244. E-mail: gperrin@ufl.edu

Received 13 July 2006; Revised 17 October 2006; Accepted 5 December 2006

Published online 4 March 2007 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/jnr.21226
Originate Tumor and NF1 Cell Line

The NF1 tumor cell line, sNF94.3, was derived from tumor tissue resected from a 43-year-old, female patient who met NF1 diagnostic criteria (Gutmans et al., 1997). Although there was no positive family history, the patient had definite features of NF1 including a mild learning disability, scoliosis, café-au-lait spots, Lisch nodules, hundreds of dermal neurofibromas, a congenital plexiform in the ankle and foot, and a MPNST in the thigh. The originate tumor tissue for the sNF94.3 cell line was obtained from a lung metastasis diagnosed by histopathology as an MPNST. The portion of the tumor specimen used for tissue culture was characterized independently by immuno histopathology as an MPNST. The tissue was acquired with patient consent and used according to IRB approved protocols.

DNA was extracted from blood leukocytes and tumor specimens as described previously by Colman et al. (1995). The sNF94.3 tumor cell line was established by methods described previously (Wallace et al., 2000; Muir et al., 2001). Briefly, tumor pieces were minced and associated for 3–5 hr with dispase (1.25 U/ml; Collaborative Research, Bedford, MA) and collagenase (300 U/ml; Type XI; Sigma, St. Louis, MO) in L15 medium containing 10% calf serum and antibiotics. The digested tissue was dispersed by trituration and strained through a 30-mesh nylon screen. Collected cells were seeded on laminin-coated dishes and grown in DMEM containing 10% fetal bovine serum, 5% calf serum, fetal growth factor-2 (25 ng/ml), and antibiotics. Cultures were subsequently grown and expanded rapidly without laminin and fetal growth factor-2. The sNF94.3 cell line showed a homogenous Schwann cell-like population and a clonal morphology, which was retained through protracted passages (19 thus far). The apparently immortal cell line has spindle-shape morphology and is immunopositive for S-100 and faintly for p75 (low-affinity neurotrophin receptor), indicating Schwann cell lineage. Nuclear S100 staining might indicate a dedifferentiated tumor cell line (Minsky and Jessen, 1999). The sNF94.3 cell line was deposited in the American Type Culture Collection.

Clonality Analysis

Tumor clonality was analyzed by an X-chromosome inactivation assay. This PCR polymorphism-based assay allows for differential detection of the maternal and paternal chromosomes by methylation-sensitive enzymes (Singer-Sam et al., 1990). Both the androgen receptor gene locus (Allen et al., 1992) and the phosphoglycerate kinase gene (PCG) (Lee et al., 1994) were analyzed. On digestion of genomic DNA with HpaII followed by PCR amplification using primers flanking the HpaII sites, a clonal sample only shows amplification of one allele whereas a polycloncal sample shows amplification of both alleles (that can be distinguished in heterozygotes). For this study, 10 ng of genomic DNA was digested with 20 U of HpaII and 10 U of Rsal (New England Biolabs, Ipswich, MA) in a 20-μl reaction. Two microliters of the digest was used for PCR amplification. The following primers were used for the androgen receptor repeat polymorphism; A-Receptor 5’; 5’-GCT GTG AAG GTT GCT GTT CCT

Journal of Neuroscience Research DOI 10:1002/jnr
CAT-3', A-Receptor 3', 5'-TCC AGA ATC TGT TCC AGA GCCG TGGC-3' under the following standard PCR conditions: 94°C for 1 min, 65°C for 1 min, 72°C for 1 min for 35 cycles with a 30-min 72°C final extension step. The samples were electrophoretically separated on a 10% native polyacrylamide gel and stained with ethidium bromide for visualization. The PGK gene single nucleotide polymorphism was amplified under similar conditions, except with an annealing temperature of 58°C, with the following primers: PGK-5', 5'-CTG TTC CTG CCC GCC CGG TGT TCC GCA TTC-3', PGK-3', 5'-ACG CCT GTC GTA GAT CTT CAC-3'. In addition, 8 µL of amplified product was digested with 20 U of BstXI to detect the RFLP before digesting with the appropriate restriction enzyme. The samples were run on a 10% PAGE. Densitometric analysis was carried out on all samples using NIH Image (freeware; National Institute of Health) and values were statistically analyzed by a t-test using Microsoft Excel.

NF1 Mutation Analysis

NF1 exons from tumor DNAs were analyzed by heteroduplex and SSCP analysis, as well as by direct sequencing (Abernathy et al., 1997). Samples were analyzed for loss of heterozygosity (LOH) using standard methods for genotyping NF1 polymorphisms as described previously by Colman et al. (1995) and Rasmussen et al. (1998). Blood and tumor DNA results were compared when constitutional heterozygosity was seen at a given marker. In addition, standard cytogenetic analysis was carried out on the tumors derived from Schwann cell cultures. Analysis for NF1 region microdeletion used specific PCR assays.

Western Blot Analysis

Cell cultures were scraped from dishes and cell pellets were homogenized in ice-cold extraction buffer consisting of 50 mM Tris-HCl (pH 7.4), 250 mM NaCl, 1% Nonidet P-40, 0.25% sodium deoxycholate, and Complete protease inhibitor cocktail (Boehringer-Mannheim, Indianapolis, IN). The soluble fraction was collected by centrifugation (10,000 X g, 20 min) and reconstituted to be 2 M in urea. The extract was concentrated and fractionated by ultrafiltration using a 100-kDa cut-off membrane. Total protein content of the high molecular mass retentate was determined using Bradford Reagent (Bio-Rad, Hercules, CA). Samples were mixed with sodium dodecyl sulfate electrophoresis sample buffer containing 2 M urea and 5% 2-mercaptoethanol, normalized for total protein content and then heated at 80°C for 2 hr. Samples (50 µg of total protein) were electrophoresed into 4-15% polyacrylamide gradient gels and electroblotted to nitrocellulose sheets in transfer buffer containing 0.1% sodium dodecyl sulfate. Blots were rinsed in water and fixed in 25% isopropanol/10% acetic acid. Nitrocellulose sheets were washed with 50 mM Tris-HCl (pH 7.4) containing 1.5% NaCl and 0.1% Triton X-100 and then blocked in the same buffer with the addition of 5% dry milk (blocking buffer). The blots were incubated for 2 hr with anti-NF1GRF(N) antibody (1 µg/ml) (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) in blocking buffer. Bound antibody was detected by peroxidase-conjugated swine anti-rabbit IgG (affinity purified; DAKO, Carpinteria, CA) diluted 1/2,000 in blocking buffer. Immunoreactive bands were developed by chemiluminescent methods (Pierce Chemical, Rockford, IL) according to the manufacturer's instructions. Relative molecular mass was determined using prestained markers: myosin (233 kDa) (Bio-Rad). Control samples were similarly processed from cell pellets obtained from normal human nerve Schwann cell cultures and Schwann cell cultures derived from embryonic homozygous NF1 knockout mice. In these studies, neurofibromin was detected using a number of antibodies. We used the antibody available from Santa Cruz Biotechnology raised against a peptide corresponding to residues 509-528 of the predicted NF1 gene product. To further investigate the possible effects of truncated NF1 gene products, we developed monoclonal antibodies (McNF127a, McNF127b) raised against a peptide corresponding to the N-terminal residues 27-41 of the predicted NF1 gene product. Similar results were obtained with all antibodies. Next, the blot was stripped with Restore Western Blot Stripping Buffer (Pierce Chemical), per manufacturers instructions, and blocked as described above. The blot was then re-immunoblotted with polyclonal anti-human GST (DAKO) (1/200) (that binds only human glutathione --transferase) to check sample loading. This immunoblot was developed as described above.

Ras Activation Assay

Ras activation assay kit (Upstate Biotech, Lake Placid, NY) was used according to the manufacturer's protocol. The assay uses affinity precipitation to isolate Ras-GTP from cell lysate. Cells were lysed using RIPA buffer (1% Igp, 0.5% NaDOC, 0.1% SDS in PBS) and the DC protein assay (Bio-Rad) was used to determine the protein concentration of the cell lysate. Cell lysate (500 µg) was incubated with a agarose-bound Raf-1 RBD fusion protein. Agarose beads were collected by pulsing with a microcentrifuge (5 sec at 14,000 x g), washed with lysis buffer, and resuspended in Laemmli sample buffer. The samples were then boiled for 5 min after which the supernatants were loaded onto a 4-20% gradient Novex Tris-Glycine gel (Invitrogen, Carlsbad, CA) along with SeeBlue Plus2 molecular weight standards (5 ul) (Invitrogen). The samples were electrophoresed (20 mA/gel) and then transferred (100 V) to a PVDF membrane (NEN, Boston, MA). The membrane was blocked with 5% nonfat dry milk, and then incubated with primary antibody overnight at 4°C as follows: 1 µg/ml Anti-Ras clone RAS10 (Upstate Biotechnology, Lake Placid, NY); 1/250 Anti-N-Ras (F155), and Anti-K-Ras (F234) (Santa Cruz Biotechnology). This was followed by incubation with HRP-conjugated secondary antibody at room temperature for 1 hr. The blot was developed using Western Lightning Chemiluminescence Reagent (NEN).

Mouse Strains

Immunodeficient B6 scid mice were used as hosts to minimize immunologic rejection of the xenografted human cell line. The scid nonsense mutation in the DNA-PKCS gene, was described by Blunt et al. (1996). Based on genomic DNA sequence (GenBank AB005213) PCR primers were
designed flanking the mutation site in exon 85: scid 5 (GAGTTTTGACAGAAATCTGTA), and scid 3 (CTTTGAGAACACTTGTATTCTGC). The resulting 180 bp PCR product was digested with Alu I to distinguish wildtype allele from mutant allele extra cut site via agarose gel electrophoresis, to genotype animals at the aid locus.

Intraneural Tumor Xenografting

Intraneural xenografts were initiated by injecting human NF1 tumor-derived, sN94.3 cells (passage 5–8) into the sciatic nerves of adult aid mice. sN94.3 cultures from cryopreserved stocks were grown in DMEM containing 10% FBS and antibiotics. Dissociated cells were collected, rinsed thoroughly, and resuspended at 1 × 10^6 cells/ml in calcium- and magnesium-free Hank’s Balanced Salt Solution (HBSS). Young adult mouse hosts were anesthetized with isoflurane and the sciatic nerves exposed bilaterally at mid-thigh. A cell suspension (5 × 10^5 cells in 5 μl) was injected sequentially into the sciatic nerve through a Flexifil (0.2-mm OD) titanium needle syringe (World Precision Instruments, Sarasota, FL) driven by a UMI micromanipulator mounted on a motorized microscope (World Precision Instruments). These techniques are for optimized tumor cell injection but successful xenografts can be accomplished by hand and with simple equipment, as they were in our initial studies. The surgical site was closed in layers. Muscles were sutured with 4-0 nylon monofilament. The skin opening was stapled with 9-mm stainless steel wound clips that were removed 7–10 days after surgery. The revived mouse was returned to specific pathogen-free housing. At 2–8 weeks after implantation, the animals were sacrificed under anesthesia and the nerves were removed and fixed by immersion in 4% paraformaldehyde.

Xenograft success rate, based on the appearance of human glutathione s-transferase (huGST) immunopositive tumors, was approximately 95% (including initial studies). Nerve segments were embedded in paraffin and sectioned for staining. All animal use was carried out in accordance with the guidelines of the University of Florida Animal Care and Use Committee.

Immunohistochemistry

Cell Cultures. sN94.3 monolayer cultures were examined for immunoreactivity with antibodies to the SC antigens S-100 (DAKO) (1/300) and the low-affinity neurotrophin receptor (p75) (4 μg/ml, hybridoma 200-3-G6-4; American Type Culture Collection, Rockville, MD). Cultures grown on laminin-coated chamber slides were fixed with 2% paraformaldehyde in 0.1 mM phosphate buffer (pH 7.2) for 20 min, then washed with PBS containing 0.5% Triton X-100. Non-specific antibody binding was blocked with PBS containing 0.1% Triton X-100 and 10% normal swine serum (blocking buffer) for 1 hr. Primary antibodies were diluted in blocking buffer and applied to wells and allowed to incubate overnight at 4°C. Bound primary antibodies were labeled with swine anti-rabbit IgGs (DAKO) (1/200) conjugated with fluorescein for 1 hr at 37°C diluted in blocking buffer in darkness and post-fixed with 2% paraformaldehyde in PBS for 10 min. After washing with PBS, slides were cover slipped and kept in the dark at 4°C until imaging. Imaging was carried out using an excitation wavelength of 450–490 nm and an emission wavelength of 515–565 nm.

Tissue Specimens. Portions of the primary human tumor specimen used for cell culture and xenografted mouse nerves were fixed by immersion in 4% paraformaldehyde in 0.1 mM phosphate buffer (pH 7.2) overnight at 4°C, embedded in paraffin, sectioned on the longitudinal nerve axis, and stained with hematoxylin and eosin (H&E) for routine light microscopic examination. Deparaffinized sections were pre-treated with methanol containing 1% hydrogen peroxide for 30 min to quench endogenous peroxidase activity. Nonspecific antibody binding was blocked with 10% normal serum in PBS for 60 min at 37°C. Primary antibodies were diluted in blocking buffer and applied to sections overnight at 4°C. Bound antibody was labeled with a biotinylated secondary antibody for 4 hr at 37°C followed by the avidin-biotin-peroxidase reagent (DAKO) for 2 hr. Chromogenic development was accomplished with diaminobenzidine-HCl (0.05%) and hydrogen peroxide (0.03%) in PBS. Immunostained sections were lightly counter-stained with hematoxylin. Primary tumor tissue sections were immunolabeled for neurofibromin using polyclonal NF1GRNP(N) antibody (1 μg/ml) (Santa Cruz Biotechnology) and monoclonal NfN27b (5 μg/ml) (Novus Biologicals, Littleton, CO). Human sN94.3 tumor cells were identified in mouse nerve xenografts by immunostaining with polyclonal anti-huGST (DAKO) (1/100). sN94.3 xenografts were examined for immunoreactivity with antibodies to the SC antigens S100 (DAKO) (1/300) and the low-affinity neurotrophin receptor (p75) (5 μg/ml, Promega, Madison, WI). Cellular proliferation in vivo was assessed by immunostaining with a monoclonal antibody to Ki67 (DAKO) (1/100) (a nuclear antigen present in proliferating human cells). Blood vessels were immunolabeled with polyclonal anti-von Willebrand Factor (DAKO) (1/500) (that binds endothelial cells). Basal laminae produced by the xenografted sN94.3 cells was immunolabeled with monoclonal anti-laminin (3 μg/ml) (2E8) with pepsi antigen retrieval (Engwall et al., 1986; Graham et al., 2007). This antibody recognizes only human laminin and not laminin of mouse origin. Negative controls used no primary antibody. Mast cells were visualized using acidic toluidine blue as described by Einerer et al. (1986) on sections immunostained for huGST previously. Mucopolysaccharide was stained with 1% Alcian blue (Scott and Mowry, 1971) in combination with H&E staining.

RESULTS

Phenotypic and Genetic Characterization of the sN94.3 Cell Line

Samples of the sN94.3 tumor showed ultrastructural features and focal S100 immunopositivity indicative of a neurofibrosarcoma (data not shown). The Schwann cell cultures derived from the original sN94.3 sample immunostained for the Schwann cell marker S-100 (Fig. 1A) and the low-affinity nerve growth factor receptor p75 (Fig. 1B), indicating a Schwann cell-like phenotype.

The spindle-shaped monolayer cultures of sN94.3 cells showed apparent full-length neurofibromin (Mr...
Fig. 1. sNF94.3 cells have a Schwann-like phenotype. sNF94.3 cultures were examined for the immuno expression of two Schwann cell markers, S-100 (A) and p75 (B) by fluorescent immuno-cytochemistry. p75 was easily detected on the surface of sNF94.3 cells and cytoplasmic labeling for S-100 was observed. Original magnifications: 400X.

Fig. 2. sNF94.3 cells express apparently full-length but non-functional neurofibromin. A: Extracts from sNF94.3 cultures, fibroblast cultures derived from embryonic Nfi−/− knockout mice, and normal human Schwann cell cultures were analyzed for neurofibromin expression by Western immunoblotting. Full-length neurofibromin appeared as a ≈250 kDa band in the normal human Schwann cell sample. An equal amount of total protein was loaded for each sample. B: Increased activated Ras is seen in serum-starved sNF94.3 cells, as are increased levels of activated N-Ras and K-Ras isoforms (C).

≈250 kDa) by Western immunoblotting using several anti-neurofibromin antibodies (Fig. 2A). Full-length neurofibromin was not detected in extracts of fibroblast cultures derived from embryonic Nfi−/− knockout mice. As a positive control, normal human Schwann cell cultures showed a substantial band pair corresponding to full-length neurofibromin. A secondary immunolabeling of the blot for huGST showed consistent loading for all of the human samples. Next, sNF94.3 cells and normal human Schwann cells were serum-starved and Ras activation was determined by Western immunoblotting. Total activated Ras-GTP was elevated in sNF94.3 cells when compared to normal human Schwann cell cultures (Fig. 2B). In addition, both of the specific N-Ras and K-Ras isoforms were activated in sNF94.3 cells (Fig. 2C). Similar results have been reported for other NF1-derived Schwann cells (Thomas, et al., 2006). Consistent with Ras activation, sNF94.3 cells proliferate rapidly and display vigorous growth in culture, on par with other human NF1 MPNST cell lines established in our lab.

sNF94.3 leukocyte DNA (from a polyclonal population of cells) was analyzed first for heterozygosity at the androgen receptor and PGK gene polymorphisms. This sample was heterozygous at the androgen receptor gene, warranting additional DNA analysis. The X-chromosome inactivation pattern for sNF94.3 at the androgen receptor locus was consistent with that of a clonally derived tumor sample (P = 0.008, data not shown).

The cytogenetic analysis showed a normal 46, XX karyotype, which is unusual for MPNSTs (Mertens, et al., 2000). Sample sNF94.3 cells do not have p53 loss of heterozygosity but showed a constitutional Nf1 mutation, which is a microdeletion of the common 1.4 Mb type with breakpoints in the NFREPs and was detected using PCR (Dorschner et al., 2000; Lopez-
Fig. 3. sNF94.3 xenografts form hypocellular plexiform-like tumors.
A: The normal mouse sciatic nerve (upper) is slender and symmetric whereas 8 weeks after implantation with sNF94.3 the nerve appears swollen and mildly deformed (lower) (scale bar = 2 mm). B:
HuC/D immunostaining readily identifies and traces the infiltration of human sNF94.3 cells throughout the xenografted host sciatic nerve. C: H&E stain shows tumor hypocellularity and nerve remod-
eling. Developing tumor (t), axons (a) displaced by infiltrating tumor and a small region with relatively normal nerve structure (n) are visible. D: A serial section stained with Alcian blue highlights the abundant deposition of extracellular mucopolysaccharide matrix associated with the hypocellular tumor. Immunostaining for human laminin (E) showed the presence of basal laminae. Original magnification: 100X (B); 200X (C–F).

Correa et al., 2001). The somatic mutation is not a large deletion and remains unknown despite analysis of numerous exons. This is consistent with the patient's heavy dermal tumor burden and occurrence of the MPNST (De Raedt et al., 2003). The NF1 mRNA is of the Type II isoform, which is due to inclusion of exon 23a (encoding 21 amino acids). This isoform is known to have reduced GAP activity, and is the predominant type expressed in normal peripheral nerve, brain tumors, and neurofibromas (Suzuki et al., 1991; Teinturier et al., 1992; Andersen et al., 1993). All exon and immediate flanking intron bases have been sequenced and are normal. There is no evidence for aberrant splicing at the RNA level, via reverse transcriptase (RT)-PCR polyacrylamide gel analysis, and sequencing. It is possible, however, that a mutation lies in an untranslated region or promoter region, affecting RNA transcription level or stability, or hemizygosity for the Type II isoform results in Ras–GAP activity reduced sufficiently to allow tumor progression.
Intraneural sNF94.3 Xenograft Tumors Resemble Plexiform Neurofibroma

Like cultures from neurofibromas, sNF94.3 failed to form subcutaneous tumors in nude mice. Nevertheless, sNF94.3 xenografts consistently formed slow growing, infiltrative tumors in the mouse nerve. Figure 3A shows the gross morphology of a normal mouse sciatic nerve and a representative sNF94.3 nerve xenograft 8 weeks after intraneural implantation. Thirty-nine sNF94.3 engraftments were carried out and examined at time points from 8 days to 1 year after initiation. Overall, 94.9% of the sNF94.3 xenografts were successful and resulted in established foci of huGST-immunopositive cells. Most sNF94.3 tumors caused a moderate enlargement of the host nerve. Eight weeks after implantation with sNF94.3, nerve diameters were on average 55% larger (0.472 mm ± 0.1469, n = 6) than normal,agematched mouse sciatic nerves (0.304 mm ± 0.0392, n = 4). Vehicle injected mouse sciatic nerves were not increased in size compared to normal nerves (0.293 mm ± 0.0645, n = 2 vs. 0.304 mm ± 0.0392, n = 4, respectively), indicating the increase in nerve diameter did not result from surgically induced inflammation. In addition, xenografted normal human Schwann cells resulted in only a slight, 9.7% increase in nerve diameter (0.334 mm ± 0.0643, n = 6 vs. 0.304 mm ± 0.0392, n = 4) after 8 weeks. This occurred despite only transient occupancy and limited survival as the normal Schwann cells were most often undetectable after 8 weeks in vivo. Xenografts of sNF94.3 grew slowly and were histopathologically similar to human NF1 plexiform neurofibromas. Immunostaining for the marker protein huGST identified the xenografted human tumor cells and their propensity to diffusely involve the nerve, mimicking the hypocellular growth pattern often found in plexiform neurofibromas (Fig. 3B). The engrafted tumor cells increased in number over time and eventually infiltrated the nerve far from the site of initial implantation.
Regardless of the extent of tumor growth, no overt signs indicating loss of nerve function were observed in any of the xenografted mice, also commonly the case with human NF1 plexiform neurofibromas. Growth of the sNF94.3 cell line in sciatic nerves of adult axi mice caused intraneural disruption and nerve remodeling (Fig. 3C). The hypocellular tumors were composed of diffusely distributed, spindle-shaped cells and were associated with deposition of a myocellular-deposited collagenous extracellular matrix (Fig. 3D) and basal laminae (Fig. 3E), hallmarks of NF1 plexiform neurofibroma (Scheithauer et al., 1997). The basal laminae found in sNF94.3 xenografts was produced by the sNF94.3 cells themselves, not the host mouse cells, because the monoclonal antibody used for laminin immunolabeling is specific for human laminin only and does not immunostain mouse laminin (Engvall et al., 1986; Graham et al., 2007). This specificity for human laminin is further shown by the lack of laminin immunostaining in the unaffected portion of the mouse nerve (Fig. 3E). Muco-polysaccharide deposition, shown by Alcian blue staining, was observed as early as 2 weeks after sNF94.3 xenograft and increased over time, as did hypocellularity observed with H&E staining. Neither Alcian blue staining nor H&E hypocellularity was observed in xenografts of normal human Schwann cells after 8 weeks (n = 6) nor nerves injected with vehicle alone (n = 4). Furthermore, xenografts of another human NF1 cell line using the exact same procedures results in large hypercellular tumors with little mucopolysaccharide and laminin deposition (data not shown).

sNF94.3 xenografts were immunostained for Ki67 (a nuclear antigen found in proliferating cells) and von Willebrand Factor (vWF), an endothelial cell marker. Ki67-positive nuclei were found only within the tumor xenografts (huGST-immunopositive cells) and not in adjacent normal host nerve tissue. A low percentage of tumor cells labeled for Ki67 (Fig. 4A). Similar observations were made in xenografts after 8 days and 1 year, indicating slow basal cell proliferation by the sNF94.3 tumor cells, mimicking that of plexiform neurofibromas. Immunostaining for vWF showed scant blood vessels in normal mouse nerves arranged almost exclusively along the longitudinal nerve axis (Fig. 4B). Increased vascularity was evident in sNF94.3 xenografts as early as 2 weeks (Fig. 4C) and 8-week tumors showed a high degree of vascularity. A more centripetal pattern of blood vessel was observed indicating an angiogenic response to the developing neoplasm. Nearly identical results were obtained by labeling xenograft tumor tissue with antibodies to FLK-1, a high affinity receptor for vascular endothelial growth factor (VEGF) also found on blood vessels (not shown). These results indicate the induction of new blood vessels by the tumor xenograft and provide the opportunity to examine angiogenesis in this NF1 tumor model. Sections of sNF94.3 xenografts immunostained for huGST were counterstained with acid blue to visualize mast cells. Although a few mast cells were found in normal mouse sciatic nerves, there was a conspicuous increase in mast cell number in the xenografted nerves (Fig. 4D). Given the fact that mast cells are known to release factors that influence tumor formation, these results may indicate a potential cell influence on intraneural sNF94.3 xenograft tumorigenicity. S-100 and p75 immunostaining of sNF94.3 xenograft tumors was faint and variable (Fig. 4E,F, respectively), similar to that of the original tumor specimen.

Table 1 summarizes the histologic observations and indicates similarities and differences between sNF94.3 xenografts and human NF1 plexiform neurofibroma. Based on these criteria and the findings presented we conclude that intraneural sNF94.3 xenografts show tumorigenic growth in the nerves of axi mice highly consistent with that of naturally-occurring human plexiform neurofibroma. Classifications for peripheral nerve sheath tumors arising in genetically engineered mouse (GEM) models have been devised because of some important differences between human and murine lesions (Stenner-Rachamimov et al., 2004). In the same way it is difficult to apply the GEM classifications to tumors arising in xenografting models. Clearly, sNF94.3 xenograft tumors result from the proliferation of NF1-deficient Schwann cells and the admixture of various cell types from the mouse nerve including endothelial and mast cells. For the most part, sNF94.3 xenografts fit the Grade 1 GEM tumor classification because of low cellularity and no necrosis. They exceed that classification, however, due to their low to moderate proliferation (Ki67 positivity) and infiltration.

DISCUSSION

A variety of genetic strategies have been tested to determine the role of NF1-deficiency in tumorigenesis and to induce peripheral nerve sheath tumors in animal
models. Genetic manipulations to generate $Nf1{-/-}$ chimera and conditional knockout mice have provided valuable insights into the role of the $Nf1$ gene in tumor pathogenesis (Cichowski et al., 1999; Zhu et al., 2002; Stemmer-Rachamimov et al., 2004). On the other hand, tumor xenografting is a time-tested approach with numerous advantages for testing anti-cancer therapies. Despite tumorigenic properties shown in vitro, neurofibroma cultures fail to form subcutaneous tumors in immunodeficient mice (Sheela et al., 1990; Muir et al., 2001). Early studies achieved limited growth by transplantation of human neurofibroma tissue or mixed cell preparations into mice (Appenzeller et al., 1986; Lee et al., 1992), yet reliable working xenograft models for NF1 tumors have been difficult to establish. In previous work we found that a subset of neurofibromin-negative Schwann cell cultures derived from neurofibromas did form slow growing tumors as intraneural xenografts (Muir et al., 2001). Although these xenografts provide a useful model of neurofibroma, several months are required to develop histologically detectable tumors for experimental therapeutics. In addition, cell lines derived from benign neurofibromas are not immortal and thus are a limited resource. Therefore, we investigated more advantageous xenograft models of NF1 tumorigenesis by implantation of rapidly growing NF1 MPNST cell lines into the mouse nerve.

We report a practical and reproducible NF1 tumor xenograft model by transplantation of an immortal human NF1 tumor-derived Schwann cell line, sNF94.3, into the peripheral nerve of sid mice. sNF94.3 is a stable and homogeneous cell line that provides a permanent and consistent cell source for xenograft initiation. sNF94.3 are Schwann-like cells that express S-100 and p75, as do the clonal element of most human NF1 plexiform neurofibromas. sNF94.3 cells have an apparently normal karyotype. The manifestation and severity of the original patient’s NF1 symptoms (including abundant dermal and plexiform neurofibromas and MPNST) are consistent with a germline ~ 1.4 megabase microdeletion of the $Nf1$ gene (De Raedt et al., 2003). The germline mutation completely deletes the $Nf1$ and surrounding genes, whereas the somatic $Nf1$ mutation(s) remain unknown. It is likely the somatic $Nf1$ mutation(s) in sNF94.3 is subtle, such as a missense mutation, because this cell line produces apparently full-length neurofibromin protein as seen by Western blotting. Our studies show that these cells, however, have constitutively activated Ras indicating that the neurofibromin in sNF94.3 cells is not functional. This functional deficit is consistent with the phenotype of sNF94.3 cells in vitro and in vivo.

Although no animal model system can recapitulate every aspect of a complex human disease such as NF1, we conclude the sNF94.3 xenograft is a valid model of plexiform-like neurofibroma and provides a valuable tool in the study of NF1 tumorigenesis. Like human NF1 plexiform neurofibroma, intraneural sNF94.3 xenografts displayed hypocellularity with widely-spaced spindle-shaped cells, a low proliferative index, an extracellular matrix-rich stroma and basal laminae. Neurofibromas and MPNST have been shown previously to produce laminin (Chanoki et al., 1991). Schwann cells require the presence of other cell types, such as axons and fibroblasts, to produce basal laminae (Obrenski et al., 1993). The fact that basal laminae are formed by sNF94.3 tumors suggests that these tumor cells interact with the surrounding host cells to form highly differentiated Schwann cell neoplasms (Leivo et al., 1989). Additionally, the tumors spread longitudinally in the nerve fascicles, intermingling with host axons while causing little or no impairment of nerve function, similar to human plexiform neurofibromas.

The increase of blood vessels observed in benign sNF94.3 xenograft tumors recapitulates another important feature of NF1 plexiform neurofibroma, which are angiogenic and highly vascularized (Arbiser et al., 1998). Angiogenesis has been suggested as a potentially important target for therapeutic treatment of many types of cancers (Folkman, 2003). As in human NF1 plexiform neurofibromas, the induction of angiogenesis points to the possible effectiveness of anti-angiogenic therapies to limit and control tumor growth. Therefore, the sNF94.3 xenograft model facilitates testing anti-angiogenic therapies for NF1 tumors. In addition, we have established sid mice with a heterozygous $Nf1$ genotype, providing the opportunity to examine the interactions of xenografts with haplo-insufficient host cells. This may be particularly interesting for further studies of angiogenesis given our recent observations of exaggerated neovascular responses in NF1 haplo-insufficient mice (Wu et al., 2006).

Xenografting requires the use of immunodeficient mice that can complicate the interpretation of host-implant cell interactions. $Sid1$ mice lack a functional adaptive immune system, yet they do possess a completely intact innate immune system, including mast cells (Dorskind et al., 1984). Additionally, NF1 tumorigenic Schwann cells are known to produce stem cell factor, a potent mast cell mitogen (Ryan et al., 1994). It has been shown that murine innate immune cells can contribute to the inhibition of human tumor-cell engraftment in some human tumor-sid mouse models (Lozupone et al., 2000). Alternatively, this innate immune response may also contribute to tumor engraftment and growth. Previous studies have suggested that mast cells may induce or contribute to tumor formation in NF1 mutant mouse models (Zhu et al., 2002; Yang et al., 2003). It is interesting to speculate whether this mast cell infiltration and activation may be a relevant feature of slow-growing plexiform tumors, as suggested by our xenograft model and by others (Viskochil, 2003).

Although a number of NF1 mouse models have been developed in recent years (Gutmann and Giovanini, 2002; Stemmer-Rachamimov et al., 2004), ours is the first xenograft model allowing the properties of human NF1 tumor-derived cells to be examined in a relevant cellular environment. The sNF94.3 xenograft model closely recapitulates the natural history, pathobiol-
ology, and biochemistry of human NFI plexiform neurofibroma (Table 1). This model is reproducible and consistent with a xenograft success rate of nearly 95%. Because the tumor cell injection is fully controlled by the investigator, a low tumor burden can be established precluding premature death from tumor overload. Also, tumors develop with a relatively short latency.

In summary, the plexiform-like sNF94.3 xenograft model offers several advantages. First, the sNF94.3 xenografts can be compared to the original tumor specimen as well as other xenografts and cognate tumor specimens. Second, before implantation, sNF94.3 cultures can be examined for in vitro neoplastic properties, karyotype, and genetic abnormalities. Third, the investigator can precisely define the fate of tumor xenografts by cell number, time, and location in a relevant cellular environment. Fourth, xenografts can be initiated in hosts with various genetic and phenotypic alterations and at various developmental stages. In addition, for future studies, we have also developed a strain of scid mice with an Nf1+/- background (Branman et al., 1994; Jacks et al., 1994) to enhance the validity and relevance of tumor-host cell interactions. The plexiform-like sNF94.3 xenograft model recapitulates the main aspects of plexiform neurofibroma. These features, combined with high reproducibility and technical simplicity, will greatly facilitate preclinical testing of new therapeutic approaches for NFI tumors.

ACKNOWLEDGMENTS

The authors thank D. Neubauer, E. Baldwin, and T. Lewis for their assistance in performing experiments, Dr. L. Zhang, Dr. H. Li, and F. Kweh for mouse breeding and colony maintenance and the University of Florida Cytogenetics Lab for cytogenetic analysis. This study was supported by the National Institutes of Health Training Grant T32-CA09126-27 (G.Q.P.), the U.S. Department of Defense grant DAMD-17-01-1-0707 (M.R.W.), and DAMD 17-03-1-0224 (D.M.).

REFERENCES

