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Abstract 

For a robot to build a map of its surrounding area it must have accurate position 

information within the area and to obtain the accurate position information within the 

area, the robot need to have an accurate map of the area. This circular problem is the 

Simultaneous Localization and Mapping (SLAM) problem. An efficient algorithm to 

solve it is FastSLAM, which is based on the Rao-Blackwellized particle filter. FastSLAM 

solves the SLAM problem for single-robot mapping using particles to represent the 

posterior of the robot pose and the map. Each particle of the filter possesses its own 

global map which is likely to be a grid map. The memory space required for these entire 

maps pose a serious limitation to the algorithm’s capability when the problem space is 

large. In addition this problem will only get worse if the algorithm is adapted to a multi-

robot mapping. This thesis presents an alternate mapping algorithm that extends this 

single-robot FastSLAM algorithm to a multi-robot mapping algorithm that uses Absolute 

Space Representations to represent the world. However, each particle still maintains a 

local grid to map its vicinity and periodically this grid map is converted into an Absolute 

Space Representations. An Absolute Space Representation expresses a world in polygons 

requiring only minimal amount of memory space. By using this altered mapping strategy, 

the problem faced in FastSLAM when mapping a large domain can be alleviated. In this 

algorithm, each robot maps separately, and when two robots encounter each other they 

exchange range and odometry readings from their last encounter to this encounter. Each 

robot then sets up another filter for the other robots data and incrementally updates its 



 

 

own map, incorporating the passed data and its own data at the same time. The passed 

data is processed in reverse by the receiving robot as if a virtual robot is back-tracking the 

path of the other robot. The algorithm is demonstrated using three data sets collected 

using a single robot equipped with odometry and laser-range finder sensors. 
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MULTI-ROBOT FASTSLAM FOR LARGE DOMAINS 
 

1. Introduction 

1.1 Background 

Building truly autonomous robots is a highly sought-after goal in the field of 

mobile robotics.  Autonomous robots can be used for various purposes in our lives such 

as building maps for search and rescue operations and executing simple tasks in our 

offices and homes. 

Like humans, robots rely on sensor measurements to interpret theirs environment 

and subsequently build maps using the data. Robots specifically use range-finders to read 

distances to structures in the environment. However, sensors including range-finders 

induce errors in readings due to sensor failure, sensor noise, environment noise, or 

inability to sense particular materials.  In addition to the inaccuracies from sensors noise, 

robots carry another intrinsic limitation. Robot motion control systems are not totally 

reliable. In fact, the largest amount of error is often from the motion control system. In 

the midst of these limitations, researchers strive to develop truly autonomous robots. To 

have a reliably-functioning robot, it is important for the robot to have the capability to 

map its environment accurately. Without a map, a robot would not be able to navigate 

and perform simple tasks.  However, to map an area accurately, the robot has to know its 

location within its environment. When its location is misinterpreted, subsequent sensor 

readings would be misinterpreted as well ending up building inaccurate maps. This 

induces a “chicken and egg” problem. To be able to map, the robot has to know its pose 

within the map, and, to know its position, it requires an accurate map.  This nature gives 
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rise to the problem of Simultaneous Localization and Mapping (SLAM), known as 

SLAM.  

SLAM is a fundamental capability required for navigating unknown environments 

when GPS data is not available. Robots without knowledge of their whereabouts can not 

perform given commands successfully. To be reliable, robots need capability to map their 

surroundings accurately in spite of errors caused by sensor readings and their motion 

control system. Many methods have been studied to explore the possibility of building 

efficient autonomous robots. Among them are the well known Extended Kalman Filter 

(EKF) and FastSLAM.  

The Extended Kalman Filter (EKF) has been one of the most popular approaches 

to the SLAM problems for last two decades. Although this approach produces good 

results, it suffers from two limitations: quadratic complexity and sensitivity to failures in 

data association [64].  

In recent years, an efficient and robust SLAM algorithm called FastSLAM has 

drawn significant attention from researchers in mobile robotics. This algorithm solves the 

SLAM problem for single-robot mapping by using the Rao-Blackwellized particle filter 

(RBPF) to approximate the posteriori estimate of a robot pose and the map. In the 

algorithm, each robot maintains a particle filter which is made of a number of samples. 

The samples estimate the posterior of the robots position and the possible maps. The 

mapping, often done on a grid, limits the number of samples which can be used in the 

algorithm, due to memory constraints. This work extends the original FastSLAM 

algorithm to alleviate this memory constraint by letting each sample maintain only a 
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small fine-grain local grid map and a global Absolute Space Representations (ASR) map 

best thought of as the polygons which represent the surfaces in an environment. This 

thesis also extends the single-robot FastSLAM algorithm to multi-robot mapping 

problems with unknown initial positions. 

1.2 Problem Statement 

Although FastSLAM [58] is a powerful solution to the SLAM problems, it suffers 

from a problem. The FastSLAM algorithm uses a particle filter to approximate the 

posterior of a robot given a motion model and builds a map adding robot observations 

incrementally using a Bayesian update step [58].  Per iteration, each particle of the path 

estimator estimates the posterior of the robot’s pose and updates its map based on the 

estimated pose information. Then a new set of particles is extracted from the previous set 

of particles, based on the accuracy of the posterior and map estimations. Only particles 

with the best map, or highest posterior estimation, survive to the end and the best is 

selected to represent the learned map. This requires each particle to possess a global map. 

When errors in the estimation of a robot’s pose are great, a large number of 

particles are required to converge on a feasible map, and because each particle has its 

own map, the memory space required is quite large just to build a map for an area of 

40000m2. This memory requirement limits the domain size of the FastSLAM algorithm. 

To overcome this shortcoming, this thesis introduces an online multi-robot FastSLAM 

algorithm in which each particle maintains a fine grained local grid map and a global map 

using Absolute Space Representations (ASRs). This thesis work shows that, by revising 

the original FastSLAM algorithm to this new map representation, the maximum number 
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of particles used for FastSLAM problems can be doubled without increasing the memory 

requirements. 

1.3 Research Objectives 

The objectives of this thesis are to: 

1. Implement and test the single-robot FastSLAM algorithm using local grid 

maps and global Absolute Space Representations. 

2. Implement and test multi-robot FastSLAM. 

3. Develop a method to extract a polygonal map representation from a grid 

map and to simplify the extracted polylines. 

The methodology associated with each of these objectives is discussed briefly in 

the following section. 

1.4 Methodology 

In multi-robot mapping, one can’t assume that the robots will be accurately aware 

of their starting location and the starting locations of the other robots. Because of this, in 

multi-robot mapping, each robot initializes its own coordinate system and starts mapping 

as if from an unknown location. Robots don’t know the locations of other robots and 

begin mapping until they encounters another robot. Upon encountering each other, the 

robots determine their relative poses to each other and exchange their collected range and 

odometry data from the time when they last met. Upon exchange, each robot sets up a 

virtual robot whose initial pose is set to the relative pose of the encountered robot(s). 

Then each of these virtual robots sets up a particle filter and begins mapping with the 



 

 1-5

received data in time-reversed order. The master robot and the virtual robot incorporate 

their partner’s already developed map into their maps when passing through an 

overlapping area. 

In order to reduce the amount of memory required for the particles, each particle 

of the master robot and the virtual robot periodically transform their local grid map into 

Absolute Space Representations (ASR) by extracting polygons from the grid map and 

simplifying the polygons, and the ASRs are stored until the robot’s next visit to the area. 

When revisiting a previously mapped area and when starting the next local map, the 

overlapping area of the new local grid of each particle in the RBPF is initialized to the 

values of the previous local grid. When each robot returns to the previously visited area, 

it reopens the polygonal local map and incorporates the map data into its current map.  

The algorithm is tested offline using three data sets obtained using a single robot 

equipped with odometry and laser-range finders. The first data set is processed in order 

and tested for the single-robot FastSLAM problem to demonstrate efficiency and 

effectiveness of the algorithm. In the second simulation, the second and the third data set 

are processed at the same time to simulate two robots encountering each other, but with a 

minimal amount of overlap. The third data set is collected from the ending location of the 

second data set. This means that there is a point where there is no difference in the actual 

poses of the robots. Results show that multi-robot mapping using FastSLAM and ASRs 

produces reliable maps with an error between the robots starting and ending locations of 

0 cm. 
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1.5 Thesis Preview 

Chapter 2 reviews related work done in robotic mapping, localization, and SLAM. 

This is followed by the proposed method for mult-robot FastSLAM, and in Chapter 4, 

implementation details and test results are shown and analyzed. The document concludes 

with conclusion about the results and potential future work. 
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2. Literature Review 

This chapter presents related work in robotic mapping and Simultaneous 

Localization and Mapping (SLAM). First in Section 2.1, methods for performing single 

robot mapping are presented. Section 2.2 presents mathematical background material 

required for SLAM, and then in Section 2.3, research in localization is discussed. Finally, 

in Sections 2.4 and 2.5, SLAM and multi-robot SLAM are addressed. 

2.1 Robot Mapping 

The goal of the robot mapping problem is for the robot to determine the map of its 

environment, given sensor readings and the robot’s pose/location. The mapping problem 

is analytically expressed as estimating the probability distribution of the map mt,at time t 

given the previous times sensor st-1 and pose zt-1 information and the previous map m t-1, 

and is expressed as 

p(mt | st-1, zt-1, m t-1)      (2.1) 

Since only the current and previous time slices are represented, the assumption is 

that the information from all previous time slices is encapsulated in the current state (the 

Markov assumption).  

One of the problems in mapping is that the process is inherently noisy. Robots 

depend on sensor readings to map their environment. However, these readings are subject 

to errors. In addition, robot motors induce errors as well. When a move command is 

given to the robot with specified direction and distance, the robot performs the command 

and believes to be at the specified location, although the new location the robot ends up 

might be far from the believed-to-be location. The robot motors also lack the ability to 
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incorporate the state of the surface the robot is moving on, inducing more errors in its 

estimations. When these errors accumulate over time without being controlled, the robot 

fails to maintain its actual pose information and misinterprets sensor readings. The map 

generated by such a lost robot is far from the real environment. Therefore, the robot has 

to know its position accurately to generate quality map. This brings up a problem of 

solving the posterior of the robot’s pose while generating the map. Because of these 

inherent problems, building accurate maps using mobile robots has been a difficult task.  

Most of mapping algorithms use metric or occupancy grid maps and topological 

maps to represent the world.   

 
2.1.1 Occupancy grid maps 
 

Occupancy grid maps are first introduced by Moravec and Elfes in 1985 [31]. 

Moravec and Elfes represent the world as fine-grained grids where each grid cell is 

marked as occupied or free space. Occupancy grids represent an environment in a grid of 

“cells”. Each cell maintains the probability that the cell is occupied by some object. A 

metric map displays the geometric features of the environment. The majority of the 

SLAM solutions uses occupancy grid maps and updates the maps using Bayesian 

methods when new data is obtained. Alternatively, Pagac, Nebot, and Durrant-Whyte 

[33] use the Dempster-Shafer belief functions instead of probabilities [31].  

 
2.1.2 Topological maps 
 

Topological maps, first introduced by Kuipers [31], show the connectivity of the 

environment, and in many cases discard most metric information. Topological maps 
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describe the environment as a graph with nodes and arcs. Nodes represent the spaces 

(rooms, hallways, etc.), and arcs represent the probability of transitions between the 

spaces. However, the distinction between topological mapping and metric mapping has 

been ambiguous due to the fact that topological maps often rely on geometric features for 

localization after the map is built. 

There has been some work done on extracting topological maps from occupancy 

grid data [36], most topological mapping acquires topological information about the 

environment during the exploration process [32, 35]. For example, Rybski, et al. [34] 

build topological maps by identifying visual features in image data acquired during the 

exploration process, and Tovar, LaValle, and Murrieta [41] maintain a dynamically-

updated visibility tree representation that captures the topology of the environment [31]. 

As a comparison, metric maps provide more information about the environment 

but require more storage and are sensitive to measurement errors. Although topological 

maps cannot represent the environment as concisely, they can represent much larger 

environments [31]. Most mapping techniques, whether metric or topological in nature, 

are probabilistic in some sense [31]. 

 
2.1.3 Related Work in Mapping 
 

Maps are either world-centric or robot-centric [31]. World-centric maps maintain 

a map using a global reference system, and robot-centric maps are described in a local 

robot sensor based measurement space. Robot-centric maps are difficult to extrapolate 

from individual measurements to measurements at nearby, unexplored places. For this 

reason, world-centric maps have generally been preferred. Since the 1990s, probabilistic 
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approaches have dominated robotic mapping [6], and the robotic mapping problems 

solution of choice is some form of simultaneous robot localization [53, 54]. Maps usually 

describe the location of landmarks, or significant features in the environment. For a 

general overview of several well-known probabilistic mapping techniques see [38]. 

Incremental mapping algorithms are popular because they can be run in real time. 

A global map is built incrementally by converting the raw sensor data to a compact map 

composed of generalized polylines [4]. The global map is also represented by generalized 

polylines and merging the new polylines is done by merging similar line segments. An 

online, real-time incremental mapping method introduced in [52] uses likelihood 

maximization for robot pose and the map estimation. The algorithm maintains the map in 

a hierarchical fashion in which each robot maintains its own local map. Each robot 

communicates a subset of its scans to the central robot using corrected scan coordinates. 

The central mapper then integrates the scan information from the individual robots in real 

time.  

The method introduced in [47] uses an incremental mapping technique. However, 

the algorithm represents the two-dimensional map using manifolds. A manifold is an 

arbitrarily complex structure with varying local curvature and is discretized by dividing it 

into a set of overlapping patches. The algorithm takes maximum likelihood estimation 

techniques and adapts them for the manifold representation. The algorithm maintains a 

set of relations that contain the patches’ relative pose. Each patch has finite extent and 

defines a local coordinate system [47]. A same location may be represented more than 

once in the manifold set.  
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Some researchers have worked on using both the metric and topological mapping 

approaches by maintaining local metric information (i.e. occupancy data) at topological 

nodes [37]. Tomatis, Nourbakhsh, and Siegwart [39, 40] represent hallways using 

topological maps and rooms using metric maps [31]. Laviers[67] initially uses occupancy 

grid maps to map rooms and then transforms the map into absolute space representations 

in which the world is represented as a series of connected spaces.  

Although the majority of algorithms which perform mapping employ range 

sensors, some work is done using vision [53, 63]. Davison et al. use cameras that have the 

ability to fixate and to change fixation over a wide angular range. Using this method, re-

detected features after a long time can be re-matched. Measurement of a feature in the 

map involves the stereo head using a prediction scheme to turn to fixate to the feature.  

The following section discusses foundational material required for the discussion 

of mapping algorithm specifics. In Section 2.2.1, Bayes filtering and its association with 

Simultaneous Localization and Mapping (SLAM) are discussed. Kalman filters and 

particle filters are discussed in Sections 2.2.2 and 2.2.3 respectively. Finally, the 

Expectation Maximization algorithm is presented in 2.2.4.  

2.2 Background Material 

This section introduces several topics that are built on during the discussion of 

localization and mapping research in the remainder of the chapter and in Chapter 3. The 

first topic is Bayes Filter. 
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2.2.1 Bayes Filter [45] 

Most of the localization, mapping, and SLAM approaches use probabilistic 

algorithms and make use of Bayes rule [28] which is  

P(x|d) P(d) = P(x,d).                                                   (2.2) 

where P(x|d) is the conditioned probability of x conditioned on d, P(d) is the probability 

of d, and P(x,d) is the joint probability of x and d. 

By symmetry we can also 

 P(d|x) P(x) = P(x,d).               (2.3) 

where P(d|x) is the conditioned probability of x conditioned on x and P(x) is the 

probability of x. 

When only terms on the left hand side are rearranged; 

P(x|d) P(d)= P(d|x) P(x).              (2.4) 

From this, we can get 

P(x|d)= η P(d|x) P(x)                 (2.5) 

when η = 1/P(d). Here, x is the unknown state of the dynamic discrete system, d is 

measurement data and η is the normalizing factor. The term P(d|x) represents the 

probability of observing the measurement d given x. The term P(x) specifies the 

probability of the prior world being in the state of x. According to the Bayes’ rule, the 

unknown data can be obtained by multiplying the probability of measurement data given 

the state x and the probability of the state being in x.  

The Bayes filter extends Bayes’ rule to temporal estimation problems [1]. It 

recursively estimates posterior probability distributions over quantities that cannot be 
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observed directly. Let xt denote for the unknown quantity at time t, then xt represents the 

state at time t and a posteriori probability over the state xt can be calculated via the 

following recursive equation: 

p(xt| zt,ut) = η p(zt|xt) ∫ p(xt|ut,xt-1)p(xt-1|zt-1,ut-1)dxt-1      (2.6) 

Here a superscript t refers to all data leading up to time t, that is: 

zt = ¶z1,z2,z3,…,zt♦                   (2.7) 

ut= ¶u1,u2,u3,…,ut♦                   (2.8) 

As can be seen the equation (2.6) is recursive. The posterior probability p(xt|zt,ut) 

is calculated from the previous probability back to t=0, p(x0 |z0,u0) = p(x0). This recursive 

nature is the Markov assumption and this assumption enables Bayes filters to integrate 

information indefinitely. The Markov assumption assumes that the values in any state are 

only influenced by the values of the state and effects that directly precede it. 

In Bayes filters, the state xt contains all unknown quantities that may influence 

sensor measurements at multiple points in time. In robotic localization and mapping, 

unknown quantities are usually the location the robot is in and the map of the 

environment. Since both quantities influence sensor measurements in the future states, 

they have to be estimated together. 

Hence, by denoting the map as m and the robot’s pose as s, then xt in equation 

(2.6) can be replaced with st and mt and the equation can be rewritten as: 

 p(st,mt|zt,ut) = η p(zt|st,mt) p(s∫ ∫ t,mt| ut,st-1,mt-1 ) p(st-1,mt-1 |zt-1,ut-1) dst-1 dmt-1        (2.9) 
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However, if the world is assumed to be static, then the time index for the map can 

be omitted. In addition, if we assume that the robot motion is independent of the map, 

this results in: 

p(st,m|zt,ut) = η p(zt|st,m) ∫ p(st|ut,st-1)p(st-1,m|zt-1,ut-1) dst-1   (2.10) 

This estimator does not require integration over maps m, as was the case for the 

equation (2.9). Since a map usually involves a high dimensionality of the state, this 

problem reduction enables the problem of mapping and localization to be a sizable one. 

We notice that to calculate p(st,m|zt,ut), we need two distributions: p(zt|st,m) and 

p(st|ut,st-1). However, these distributions are commonly assumed not to depend on the 

time t. Then they can be written as p(z|s,m)  and p(s|u,s’). In robotic localization and 

mapping, the probability p(z|s,m) represents the perceptual model that describes the 

workings of the robot’s sensors. The probability p(s|u,s’) represents the motion model of 

the robot. It models the effect of the robot controls on the state s’.  Equation (2.10) is 

exact and can be used for any system for which the Markov assumption holds.  

Many different probabilistic algorithms have been developed to approximate the 

equation for robotic mapping. Three popular approaches are based on the Kalman Filter 

(KF), Particle Filters (PF), and Expectation Maximization algorithm (EM). 

 
2.2.2 Kalman Filter [22] 
 

The KF is a recursive filter which estimates the state of a dynamic system with a 

series of incomplete, noisy measurements with an assumption that the system is linear 

and the noise is Gaussian. Under this assumption, the system is described as: 

                   xt+1=Ft xt +wt                     (2.11) 
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                                        xtzt+1 =Ht zt +vt                                                (2.12) 

where wt and vt are the system observation noises and are zero-mean Gaussian 

distributions. Ft is the state transition model which is applied to the previous state xt and 

Ht is the observation model which maps the true state space into the observed space. The 

KF represents the distribution by their means and covariance matrix. The update of the 

KF alternates between two stages: predict and update. In the predict stage, the predicted 

next state x’t+1 and predicted estimate covariance Σ ’t+1 are calculated as   

                                          x’t+1=Ft xt                                                           (2.13) 

                                    Σ’t+1=Ft Σ’tFt T +wt .                                                         (2.14) 

where  the subscript letters t and t+1 indicate time and the superscript letter T means the 

transpose of a vector or matrix.   

During the update stage, an optimal Kalman gain Kt+1, updated state estimate xt+1, 

and updated estimate covariance Σt+1 are calculated as:  

   Kt+1 = Σ’t+1 Ht
 (HtΣ’t+l Ht

T + Σt vt)
-1                                                  (2.15) 

 xt+1 = x’t+l + Kt+1(zt- Ht x’t+l)                (2.16) 

Σt+1 =(I – Kt+1 Ht) Σ’t+l                                                    (2.17) 

However, it is often the case that the system is nonlinear and the Gaussian noise 

assumption for the motion and observation models is not adequate for such systems. To 

overcome the problem, the Extended Kalman Filter (EKF) [56] uses the KF with non-

linear models. 
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2.2.3 Particle Filter  
 

Instead of attempting to represent an entire probability distribution, a particle 

filter estimates the probability distribution using a large set of particles. Each particle 

represents a single belief of the system and carries an importance weight. As new 

information comes into the system, the particle filters update over three steps: sampling, 

importance weighting, and resampling. 

Initially a certain number of particles are uniformly spread over the region of 

interest. At each time step, as new data arrives, each particle estimates the next state of 

the system. Once each particle has updated their belief, a new weight is calculated for 

each particle based on its new estimation. During the resampling stage, a new generation 

of samples is drawn from the current set of samples using the importance weight to 

weight sample selection. Samples with higher weight are likely to survive and have 

numerous descendents, while samples with lower weights are likely to die off. The 

number of particles required for a good approximation of a Bayesian system grows 

exponentially with the dimension of the state to estimate. To overcome this problem, 

Rao-Blackwellized particle filters (RBPF) are used, which make use of d-separation or 

Bayesian independence between state variables. RBPF is discussed more with the 

description of FastSlam in Section 2.5. 

 
2.2.4 Expectation Maximization Algorithm [92] 
 

The EM algorithm is an iterative procedure to compute the Maximum Likelihood 

(ML) estimate in the presence of missing data. It iterates between two processes:  The E-
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step and the M-step. For the E-step, an expectation of the likelihood of observation of 

unobservable data is computed. This is followed by finding the maximum likelihood 

estimates of the parameters using the expected likelihoods during the M-step [2]. Let y 

denote incomplete data and x the missing data. The x can either be actual missing 

measurement or a hidden variable that would make the problem easier if its value were 

known. Where p(x,y| q) is the joint probability distribution of the complete data, given q,  

a parameters vector. Then, using the Bayes’ rule and law of total probability, the 

distribution of the missing data is:  

             
∫

==
dxqxpqxyp

qxpqxyp
qyp
qxypqyxp

)|(),|(
)|(),|(

)|(
)|,(),|(      (2.18)  

This formulation requires two distributions: p(y|x, q) and p(x|q). The distribution 

p(y|x,q) is the observation likelihood given the unobservable data, and the distribution 

p(x|q) is the probability of the unobservable data. An EM algorithm iteratively improves 

an initial estimate q0 alternating between the E-step and the M-step. qt+1  is estimated from 

qt and obtained by maximizing the conditional expectation log likelihood given the 

observed variables under the previous parameter value, which is described as: 

qt+1 = argmaxq Ex[log p(y x|qt)| y ]                             (2.19)  

Here Ex denotes the conditional expectation of log-likelihood, log p(y,x|q). Log-likelihood 

is used instead of true likelihood p(y,x|q), because it attains the same maximum point as 

the true likelihood while the problem becomes much easier to solve. 
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2.3 Localization 

Section 2.1 introduced the topic of mapping, including a brief discussion of some 

of the techniques involved. The discussion notes that one of the biggest difficulties 

associated with mapping is sensor noise and error. If the robot had perfect pose 

information, then the mapping problem becomes almost trivial. Because of that, the 

following section discusses techniques that perform localization which improves the 

robots pose. 

The problem of localizing a mobile robot is to determine the robot’s pose in an 

environment, given the observation history, the command history, and a map of the 

environment. This problem is analytically expressed as estimating the probability 

distribution: 

    p(st|z0:t,u0:t,m)                     (2.20) 

Here st is the robot position to be estimated at time t, z0:t={z0, z1,…,zt} and 

u0:t={u0, u1,…,ut} are the sensor measurement and the motion command histories up to 

time t, respectively, and m is the map of the environment.  

One simple robot localization method is robot pose tracking [7]. In this approach, 

the initial robot pose is known, and the consequent robot pose is estimated by 

compensating errors incrementally in a robot’s odometry. Algorithms for tracking the 

robot poses in such a manner often make restrictive assumptions on the size of the error 

and the shape of the robot’s uncertainty. However, the robot localization problem 

becomes more challenging when the robot’s initial pose is not known a priori, which is 

called the global localization problem [8, 13]. In the global localization problem, the error 
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in the robot’s estimate cannot be assumed to be small, hence, it requires a robot be able to 

handle multiple, distinct hypotheses. Even more challenging is the kidnapped robot 

problem [5] in which a well-localized robot is picked up and transported to an unknown 

place without being told. The vast majority of existing algorithms address only the 

position tracking problem, in which errors are assumed to be small and incremental. This 

property makes algorithms such as Kalman filters [12, 14] applicable in position tracking.  

The position tracking approach calculates the robot’s new pose based on the 

previous position and can be expressed as an estimation of the probability distribution: 

    p(st|zt-1,ut-1,st-1,m)      (2.21) 

Here st is the robot position to be estimated at time t and m is the static map. The 

variables zt-1, ut-1, and st-1 denote the sensor measurement, motion command, and the robot 

pose at time t-1 respectively.  In position tracking, the robot pose is usually represented 

using a Gaussian distribution, tracking only a single mode of the posterior. It is often 

unlikely to recover to a correct solution from an incorrect estimation. 

On the other hand, the latter approach maintains multi-modes of the robot 

posterior as expressed by equation (2.20). This approach can deal with environment 

ambiguities and large robot displacements at the expense of an increased computational 

complexity. 

Most robot localization solutions use sensors such as sonar and laser range-finders 

to localize the robot inside the map. The robot detects landmarks and localizes itself 

relative to landmarks, either using topological [15, 16] or grid-based maps [33, 44, 48]. 

Metric representations of the space [9, 8, 39, 45] are advantageous over topological 
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because these allow a variety of environments to be dealt with and are not restricted to 

orthogonal environments containing pre-defined or easily distinguishable features such as 

corridors, intersections, and doors. For topological localization, a few algorithms use 

artificial landmarks such as reflecting tape, ultrasonic beacons, buoys or visual patterns 

that are easily recognized to localize the robot. Some approaches use more natural 

landmarks such as hallways, openings, doors, walls, ceiling lights [17], and other vertical 

objects [18].  

Although some approaches directly incorporates raw sensor data [27, 21, 14] 

directly into the maps, the majority of recent localization algorithms are probabilistic and  

use the history of the data read from sensors to estimate a position that is updated upon 

the arrival of new sensor readings [25]. Of these, although range finding sensors are most 

common, there are also vision-based localization approaches [53], as well as system 

which use wireless hubs to update the robots pose [25, 26].  

Three representative approaches for robot localization are Kalman Filter, Markov, 

and Monte Carle localizations. 

 
2.3.1 Kalman Filter Localization   
 

Kalman filters estimate posterior distributions of robot poses conditioned on 

sensor data and represent posteriors by Gaussians. A localization problem of a KF can be 

described as: 

st+1=At st +wt                                (2.22) 

xtzt+1 =Ht zt +vt                           (2.23) 
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Here At is the action model which is applied to the previous robot pose st and Ht is 

the sensor observation model. The variables wt and vt are the action and observation 

noises respectively and are zero-mean Gaussian distributions, and zt is the observation 

made by the robot at time t. In the predict stage, predicted next robot pose s’t+1 and 

predicted estimate covarianceΣ’t+1 is calculated as: 

s’t+1=At st                                                 (2.24) 

Σ’t+1=At Σ’tAt
T +wt                                                                (2.25) 

where  the subscript letters t and t+1 indicate time and the superscript letter T means the 

transpose of a vector or matrix. Then during the update stage, an optimal Kalman gain 

Kt+1, updated state estimate st+1, and updated estimate covariance Σt+1 are calculated as:  

         Kt+1 = Σ’t+1 Ht
 (HtΣ’t+l Ht

T + Σvt)
-1                                                (2.26) 

st+1 = s’t+l + Kt+1(zt- Ht s’t+l)                     (2.27) 

Σt+1 =(I – Kt+1 Ht) Σ’t+l                                                                          (2.28) 

Although Kalman filters offer an elegant and efficient algorithm for localization, 

they make restrictive Gaussian noise and Gaussian-distributed initial uncertainty 

assumptions. Many algorithms have been developed to overcome this limitation. One 

approach uses multi-hypothesis Kalman filters. Multi-hypothesis Kalman filters represent 

beliefs using multi-modal Gaussians [10, 13], enabling them to pursue multiple, distinct 

hypotheses. However, this approach inherits from Kalman filters the Gaussian noise 

assumption. Another method to handle the globalization problem is Markov localization.   
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2.3.2 Markov Localization 
 

Markov localization algorithms assume that the environment is static, and the 

robot’s location is the only state in the environment which systematically affects sensor 

readings. Markov localization estimates the posterior distribution over st given all 

available data. This localization problem is described as  

p(st=St|d)                                                         (2.29) 

where st is the estimate of the current robot pose, St is the true robot pose at time t, and d 

is the collection of all the data available up to time t-1. Markov localization algorithms 

require all positions to be updated after each sensor reading and fail to localize a robot if 

too many aspects of the environment are not covered by the world model. Some Markov 

localization algorithms use features [15] or raw sensor data [9, 5]. However, using sensor 

data requires fine-grain grid representations of the environment that requires maintaining 

a huge state space. To overcome this problem, alternate algorithms using selective 

updating algorithms [5] and a tree-based representation [8] have been proposed. Burgard 

et. al [5] extends Markov localization for dynamic environment. The algorithm uses 

entropy or distance filters and a fine-grained grid representation of the robot’s belief 

state. The algorithm updates the position probability density using only those 

measurements which are with high likelihood produced by known objects contained in 

the map [5]. The algorithm does not depend on abstract features, enabling raw sensor data 

to be incorporated into the robot’s belief. Distance filters have the advantage that they do 

not average over all possible situations and that their decision is based on the current 

belief of the robot. Besides, entropy filter has an advantage of making no assumptions 
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about the nature of the sensor data and the kind of disturbances occurring in dynamic 

environments. Another popular localization approach is Monte Carlo Localization 

(MCL).  

 
2.3.3 Monte Carlo Localization 
 

Monte Carlo Localization (MCL) is a recursive Bayes filter that estimates the 

posterior distribution of robot poses as conditioned by the sensor data. MCL assumes the 

Markov assumption and the posterior of the robot pose is described as 

Bel(st)=p(st|zt,zt-1,...,z0,ut,ut-1,…,u0)                                 (2.30) 

where st is the pose of the robot, zt the sensor data, and ut is the robot motion command at 

time t. The word “Bel’ stands for the robot’s belief in the robot pose at time t. 

A MCL algorithm, Sequential Monte Carlo Methods (SMC) [61], uses two main 

ideas, sequential importance sampling and resampling, to update the posterior distribution 

as observation data become available which arrive sequentially. At each time instance t, 

SMC generates a collection of N weighted random particles [22], according to the 

importance density. The paths until time t-1 are not modified. In the resampling stage, 

particles with larger weights are sampled multiple times, while particles with small 

weights die away. Then an equal weight is assigned to each particle of a new sample set 

of particles is assigned. 
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2.3.4 Multi-Robot Localization 
 

Most work with emphasis on robot localization is performed using a single robot. 

However, robot localization using cooperative robots to reduce the odometry error have 

also been studied.  

Kurazume and Shigemi [19], for example, use two groups of robots. When the 

robots in one group move the other group members are required to remain at their 

positions. After each a motion command, all robots stop, perceive their relative position, 

and use this to reduce errors in odometry. Rekleitis and colleagues [20] present a similar 

method, in which a robot remains stationary while another robot moves and tracks the 

position of the moving robot. However the two mentioned methods lack capability to 

solve the global localization problem.  

On the other hand, robots in [27] individually localize themselves using a sample-

based version of Markov localization. Each robot maintains its own belief state, and the 

estimation of the posteriors is carried out locally on each robot. Individual robots perform 

Monte Carlo Localization that represents the beliefs of its own state using a set of 

weighted random samples, or particles. When a robot detects another robot using cameras 

and range-finders, they synchronize their belief states. The method approximates the 

robot belief states using piecewise constant density functions represented by a tree. When 

the robots establish correspondence between two belief states, the density values of the 

tree are multiplied into the other robot’s sample set. This method helps the robots localize 

themselves faster with higher accuracy, even without initial knowledge of their location. 
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In this method, only “positive” detections are allowed and robots can’t see each other at 

the same time. 

2.4 Simultaneous Localization and Mapping (SLAM) 

Robots require sensor and odometry readings to map its environment. However, 

sensors used for environment detection and odometry readings have inherent errors, 

which induces the SLAM problem. SLAM addresses building a map of an unknown 

environment while the robot also tries to localize itself inside the map, and it is 

summarized as estimating the probability distribution: 

     p(st,mt|z0:t,u0:t)                          (2.31) 

A main issue in the SLAM problems is to decide how to represent the joint 

distribution over robot poses and maps. Of the state-of-the-art probabilistic approaches to 

the SLAM problem are Kalman filters, Expectation Maximization (EM) method, and 

fastSLAM. 

 
2.4.1 Kalman Filter SLAM 
 

One popular probabilistic approach to SLAM uses Kalman filters [1]. For 

mapping the Kalman filters represent posterior estimates p(st,m|zt,ut) with Gaussians [1]. 

In the SLAM problem, the state x is a vector that comprises the robot’s pose s and the 

map m [1]: 

                  xt=(st,m)T      (2.32) 

From this point on, T means the transpose of a vector or matrix. In 2-dimentional 

Cartesian coordinates, the robot pose s is broken down into three variables sx, sy, andθ . sx 
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and sy are the robot poses in the x and y coordinates and θ  represents the robot heading. 

Maps in the Kalman filter approach maintain the Cartesian coordinates of sets of features 

[1]. Features may include landmarks, objects or special shapes in the environment. Since 

there can be a number of features in the environment, the length of the vector xt can 

become large. If K represents the total number of unknown features, then xt becomes a 

2K+3-dimensional vector: 

             xt = (sx,t,sy,t,θ t,m1,x,t,m1,y,t,m2,x,t,m2,y,t,…, mk,x,t,mk,y,t)T              (2.33) 

Here mk,x,t and mk,y,t are Cartesian coordinates of the k-th feature in the map. The 

posterior over the robot pose and landmarks estimate p(st,m|zt,ut) is described by a mean 

vector μ t and a covariance matrix Σ t. Here, the mean vector has 2K+3 dimensions, and 

the covariance (2K+3)2 dimensions. 

Kalman filter SLAM approaches require three basic assumptions. First, the next 

state function must be linear with added Gaussian noise. Second, the perceptual model 

must also be linear with added Gaussian sensor noises. And third, the initial uncertainty 

must be Gaussian [1].  

Using the linear next state function, the post st and the map mt depends linearly on 

the previous pose, st-1, the previous map, mt-1, and the control ut. Since the environment is 

static, approximating the robot pose and the map by a linear next state function is 

appropriate. However, in reality robot poses is usually governed by a nonlinear 

trigonometric function that depends nonlinearly on the previous pose and the robot 

controls [1]. Matrix multiplications are the most costly operations in updating the Kalman 
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filter. Kalman filter-based algorithms require time quadratic in the number of landmarks 

to incorporate each sensor observation [58].   

To date, the Kalman filter approach is the only technique that can estimate the full 

posterior over maps and robot poses in an online fashion. However, the assumption that 

measurement noise must be independent and Gaussian poses a limitation for practical 

implementations when features are indistinguishable. In addition, it doesn’t handle 

correspondence problems well. The correspondence problem associates sensor 

measurements taken over time to each other. For these limitations, an environment with a 

sparse set of features that can be reliably identified can be best mapped using Kalman 

filters. Paskin [66] implements the KF approach using a thin junction tree. The junction 

tree itself represents the actual belief state. The tree expresses correlations as edges for 

direct dependencies and as paths for indirect dependencies. Each filter update adds an 

edge to the tree. 

 
2.4.1.1 Extended Information Filters 
 

The Extended Kalman Filter extends the standard the KF by incorporating non-

linearity in the models. In the extended Kalman filter, single motion commands are 

broken into a series of smaller motion segments to account for nonlinearity. The EKF 

incrementally estimates the joint posterior distribution over the robot and landmark 

positions [64], and is the most popular approach to the SLAM problem. However, EKF-

based SLAM approaches still share the same problem in time complexity with the KF 

which takes time quadratic to update the number of landmarks, because they maintain 

correlations between landmarks. This limits the application of the approach to the 
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environment in which only a few hundred features are contained. In addition, this 

approach assumes that landmarks are identifiable, which is not often true in the real 

world. In [53], the robot performs a stereo image search of size determined by the 

innovation covariance and uses the head’s known odometry and its matched image 

coordinates to produce a measurement of the feature position relative to the robot. To 

reduce the computation, his method performs selective sensing. Since the work was not 

done within a multiple hypothesis framework with linear models, a single mismatch can 

be fatal to the localization process and, when uncertainty in the map is large, EKF 

updates is unpredictable due to the unmodelled non-linearity in the system. 

The SLAM method in [24] uses an EKF using a postponement technique. It 

maintains a single map with a submap. It uses a submap to postpone the full map update. 

A submap is the set of features most recently observed, and as a new feature is observed 

the submap is expanded to include the new feature. In this way, the full map update can 

be postponed and the time complexity is improved by an order of magnitude. A 

compressed filter in [29] is identical to the postponement technique of [24]. The only 

difference lies in the set of the maintained features that are defined by geographical 

boundaries rather than expanded dynamically. 

 
2.4.1.2 Sparse Extended Information Filters 
 

Sparse extended information filters (SEIF) [79] represents the robot and 

landmarks posterior by a sparse Gaussian Markov random field. SEIF is similar to the 

thin junction tree method in [66] and represents maps through local, Web-like networks 

of features. SEIF is based on the information form of the EKF, known as the extended 
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information filter (EIF), and is motivated by the observation that the inverse covariance 

matrix of the EKF is sparse in nature. The elements of the matrix are treated as links 

between the locations of different features. The stronger the link is, the closer the 

landmarks. SEIF maintains a sparse information filter, in which nearby features are 

linked through a non-zero element. At each update, edges are removed to guarantee a 

constant-filter operation. SEIF updates the single, global map in constant time per step, 

except during loop closing.  

 
2.4.2 Expectation Maximization SLAM Algorithms 
 

In using the EM algorithm for SLAM, the function that is being maximized is the 

expectation over the joint log likelihood of the data dt and the robot path st = {s1,…,st}[1]:  

              m[i+1] = argmaxmEst[log p(dt,st|m)|m[i],dt]                                (2.34) 

where Est denotes the conditional expectation of log p(dt,st|m) given the previous map, a 

sensor reading, and a motion command  

With Markov assumptions, equation (2.34) can be re-expressed as 

    m[i+1] = argmaxm 
τ
∑ ∫ p(sτ|m[i],dt) log p(zτ|sτ,m) d sτ                     (2.35) 

The term p(sτ|m[i] dt) is the posterior estimate for the robot pose S  given the data 

d

τ

t and the i-th map m[i]. 

The robot posterior estimate p(sτ|m[i],dt)  for a given map is calculated in the E-

step, and the most likely map for all poses st is obtained during the M-step from the 

previous map by fixing the expectations p(sτ|m[i] dt) and by maximizing the log likelihood 

of the sensor measurements log p(zτ|sτ,m) [1]. At each iteration step, more accurate maps 
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are calculated. An empty map is used as the initial map. Since the robot’s path st is 

unknown, equation (2.34) computes the expectation of likelihood over all possible paths 

the robot may have taken [1].   

EM algorithms can solve the correspondence problem by repeatedly updating the 

pose posterior in the E-step. Since the obtained posterior means a different hypothesis on 

the robot’s path, it implies different correspondence and these correspondences become 

features in the map obtained in the M-step [1]. However, EM algorithms can not retain a 

full notion of uncertainty, suffering from local maxima. In addition, They can’t generate 

maps incrementally.  

The SLAM algorithm in [66] performs efficient maximum likelihood projections 

periodically to remove weak or redundant edges. The junction tree gives immediate 

access to the marginal distribution over any variable, thus enables the process of selecting 

an edge to prune and pruning them in a linear-time filtering operation. The method also 

delays the incorporation of recent evidence into the map. 

 
2.4.3 FastSLAM 
 

Another popular approach to solving the SLAM problems is FastSLAM. The 

FastSLAM algorithm [58] approaches the SLAM problem from a Bayesian point of view. 

Figure 2.1 shows the single-robot SLAM problem as a dynamic Bayes network.  
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    Figure 2.1: Bayes Net for single-robot SLAM problem. 

 

Here si stands for a robot pose, zi an observation made by the robot, and ui an 

robot motor command given at time i. Following the notation of [69], s1:t denotes a 

sequence of robot poses given up to time t, z1:t a sequence of observations, and u1:t a 

sequence of robot actions. The m stands for a map. The FastSLAM algorithm utilizes the 

fact that the map and the path are independent via d-separation. This property was first 

observed by Murphy [59]. Based on this observation, Montemerlo, et al. decomposes the 

SLAM problem into the robot posterior and map estimation problems [58]. 

The algorithm makes use of a Rao-Blackwellized particle filter in which each 

particle of the filter maintains an estimate of the robot posterior and a map estimate. 

Particles evolve over time by sampling a new set of particles from the old set of particles 

based on an importance factor. The importance factor is calculated based on the current 

map, a robot motion command, and current sensor measurements. Sensor updates in the 

FastSLAM algorithm are done by a simple ray-tracing. The complexity of the Rao-

Backwellized particle filter algorithm is O(MK) when we reduce a landmark to a point in 
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the plane. Here, M is the number of particles and K is the number of landmarks. Single-

robot SLAM can be described as the problem of estimating P(s1:t, m| z1:t, u0:t-1, s0). 

Utilizing Murphy’s observation, this problem can be restated as  

                 p(s1:t,m|z1:t,u0:t-1,s0)= p(m|s1:t,z1:t,u0:t-1,s0)p(s1:t|z1:t,u0:t-1,s0)             (2.36) 

The first term is a distribution over possible maps and the second is a distribution 

over possible robot’s posterior pose.  As is shown, the first term depends on the second 

term, and a particle estimates the second term using a motion model. Since each particle 

maintains its own pose estimate, it also builds a separate map. If we let st
(i)denote for the 

pose, mt
(i) for the map, and wt

(i) the importance weight of ith sample at time t, the filter’s 

update function is summarized as follows: 

          st
(i)= A(ut-1,st-1

(i),zt)                                                (2.37) 

                              mt
(i)= M(st

(i),zt) + mt-1
(i)                                                                  (2.38)  

                            wt
(i)= S(zt,st

(i),mt-1
(i))wt-1

(i)                                           (2.39)  

where A, M, and S are the action, map, and sensor models, respectively. An action model 

randomly selects a pose from the distribution of the first term in (2.36). The action model 

depends on only robot motion commands, induces a large state space can require a large 

number of particles. To overcome this limitation, more accurate action models can be 

used by incorporating observation data. The weights of the particles with self-consistent 

maps will be larger and survive to the next time step, while those of particles with 

inconsistent maps are assigned smaller values which cause the sample to be removed 

from further evolution. Hu, et al. [63] use a modified particle filter that maintains separate 

particles to represent the landmarks and RBPF is used to estimate a robot path posterior. 
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This modified particle filter nonlinearly approximates the robot path posterior and maps 

at every point in time. The next section presents DP-SLAM that is a transformation of the 

FastSLAM algorithm 

 
2.4.3.1 DP-SLAM 
 

DP-SLAM [65] uses a distributed particle mapping to build a map in real-time 

despite imperfect information about the robot’s trajectory in the environment. The 

approach exploits the conditional independences noted by Murphy. However, the 

approach is laser based and makes no landmark assumptions which are often the case for 

most of the approaches to SLAM. The approach avoids data association problem by 

storing multiple detailed maps instead of sparse landmarks. The DP-SLAM algorithm 

uses a particle filter to represent both robot poses and the map and a particle ancestry tree. 

The tree itself is rooted with an initial particle, and each particle maintains a pointer to its 

parent and is assigned a unique numerical ID. When a particle is sampled to produce a 

successor particle, the successor is given an ID and a pointer to the predecessor particle. 

The tree has a bounded size which is maintained by pruning away unnecessary nodes. 

DP-mapping maintains a single occupancy grid, where each grid square stores a balanced 

tree. Each particle maintains a list of grid squares that it has updated [65]. The worst time 

complexity for incorporating a laser sweep into the map is log-quadratic in the number of 

particles and linear in the area swept out by the laser. So far single-robot mapping 

methods have been presented. In the following section, multi-robot mapping techniques 

are presented.  
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2.5 Multi-Robot SLAM 

Although most research on SLAM is done using a single robot, some research has 

been conducted on using multiple robots for the SLAM problem. Most of the work done 

on multi-robot SLAM is done under certain constraints about the robots’ initial pose. The 

robots’ initial pose is known exactly [51, 52] or is approximated [68, 11]. However while 

other algorithms assume that initial pose relative to each other is unknown. The algorithm 

in [62] localizes robots in each other’s maps using particle filters. Others compare the 

local maps [30], or set a correspondence list to determine rotation and translation amount. 

Maps can even change shape in the map fusion process [30, 62]. Cooperative mapping 

and localization is addressed in [57, 60].  

Sparse extended information filters (SEIF) [30] extends [56] to the multi-robot 

SLAM with techniques for establishing correspondence between maps gathered by 

multiple robots. Uncertainties in map building is handled by using a sparse information 

filter technique, which represents maps and robot poses representing the maps by sparse 

Gaussian Markov random fields(GMRFs). This method builds maps even when relative 

starting location is unknown and landmarks are ambiguous. Each robot maintains its own 

local map and posterior in its own local coordinate system. All updates are additive and 

done locally. Each robot updates the map confined to its own pose and landmarks 

previously detected by it. Map fusion between two robots is performed by finding a 

relative coordinate transformation between the two maps (translation and rotation), and a 

correspondence list of landmarks. It aligns the two maps to obtain a single map by a tree-

based algorithm for searching similar-looking local landmark configurations, paired with 



 

2-29 

a hill climbing algorithm that maximizes the overall likelihood by search in the space of 

correspondence. 

 Williams [55] extends the Constrained Local Submap Filter (CLSF) for the 

single-robot SLAM algorithm [54] to the multi-robot SLAM problems. It maintains a 

global map for the robots and each of the robots maintains a submap of the features in his 

immediate vicinity. Each of such submaps has its own reference frame where its relative 

position to the global map is known. At intervals, the robots update the global map with 

the features present in his submap. A new reference frame is created using the robot’s last 

position as the estimate of the relative pose of the local frame within the global frame of 

reference. This method also establishes a new reference frame for the robot whose initial 

starting position is not known by building a correspondence set between the robot’s local 

map and the global map and using a pair of features to determine an estimate of the 

rotation and translation.  

In [50], Howard extends the single-robot Rao-Blackwellized particle filter to 

handle the multi-robot SLAM problem, where robots’ relative poses are not known a 

priori. To solve the problem, this method assumes the robots can detect, identify each 

other, and measure the relative pose of other robots when they bump into one another. 

Once the relative poses are determined, the particle filter is initialized using the 

determined poses. Then the common map is updated using the observations from both 

robots. The method also revises the filter to support time-reversed updates. When robots 

encounter each other, they update the map with then-current sensor information. Then, in 

time-reversed order, the previous sensor measurements of the robots are fed to the filter 
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to update the map. This method uses laser-stabilized odometry, in which laser range data 

is used to correct the raw odometry estimate. The approach presented in this thesis, builds 

upon this work. 

 Andrade-Cetto [46] solves the multi-robot SLAM problem using a fully 

observable EKF and a controller that generates necessary control commands to follow a 

higher level planned trajectory accurately. The controller uses a nonlinear control 

technique called Feedback Linearization for multi-robot trajectory tracking. The feedback 

linearization controls nonlinear systems by algebraically transforming the system 

dynamics into a linear one [46]. Here linearization is achieved by linear approximations 

of the dynamics. Trajectories are generated online or to maximize exploration gain. 

Control errors are not coupled to estimation error, and stability for both the controller and 

the estimator is achieved. This stability guarantees the system will close the perception-

action loop. 

Some algorithms [43, 48] use rendezvous strategies and let robots meet at a 

location to determine their relative locations. In [48], individual robots map and explore 

areas separately until their meeting. When they meet, one robot receives sensor data from 

the other robot and estimates their relative location in its own map using Markov 

localization. In the case of uncertainty, the robot builds a hypothesis on their relative 

location and tries to meet at the expected location. If they don’t meet, the hypothesis is 

rejected and the robots continue with hypothesis generation about their relative location. 

Once they meet, the robots matches the partial maps on the basis of geometric 

information they contain, especially doors, junctions and corners, then share their maps 
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and perform coordinated exploration. The methods introduced in [43, 44] are similar to 

[48] except the algorithms use a particle filter to estimate the position of one robot in the 

other robot’s partial map.  

 The particle filter in [3] can localize a robot inside or outside a map, while in [44] 

the particle filter only considers robot locations that are part of trajectories that overlap 

with the partial map. Robots in [47] perform incremental localization and mapping 

independently. Then when two robots sight each other, the algorithm uses the robots as 

unambiguous landmarks for map merging and a correspondence is established between 

two points on the manifold. Then, the robots arrange a rendezvous at the two points on 

the manifold to verify a correspondence. 

2.6 Exploration 

An efficient coordination is necessary when a team of robots are deployed to map 

an unknown environment. If the robots know their relative positions and have a shared 

map, then effective coordination can be achieved by guiding the robots into non-

overlapping areas of the environment. This is done by assigning the robots to different 

exploration frontiers, which are borders of the partial map at which explored free-space is 

next to unexplored areas [44, 45, 51, and 52]. A behavior based approach is used for 

multi-robot exploration in [49]. Robots know their initial relative poses and start 

exploration while updating the shared grid-base map. It uses potential fields to coordinate 

exploration among the robots. The robots have 360-degree sensor coverage and perform 

trilateration through the use of the distance sensor. The schema parameters are used to 

control such schema to maintain accuracy in SLAM. The function is composed of 
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attractive force towards unexplored frontiers and repulsive force against obstacles and 

against other robots. Thrun et.al [23] focuses on reducing the odometry error during 

exploration [51]. The algorithm separates the environment into stripes. When one robot 

moves, the other robots remain stationary, tracking the moving robot. The robots are 

forced to stay close to each other within visibility range. More sophisticated exploration 

techniques have been introduced in [52].  In [52], robots share a common map and 

estimate the cost to reach frontier cells and the utility of them. Then each robot places a 

bid based on the estimates, and then the central mapper assigns the task to individual 

robots based on the bids. Burgard et. al [51] also take into account of the costs of 

reaching a target point and the utility of target points for the multi-robot coordination, 

assuming the robots know their relative positions.  
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3. Methodology 

The previous chapter presented background information on robot localization and 

mapping and the SLAM problem. This chapter builds on this foundation in discussing the 

mathematical formulation of an algorithm to perform multi-robot FastSLAM for large 

domains.  

3.1 Mathematical Formulation for Multi-robot Fast SLAM  

The original FastSLAM algorithm was developed for single-robot mapping and 

maintains a particle filter to represent the posterior distribution of a robot along with a 

map distribution. Each particle of the filter represents a possible path of the robot and 

maintains a map according to the path estimation. Updating the filter given a new motion 

control and observation is done in four steps as shown in Figure 3.1.  

 

 

1. Sample a new robot pose given the new control 
2. Update maps corresponding to the new observation 
3. Assign a new weight to the particles 
4. Resample the particles based on their weights 

Figure 3.1: Basic FastSLAM Algorithm 

 

The first step is to propose a new robot pose for each particle that is consistent 

with the previous pose estimate and the new robot motion command. Next, the map of 

each particle is updated incorporating the new sensor observation. Then an importance 

weight is assigned to each particle based on consistency of the map with the new sensor 

incorporations.  Lastly, a set of samples are drawn from the old set of samples based on 
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the newly calculated weight. At the end of mapping, the map of the particle with the 

highest weight is selected to be presented.  

This SLAM method is extended to multi-robot SLAM allowing robots to have the 

capability to detect each other, and exchange their data during their exploration. In this 

case, a robot has to simply maintain a number of filters matching the number of robots it 

has come in contact with during exploration: one for his data and one for the data from 

each one of the robots.  

I will begin with formulating mathematical theory for multi-robot FastSLAM with 

known initial robot poses in Section 3.1.1, and then for multi-robot FastSLAM with 

unknown initial poses in Section 3.1.2. 

 
3.1.1 Multi-robot fastSLAM with Known Initial Poses 
 

The single-robot FastSLAM notation can easily be extended to multi-robot 

FastSLAM notation when the initial poses of the robots are known a priori. The robots 

can set up a number of filters that match the number of robots on the team, and initialize 

each filter with the known positions. Then as they begin to explore, they can pass their 

odometry and sensor data to each other and perform a FastSLAM processing of all the 

data simultaneously. In this case, the robots need a capability to detect each other and 

have a communication link available during the exploration. If we consider just a two-

robot mapping problem where both robots knows their initial relative pose against each 

other and take steps in lock-step time, then the two-robot SLAM for a robot, identified as 

robot1, becomes the problem of estimating p(s1:t
1,s1:t

2,m|z1:i
1,u0:t-1

1,s0
1,z1:t

2,u0:t-1
2,s0

2) which 

can be expressed as a product of three factors as 
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p(s1:t
1,s1:t

2,m|z1:t
1,u0:t-1

1,s0
1,z1:t

2,u0:t-1
2,s0

2)= 

    p(m|s1:t
1,z1:t

1,s1:t
2,z1:t

2)⋅p(s1:t
1|z1:t

1,u0:t-1
1,s0

1)⋅p(s1:t
2|z1:t

2,u0:t-1
2,s0

2)     (3.1) 

where the superscript numbers identify the robots. 

The first term describes the distribution over maps, and the second and the third 

terms describe the posterior distributions for the robots. The superscript number denotes 

the identity of the robots. Thus s1
1:t denotes a trajectory of robot 1 from startup to time t 

and the remaining letters convey the same meaning as with the single-robot SLAM 

formalism, with the identity of a robot added. Notice this factorization assumes that these 

trajectories are independent from each other and the observation made by one robot is not 

dependent on the other robot’s pose. Although this assumption doesn’t hold true in some 

cases, it is generally true when robots are far apart. When a robot’s pose influences the 

observation of the other robot, the observation influenced can be discarded after 

determining the relative pose of the influencing robot. For simplification, this assumption 

was made in formalizing the multi-robot SLAM solution. Figure 3.2 shows the Bayes net 

for multi-robot SLAM with known initial poses [50]. 
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Figure 3.2:  Bayes net of robot 1 for multi-robot SLAM with known initial poses 

 

Dotted lines show ignored dependencies between the observations made by one 

robot and the pose of the other robot. The superscript identifies the robots in which 1 

indicates the master robot (the robot whose point of view is focused on in this discussion) 

and 2 the virtual robot which represents the encountered robot. 

The filter’s update functions for this case are given as follows: 

      st
1(i)= A(ut-1

1,st-1
1(i),zt

1)                                    (3.2) 

       mt
1(i)= M(st

1(i), zt
1)+M(st

2(i),zt
2)+ mt-1

1(i)                   (3.3) 

             wt
1(i)=S(zt

1,st
1(i),mt-1

1(i))S(zt
2,st

2(i),mt-1
1(i))wt-1

1(i)                     (3.4)    

where A, M, and S are the action, map, and sensor models, respectively. This method has 

two limitations for practical implementation. First, the state space induced by two robot 

position estimation is larger than that of the single robot case, and this causes sparse 

sampling. To compensate for this problem, it is necessary to increase the number of 

particles which requires more memory space allocated for the mapping program. 
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However, this problem doesn’t exist when the master robot doesn’t explore the area that 

is already explored by the other robot, because the total path length would scale down to 

half the length that would have taken for the single robot case.  Second, during the filter 

resampling process, particle impoverishment occurs in the vicinity of a stationary robot if 

the robot stops moving. Particle impoverishment causes the filter to diverge. Therefore, 

best results are obtained when both robots are moving at comparable speeds.  

 
3.1.2 Multi-robot FastSLAM with Unknown Initial Poses 
 

In the mathematical formulation for multi-robot FastSLAM with unknown initial 

poses, it is assumed that robots can detect each other when they meet, measure their 

relative poses, and pass their range and odometry data from their last encounter up to 

their latest meeting time.  

Initially each robot is placed in unknown locations and begins building maps in 

their local coordinate systems. When two robots encounter one another, they both 

measure the other robot’s relative location and then exchange their motor command 

history along with their observation data. Once data is obtained, each robot sets up a 

virtual robot with a separate local grid map, initializes it to the relative location within the 

separate local map, and lets the virtual robot perform FastSLAM on the exchanged data 

while the master robot continues its exploration. The exchanged data is passed to the 

virtual robot in the time-reversed order. Then both the robots update their own map by 

incorporating data from the other robot as if a virtual robot is following the steps taken by 

the robot backward.  
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Figure 3.3 shows the Bayes’ net for multi-robot SLAM with unknown initial pose where 

Δ denotes the relative pose of the robots. The superscript identifies the robots in which 1 

means a master robot and 2 means a virtual robot. 
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Figure 3.3:  Bayes net for multi-robot SLAM with unknown initial poses 

 

After the exchange of data, both robots remember the location and time of their 

meeting and the identity of the encountered robot and continue exploration. When they 

come across again, they both exchange the data from their last meeting location up till the 

current time. This process repeats at each encounter.  

Considering just two-robot SLAM, the problem for robot 1 is to estimate p(s1:t
1,sk-

1:1
2,m|z1:t

1,u0:t-1
1,s0

1,zk-1:1
2,uk-1:1

2,Δk
2) after the first encounter with robot 2. Here, Δk denotes 
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for the relative pose of the robots at the encounter time k. This expression can be 

rewritten as 

p(s1:t
1,sk-1:1

2,m1|z1:t
1,u0:t-1

1,s0
1,zk-1:1

2,uk-1:1
2,Δk)= 

     p(m1|s1:t
1,z1:t

1,sk-1:1
2,zk-1:1

2)⋅p(s1:t
1|z1:t

1,u0:t-1
1,s0

1)⋅p(sk-1:1
2|zk-1:1

2,uk-1:1
2,sk

1,Δk) (3.5) 

and the problem for robot 2 is to estimate p(s1:t
2,sk-1:1

1,m|z1:t
2,u0:t-1

2,s0
2,zk-1:1

1,uk-1:1
1,Δk) after 

the first encounter with robot 1. This expression can be rewritten as: 

p(s1:t
2,sk-1:1

1,m2|z1:t
2,u0:t-1

2,s0
2,zk-1:1

1,uk-1:1
1,Δk) = 

 p(m2|s1:t
2,z1:t

2,sk-1:1
1,zk-1:1

1)⋅p(s1:t
2|z1:t

2,u0:t-1
2,s0

2)⋅p(sk-1:1
1|zk-1:1

1,uk-1:1
1,sk

2,Δk)  (3.6) 

After the robots encounter each other, robot 1 initializes the pose of robot 2 using:  

sk
1  = Δk

 ⊕  sk
2          (3.7) 

and robot 2 initializes the pose of robot 1 using  

     sk
2  = Δk

 ⊕  sk
1      (3.8) 

where the  operator indicates an coordinate transformation.  ⊕

The filter of a robot now maintains two instances: one for its own motion and the 

other for time-reversed motion of the other robot. The filter update function for each 

particle I of robot 1 therefore can be defined as 

        st
1(i)= A(ut-1

1,st-1
1(i),zt

1)         (3.9) 

    sk-1
2(i)= A(uk

2,sk
2(i),zk-1

2)      (3.10) 

       mt
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1)+M(sk-1
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1(i)    (3.11)   

  wt
1(i)=S(zt

1,st
1(i),mt-1

1(i))S(zk-1
2,sk-1

2(i),mt-1
1(i))wt-1

1(i)  (3.12)    

and for robot 2 as  

           st
2(i)= A(ut-1

2,st-1
2(i),zt

2)                      (3.13) 
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       mt
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where A stands for a new-reversed action model due to the robot moves backwards and 

M, and S are the map, and sensor models, respectively and 1 and 2 identify actual robots. 

The filter set up here updates the causal and acausal instances at the same rate.  

3.2 Multi-robot FastSLAM for Large Domains 

FastSLAM algorithm lets a large number of particles take individual action, each 

one of them drawing a map of the environment. Each particle maintains a global map 

during its life cycle. When a robot completes exploration of the environment, it selects 

the map of the best particle to keep. However, letting each particle maintain a global map 

may constrain the performance of the FastSLAM algorithm in mapping a large area. To 

overcome this constraint, letting each particle maintain only a local area at one time is an 

option.  

In this FastSLAM implementation, each robot begins mapping on its own local 

grid map. When robots meet, robots first establishes their relative locations, pass their 

collection of data to one another, and then each one of them sets up a virtual robot with 

another local grid map, initialize the virtual robot within the second map to the measured 

relative pose.  The master robot and the virtual robot perform FastSLAM at the same rate, 

where the master robot performs FastSLAM with newly collected data and the virtual 

robot with the passed data in the reversed order. Periodically each particle of the filters 

for the master and virtual robots transforms the grid map into an ASR data, attaches the 
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posterior of the robot it represents and saves it for loop closing. Then each particle 

initializes its local grid map with the previous grid map in the overlapping area, although 

it would be not be necessary to begin mapping without any data import from the previous 

map. However, I have not tested the latter method to verify the idea. 

The master and virtual robots generate their own ASRs and, in the end of 

mapping, these ASRs are combined to generate a global map. However, while mapping, 

the master robot and virtual robot consult their own ASRs and the ASRs of the other to 

improve accuracy of mapping and to perform loop closing. Figure 3.4 summarizes the 

multi-robot FastSLAM algorithm for large domains.   

The implementation of FastSLAM for large domains built on the existing 

FastSLAM implementation found in “pmap” at [69]. The “pmap” algorithm uses regular, 

global grids for each particle. This algorithm is altered to use local grids and global ASRs 

instead of global grid maps for the particles in order to conserve memory. Therefore, 

many of basic functions used in the implementation are from the “pmap” program, 

especially the resampling method and error calculation method required to assign weights 

to the particles.  The remaining sections of Chapter 3 briefly discuss the Absolute Space 

Representation and the basic functions taken from the “pmap” implementation [69] along 

with other methods developed for this thesis. 
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Multi-Robot FastSLAM: 

 
1. Set up a filter (numOfParticles) 
2. For each particle (initial_robotpose, odom_pose, a 

lidar scan) 
2.1 Set up a grid map 
2.2 Initialize sample poses (initial_robotpose, 

odom_pose, a lidar scan)  
2.3. Add ranges to the maps at the initial robot 
pose 

3. Resample the samples 
4. Update (new_odom_pose, a lidar scan) 

For each particle: 
4.1 Propose a new robot pose 
4.2 Update local map with lidar_scan 
4.3 Update the weight 

5. Resample the samples 
6. If travel distance > 10m, go to step 7. Else go to 

step 9 
7. Transform grid into an ASR 
8. Attach global window to the ASR  
9. Attach id to the ASR and save it. 
10. If master robot and met another robot, go to step 

12. Else go to step 11 
11. If not done, go to step 4. Otherwise, go to step   
    15 
12. Determine the relative pose 
13. Set up a virtual robot 
14. Go to step 1 
15. Combine ASRs into a global map 

Figure 3.4:  Multi-robot FastSLAM Algorithm 

3.3 Absolute Space Representation  

 Absolute Space Representation expresses the world as a graph. Absolute space is 

termed from the idea that each space is independent of all other spaces.  In Absolute 
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Space Representation, regions are represented as nodes and access points as edges. Figure 

3.5 shows an ASR example. 

 

                 Cartisan        ASR 

                     

Figure 3.5: An ASR Example  

 

Here nodes R1, R2, R3, and R4 represent individual areas and connected through 

shared access points that are represented by edges in the graph. Absolute Space 

Representation becomes beneficial especially when the structure of the environment to be 

mapped is composed of mostly straight lines without many obstacles within. In my 

implementation, as a robot continues mapping, inactive ASR maps are stored away. 

When the robot comes into the area that a stored ASR map occupies, the robot simply 

opens the ASR map and continues mapping. An ASR is made of polylines, and a polyline 

is composed of a series of connected vertices. However, when a portion of the polyline is 

straight, the straight line can be represented by just two end points. This simplification 

method is beneficial when an environment is composed mostly of straight lines and the 

range sensor’s distance readings are fairly accurate. This is the case in most buildings and 
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man made environments. The AFIT bldg 640 is rectangular shape and the SICK scanning 

lidar sensor on the Pioneer P2-AT8 is known for detecting distances to the structures very 

closely. This enables one to extract polylines from a grid without any special 

mathematical calculations. Absolute space representation of an area benefits when the 

number of unvisited cells outnumber the number of visited cells on the order of 

magnitude.   

Although an ASR can exist absolutely irrelevant to other ASR maps, each ASR 

map from the implementation carries an offset value to indicate the location of the ASR 

map within the global map. Thus, adding the offset to the vertices of an ASR positions 

the ASR in the global map. The structure of an ASR map representation is displayed in 

Appendix A.4   

The next section discusses each part of the implementation in detail including the 

action model, resampling method, and map transformations.  

3.4 Implementation Algorithms 

This section discusses all the algorithms that are used for my implementation. 

 
3.4.1 Lidar-Corrected Robot Poses 
 

The robot’s raw odometry readings contain a great deal of errors. Figure 3.7 

shows the blueprint of second mezzanine floor of bldg 640, AFIT, and Figure 3.6a shows 

a map drawn using only pure odometry readings.  The map is far from reality. Therefore, 

using the raw odometry reading for performing FastSLAM requires a large number of 

particles to be used to explore a wider range of errors. Since lidar’s distance readings are 
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very accurate, the algorithm takes advantage of it by prescreening robot odometry poses 

using a series of lined lidar scans. Then these lidar-corrected robot odometry readings are 

passed to the algorithm and used by FastSLAM. The lidar-correction algorithm that I 

used is provided by the “pmap” program [69]. Figure 3.6b shows a map of the same area 

drawn by using lidar-corrected odometry poses.   

 

 

      Figure 3.6a: Naïve map 

                                                                

Figure 3.6b: Map with lidar-correction 
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Figure 3.7: Blueprint of the second floor of bldg 640, AFIT 

 

 As can be seen in the comparison made in Figure 3.6a and Figure 3.6b, the map 

with lidar-corrected robot poses is more accurate than map with the raw odometry 

readings, it is still subject to errors, thus requiring a SLAM technique. Section 3.4.2 

discusses the action model required for a FastSLAM algorithm.  

 
3.4.2 Action Model for the Robots 
 

The FastSLAM algorithm is probabilistic and requires an action model for the 

particles. Each particle moves according to this action model while accounting for 

uncertainty in robots movement by including a margin in their action. In the 

implementation, the action model is a 3 x 3 matrix. If the action model is denoted as A, A 

is multiplied to the pose difference δ  between two consecutive steps to obtain a 3-

dimetional vector σ. Each element of σ is then fed into a random Gaussian number 

generator as a standard deviation to obtain a random value to account for uncertainty in 
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each dimension of a robot pose for a sample i. The action model used for the robots in my 

implementation is shown in Table 3.1.  

Table 3.1: Action model 
 Uncertainty caused 

by movement in x 
direction  

Uncertainty caused 
by movement in y 
direction 

Uncertainty caused 
by rotation 

Uncertainty in 
x direction 

0.075 0.015 0.09 

Uncertainty in 
y direction 

0.015 0.075 0.09 

Uncertainty in 
rotation 

0.035 0.035 0.07 

 

The first and the second cell of the first row represent the uncertainty in a robot’s 

x-coordinate pose estimation caused by the robot’s pose change in x-coordinate and y-

coordinate directions, respectively. The last cell of the same row accounts for the 

uncertainty in a robot’s x-coordinate pose estimation cause by the robot’s orientation 

change. First and second rows of the action model accounts for the uncertainty in x-, y-

coordinates caused by a robot’s pose change, while the last row accounts for the 

uncertainty in the orientation caused by the robots pose change. 

In the implementation, a robot first determines the difference, δ=[dx,dy,dθ]T, 

between its current and previous lidar-corrected poses. A robot pose is a three-

dimensional vector, [x,y,θ]T, where x and y denotes for x and y coordinates and θ robot’s 

orientation angle. A turn to the robot’s right side decreases θ and a turn to its left side 

increasesθ. The action model is multiplied to δ vector to obtain a σ vector. After that, 

each sample obtains three random numbers obtained from a normal distribution with 

sigma σ for each element of a pose vector. These elements are added to the delta and the 
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previous pose and the robots next pose for the sample is set to this new location. 

Summarizing this notation in formulas, we get 

      δ.x = 0.075*dx + 0.015*dy + 0.09*dθ    (3.17) 

      δ.y = 0.015*dx + 0.075*dy + 0.09*dθ    (3.18) 

      δ.r = 0.035*dx + 0.035*dy + 0.07*dθ     (3.19) 

        x' = x + dx + N (0, δ.x)                    (3.20) 

       y' = y + dy + N (0, δ.y)     (3.21) 

      θ' = θ + dθ + N (0, δ.θ)     (3.22) 

Here, x’,y’, and θ’ denotes for three elements of a new robot pose vector, and the 

operators + and * implies an vector addition and a multiplication, respectively. The 

variables δ.x, δ.y, and δ.y indicate elements of the δ vector in order. When two poses 

vector a and b are given, a new pose vector c is obtained through the following 

operations: 

             c.x = cos(b. θ)*a.x – sin(b. θ)*a.y + b.x          (3.23) 

             c.y = sin(b. θ)*a.x + cos(b. θ)*a.y + b.y           (3.24) 

                         c.r = atan2(sin(a. θ+b.v), cos(a. θ+b. θ))        (3.25) 

Atan2 is a Linux function that returns the arc tangent of the two variables. Figure 3.8 

summarizes how a new robot pose is estimated by a particle.   
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Robot Pose Estimation Method: 
1. Initial sample pose= the intial robot pose if the 

pose is known, otherwise to (0,0,0) 
2. Odom_pose=Lidar-corrected pose=1st odemetry reading 
3. Calculate Delta=old odom_pose – new_odom_pose 
4.Per Particle i: 

4.1. Sigma(i)=Action_model * delta 
4.2. Sample pose(i)=delta + gaussian random(sigma)

Figure 3.8: A new robot pose estimation algorithm          

 

Once the robot’s pose is determined, each sample updates its map according to the 

newly proposed position. The next section discusses how a map is updated with a lidar 

scan. 

 
3.4.3 Map Update Method  
 
 Updating a map is done by simply tracing the rays of the ranges once the new 

pose of the robot for a sample is determined.  Once a robot’s newly estimated pose is 

ready, the global location of the range is determined by extending it from the current 

robot’s estimated pose within a global, virtual grid map.  Once the horizontal and vertical 

cell indices were determined for the global grid, the cell indices are translated into local 

grid cell indices by accounting for the global location of the local grid map. Figure 3.9 

summarizes the map update function. It also shows how the weight of a sample is 

calculated. 
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3.4.4  Resampling Technique 
 

Each sample carries a weight based on its accuracy. The weights represent the 

error of the map for each of the samples. After each sample determines the robot’s next 

 

Map Update Method Algorithm: 
  For each sample 

1. poses[step]=current_sample_pose 
2. Resample Samples  
3. err=0; 
4. For each range 

4.1. Get the global cell position of the range 
4.2 Transform the global cell position to the 

local cell position 
4.3. Increase the value of the cell by 1 

If value>127, value=127 
4.4. Find min_d=the minimum distance to the 

nearest occupied cell 
4.5. Calculate err+=min_d*grid_resolution 

5. w(i)=err*err 

    Figure 3.9: Map update method algorithm   

 

After the sample updates its map with range information, the sample determines the 

distance to the nearest occupied cell from the newly updated cell. This global distance is 

summed over for a range scan.  

Then after incorporating all the ranges of a scan, this summed distance is squared 

and added to the weight of the sample. The weight of a sample is reset to zero after a 

resampling. 

After all the samples update their maps and new importance factors are calculated, 

only samples with good map survive to the next generation through resampling. The 

following section discusses the resampling technique used in the implementation. 
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ose and updates its map based on its randomly estimated pose calculated via the action 

odel, it calculates its error in its mapping. After each sample determines and updates the 

location of the cell that a range reading indicates, it determines the distance of the nearest 

occupied cell from the updated cell. This distance is then added to the weight of the 

sample. Therefore, a higher weight means a less accurate map for the sample. This weight 

value is turned into a probability through 

p

m

              2p(i) exp w(i)⎛ ⎞⎡ ⎤= −⎜ ⎟⎢ ⎥σ⎣ ⎦⎝ ⎠
              (3.26) 

Where σ2 represents the resampling variance and w(i) stands for the weight of the 

ith sample. The sample probability values are normalized and used for resampling. The 

resamp nique is Walker’s algorithm that s pro  i the p ap program. 

Walker's algorithm [70] produces a value k consistent with its probability, given K 

discrete events with different probabilities p[k]. This algorithm performs preprocessing 

on the probabilities of the samples, and then provides two arrays: floating point F[k] and 

integer A[k]. A value k is chosen from [0..K-1] with equal likelihood, and then a uniform 

random number u is compared to F[k]. If it is less than F[k], then k is returned. 

Otherwise, A[k] is returned. 

When a best local map is selected, the algorithm extracts polylines from the 

sparse grid. The following section discusses the extraction method. 

 
id into an ASR 

  

ting from (0,0) of the 

ling tech   i vided n m

3.4.5 Transformation of a Gr

The algorithm first cleans the grid that is to be converted to an ASR by resetting 

the cells with values less than a user specified threshold. Then star
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cal grid, the first cell with a value higher than the threshold when moving in x-direction 

 selected as the beginning vertetex a new polyline. From this cell, all the neighboring 

cells whose x, y coordinate values differ by 1 from the starting cell are searched to 

determine the next vertex to be added to the polyline. Then the next search focuses on the 

neighboring cells of the newly selected vertex. This process is repeated until there are no 

connecting cells. When a vertex is selected to be inserted into a polyline, the value of the 

corresponding cell is set to 0. Extracting polylines continue until all the values in the grid 

are below the threshold. Appendix A.3 shows the algorithm. 

Once a polyline has been constructed, it is sent to a simplifying algorithm that 

removes vertices lying on a straight line, resolving multiple lines into their two end 

points. The simplifying algorithm compares the angles of two connected vectors built by 

three consecutive vertices, and if these angles are close to each other, the middle vertex is 

removed. The angle of a vector built by two vertices (x1, y1) and (x2, y2) can be calculated 

as follows: 

lo

is

                                    2 1

2 1

d
x x
y y−

=
−

                                 (3.27) 

2 2

2 1 2 1r (x x ) (y y )= − + −                                    (3.28) 

darccos
r

⎛ ⎞θ = ⎜ ⎟
⎠

            (3.29)             
⎝

After all the polylines are extracted, they are saved as an ASR to be reopened 

when a robot revisits the area. As the robot moves, each sample constantly refers to its 

stored ASR m ps for loop closing. Once overlapping areas are found, it converts the 

stored ASRs to local grids and initializes the active local map of the sample with the 

a
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conver

ext chapter shows testing results of 

the imp

ted grid for overlapping areas. Since each ASR carries its global window 

information, determining overlapping ASRs is performed by comparing the windows. 

Reconstructing a local grid from an ASR is done by determining the cells each polyline 

lies on and setting the values of the cells to the highest value among the two end vertices 

values. The algorithm is presented in Appendix A.2.  

This chapter presented the methods adopted for the implementation of multi-robot 

FastSLAM using Absolute Space Representations. Specifically, how a particle filter 

estimates a robot pose, how the weight of a sample is calculated while updating a map, 

and how samples are resampled were discussed. The n

lementation and the analysis of the testing. 
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4. Analysis and Results 

In this chapter, testing outcomes and an analysis of the testing are provided. In 

Section 4.1, testing environment and parameters used in the implementation are 

discussed, and Section 4.2 discusses testing results and provides an analysis of the results. 

This chapter concludes with a discussion of the overall results. 

4.1 Testing Overview 

Testing the implementation was done offline using range data from a Pioneer P2-AT8 

that was equipped with a SICK scanning lidar sensor that outputs ranges from -90o to 

+90o in increments of 1o. Three separate data sets were collected by driving the robot 

moving at approximately 0.2m/sec around the second mezzanine floor and the third floor 

of bldg 640, at the Air Force Institute of Technology. Two simulations were carried out 

using the three sets of data on a Pentium 4 with 2.8 GHz CPU. Figure 3.7 shows the 

blueprint of the second mezzanine floor of the bldg 640 and Figure 4.1 shows the 

blueprint of the third floor of the same building. 
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Figure 4.1: Third Floor of Bldg 640. 

 

The dimension of the global map is 64m x 64m while it is 40m x 40m for a local 

grid map. When a sample begins a local mapping, the robot is always positioned in the 

middle of the local map. Since I have chosen the cutting travel distance to transform a 
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grid into an ASR to be 10m, the size of a local map of 40m x 40m seems reasonable to 

account for the map updates with the ranges read in the end of the round, 10m of travel 

plus 10m max lidar range in any given direction. 

The implementation does not update the maps every time step. Instead, an update 

is made after the robot has moved 10 cm or turned 15 degrees. These values are chosen 

arbitrarily. The implementation requires several other parameters to be set to appropriate 

values before launching a simulation. Table 4.1 shows all of the parameters used in the 

testing. 

Table 4.1: Thresholds and Parameters for the Implementation 
T/P Value Role 
α 0.25m Determines cell resolution  

β 5 Determines occupancy of a cell when a sample 
calculates its correctness in mapping
(integer) 

ρ 10 Resample Interval(integer) 

ε 0.5m Max error considered by each sample  

κ 0.3m Threshold for keeping polylines  

ν 15 Occupancy value for ASR mapping (integer) 

σ 0.2 Resample sigma   

γ 10 m Maximum travel distance in an ASR 

λ 400 Number of samples used 

χ 0.1m Maximum distance allowed before an update 
θ 15o Maximum rotation allowed before an update 
 

Each of these parameters was tested with various values to find the best 

performing value. While other parameters were set to specific values, only one of these 

parameters at a time was tested with various values, and the value with best output was 

chosen. The variable α determines a map resolution, lower α results in a better resolution 

map. The variable β is a threshold to determine occupancy of a cell when calculating 
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correctness of a move of a sample after each step move. Lower values perform better 

with low map resolutions. The number of updates a robot makes before it resamples its 

particles is denoted as ρ. A smaller value is certainly better to select good samples. 

However, this causes higher computational time for the program.  

The variable ε denotes the maximum error each sample is assumed to make per 

update. Therefore, at each update, each sample searches areas within ε distance to 

determine the closest occupied cells. When a polyline is extracted from a grid map, the 

threshold κ is used to remove the polyline. Any polyline with grid vertex values less than 

this value is cut off. This serves to simplify the resulting map. When a grid map is ready 

for transformation into a polygonal map, a cell value less than υ is removed from the 

local grid map. The variable γ is the maximum distance a robot is allowed to travel within 

a local map and the variable λ denotes for the number of particles used. The parameters χ 

and θ stand for the maximum distance and rotation allowed before an update to the map, 

respectively.  

 

4.2. Testing Results and Analysis 

 
In this section, testing results are presented. Section 4.2.1 describes a simulation 

with the data set collected from the second floor mezzanine of Bldg 640 at AFIT and 

Section 4.2.2 presents testing result of a simulation of multi-robot FastSLAM with the 

data collected from the third floor of the same bldg. 
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4.2.1 Single-Robot FastSLAM with ASRs 
 
 To simulate a single robot FastSLAM, the first data set is fed into the 

implementation. The robot began collecting data from the left hand corner of the bottom 

of the map shown in Figure 3.7, first moving in the horizontal direction, and then stopped 

when it returned to its stating location. When the robot ended its tour, its orientation angle 

should be off by -90.0 degrees from its original orientation. While traveling around the 

floor, the robot collected laser-range data at the same time. This data is then used to 

simulate a single-robot FastSLAM with local grid maps and global ASRs. For the 

simulation, the robot was positioned at [-10m, -20m, 0 o] and was fed with Data 1 read in-

order. Figure 4.2 shows a series of ASRs that generated over the course of the simulation.  
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Figure 4.2: ASR maps for data set 1

 

The ASRs in Figure 4.2 reflect the mapping progress in the simulation. 



 

4-7 

 

Figure 4.3: Final ASR map with robot poses 

 

Figure 4.3 displays the final ASR with robot poses attached to. The map 

developed by the implementation for single-robot FastSLAM is very satisfactory. Unlike 

the maps developed by raw odometry data or by lidar-corrected data only, the ASR map 

developed by applying FastSLAM shows perfect loop closing and excellent 

representation of the structures, reflecting the second mezzanine floor of the AFIT 

engineering building very accurately. Figure 4.4 shows a map in Figure 4.3 overlaid on 

the blueprint of the building in Figure 3.7. 
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Figure 4.4: ASR Map Overlaid on the Blueprint 

 

The hallways of the map in Figure 4.3 are not distinguishable from the ones of the 

blueprint. The final map from simulation 1 represents the mapped area perfectly. 

Figure 4.5 shows a grid map for the same area.  

 

Figure 4.5: Grid Map for Data 1
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Although the extracted ASRs in Figure 4.3 outline Figure 4.5 in a brief manner, it 

shows all the major structures clearly. When more detail is wanted, the threshold value 

for the extracting algorithm can be lowered, although lowering the threshold would 

increase the total number of polylines generated. In fact, studying the map, the value of 

the threshold κ could have been set higher than 0.3m without sacrificing the details of the 

map. Reducing  κ would have reduced the number of polylines within an ASR. Table 4.2 

shows the number of polylines and vertices contained in each of ASRs in Figure 4.2. 

 
Table 4.2: Statistics of ASRs in Figure 4.2 

ASR ID Num of 
Polylines 

Num of 
Vertices 

1 9 32 

2 6 21 

3 13 64 

4 18 103 

5 27 159 

6 28 112 

7 34 155 

8 34 174 

9 38 181 

10 16 86 

11 30 138 

12 29 139 

13 20 86 

14 21 71 

Total 323 1521 

Average 23 108.6 
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The ASRs are identified in time progressing order as displayed in Figure 4.2. The 

number of polylines and vertices of Table 4.2 also includes overlapped polylines and 

vertices as well due to the map initialization method used in the implementation when a 

new local grid is initialized to the previous grid map for overlapping areas.  Considering 

the nature of FastSLAM, this initialization step could have been saved without hurting 

the quality of the final map to keep the number of polylines and vertices in an ASR to 

minimum.   

 The memory space required for the particles of the original FastSLAM algorithm 

with global grids is 64/.25 x 64/.25 x 400=25 Mbytes to map the second floor mezzanine 

of Bldg 640 with 400 particles. The memory space used for the particles of the 

implementation to map the same region is (40/.25 x 40/.25 + 1521 x 16) x 400=19.05 

Mbytes. Here, the value of 1521 is the total number of vertices in the global ASR and 16 

represents the size of a vertex in bytes in the implementation. The memory space used for 

the local grids was 9.765 Mbytes and 9.28 Mbytes are used to store a global map 

representation. The memory space used for the simulation doesn’t show much reduction 

from the one for the grid-based FastSLAM algorithm. However, this is the case because 

the mapped area was the size of 64m by 64m. Should the mapped area have been larger, 

the difference in the memory usages would have been much larger due to the local grids 

having fixed sizes while the grids in the original FastSLAM grow as the mapping area 

increases. In spite of the small improvement in memory usage, the maximum number of 

particles that could be used for the simulation was 450 while it was only 303 for the grid-

based FastSLAM algorithm. 
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The simulation for Data 1 is completed in 3.767 minutes. Figure 4.6 displays a 

map developed by another simulation for the same area. In this simulation, only 200 

particles are used while all other parameter setting remained unchanged. 

 

Figure 4.6: ASR Map with 200 Particles

 

 As can be expected, the map is less accurate. The FastSLAM algorithm improves 

the quality of a map as the robot revisits places. However, improving the quality of a map 

in this manner can be quite undesirable. Figure 4.7 shows all the polylines of the first 

ASR from the simulation in time progressing order.  
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Figure 4.7: Polylines in ASR 1    

 

Some polylines are intelligible due to its size. These small sized polylines can be 

controlled by adjusting the thresholds. However, the polyline extraction method used for 

the implementation seems to be very effective, even though very simple in nature.  In the 

next section, a simulation of a multi-robot FastSLAM is done. 

 
4.2.2 Multi-Robot FastSLAM with ASRs for Large-Domain 
 

To simulate 2-robot FastSLAM for large-domain, the third floor of the same 

building is chosen to collect the data sets, Data2 and Data3, because it has three isles and 

is wider. 

Since only one robot is available and exact pose information of the meeting 

location of the robots is required, Data 2 and Data 3 are collected in such a manner that 

the ending location of Data 2 coincides with the starting location of Data 3. The robot is 
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first placed at the bottom of the middle isle facing upward and then collects Data2 as it 

goes around the right loop of the floors in Figure 4.1. Once the starting location is 

reached, the robot is facing toward the left and stopped collecting Data2. The robot then 

started collecting Data3 by traveling the left half of the area. The robot stopped its travel 

when it reached the top of the middle isle. These data sets were fed to the FastSLAM 

algorithm to simulate that Robot1 met Robot2 before Robot1 began exploration and 

received Data2 from Robot2. In order for the scenario to be realistic, Data2 was fed to 

Robot2 in the time-reversed order and both Robot1 and Robot2 were positioned at (0m, -

20m, 0 o).  

Figure 4.8 shows the ASRs that generated from the simulation by Robot1 and 

Figure 4.9 displays the ASRs from Robot2. The ASRs are displayed in a time progressing 

manner. 

          

                  

Figure 4.8: ASRs Generated by Robot1 
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 Figure 4.9: ASRs generated by robot2 

 



 

4-15 

When the master and virtual robots complete processing all the range data sets, 

the master robot combines all of the ASRs from itself and the virtual robot and generates 

a global map. Figure 4.10 presents the global ASR map generated in the end of the 

simulation. Robot poses for Robot1 and Robot2 are attached to the final output. 

 

 

Figure 4.10: Global map generated by ASRs 

 

The resulting map for multi-robot FastSLAM seems to be perfect. The map 

constructed from the ASRs, shows perfect loop closing and accurate representation of 

the structures in Figure 4.1. In fact, Figure 4.11 is overlaid on the blueprint in Figure 4.1 

to test quality of the map. The ASR map overlays on top of the blueprint perfectly. The 

hallways of the ASR map are intelligible due to its perfect matching with the ones of the 

blueprint. Figure 4.3 shows the statistics of second simulation. 
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Figure 4.11: Overlaid map 

 
Table 4.3: Statistics of ASRs in Figure 4.8 and Figure 4.9 

 Master Robot Virtual Robot 

ASR ID Num of 
Polylines 

Num of 
Vertices 

Num of 
Polylines 

Num of 
Vertices 

1 5 15 10 38 
2 9 37 15 59 
3 18 70 15 76 
4 25 103 18 84 
5 12 53 16 80 
6 14 67 10 48 
7 16 63 12 53 
8 21 81 18 72 
9   22 98 
10   15 64 
11   19 76 
12   14 51 
13   15 57 

Total 120 489 199 856 
Avg 15 61 15 66 
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The memory space required for the particles of the original FastSLAM algorithm 

with global grids is 64/.25 x 64/.25 x 400=25 Mbytes to map the third floor of bldg with 

400 particles. The memory space used for the particles of the implementation to map the 

same region is (40/.25 x 40/.25 + 1345 x16) x 400=18 Mbytes. Here, the value of 1345 is 

the total number of vertices in the global ASR and 16 represents the size of a vertex in 

bytes in the implementation. The memory space required for all the local grids is 9.766 

Mbytes while the ASRs require 8.2 Mbytes. The memory space used for the simulation 

doesn’t show much reduction from the one for the grid-based FastSLAM algorithm. 

However, when mapping area is larger the area mapped in the simulation, this memory 

constraint by local grids would be trivial compared to the total memory size it would 

require had the original mapping algorithm been used. Figure 4.12 is a regular grid map 

of the area of interest developed without ASR extraction method.  

 

 

   Figure 4.12: Grid map 
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The grid map includes every detail captured by the radar sensor. Although the 

map constructed from the ASRs miss details, it still shows all the main structures without 

sacrificing too much of details. Next, the ASR map generated by 400 particles is 

compared with the one developed by using 200 particles only to testify that the quality of 

a map improves as the number of particles increase in FastSLAM. Figure 4.13 displays a 

map produced by 200 particles. 

 

 

Figure 4.13: Global map of ASRs with 200 samples 

 

As expected, the map doesn’t represent the blueprint in Figure 4.1. It is far from 

truth. The last section of the chapter summarizes the testing results. 
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4.3 Testing Summary 

 The implementation of FastSLAM for multi-robots using local grids and ASRs as 

global map representation for the samples is satisfactory. The maps produced by the 

implementation represent the blueprints perfectly. The implementation has also showed 

that the quality of a map improves as the number of particles increases within FastSLAM. 

The map presented in Figure 4.10 could be produced by using local maps and ASR global 

map representation. Had I run a simulation for a map of the same area using regular, 

global grids, it would have been limited to using less than 200 particles on a personal 

computer. The time taken to produce the map in Figure 4.10 by the implementation is 4.9 

seconds. This is a tolerable time lapse when the algorithm is implemented online because 

a robot would take longer than the time taken when it travels the path of Robot1 in Data1. 

The next chapter concludes the thesis and offers a future work prospect. 
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5. Future Work and Conclusion 

The test results show that the implementation is successful for the purpose of the 

thesis. However, some of unexpected behaviors are noticed while in testing. Section 5.1 

will encapsulate the implementation and draw a conclusion and section 5.2 will offer the 

direction of future work. 

5.1 Testing Results Analysis 

Although the fastSLAM algorithm is a powerful solution to a SLAM problem, 

current available implementations of the algorithm use only grid map representation and 

let each particle maintain a global occupancy grid map. This will certainly limit the 

capability of the algorithm. In the implementation, this limitation was moderately 

relieved by using Absolute Space Representations. Although only small improvements in 

memory usage were shown by the simulations, it would have been larger had the 

mapping areas been larger than the testing areas due to a local grid size being fixed for 

ASR global maps while a global grid size in a grid-based FastSLAM mapping grows.  

In addition, when multi-robots are involved in mapping, the solution requires as 

many filters to be set up as the number of the participating robots. In this case, the 

number of particles that can be used in a filter would be significantly limited with the 

grid-based mapping of the FastSLAM algorithm. Thus, in a multi-robot FastSLAM 

mapping, it would be good choice to map using ASRs to alleviate the memory constraint  

The objective of the thesis was to: 

1. Implement and test the single-robot fastSLAM algorithm using ASRs. To 

achieve this task, the published probabilistic mapping method [69] was first modified to 
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let each particle possess a local grid not a global grid. Then local grids are converted into 

ASRs.  

2. Implement and test a multi-robot FastSLAM. This was accomplished by letting 

a robot maintain a filter for each robot. 

3. Develop a method to extract a polygonal map representation from a grid map 

and to simplify the extracted polylines. This task is accomplished by extracting polylines 

from the grid map according to the cell values. A neighboring cell with higher value is 

selected as the next cell to be inserted into a polyline. 

All parts of the objectives were successfully implemented, and testing results 

show that in spite of local mapping, the performance of the algorithm is not reduced, 

rather improved the accuracy of the map by using more number of particles. Maps from a 

simulation with 400 particles showed better quality than the ones from a simulation with 

200 particles.  

Although the implementation is successful, I noticed a strange behavior of the 

implementation. Theoretically, as the number of particles used for a simulation is 

increased, the better map is supposed to be obtained. However, in a few of runs, output 

maps improved when the number of particles is increased from 200 to 400, but not when 

the number is changed from 400 to 450. This is against the nature of FastSLAM. There 

are only two possible explanations with the behavior: either the method of calculating the 

accurateness of a map when range data is incorporated into the map is not reliable or the 

random number generator is not working in a consistent manner. I think the latter 

explanation carries more weight.  



 

5-3 

5.2 Future Work 

Although the implementation was satisfactory, it contains an inexplicable 

behavior as the number of particles increase. The strange behavior of the implementation 

is abnormal considering the nature of FastSLAM. One possible cause of this behavior is 

the weight calculation method used for the implementation. Further research is required 

to test whether this error calculation method is reliable. Another possible cause may lie 

with the random number generator. I would like to research the behavior of the generator 

more closely and find the reason of the abnormality of the implementation and correct the 

problem. 
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Appendix A.  Algorithms 

A.1 Robot Pose Estimation Method   

 

Robot Pose Estimation Method: 
1. Initial sample pose= the intial robot pose if the 

pose is known, otherwise to (0,0,0) 
2. Odom_pose=Lidar-corrected pose=1st odemetry reading 
3. Calculate Delta=old odom_pose – new_odom_pose 
4. Per Particle i: 

 4.1 sigma(i)=Action_model * delta 
 4.2 Sample_pose(i)=delta + gaussian_random(sigma) 

Figure A.1 Robot pose estimation method 

A.2 Algorithm to Convert Vector Map to a Grid Map 

 

ASRtoGrid (ASR) 
  Loop(line) 

Loop(v1, v2) 
xlen=v2.x-v1.x 

    ylen=v2.y-v1.y 
    If(xlen>ylen & xlen>0) bin=xlen 
    Else bin=ylen     
    If (bin==0) dx=dy=0 
    Else  
       dx=xlen/bin 
       dy=ylen/bin 
       For(k=0 to k<bin) 
           x=v1.x+k*dx 
           y=v1.y+k*dy 

grid(x,y)=larger(value(v1),value(v2)) 
       end for 
     end else 
end loop 

end loop 

     Figure A.2: Algorithm to convert vector map to a grid map 
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A.3 Algorithm to Etract Polylines

 

Extract polylines(grid) 
while  

PolyLine line 
v=grid(xsmallest, ysmallest) 
line.add(v) 
sg.unset(v) 
while 
   v=getNextVertex(v) 
   line.add(v) 

unset(v) 
ene while 
simplifyLine(line) 
addPolyLine(line) 

end while 
 
Simplify Polyline (line) 

count=0 
   lastlocation=0 

numVtx=line->length 
For (i=0 to i<numVtx) 
 bgvtx=line[0] 
 If(i==1) 
    Lastlocation=1 
    Currentvtx=line[1] 
    Prevang=getlineangle(bgvtx, currentvtx) 
     diff=prevang-currentang 
    if |diff|<threshold 
        line.remove(count+1) 
    else  
        count++ 

end if 
Lastlocation=count+1 
Prevang=getlineangle(line[count], currentvtx) 

 End if 
End for 

               Figure A.3: Algorithm to extract polylines

 



 

A-3 

A.4 ASR Map 

Each ASR contains 
 

 
 

• ASR number 
• Polylines 
• xmin, xmax, ymin, ymax  

Figure A.4: ASR 

 
A window of an ASR is defined by the four corners as shown below.   

(xmin,ymax) (xmax,ymax) 

(xmin,ymin) (xmax,ymin) 
        

The values stored in the four variables are global. “xmin” and “ymin” are the 

offsets to be added to a cell of a grid when the grid from an ASR is to be transferred into 

the global map. 

A.5 Robot Pose Addition and Subtraction 

 
 

 Pose2_add(a,b) 
c.x=cos(b.θ)*a.x – sin(b.θ)*a.y +b.x 
c.y=sin(b.θ)*a.x – cos(b.θ)*a.y +b.y 
c.θ=atan2(sin(a.θ+b.θ), cos(a.θ+b.θ)) 

 
Pose2_sub(a,b) 

c.x=cos(b.θ)*(a.x-b.x)+sin(b.θ)*(a.y-b.y) 
c.y=-sin(b.θ)*(a.x-b.x)+cos(b.θ)*(a.y-b.y) 
c.θ=atan2(sin(a.θ-b.θ), cos(a.θ-b.θ)) 

Figure A.5: Robot pose addition and subtraction
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