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I.  Statement of Problem Studied
Our broad long-term objective is to create novel biomaterials that advance the technical
capabilities of the U.S. Army.  In the short term, we seek to design self-assembling
biomaterials that are adaptable in their structure and function.  To do so, we must
understand the molecular physicochemical aspects of biomaterials design, and we use
three different systems to study this issue: 1) intermediate filaments, a class of protein
with a broad range of structural roles from the nanometer to macroscale, as a model
system; (2) self-assembled virus-based nanostructures, and (3) adiponectin, an adipocyte-
produced hormone that serves as a soluble model system of higher order collagen.  Such
proteins may be harnessed for military purposes (eg. protective self-healing materials or
nanoscale scaffolds) if one had a better understanding of how molecular structure
determines material properties.  In this final progress report, we summarize our studies on
these systems.

II.  Technical Summary
1.  Intermediate Filament Engineering:
Figure 1 shows our scheme for engineering the intermediate filament vimentin into a
soluble model system.  Intermediate filaments (IFs) are structural proteins that can be
parsed into head an dtail globular domains separated by a long coiled-coil rod region.
This monomer fist goes on to form dimers followed by higher order oligomerization.  It
has been established that specific regions of rod domain interact in this process [1-3].
Given that coiled-coil structure, a motif whose design principles are well understood,
comprises this region, it may be possible to permute this domain to redirect assembly of
the wild type polypeptide rod.  Figure 1 illustrates steps by which IFs are believed to
assemble.  Interestingly, the two staggered dimer of dimers in step 2 are "reciprocal"
structures.  These two staggered arrangements ensure an indefinite perpetuation of
lengthwise association, giving rise to the filament (much like DNA duplexes with sticky
ends).  However, if one were to permute the rod by moving the overhang portion of the
coiled-coil from one end to the other, one would in principle, preserve all native
interactions in the oligomer, but eliminate the overhang that gives rise to length-wise
growth of the filament and the formation of alternate structures.  Most importantly, lateral
interactions between oligomers should not be affected since the vast majority of native
interactions remain (with the exception of the new "splice" site). Previous evidence
shows that at Lys282 can form intermolecular cross-links with both Lys104 and Lys402.
Thus, any construct we make must place Lys 104 and Lys 402 in close proximity[1-3].   
Knowing that the rod must be α-helical over most of its length, the number of constructs
possible is drastically reduced upon inspection of the various sequences in the context of
a helical wheel diagram (Figure 2).  Only constructs that place Lys 104 and Lys 402 3, 4
or 7 residues apart can position the two residues close in space. Note that the head and
tail have been removed from the engineered and wild type sequences to abrogate
elongation and alternate structures.  If the heteromer undergoes full assembly, the
expected complex should have the side-to-side bundling characteristics of a normal IF but
have a discrete length of a single rod domain!  Such a discrete particle would be much
more amenable to biophysical characterization than an indefinitely long filament.
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Figure 2.  Helical wheel diagrams of the three permuted rod constructs made for this project: a) 12.4,
which places the two lysines 4 residues apart (b) 12.5, which places the two lysines 3 residues apart; (c)
12.6, which places the two lysines 7 residues apart.
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The 3 constructs were made by splicing the two relevant halves together by overlap
extension.  This was not as straightforward we initially believed but we were able to
obtain all three and verified their correctness by sequencing.  An unexpected point
mutation was corrected by site-directed mutagenesis after cloning into the pET3d
expression vector.  Following transformation into BL21 strain of E. coli, construct 12.6
was overproduced.  We can achieve approximately 11 mg/L of culture and we are
currently optimizing expression conditions for 12.4 and 12.5.  Construct 12.6 was
purified by ion exchange chromatography on DEAE resin using 20 mM Tris at pH7, 6M
urea as the base buffer.  The protein eluted at 150 mM NaCl.

The CD spectrum of 12.6 was obtained to ascertain that it was at least helical, a
sign that it was adopting the coiled-coil conformation.  Shown in Figure 2 is its CD
spectrum.  It shows that 12.6 is likely to have coiled-coil structure as the θ222/θ208 ratio is
0.93, in line with that measured for many coiled-coils.  The positive CD signal at near
UV wavelengths, a contribution of aromatic residues in certain configurations, is
prominent here but absent in the CD spectrum of the wild type protein, suggesting that
the construct may not have a fully native structure.  We conclude that this construct either
has some non-helical structure or is not fully associated and may display some
concentration dependence in its association.
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Figure 2.  Circular dichroism spectrum of permuted construct 12.6. The shape of the spectrum
suggests that the protein has coiled-coil structure but is not fully helical, and has regions of structure that
are indeed different that wild type, given the positive signal at near UV wavelengths.
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We have purified the other constructs and mixed them with the wild type rod to see if we
can obtain soluble oligomers that are suitable for biophysical analysis.  Each construct
has very low solubility, even under denaturing conditions, (eg. 4 M urea).  We have
attempted to refold them in the presence of the wild type rod but most of the protein still
precipitated.  Nevertheless, transmission electron micrographs of the suspension showed
the presence of large rod-like structures (Figure 1).  The diameters are highly uniform but
there is heterogeneity with regards to its length.

Figure 3.  Transmission electron micrograph of vimentin rod assemblies.  Wild type vimentin rods
were mixed with domain-swapped construct 12.6 and dialysed into reassembly buffer.  Imaging the
supernatant revealed the presence of large worm-like structures.

2.  Self-Assembly of a Linear Viral Array:
The goal of this project is to use TMV as a nanoscale building block to create novel
structures and devices.  TMV is an ideal system to start with because is the best studied
virus, and is very simple in its composition and structure.  It is made up of a 6395
nucleotide single stranded RNA that is encapsulated by 2130 copies of a single type of
coat protein [4].  The final structure is a 300 nm long rod, with an 18 nm diameter.  Virus
assembly is dictated by a 68 nucleotide packaging signal (called the origin of assembly,
OAS) [5,6], and any RNA that bears this signal gets packaged by the coat protein.  A
consequence of packaging foreign RNA however, is that the resultant length of the viral
pseuodparticle is determined by the length of the RNA!  We are exploiting these decades-
old in vitro assembly properties in combination with modern molecular biology
techniques and oligonucleotide modification chemistry to create highly ordered 1-
dimensional arrays.  The overarching concept is to create TMV pseudovirions that have a
biotin group on both ends of the particle, then use streptavidin to organize the TMV into
a linear array (Figure 4).
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Figure 4.  Strategy for assembling a linear viral array.  Coat protein (1) was isolated from TMV and
used to package 5', 3' bis-biotinylated RNA (2) to form a pseudoparticle (3) whose length is determined by
(2).  The pseudoparticle self-assembles with streptavidin to form the linear array (4).  The RNA was
biotinylated by ligating synthetic RNAs bearing a biotin (B) attached to either the 5' or 3' end via a 5 nm
PEG linker (red).  Objects are not drawn to scale.

The high affinity of streptavidin for biotin, on the order of 1014 M-1, is well known and
should assure a high degree of assembly. Streptavidin is a tetramer, and thus should be
able to organize up to 4 TMV particles. The domain structure is that of a dimer of
antiparallel dimers.  The 4 binding sites for biotin have a tetrahedral relationship.  The 18
nm diameter of TMV, being three times larger than streptavidin however, imposes steric
constraints on the spacing between the biotin group and the end of the virus such that the
linker spacing will determine whether it assembles as a linear array or some higher order
structure.   As shown in Figure 5, a short linker permits binding of only two TMVs to
tetrameric streptavidin at 180 degrees relative to each other.  Thus, streptavidin is arrayed
in a regular linear fashion by TMV and has two remaining binding sites available to array
other biotinylated objects. Third, the high affinity for biotin will be a great driving force
for high yields in assembly with stoichiometric amounts of TMV and streptavidin.

This system is significant because the tunability of its dimensions along with the ability
to chemically or genetically modify the virus and/or streptavidin enables assembly of
nanostructures with diverse function and size, making it potentially amenable to a wide
range of applications in nanoscience.  In particular, the enzymatic production of RNA
enables the assembly of long pseudoparticles that would exceed the 100 nm length scale
that borders the focus of nanoscience, in addition to the sub 100 nm regime we are
currently exploring.  Furthermore, TMV is much more rigid than nucleic acids, and so in
addition to the size scale accessible to self-assembled bionanosystems, this system nicely
may yield structures with materials properties that are advantageous with respect to what
has been achieved with nucleic acids.
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Figure 5.  Influence of linker length on the structure of streptavidin-virus assembly.
Long linkers joining the bioint to the RNA are required for 4 18 nm diameter viral particles to assemble
around the 6 nm diameter streptavidin (top).  Short linkers permit end to end interactions while alternative
approaches are excluded by the steric influence of particles already bound to streptavidin.  We use 5 nm
linkers to direct assembly to the 1D structure.

Figure 6.  Production of TMV pseudoparticle components.  A. Schematic of the splinted ligation.  T4
DNA ligase catalyzes the ligation of TMV RNA (white segment) and the synthetic biotinylated RNA
(black segment) via a DNA splint.  The sequence specificity of the reaction permits ligation of 2 synthetic
RNAs simultaneously. B. Polyacrylamide gel of 5 splinted ligation reaction products as visualized by UV
backshadowing. C. Transmission electron micrograph of coat protein at 1mg/mL.  Note the disk shaped
morphology with the open channel in the center.  D.  Autoradiogram of a coat protein/32P RNA reassembly
reaction.  Lane 1 and 2: RNA / coat protein reassembly reaction after 3 hours and 1 hour respectively; Lane
3: Unpackaged reference RNA.
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Figure 7.  Characterization of TMV arrays. a) Transmission electron micrograph of doubly biotinylated
pseudoparticles which are monodisperse in the absence of streptavidin. (b) Statistical analysis of
monomeric pseudoparticle length from 4 fields of view.  Most particles have the expected length of 17 nm.
(c) Transmission electron micrograph of pseudoparticles from (a) mixed with an equimolar amount of
streptavidin tetramer after 30 minutes.  Trimers and dimers are evident.  Inset: 1 of several pentamers
observed after 30 minutes (d) Statistical analysis of the TMV/streptavidin self-assembly reaction after 30
minutes (black) and the negative controls where either streptavidin (grey) or biotin (white) are missing.
Dimers and higher order assemblies were evident in 10 fields of view.  The negative control contained
predominantly monodisperse particles with several dimers present. (e) Nonamers become more prevalent
after 2 hours of assembly.  In (f) the formation of multimers of TMV was revealed by autoradiography with
electrophoretic separation.  Discernable bands are from arrays having different numbers of pseudoparticles.
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The convergent strategy uses well-established methods at each step (Figure 6).  The coat
protein is isolated by Fraenkel-Conrat’s acetic acid method [7-9].  322 Nucleotide long
RNA containing the OAS was obtained by in vitro transcription of RT-PCR products of
TMV RNA.  We ligate the synthetic RNAs to these transcripts by DNA-splinted ligation.
Packaging of the RNA yields a bis-biotinylated 18 nm rod.  This rod can be assembled
into short arrays by addition of an equimolar amount of streptavidin.  Shown in Figure 7
are transmission electron micrographs of the single particles and the arrays formed after
addition of streptavidin.  In the absence of streptavidin, the particles are monodisperse.
30 minute exposure to streptavidin however, causes the pseudoparticles to assemble into
dimers, trimers, and in rare cases, tetramers and pentamers.

After only 30 minutes, only half of all pseudoparticles observed were participating in
array formation and most of them were short, being dimers and trimers.  These short
arrays were formed after only 30 minutes and so we let the assembly process proceed for
longer periods.  We observed some longer structures, such as the nine membered array
shown in Figure 7E but most of the arrays were still 2-3mers, and the majority of viral
particles remained monomeric.

Figure 8.  A comparison of an alternating copolymer with a viral array.

The shortness of the arrays can be rationalized through consideration of step growth
polymer mechanisms.  Shown in Figure 8 is a comparison of the linear viral array with a
polyester, a representative alternating copolymer.  Both are built from an alternating
pattern of monomers.  The length of alternating copolymers (reflected in the degree of
polymerization, DP) can be related to the extent of the reaction, p, by the classical
Crother’s Equation

DP = [initial # of functional groups] / [# of groups after time t] = 1/(1-p)           (1)

Shown in Table 1 are some calculated values of DP for various p.  At p=0.5 (50%
completion of reaction or assembly) where only half of the pseudoparticles are in arrays,
the DP=2.  This is reflective of a very short polymer and possibly explains why we
observed mostly dimers and trimers.  Table 1 also shows how difficult it is to created
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alternating copolymers of substantial length: at 95% completion (p=0.95), DP=20.  This
outcome does not necessarily diminish the importance of making viral arrays however, as
the desired length will be dependent upon the application of array.

Table 1.  Dependency of Degree of Polymerization on Extent of Reaction
Extent of Reaction, p Degree of Polymerization
0.5 2
0.9 10
0.95 20
0.99 100
0.999 1000
1 infinity

To gain additional insight into the formation of arrays of different length, we are
currently developing electrophoretic methodology to make quantitative measurements on
each array.  Shown in Figure 7F are some promising preliminary results where we
electrophoresed 32P-radiolabelled TMV arrays on an agarose gel.  While the separation of
the individual arrays needs to be greatly improved, individual bands may be discerned in
the smear that is formed upon assembly with streptavidin.

3.  Higher Order Structure of Adiponectin a Soluble Model System of Collagen
Interactions:
Collagen is a structural protein is the principle component of the extracellular matrix that
provides mechanical support to connective tissues such as skin, tendon, ligament, bone
and cornea [10].  It is characterized by a Gly-X-Y repeat of amino acids which folds into
a polyproline-like helix that trimerizes to form a three stranded superhelix.  This triple
helix goes on to self-assemble across multiple length scales to form organized
suprafibrillar structures that determine the mechanical and biological properties of the
tissue.  For example, collagen fibrils are organized in a concentric manner in bone to
provide resistance to compression forces [11] while the crimped morphology in tendon
permits elasticity [12,13].  Thus, gaining an understanding of the design principles of
higher order collagen structure would greatly enhance our understanding of its function in
biology, facilitate the design of biomaterials, and perhaps find novel applications in
bionanotechnology, where exquisite structural control at the nanoscale is often required.

At present, there is a gap in our knowledge regarding the relationship between collagen
sequence and how it influences higher order assembly.  At the molecular level, an
extensive body of work on the thermodynamic stability, folding and structure of collagen
triple helices exists has been built up based on model peptides.  For example, the
thermodynamic propensities of the twenty amino acids at the X and Y positions have
been determined in the context of a host Gly-Pro-Hyp collagen triple helix [14].
Sequence variation has also been shown to cause changes in the helical parameters of the
triple helix [15].  The role of hydration [16], the stabilizing feature of 4-hydroxyproline
(Hyp) [17,18], as well as the effect of electron withdrawing groups at the 4- position on
the conformational preferences of proline [19-22] have also been characterized.  Collagen
suprafibrils have also been extensively studied.  Notably, it has been shown that in fibrils,
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triple helices are packed into quasihexagonal three-dimensional crystalline arrays with a
left-handed twist [23].  While short and simple model peptides have been shown to
undergo higher order assembly [24-26] or form liquid crystals [26], how unique collagen
sequences lead to specific higher order structures is unknown.

The study of higher order collagen assembly is complicated by several factors.  First,
collagens often need chaperones to assist in their folding.  This requirement limits the
sequences that can be tested for their assembly properties in vitro.  Second, non-
collagenous domains are often involved in higher order assembly as well [27].  These
globular domains and telopeptides vary widely in sequence from one collagen to the next
so it is difficult to generalize from individual studies, and the nature of the telopeptide-
collagen interactions at the atomic level is unknown.  Third, collagens undergo
glycosylation [28-30], particularly with glucosylgalactosyl moieties at sites having 5-
hydroxylysyl residues.  These disaccharides may be important for higher order assembly
but is difficult to recapitulate in vitro.  Fourth, covalent cross-links, such as disulfide
bonds, are often important for higher order structures [31].  Where these should be
incorporated into a collagen containing protein is unknown but they often occur in the
non-collagenous regions.  Fifth, self-assembly often leads to insolubility in the higher
order structures that are formed [32].  This insolubility limits the biophysical experiments
that are usually carried out to determine oligomeric structure and thermodynamic
interactions.  Thus, in order to determine the roles played by these additional features of
collagens, a soluble model system having these traits and that is amenable to systematic
variation is required.

The hormone known as adiponectin (as well as Acrp30, APM1, GBP28, or AdipoQ) may
be a suitable protein to use as a model system to explore higher order collagen
interactions. Adiponectin is a 30 kDa C1q-like protein that contains a perfect 22 Gly-X-Y
collagen-like repeats sandwiched between a 17 residue N-terminal domain and a globular
C-terminal domain that is structurally similar to TNF-α (see Figure 9).  Thus, the domain
organization is similar to that of collagen X.  It is secreted exclusively by adipocytes in
multiple homomeric oligomers that we and Lodish previously determined  to be a trimer
a hexamer, and a “high molecular weight complex” [33,34].  Furthermore, we and
Lodish, along with others established that the N-terminal domain contains a single
cysteine residue that is critical to mediating adiponectin oligomerization through disulfide
bond formation [33]. As such, these oligomers do not spontaneously equilibrate.  Despite
multiple efforts [35,36], no biological mechanism for interconversion has been found
either.  Like most collagens, adiponectin is post-translationally modified with
glucosylgalactosyl groups at conserved 5-hydroxylysine residues in the collagen-like
domain (four in total) [37-39].  These disaccharides have been shown to be required for
formation of the HMW complex as their mutation led to the loss of this oligomer in
transiently transfected cells [37-39].  Similarly, recombinant adiponectin expressed in E.
coli, which gives unglycosylated protein, fails to form HMW oligomers and is likely
misfolded [34].  Though not N-glycosylated [37], it is also likely that adiponectin is O-
glycosylated with more complex polysaccharides on threonine residues in the collagen-
like domain [40].  Thus, in light of the fact that adiponectin has similar domain
organization as some collagens, is glycosylated as a typical collagen would be, forms a
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soluble complex and homomeric (which simplifies analysis, compared to heteromeric
C1q for example), we are exploring its utility as a model system for microfibrillar
collagen assembly. As a first step towards this goal, we carried out structural analyses of
HMW adiponectin.

Sedimenation equilibrium experiments were carried out to define the molecular weight
of the complex [41].  All sedimentation equilibrium experiments, carried out at 5000 rpm
and 6000 rpm at 10 µM and 1 µM respectively, were consistent with HMW adiponectin
being an octadecamer.  Shown in Figure 10C is a typical trace obtained at 5000 rpm,
along with residuals.  All data sets fit best to an ideal single species model with random
residuals (top). The random residuals provide further evidence that the sample is not
undergoing measurable equilibrium with other oligomeric states.  The apparent molecular
weight, calculated from the average of 10 experiments, was determined to be 485 968
kDa, 18.4±1.1 times larger than the glycosylated monomer (26 455 Da).  We conclude
that HMW adiponectin is an octadecamer.

Dynamic light scattering measurements gives additional data regarding the
hydrodynamic size of the bovine complex [41].  The autocorrelation function, shown in
Figure 10A, is monoexponential as determined by the method of cumulants [42],with
random residuals, indicating that it is monodisperse and that there are no other physical
processes that are occurring at detectable levels. The apparent hydrodynamic radius
extracted from the autocorrelation function centers on 9.0 nm (Figure 10B). Using the
calculated mass of octadecameric adiponectin, the theoretical size of an anhydrous 485
968 Da sphere is however estimated to be only 5.2 nm [43]. Thus HMW adiponectin is
asymmetric, which is expected if it were C1q-like in structure. From the Stoke-Einstein
equation, the ratio of f  / f o is 1.73.  Modeled as an oblate ellipsoid, bovine HMW
adiponectin has a maximal axial ratio = 11.8 with the long axes (2a) of the hydrated form
being 26.8 nm in length and the short axis (2b) is 2.3 nm.  The short axis seems
unrealistically small but such an outcome was also obtained for C1q [44].  The long axes
of the ellipsoid were comparable to the diameter of the splayed complexes observed by
electron microscopy (2a=33 nm) but the short axis (2b) was a mere 2.2 nm in length.
Thus, HMW adiponectin seems to have similar hydrodynamic behavior to C1q.

The bouquet-like objects (Figure 11) observed for bovine HMW adiponectin by TEM
[41] provide additional insight into the structure of HMW adiponectin beyond prior EM
studies [33,36].  First, it is clearly reminiscent of C1q [45,46].  In flattened side views
(bottom row), six globular objects can be seen atop thin stalks, which presumably
correspond to the 6 trimers on collagen triple helices that are required to form the
octadecameric complex.   The stalks bunch together at the other end in a manner that is
consistent with the requirement for N-terminal disulfide bonding [33,47,48].  While the
disulifde-bond pattern of the complex remains to be elucidated, the overall architecture of
HMW adiponectin is highly similar to C1q.

Some of the side views of HMW adiponectin (Figure 11, middle row) suggest a
conical structure of the oligomer with the C-terminal portion forming the base.
Interestingly, these globular domains are arranged in a tight ring.  End-on views of the
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complex (Figure 11, top row) also show this arrangement, although some structures
formed a circle of 5 globular domains plus one in the middle.  The N-terminal region of
the collagen domains sometimes appeared to be bundled together, implying higher order
collagen interactions.  Presumably, these interactions help direct the subunits to be
parallel and form a closely packed cone,

Tangential to the goal of this project is the great interest in measuring oligomer
distribution in serum as there is evidence that different oligomers have different
metabolic activities.  We have developed a rapid ion-exchange protocol that permits
separation of the complexes, probably through differences in polyvalency.  Shown in
Figure 12 is a western blot highlighting the effectiveness of our methodology in
separating adiponectin oligomers from cell culture media of 3T3-L1 adipocytes.  Each
oligomer can be specifically eluted with buffer containing an appropriate concentration of
NaCl.

Figure 10.  Biophysical characterization of endogenous HMW adiponectin. A. The autocorrelation function
obtained by dynamic light scattering for bovine HMW adiponectin (circles) was fit by the method of cumulants and
showed monoexponential decay, indicating a monodisperse sample.  Residuals are shown above. B.  The Stokes radius
that was calculated from this curve centered on 9 nm.  C. Sedimentation equilibrium trace of bovine HMW adiponectin.
Data points (circles) were fit to an ideal single species model having an apparent molecular weight of 482 kDa, or 18
times the monomer.  The residuals are shown above.  For reference, a theoretical trace for a dodecamer (bold curve) is
shown.
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Figure 12. Purification of HMW adiponectin.  A.  Conditioned media from 3T3-L1 adipocytes (lane 1) was
chromatographed on ion-exchange resin.  The unbound fraction (lane 2) contains the trimer (3) and hexamer (6) while
the HMW (18, lane 3) eluted under high salt conditions.  B.  The trimer and hexamer from the flow through of A (lane
1) could also be individually eluted by step washing an ion-exchange column.  C. For comparison, the elution profile of
adiponectin oligomers from a Superdex 200 gel filtration column is shown.  Reproduced from our publication in [33].

III. Summary of Most Important Results
1. Permuted vimentin rod domains could self-assemble into fibrils of defined

diameter.
2. Tobacco mosaic virus could be engineered to form pseudoparticles of

controlled length and with chemo-and regiospecific functionalization to
yield nanorods that could be assembled with streptavidin into linear
arrays.

3. The structure of high molecular weight adiponectin was established.  This
soluble model system paves the way for the study of determinants of
higher order collagen assembly.
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