Award Number: W81XWH-06-1-0453

TITLE: SXR, A NOVEL TARGET FOR BREAST CANCER THERAPEUTICS

PRINCIPAL INVESTIGATOR: Suman Verma, B.A.M.S.

CONTRACTING ORGANIZATION: University of California
Irvine, CA 92697-2300

REPORT DATE: April 2007

TYPE OF REPORT: Annual Summary

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
SXR, A NOVEL TARGET FOR BREAST CANCER THERAPEUTICS

Suman Verma, B.A.M.S.

E-Mail: sverma@uci.edu

University of California
Irvine, CA 92697-2300

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Approved for Public Release; Distribution Unlimited

One of the major challenges in breast cancer research is to develop new chemotherapeutic and chemopreventive agents, particularly for non-estrogen dependent and drug-resistant estrogen dependent breast cancers. SXR activators were able to cause cell cycle arrest and apoptosis in ER+ and ER- breast cancer cell lines in culture. Different SXR activators caused accumulation of p53 in ER+ breast cancer cells leading to increase in its target genes involved in apoptosis and cell cycle. Confirmation of these results in at least two ER+ breast cancer cell lines suggests validity of this model in estrogen dependent breast cancer. Establishment of loss of function studies in these cell lines using the siRNA will re-affirm these results and will confirm the significance and requirement of SXR in these compounds led apoptosis. Moreover, the gene knockdown studies in ER- cell lines in next year of funding and in-vivo mouse model studies will establish a definite role of steroid and xenobiotic receptor (SXR) in breast cancer. This will provide opportunities for rational drug design and improvement of the efficacy of existing drugs that act through SXR.

SXR, p53, siRNA, ER+, Er-

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Approved for Public Release; Distribution Unlimited

One of the major challenges in breast cancer research is to develop new chemotherapeutic and chemopreventive agents, particularly for non-estrogen dependent and drug-resistant estrogen dependent breast cancers. SXR activators were able to cause cell cycle arrest and apoptosis in ER+ and ER- breast cancer cell lines in culture. Different SXR activators caused accumulation of p53 in ER+ breast cancer cells leading to increase in its target genes involved in apoptosis and cell cycle. Confirmation of these results in at least two ER+ breast cancer cell lines suggests validity of this model in estrogen dependent breast cancer. Establishment of loss of function studies in these cell lines using the siRNA will re-affirm these results and will confirm the significance and requirement of SXR in these compounds led apoptosis. Moreover, the gene knockdown studies in ER- cell lines in next year of funding and in-vivo mouse model studies will establish a definite role of steroid and xenobiotic receptor (SXR) in breast cancer. This will provide opportunities for rational drug design and improvement of the efficacy of existing drugs that act through SXR.

SXR, p53, siRNA, ER+, Er-
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>5-7</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>8</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>8</td>
</tr>
<tr>
<td>Conclusion</td>
<td>9</td>
</tr>
<tr>
<td>References</td>
<td>10</td>
</tr>
<tr>
<td>Appendices</td>
<td>11-18</td>
</tr>
</tbody>
</table>
Introduction:

Anti-estrogens such as tamoxifen are important therapeutic agents in the treatment and chemoprevention of breast cancers. Other compounds such as phytoestrogens, fatty acid amides such as anandamide and retinoid X receptor agonists are also effective against breast cancer in cell lines and in animal models. Because these compounds are structurally unrelated, it has not been appreciated that they might act through a common mechanism. All of these compounds share the ability to activate a heterodimer of the steroid and xenobiotic receptor (SXR) and retinoid X receptor (RXR). Our hypothesis is that SXR serves as a common molecular target for some of the anti-proliferative effects of these compounds and that activation of SXR is itself anti-proliferative. To this end, we have found that activation of SXR leads to apoptosis and G1 cell cycle arrest through a p53 dependent pathway in estrogen receptor positive MCF7 breast cancer cells. In this period of study, we have confirmed our initial results in another ER+ breast cancer cell line ZR-75-1. We have also been able to provide further support for our hypothesis by showing that activation of SXR not only causes increase in p53 mRNA, but also causes stabilization and accumulation of p53 protein in MCF7 cells. So far, we have been able to significantly knock down SXR in MCF-7 cells by using siRNA and we are currently performing the loss of function studies in these cells and optimizing the siRNA transfection conditions in ER- breast cancer cell lines.

Note: The lead researcher was on approved maternity leave from the project during the period from 04-2006 through 09-2006. Therefore, this progress report represents work performed from 10-2006 through 04-2007.
Body:

Aim #2: What is the molecular pathway underlying the antiproliferative effects of SXR in ERα, p53mut cell lines?

2.1 Does SXR loss-of-function inhibit the anti-proliferative effects of SXR activators?

Silencing SXR in breast cancer cells using siRNA

Our preliminary results have shown that SXR activators cause caspase-dependent apoptosis and G2/M cell cycle arrest in two ER−, p53mut breast cancer cell lines. To confirm that SXR in fact is responsible for decreased proliferation of breast cancer cells by SXR activators it is important to determine whether knocking down SXR level in these cells can block the anti-proliferative effects of SXR activators. To screen for siRNAs that could reliably and efficiently knock down the mRNA and protein level of SXR we obtained 3 siRNA duplexes from Qiagen (Qiagen Inc., USA). SXRsiRNA1 and SXRsiRNA2 sequences were pre-designed by Qiagen software whereas the SXRsiRNA3 sequence was shown previously to knock down SXR by our Japanese collaborators [1], paper is attached).

SXRsiRNA1: 5’-GGAGCAAUUCGCCAUUACU-3’
SXRsiRNA2: 5’-GGAGGGCCAUGAAACGCAA-3’
SXRsiRNA3: 5’-AAGGCCACTGGCTATCACTTC-3’

A Scrambled sequence that does not have similarity with any known mammalian genes was used as a negative control. The Scrambled sequence is tagged with Alexa-488 to estimate the transfection efficiency. An siRNA targeted against Mitogen Activated Protein Kinase (MAPK) was used as a positive control. Since we have established a pathway for inhibition of proliferation by SXR activators in MCF-7 cells, we decided to first test the ability of these siRNAs to knock down SXR and block the effects of SXR activators in this cell line. The cells were seeded in 6-well plates, 24 hr before transfection. After 24 hr, they were transfected with 36, 72 or 108 nM of the SXR
specific siRNAs, or Scrambled siRNA, using Hiperfect transfection reagent (Qiagen Inc., USA). The cells were incubated with transfection complexes for 48 hrs for mRNA analysis. For protein analysis, cells were re-transfected after 48 hrs and protein lysates were made using RIPA buffer after an additional 48 hours. As shown in Figure 1a, we are able to knock down the mRNA level of SXR by ~82% using SXR siRNA3 sequence. We have also observed a significant decrease in the SXR protein level mediated by this siRNA (Figure 1b). This protein knockdown has been confirmed using two antibodies directed against different regions of the SXR protein. Neither SXRsirNA1 nor SXRsirNA2 were found to elicit any significant decrease in SXR mRNA.

Since we have identified and optimized conditions to use at least one siRNA that is able to reliably and efficiently decrease the mRNA and protein level of SXR in MCF-7 cells, we will next perform gene expression analysis on these cells transfected with SXRsirNA3 vs. Scrambled sequence in the presence or absence of SXR activators. We expect to see no or a little increase in the iNOS and other pro-apoptotic or cell cycle genes by SXR activators in the cells transfected with SXRsirNA3 whereas the effects on cells transfected with scrambled sequence should not be changed. Next, we will begin studies using the MDA-MB-231 and MDA-MB-435 (the ER breast cancer cell lines) using this siRNA. Since literature review suggests that these cells are relatively difficult to transfect, we will first optimize the transfection using different reagents (e.g., Hiperfect, Lipofectamine 2000, Lipofectamine RNAimax or Genesilencer) to identify appropriate conditions for subsequent experiments.

Does SXR activation cause p53 stabilization and accumulation?

Initial results demonstrated that activation of SXR by structurally different activators lead to increased expression of inducible nitric oxide synthase (iNOS); iNOS promotes nitric oxide production and accumulation in cells. Nitric oxide can stabilize p53 protein, and activate p53-mediated transcription. Activated p53 upregulates expression of p53 target genes such as p21, BAX and PUMA, leading to cell cycle arrest and finally apoptosis. An important test of our hypothesis is to confirm that, in fact, p53 protein levels increase subsequent to SXR activation. Therefore, we treated MCF-7 cells with SXR activators or solvent control for a time course of 48 and 72 hrs, replacing the ligands every 24 hrs. Total protein lysates were

Figure 2: p53 protein get accumulated by SXR activators:

MCF-7 cells were treated with Rifampicin (RIF), Anandamide (ANA), Clotrimazole (CLO) & Tamoxifen (TAM) for a.) 48 and b.) 72 hrs. Camptothecin (CAMP) was used as a positive control for p53 induction.
subjected to western blot analysis using anti p53 antibody (Fl-393 HRP) from Santa Cruz biotechnology (Figure 2). The membranes were stripped and re-probed with tubulin as a loading control. As shown in Figure 2, there is an increase in cellular levels of total p53 protein after treatment with all four SXR activators as early as 48 hrs. Under normal conditions, the amount of p53 is tightly regulated by mdm2, which keeps it at a low level [2] Cellular stress or DNA damage of any kind leads to p53 stabilization and subsequent increases in p53 levels in the cells. The increased levels of p53 protein elicited by SXR activators clearly shows that activation of SXR results in stabilization of p53, presumably through iNOS, in line with our model.

Establishing the molecular mechanism for apoptosis and cell cycle arrest in ER\(^+\) ZR-75-1 cells

After establishing the pathway for apoptosis and cell cycle arrest in MCF-7 cells, we next wanted to confirm our results in at least one other estrogen receptor positive cell line to determine whether it was a general mechanism. To do that, we chose to use ZR-75-1 cell line. This cell line is an estrogen receptor positive breast cancer cell line and has wild type p53 and expresses SXR, which makes it somewhat similar to MCF-7 cells, at least with respect to SXR, ER and p53. Therefore, we tested whether SXR activation leads to apoptosis as in MCF-7 cells. As shown in Figure 3, the ZR-75-1 cell line shows similar changes in gene expression in response to treatment with SXR activators as do MCF-7 cells. ZR-75-1 also shows increased iNOS levels as early as 18 hrs after initiation of treatment with SXR activators. This confirms the results obtained with MCF-7 cells and supports our hypothesis. These results are submitted for publication in cancer research and are currently under revision.

Figure 3: Gene expression changes induced by SXR activators in ZR-75-1 and MCF-7 cells: SXR activators RIF, ANA and CLO cause increase in the expression of iNOS, p53, p21, BAX and PUMA
Key Research Accomplishments:

- Showed that p53 protein is stabilized and that levels are increased by SXR activators in p53^{wt} cells (MCF-7).

- Showed that the proposed SXR-dependent pathway is operational in ZR-75-1 cells, therefore indicating that this is likely to be a general mechanism through which SXR can act in breast cancer cells.

- Identified and optimized conditions wherein SXR-specific siRNAs efficiently knock down SXR mRNA and protein.

Reportable Outcomes:

submitted a manuscript describing our initial findings to Cancer Research (CAN-06-4650 Version 1). It is currently under revision.
Conclusions:

One of the major challenges in breast cancer research is to develop new chemotherapeutic and chemopreventive agents, particularly for non-estrogen dependent and drug-resistant estrogen dependent breast cancers. SXR activators were able to cause cell cycle arrest and apoptosis in ER$^+$ and ER$^-$ breast cancer cell lines in culture. Different SXR activators caused accumulation of p53 in ER$^-$ breast cancer cells leading to increase in its target genes involved in apoptosis and cell cycle. Confirmation of these results in at least two ER$^+$ breast cancer cell lines suggests validity of this model in estrogen dependent breast cancer. Establishment of loss of function studies in these cell lines using the siRNA will re-affirm these results and will confirm the significance and requirement of SXR in these compounds led apoptosis. Moreover, the gene knock down studies in ER$^-$ cell lines in next year of funding and in-vivo mouse model studies will establish a definite role of steroid and xenobiotic receptor (SXR) in breast cancer. This will provide opportunities for rational drug design and improvement of the efficacy of existing drugs that act through SXR.
References:

Steroid and Xenobiotic Receptor SXR Mediates Vitamin K$_2$-activated Transcription of Extracellular Matrix-related Genes and Collagen Accumulation in Osteoblastic Cells**

Received for publication, January 30, 2006, and in revised form, March 28, 2006 Published, JBC Papers in Press, April 10, 2006, DOI 10.1074/jbc.M600896200

Tomoe Ichikawa*, Kuniko Horie-Inoue*, Kazuhiro Ikeda*, Bruce Blumberg‡, and Satoshi Inoue*‡†

From the *Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical School, Saitama 350-1241, Japan, the ‡Department of Developmental and Cell Biology, University of California, Irvine, California 92697-2300, and the †Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan

Vitamin K$_2$ is a critical nutrient required for blood coagulation. It also plays a key role in bone homeostasis and is a clinically effective therapeutic agent for osteoporosis. We previously demonstrated that vitamin K$_2$ is a transcriptional regulator of bone marker genes in osteoblastic cells and that it may potentiate bone formation by activating the steroid and xenobiotic receptor, SXR. To explore the SXR-mediated vitamin K$_2$ signaling network in bone homeostasis, we identified genes up-regulated by both vitamin K$_2$ and the prototypical SXR ligand, rifampicin, in osteoblastic cells using oligonucleotide microarray analysis and quantitative reverse transcription-PCR. Fourteen genes were up-regulated by both ligands. Among these, tsukushi, matrilin-2, and CD14 antigen were shown to be primary SXR target genes. Moreover, collagen accumulation in osteoblastic MG63 cells was enhanced by vitamin K$_2$ treatment. Gain- and loss-of-function analyses showed that the small leucine-rich proteoglycan, tsukushi, contributes to vitamin K$_2$-mediated enhancement of collagen accumulation. Our results suggest a new function for vitamin K$_2$ in bone formation as a transcriptional regulator of extracellular matrix-related genes, that are involved in the collagen assembly.

Vitamin K is an important cofactor in blood coagulation and also known as a potent stimulator of the bone building process. Vitamin K is a family of structurally similar, fat-soluble, 2-methyl-1,4-naphthoquinones, including phyloquinone (K$_1$), menaquinones (K$_2$) and menadione (K$_3$). Vitamin K$_1$ and vitamin K$_2$ are natural vitamin Ks. The former is found in plants, whereas the latter is mainly derived from animal feedstuffs such as ruminant milk. Vitamin K$_2$ is an effective treatment for osteoporosis and prevents bone fractures (6, 7). Menaquinone-4 (MK-4),‡ the most common form of

Vitamin K$_2$ containing four isoprene units, is frequently prescribed for osteoporosis in Japan. One of the major known functions of vitamin K is the posttranslational modification of vitamin K-dependent proteins containing γ-carboxyglutamic acid (Gla) residues, most of which are related to coagulation (as reviewed in Ref. 8). In vitamin K-dependent carboxylation reactions, the reduced form of vitamin K de-protonates glutamate via the γ-glutamyl carboxylase and the reduced vitamin K is converted to vitamin K epoxide. Two such vitamin K-dependent proteins were identified in bone: osteocalcin and matrix Gla protein (MGP). Osteocalcin is a bone protein only synthesized in osteoblasts and odontoblasts. It serves as a good biochemical marker of the metabolic turnover of bone because the osteocalcin lacking Gla residues cannot bind to hydroxypapitate, one of the major components of bone matrix (9). Levels of under-carboxylated osteocalcin increase during aging and significantly correlates with fracture risk (10). Therefore, vitamin K-modified osteocalcin plays an important role in bone homeostasis. In contrast to osteocalcin, MGP is predominantly expressed in chondrocytes and vascular smooth muscle cells. Mgp-deficient mice exhibited inappropriate calcification of various cartilages as well as arterial walls, indicating that MGP is a modulator of extracellular matrix mineralization (11, 12). Despite structural similarities between osteocalcin and MGP, these two Gla proteins exhibit different functions. These findings suggest that vitamin K plays a significant role in bone homeostasis, although the precise mechanisms through which bone Gla proteins regulate homeostasis are complex. During the 60-year history of vitamin K research, most of the attention has been paid to the actions of vitamin K on γ-carboxylation. We recently identified a novel mechanism of vitamin K functions via transcriptional regulation in osteoblastic cells (13). Both vitamin K$_2$ and the known SXR ligands rifampicin (RIF) and hyperforin up-regulated expression of the prototypical SXR target gene CYP3A4 and bone markers such as alkaline phosphatase (ALP) and MGP (13). Our findings suggested an important role for vitamin K$_2$-dependent transcriptional regulation in bone homeostasis. Until now, the contribution of distinct vitamin K$_2$ and SXR target genes to these mechanisms remained to be studied.

In the present study, we searched for SXR target genes induced by vitamin K$_2$ and RIF in osteoblastic MG63 cells using microarray analysis. Several genes were identified that are up-regulated by both agonists. We focused here on the osteoblastogenic functions of extracellular matrix-related genes as SXR targets in response to vitamin K$_2$ treatment. Furthermore, we showed that the novel SXR target, tsukushi (TSK), plays a role in collagen accumulation in MG63 cells. Our findings indicate that vitamin K$_2$ activates SXR to regulate the transcription of extracellular matrix-related genes that may contribute to collagen assembly.
Vitamin K₂ Activates SXR Target Genes in Osteoblastic Cells

EXPERIMENTAL PROCEDURES

Cell Culture—MG63 human osteosarcoma cells, 293T, and COS1 cells were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum (FBS), 50 units/ml penicillin, and 50 μg/ml streptomycin. Prior to vitamin K₂ treatment, cells were cultured in phenol red-free media containing 10% dextran-cholesterol-freed FBS.

Cloning and Construction of cDNAs—Human SXR (pCDG-SXR), human SXR containing the VP16 activation domain upstream to SXR (pVP16-SXR), and tk-(3A4)-Luc containing three-copy SXR response elements from human cytomegalovirus P-450 (CYP) 3A4 promoter were described previously (14–16). N-terminally FLAG-tagged pcDNA3 (Invitrogen) plasmids containing SXR (pcDNA3-FLAG-SXR) and TSK (pcDNA3-FLAG-TSK) cDNA were isolated from first-strand cDNA derived from MG63 cells using primers 5′-CACGATGCCACACTGCCGTCGCCCTGCTG-3′ and 5′-CGACTGAGCAATGTTGCGGCTTGGCCGTCG-3′, inserted in-frame to C-terminally FLAG-tagged pcDNA3 at EcoRI and XhoI sites (pcDNA3-FLAG-TSK). DNA sequences of plasmids were determined by ABI PRIZM 377 Sequencer (Applied Biosystems, Foster City, CA).

Luciferase Assay—Luciferase assay was performed using MG63 cells (2 × 10⁴ cells/well on 24-well plates) transfected with 115 ng of pcDNA3-FLAG-SXR, pcDNA3-FLAG-VP16C-SXR, pcDNA3-FLAG-TSK, or empty FLAG-tagged pcDNA3 using the FuGENE 6 reagent and pcDNA3-FLAG-SXR, pcDNA3-FLAG-VP16C-SXR, pcDNA3-TSK-FLAG plasmids. Transfection efficiency was determined by ABI PRIZM 377 Sequencer (Applied Biosystems, Foster City, CA).

Western Blot Analysis and Immunoprecipitation—MG63 cells were transfected with pcDNA3-FLAG-SXR, pcDNA3-FLAG-VP16C-SXR, pcDNA3-TSK-FLAG, or empty FLAG-tagged pcDNA3 using the FuGENE 6 reagent and selected in 0.5 mg/ml G418. Expression levels of FLAG-SXR, FLAG-VP16C-SXR, and TSK-FLAG proteins were verified by Western blot analysis.

Reverse Transcription-PCR Analysis—MG63 cells were treated with 10 μM RIF, 10 μM MK-4, or vehicle for indicated times. Total RNA was isolated using the ISOGEN reagent (Nippon Gene, Tokyo, Japan). First strand cDNA was generated from RNase-free DNase I-treated total RNA by using the SuperScript II reverse transcriptase (Invitrogen) and oligo(dT)₁₅ primer. For PCR amplification, the primer sequences were: human TSK, 5′-CTGAGGCACTGTAACCTTGAGCTC-3′ and 5′-CTGGAGTGTGCGTCAAAGG-3′; human MATN2, 5′-ACAGATCTTGGGCTGACACTAGAAG-3′ and 5′-TTGGTCTGTCAGGATTCAATTTT-3′; human CYP3A4, 5′-TTCACCGCCATCTCTTCAATATT-3′ and 5′-CAGTTGGTGTTGAGGATGGA-3′; human GPDH, 5′-GTCGAGGAGAAATGATC-3′ and 5′-GTTCTGTGAGGAGAACATG-3′. mRNAs were quantified by real-time PCR using SYBR green PCR master mix (Applied Biosystems) and the ABI Prism 7000 system (Applied Biosystems) based on SYBR Green I fluorescence. The evaluation of relative differences of PCR product amounts among the treatment groups was carried out by the comparative cycle threshold (Cₜ) method, using GPDH as an external control (17).
Vitamin K$_2$ Activates SXR Target Genes in Osteoblastic Cells

RESULTS

Construction of SXR Expression Vectors and Generation of Osteoblastic Cells Stably Expressing SXR—Our previous studies showed the direct effect of vitamin K$_2$ on bone marker expression in osteoblastic cells. Although SXR is endogenously expressed in osteoblastic cells, it has been shown that the expression level is lower than that in cells derived from the intestine. Therefore, to identify vitamin K$_2$ and SXR target genes in osteoblastic cells, we generated MG63 cells stably expressing SXR. These cells respond more robustly to SXR ligands than do wild type MG63 cells. We constructed two FLAG-tagged expression vectors containing full-length SXR (FLAG-SXR) and SXR fused to the C-terminal portion of the VP16 activation domain (FLAG-VP16C-SXR). Both vitamin K$_2$ and RIF increased the transcriptional activity of the truncated SXR response elements derived from the CYP3A4 promoter in MG63 cells transiently transfected with FLAG-SXR or FLAG-VP16C-SXR (Fig. 1A). We also constructed an expression vector fusing SXR to the full-length VP16 activation domain. This construct was constitutively active in the absence of ligand stimulation (data not shown). In contrast, FLAG-VP16C-SXR retained the ligand-dependent activation while it had substantial higher basal transcription level than FLAG-SXR.

For further quantitative analysis of SXR actions in osteoblastic cells, we generated the stable cell lines expressing SXR constructs in MG63 cells. For either FLAG-SXR or FLAG-VP16C-SXR, we obtained two MG63 clones each with different expression levels (Fig. 1B).

Identification of Genes Up-regulated by SXR Ligand in Osteoblastic Cells by GeneChip Analysis—To identify dual up-regulated genes by vitamin K$_2$ and RIF treatment in osteoblastic cells, we prepared biotin-labeled cRNA samples from MG63 cells expressing FLAG-VP16C-SXR treated with vitamin K$_2$, RIF, or vehicle. The Affymetrix U133A GeneChip array represents more than 18,000 human transcripts from ~14,000 genes. Analysis of the MG63 samples was performed by hybridizing aliquots of cRNA to the GeneChip arrays. Seventy-seven transcripts were induced 2-fold or greater by vitamin K$_2$, whereas 100 transcripts were induced by RIF. Eighteen transcripts were up-regulated by both SXR ligands. Therefore, we infer that these are potential SXR target genes.

Table 1 shows the list of 18 transcripts from 14 distinct genes up-regulated by vitamin K$_2$ and RIF. It is notable that a prototypical SXR-responsive gene ATP-binding cassette subfamily B or multidrug resistance 1 (MDR1) (20) was most significantly up-regulated by either vitamin K$_2$ or RIF. Among these SXR target molecules, we were particularly interested in three genes due to their putative bone-related functions. There were a small leucine-rich proteoglycan named tsukushi...
Vitamin K₂ Activates SXR Target Genes in Osteoblastic Cells

Table 1

<table>
<thead>
<tr>
<th>Probe set ID</th>
<th>Ensemble ID</th>
<th>Gene symbol</th>
<th>Description</th>
<th>Vitamin K₂</th>
<th>RIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>209994_s_at</td>
<td>ENSG00000085563</td>
<td>ABCB1</td>
<td>ATP-binding cassette, subfamily B (MDR/TAP), member 1</td>
<td>6.06</td>
<td>4.29</td>
</tr>
<tr>
<td>209993_at</td>
<td>ENSG00000085563</td>
<td>ABCB1</td>
<td>ATP-binding cassette, subfamily B (MDR/TAP), member 1</td>
<td>4.29</td>
<td>4.00</td>
</tr>
<tr>
<td>205357_s_at</td>
<td>ENSG00000144891</td>
<td>AGTR1</td>
<td>Angiotensin II receptor, type 1</td>
<td>2.83</td>
<td>2.46</td>
</tr>
<tr>
<td>212938_s_at</td>
<td>ENSG00000142156</td>
<td>COL6A1</td>
<td>Collagen, type VI, α1</td>
<td>2.64</td>
<td>2.14</td>
</tr>
<tr>
<td>21743_s_at</td>
<td>ENSG00000170458</td>
<td>CD14</td>
<td>CD14 antigen</td>
<td>2.46</td>
<td>4.92</td>
</tr>
<tr>
<td>209771_s_at</td>
<td>ENSG00000185275</td>
<td>CD24</td>
<td>CD24 antigen (small cell lung carcinoma cluster 4 antigen)</td>
<td>2.46</td>
<td>2.30</td>
</tr>
<tr>
<td>211839_s_at</td>
<td>ENSG00000184371</td>
<td>CSF1</td>
<td>Colony-stimulating factor 1 (macrophage)</td>
<td>2.46</td>
<td>2.30</td>
</tr>
<tr>
<td>212937_s_at</td>
<td>ENSG00000142156</td>
<td>COL6A1</td>
<td>Collagen, type VI, α1</td>
<td>2.46</td>
<td>2.14</td>
</tr>
<tr>
<td>216379_s_at</td>
<td>ENSG00000185275</td>
<td>CD24</td>
<td>CD24 antigen (small cell lung carcinoma cluster 4 antigen)</td>
<td>2.46</td>
<td>2.30</td>
</tr>
<tr>
<td>202350_s_at</td>
<td>ENSG00000132561</td>
<td>MATN2</td>
<td>Matrilin-2</td>
<td>2.30</td>
<td>6.96</td>
</tr>
<tr>
<td>203632_s_at</td>
<td>ENSG00000167191</td>
<td>GPRCSB</td>
<td>G protein-coupled receptor, family C, member 5, member B</td>
<td>2.30</td>
<td>5.28</td>
</tr>
<tr>
<td>211653_s_at</td>
<td>ENSG00000151632</td>
<td>AKR1C2</td>
<td>Aldo-keto reductase family 1, member C2</td>
<td>2.30</td>
<td>3.73</td>
</tr>
<tr>
<td>218245_at</td>
<td>ENSG00000182704</td>
<td>TSK</td>
<td>Likely ortholog of chicken tsukushi</td>
<td>2.30</td>
<td>2.64</td>
</tr>
<tr>
<td>218854_s_at</td>
<td>ENSG00000118187</td>
<td>SART2</td>
<td>Squamous cell carcinoma antigen recognized by T cells 2</td>
<td>2.30</td>
<td>5.28</td>
</tr>
<tr>
<td>210002_at</td>
<td>ENSG00000141448</td>
<td>GATA6</td>
<td>GATA-binding protein 6</td>
<td>2.14</td>
<td>2.14</td>
</tr>
<tr>
<td>216594_s_at</td>
<td>ENSG00000187134</td>
<td>AKR1C1</td>
<td>Aldo-keto reductase family 1, member C1</td>
<td>2.14</td>
<td>3.73</td>
</tr>
<tr>
<td>204151_at</td>
<td>ENSG00000187134</td>
<td>AKR1C1</td>
<td>Aldo-keto reductase family 1, member C1</td>
<td>2.00</td>
<td>3.48</td>
</tr>
<tr>
<td>212268_at</td>
<td>ENSG00000021355</td>
<td>SERPINB1</td>
<td>Serine (or cysteine) proteinase inhibitor, clade B (ovalbumin), member 1</td>
<td>2.00</td>
<td>2.83</td>
</tr>
</tbody>
</table>

(TSK), an extracellular matrix protein matrilin-2 (MATN2), and CD14 antigen.

Ligand-dependent Induction of SXR Target Genes in Osteoblastic Cells—We next validated whether mRNA expression levels for these three genes could be modulated by vitamin K₂ and RIF in MG63 cells ectopically expressing either FLAG-VP16C-SXR or FLAG-SXR using quantitative real-time RT-PCR analysis (Fig. 2). All of the three SXR target genes, TSK, MATN2, and CD14, were up-regulated by SXR ligands. The time-dependent expression profiles of those genes in FLAG-VP16C-SXR and FLAG-SXR-expressing cells were quite similar, although the amplitude of induction was different in these cells. In both cell types, RIF generated stronger induction of mRNA expression than vitamin K₂. Nevertheless, the maximal induction by vitamin K₂ was greater than 2-fold for all three genes in both cell types.

Transcriptional Regulation of SXR Target Genes in Osteoblastic Cells—We next asked whether the induction of SXR target genes was dependent on direct activation of transcription or required ongoing protein synthesis. MG63 cells overexpressing FLAG-SXR were treated with vitamin K₂ or RIF in the presence or absence of cycloheximide. The ligand-dependent up-regulation of the three SXR target genes, including TSK, MATN2, and CD14, was not affected by cycloheximide treatment, indicating that the transcriptional regulation of those genes was independent of protein synthesis (Fig. 3A).

To further demonstrate the requirement for SXR in the regulation of TSK, MATN2, and CD14, we investigated the effects of siRNA on the ligand-dependent induction of gene expression. Forty-eight hour treatment with a specific siRNA duplex against SXR (siRNA-SXR), but not with a control siRNA directed against luciferase (siRNA-Luc), reduced the SXR protein level by more than 60% in MG63/SXR clone #3 (Fig. 3B). The effectiveness of the SXR-specific siRNA was confirmed as the vitamin K₂-induced up-regulation of CYP3A4 mRNA expression was diminished by the SXR siRNA in MG63/SXR clone #3 (Fig. 3C). In that cell system, the SXR siRNA significantly reduced either vitamin K₂- or RIF-activated mRNA expression for TSK, MATN2, and CD14 (Fig. 3D).

We next examined whether the SXR siRNA duplex reduced the endogenous expression of SXR protein (Fig. 4). The endogenous level of SXR protein in parental MG63 cells was barely detected in Western blot analysis (Fig. 4A). Thus, we immunoprecipitated MG63 cell lysates with a polyclonal antibody against the hinge and a part of ligand-binding domain of SXR (H-160) and immunodetected SXR protein by another polyclonal antibody against the SXR N terminus (N-16). The enrichment of SXR protein in immunoprecipitated fraction was also confirmed in COS1 cells transiently transfected with FLAG-SXR (Fig. 4A).

Based on this evaluation system, we could show that the SXR siRNA reduced the level of endogenous SXR protein in MG63 (Fig. 4B).

Once we confirmed that the SXR siRNA duplex was effective in inhibiting the endogenous expression of SXR protein, we next analyzed whether the SXR siRNA reduced the expression of the SXR target genes in parental MG63 cells. The SXR siRNA at 14 or 70 nM could significantly reduce endogenous SXR mRNA levels in natural MG63 cells (Fig. 4C). The expression of TSK, MATN2, and CD14 was all up-regulated by either vitamin K₂ or RIF, indicating that the three genes were bona fide SXR targets in parental MG63 cells (Fig. 4D). This ligand-dependent induction of all three genes was significantly reduced by the SXR siRNA transfection in parental MG63 cells (Fig. 4D).

Vitamin K₂ and TSK Stimulate Collagen Accumulation in Osteoblastic Cells—TSK was recently identified as a bone morphogenic protein-binding protein that belongs to the small leucin-rich proteoglycan family (21), which is implicated as an extracellular matrix component. Because small leucine-rich proteoglycans such as biglycan and decorin are known to interact with matrilin-1 in the cartilage extracellular matrix (22), TSK and matrilin-1-related MATN2 are likely to be involved in the assembly of extracellular matrix, including collagen, in osteoblastic cells.

We next asked whether vitamin K₂ promoted collagen production or stabilized collagen levels. We evaluated collagen amounts by staining cells with a strong anionic dye Sirius red, which reacted with basic groups present in collagens via its sulfonic acid groups. It has been reported that type I and III collagens are well stained by Sirius red (19). Four-day treatment with vitamin K₂ exhibited significantly more intense staining by Sirius red compared with vehicle in MG63 cells under conditions favoring osteoblast differentiation (Fig. 5A). We also examined collagen accumulation in murine MC3T3-E1 cells, one of the cell lines with a close-to-normal osteoblast phenotype. Four-day treatment with vitamin K₂ increased collagen accumulation by 15.0% in this cell line. Note that RIF (1 μM) also increased collagen accumulation by 13.6% in MG63 cells after 4-day treatment. Moreover, the vitamin K₂-stimulated collagen accumulation in MG63 cells was not affected by warfarin treatment, suggesting that the γ-carboxylase-dependent vitamin K₂ action may not be involved (Fig. 5B).
To determine whether TSK plays a role in the vitamin K2-stimulated collagen accumulation, MG63 cells stably expressing FLAG-tagged TSK were generated. Two TSK-overexpressing clones were isolated, as confirmed by Western blot analysis (Fig. 5C). MG63 clones overexpressing TSK showed significantly enhanced collagen accumulation in 7-day culture under differentiation conditions compared with vector-transfected cells (Fig. 5D). During the 7-day culture, the growth of MG63 clones expressing TSK and vector was almost stationary, and there was no significant difference in proliferation between the two groups as determined by the proliferation assay using WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt) reagent (Nacalai Tesque, Kyoto, Japan; Ref. 23) (data not shown).

We further investigated whether SXR or TSK loss-of-function affected collagen accumulation in MG63 cells. A siRNA duplex against TSK (70 nM) reduced the target mRNA levels by more than 40% in parental MG63 cells, verifying its efficiency (Fig. 6A). The SXR- and TSK-specific siRNA significantly reduced the vitamin K2-stimulated...
accumulation of collagen in parental MG63 cells compared with luciferase siRNA (Fig. 6, B and C).

Taken together, our results indicate that vitamin K2 promotes collagen accumulation in osteoblastic cells via the SXR signaling pathway.

DISCUSSION

In the present study, we identified novel SXR target genes that are up-regulated by both vitamin K2 and RIF in osteoblastic cells using oligonucleotide microarrays. The effectiveness of vitamin K2 and RIF treatment was evident by their ability to up-regulate mRNA levels for the well known SXR target gene MDR1. SXR-dependent induction of TSK, MATN2, and CD14 has not been previously reported. Functional analyses indicated that vitamin K2 can enhance collagen accumulation in osteoblastic cells and that SXR may play a role in the collagen assembly mechanism. Taken together, these results provide important evi-
Vitamin K_2 Activates SXR Target Genes in Osteoblastic Cells

The vitamin K_2-stimulated collagen accumulation through the activation of SXR signaling may be beneficial to decrease bone fractures. Since bone collagen content is reduced in aged and osteoporotic bones (24), the amount and quality of collagen fibrils may be important for maintaining bone strength. Therefore, in addition to its role as an enzymatic cofactor that facilitates γ-carboxylation of bone Gla proteins, vitamin K_2 may serve as a critical factor regulating bone matrix formation.

The identification of new SXR-mediated vitamin K_2 target genes in bone cells has implications for bone homeostasis. Human TSK is an ortholog of chicken TSK, which was recently identified as a bone morphogenic protein-binding protein that plays a role in the development of primitive streak and Hensen's node formation during chick gastrulation (21). TSK, like other small leucine-rich proteoglycans, may play a role in bone formation. Small leucine-rich proteoglycans such as biglycan, decorin, and chondroadherin have been characterized as collagen-binding proteins in bone tissues (25–28). Biglycan-deficient mice exhibit reduced bone mass (29), and biglycan/decorin double-deficient mice show a more severe phenotype of osteoporosis (30).

MATN2 is expressed in various osteoblastic cells as well as mouse primary osteoblasts (31, 32), and it was shown to interact with collagen I (33). The involvement of matrilin proteins together with small leucine-rich proteoglycans in the collagen assembly is exemplified by the complex of matrilin-1 and biglycan/decorin that act as a linkage between the collagen II and collagen VI fibrils (22).

The CD14 antigen is a lipopolysaccharide-binding protein expressed in monocytes where it initiates the innate immune response to bacterial invasion (34). The soluble form of CD14 is an inducer of B-lymphocyte growth and differentiation (35), and B-lymphocyte lineage cells regulate osteoclastogenesis by expressing receptor activator of NF-κB ligand (RANKL) and serving as osteoclast progenitor cells (36). This suggests a role for CD14 in osteoclastogenesis through B-lymphocyte lineage cells. A role for CD14 in bone formation is also suggested by a report showing that the antigen was up-regulated during the differentiation of mouse primary osteoblasts (37). Because osteoclastic resorption and osteoblast formation are coupled in the bone remodeling process, CD14 may play a role as a “coupling factor” between the two functions. In this context, it is interesting that CD24 was identified as an up-regulated gene by both osteoclastogenesis and osteoblastogenesis. These results would provide new insight into vitamin K_2 and SXR action on bone homeostasis and osteoporosis treatment and further support the idea that vitamin K_2 acts as a transcriptional mediator of gene expression in bone cells, in addition to its well known role as an enzymatic cofactor.

Acknowledgments—We thank T. Suzuki and R. Nozawa for their technical assistance.

REFERENCES

Vitamin K2 Activates SXR Target Genes in Osteoblastic Cells