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Abstract 

Transfer learning is the ability of an agent to apply 
knowledge learned in previous tasks to new problems or 
domains.  We approach this problem by focusing on model 
formulation, i.e., how to move from the unruly, broad set of 
concepts used in everyday life to a concise, formal 
vocabulary of abstractions that can be used effectively for 
problem solving.  This paper describes how the Companions 
cognitive architecture uses analogical model formulation to 
learn to solve AP Physics problems.  Our system starts with 
some basic mathematical skills, a broad common sense 
ontology, and some qualitative mechanics, but no equations.  
Our system uses worked solutions to learn how to use 
equations and modeling assumptions to solve AP Physics 
problems.  We show that this process of analogical model 
formulation can facilitate learning over a range of types of 
transfer, in an experiment administered by the Educational 
Testing Service.  

Introduction  
The observation that people improve in their ability to 
learn new skills based upon previous related tasks 
motivates AI transfer learning research.  The task of model 
formulation, with its emphasis on abstraction and problem 
solving, is an interesting problem for transfer learning 
systems.  An important contribution of qualitative 
reasoning has been formalizing the process of model 
formulation (Falkenhainer & Forbus 1991; Nayak 1994, 
Rickel & Porter 1994).  Most model formulation work has 
focused on deriving what levels of detail and which 
perspectives should be used in a model, given a particular 
task.  They take as input a structural description, an 
abstract high-level schematic, of the system to be modeled. 
They generally do very little reasoning about everyday 
concepts and entities, an exception being Flores & Cerda’s 
(2000) work on analog electronics. 

One area where this issue arises is solving textbook 
physics problems.  Two model formulation challenges 
students face in this task are (1) learning the conditions 
under which particular equations are applicable and (2) 
learning how to translate particular real-world conditions 
into parameter values (i.e. an object at the top of a 
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projectile motion event has zero vertical velocity).  The AP 
Physics exam is administered in the US by the Educational 
Testing Service (ETS) to test high school students’ physics 
problem solving competency.  Figure 1 shows four 
example problems generated by the ETS for the purpose of 
testing our system.  The templates which generated these 
problems represent roughly 20% of the typical Mechanics 
portion of the exam. 

The motivating hypothesis of the Companions cognitive 
architecture (Forbus & Hinrichs 2006) is that the flexibility 
and breadth of human common sense reasoning arises from 
analogical reasoning and learning from experience.  That 
is, they use their experience (both everyday and with 
solving textbook problems) to enable them to solve new 
problems, and over time, extract generalizations and 
heuristics.  This is consistent with Falkenhainer’s (1992) 
observation that engineers often use analogies with their 

Figure 1: Example AP Physics problems 
 

1. A ball is released from rest from the top of a 200 m tall 
building on Earth and falls to the ground.  If air resistance 
is negligible, which of the following is most nearly equal 
to the distance the ball falls during the first 4 s after it is 
released? (a) 20m; (b) 40m; (c) 80m; (d) 160m. 

2. An astronaut on a planet with no atmosphere throws a 
ball upward from near ground level with an initial speed 
of 4.0 m/s.  If the ball rises to a maximum height of 5.0 
m, what is the acceleration due to gravity on this planet? 
(a) 0.8m/s2; (b) 1.2m/s2; (c) 1.6m/s2; (d) 20m/s2; 

3. A box of mass 8kg is at rest on the floor when it is pulled 
vertically upward by a cord attached to the object.  If the 
tension in the cord is 104N, which of the following 
describes the motion, if any, of the box? (a) It does not 
move; (b) It moves upward with constant velocity; (c) It 
moves upward with increasing velocity but constant 
acceleration; (d) It moves upward with increasing 
velocity and increasing acceleration. 

4. A block of mass M is released from rest at the top of an 
inclined plane, which has length L and makes an angle q 
with the horizontal.  Although there is friction between 
the block and the plane, the block slides with increasing 
speed.  If the block has speed v when it reaches the 
bottom of the plane, what is the magnitude of the 
frictional force on the block as it slides?  (a) f = Mgsin(q); 
(b) f = Mgcos(q); (c) f = MgLsin(q)- ½Mv2 ;(d) f = 
[MgLsin(q)- ½Mv2]/2. 
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experience to formulate new models.  Klenk et al. (2005) 
showed that a Companion can formulate models by 
analogy to solve everyday physical reasoning problems, of 
the kind used in the Bennett Mechanical Comprehension 
test.  This paper goes beyond that result by demonstrating 
that such techniques can be used to learn to solve 
systematic variations of AP Physics problems. 

An important question in learning is how well what is 
learned transfers to solving new problems.  Here we 
explore six distinct kinds of near-transfer problems1: 
1. Parameterization: Changing the parameter values, but 

not qualitative outcome 
2. Extrapolation:  Changing the parameters such that the 

qualitative outcome changes as well 
3. Restructuring: Asking for a different parameter 
4. Extending: Including distracting information 
5. Restyling: Changing the types of everyday objects 

involved 
6. Composing: Requiring concepts from multiple 

problems 
 This paper describes how the Companions cognitive 
architecture (Forbus & Hinrichs 2006) uses analogical 
model formulation to solve AP Physics problems, 
including handling these kinds of transfer.  We start by 
briefly reviewing the key aspects of the architecture.  The 
analogical problem solving method, which learns by 
accumulating worked solutions, is described next.  We 
discuss an experiment, administered by ETS, which shows 
a Companion is capable of performing these types of 
transfer.  We close with a discussion of related work and 
our plans to build upon these results. 

The Companions Architecture 
The Companions architecture is exploring the hypothesis 
that structure-mapping operations (Gentner 1983; Forbus 
& Gentner 1997) are central to human reasoning and 
learning.  Forbus & Hinrichs (2006) provides an overview 
of the Companions architecture; for this paper, the key 
processes to understand are analogical matching and 
retrieval.  We summarize each in turn and explain how 
they facilitate transfer. 

The Structure-Mapping Engine (SME) models the 
structure-mapping process of comparison (Falkenhainer et 
al. 1989).  Structure-mapping postulates that this process 
operates over two structured representations (the base and 
target), and produces one or more mappings, each 
representing a construal of what items (entities, 
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DARPA’s Transfer Learning Program 
(http://fs1.fbo.gov/EPSData/ODA/Synopses/4965/BAA05-29/BAA05-
29TransferLearningPIP.doc) 

expressions) in the base go with what items in the target.  
This construal is represented by a set of correspondences.  
Mappings also include a score indicating the strength of 
the match, and candidate inferences which are conjectures 
about the target using expressions from the base which, 
while unmapped in their entirety, have subcomponents that 
participate in the mapping’s correspondences.  SME 
operates in polynomial time, using a greedy algorithm 
(Forbus et al.1994a; Forbus & Oblinger 1990). 
 MAC/FAC (Forbus et al. 1994b) models similarity-
based retrieval given a case of facts, or probe, and a large 
case library.  The first stage, using a special kind of feature 
vector automatically computed from structural 
descriptions, rapidly selects a few (typically three) 
candidates from the case library.  The second stage uses 
SME to compare these candidates to the probe, resulting in 
one (or more, if they are very close) reminding.  Both SME 
and MAC/FAC have been used successfully in many 
domains, and as cognitive models, both have been used to 
model a number of psychological results (Forbus 2001). 
 These domain independent systems facilitate 
transferring knowledge at each of the six transfer levels. 
Because SME and MAC/FAC focus on structural matches, 
they are insensitive to particular numerical values, easing 
parameterization transfer.  The emphasis on relational 
structure aids extrapolation and restructuring problems 
because contextual information in the base remains 
associated in the candidate inferences.  SME and 
MAC/FAC’s ability to handle partial matches facilitates 
extending and restyling problems.  Composing, as 
explained below, is achieved by multiple retrievals. 

Solving Problems by Worked Solutions 
When students study for the AP Physics exam, one 
important way in which they learn is by doing problem 
sets.  For feedback, students often get worked solutions. 
These step-by-step explanations are frequently found in the 
back of textbooks.  Our system learns by using such 
worked solutions.  In collaboration with ETS and Cycorp, 
we developed representation conventions for problems and 
worked solutions.  ETS then generated examples from 
templates (not available to us) for development and testing 
purposes.  The representations used the ontology of the 
ResearchCyc knowledge base, plus our own extensions.  
ResearchCyc is useful for this purpose because it includes 
over 30,000 distinct types of entities, over 8,000 
relationships and functions, and 1.2 million facts 
constraining them.  Thus, everyday concepts like 
“astronaut” and “ball” are already defined for us, rather 
than us generating them for the purpose of this project.   
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Example Problem and Worked Solution 
Figure 2 shows some of the 37 facts used to represent 
Problem 2 from Figure 1.  The worked solutions are 
predicate calculus representations of what is found in 
textbooks.  They are not deductive proofs, nor problem 
solving traces in the language of our solver.  This is 
important, because it provides more opportunities for 
Companions to learn (and to make mistakes).  For Problem 
2, the worked solution consisted of 7 steps: 
1. Categorize the problem as a distance-velocity problem 

under constant acceleration  
2. Instantiate the distance-velocity equation (Vf

2 = Vi
2 – 

2ad)  
3. Given the projectile motion and lack of atmosphere, 

infer that the acceleration of the ball is equal to the 
acceleration due to gravity (a = g) 

4. Because of the projectile motion event, the ball is not 
moving at the maximum height (Vf = 0 m/s) 

5. Solve the equations for the acceleration due to gravity 
(g = -1.6 m/s2) 

6. Sanity check the answer (the answer is consistent) 
7. Select the appropriate multiple choice answer (“c”) 

Figure 3 shows how Step 3 is represented.  We store the 
worked solution along with the problem description as a 
case in our case library, which will be used to solve new 
problems.  This is a very simple form of learning, learning 
by accumulating examples.  While simple, it is very 
powerful, as our experiment below illustrates.  We discuss 
our plans to move beyond this later. 

Solving a Problem  
Problems are presented as cases of predicate calculus facts.  
The first phase of problem solving is to generate an 
analogy with a relevant example.  This is done in three 
steps.  First, our system retrieves a worked solution from 
the case library using MAC/FAC, producing a mapping.  If 
the mapping between the worked solution and the problem 
does not include all the event structure, i.e. facts relating to 
the events of the problem, then the system will create a 
new probe consisting only of the unmapped events in the 
problem case.  This process continues until there is no 
more unmapped event structure or the retrieval fails to find 
matches for the remaining unmapped event structure.  
(This is important for handling composing problems.) 
After the retrieval stage is complete, the system proceeds 
with problem solving using the candidate inferences 
produced by the analogs as necessary, which includes 
worked solution steps. 

There are several different broad types of problems in 
the AP Physics exam, including deriving the value of a 
quantity and determining what situation would be 
consistent with a given set of numerical values.  The core 
of each of these problem types is determining the value of 
quantities.  The system begins by categorizing the problem 
and determining which quantity or quantities should be 
solved for.  This is done through rules which analyze the 
fact indicating the query of the problem.  The system 
solves for quantities in three ways.  First, it may already be 
known as part of the problem.  Second, the candidate 
inferences of the mapping may contain an applicable 
solution step in which the quantity was assumed in the 
analog.  Third, the candidate inferences might indicate a 
relevant equation containing the sought quantity.  In this 
case, the system first looks for values for the other 
quantities in the equations, and then attempts to solve the 
equation for the original parameter.  The algebra routines 
are straightforward, based on the system in Forbus & de 
Kleer (1993) and currently not extendable by learning. 

To determine whether or not a solution step suggested 
by candidate inferences is valid, its context is checked in 
the worked solution.  Suppose the step assumes that the 
acceleration of a rock in freefall is 10 m/s2, because the 
rock is falling on Earth and there is no air resistance.  To 
apply this step, the system must be able to infer that there 
is no air resistance in the current situation and that the 

Figure 2: Part of Problem 2 representation 

… 
(groundOf Planet-1 Ground-1) 
(performedBy Throwing-1 Astronaut-1) 
(no-GenQuantRelnFrom  

in-ImmersedFully Planet-1 Atmosphere) 
(eventOccursNear Throwing-1 Ground-1) 
(objectThrown Throwing-1 Ball-1) 
(querySentenceOfQuery Query-1 

(valueOf (AccGravityFn Planet-1) Acc-1)) 
…   

Figure 3: Problem 2 Worked Solution Step 3 

(stepType Step3 DeterminingValueFromContext) 
(stepUses Step3 (isa Throwing-1 ThrowingAnObject)) 
(stepUses Step3 (occursNear Throwing-1 Ground-1)) 
(stepUses Step3  
   (no-GenQuantRelnFrom  
        in-ImmersedFully Planet-1 Atmosphere)) 
(stepUses Step3 (objectMoving Upward-1 Ball-1)) 
… 
(stepUses Step3 (direction Upward-1 Up-Directly))  
(solutionStepResult Step3  
   (valueOf  
     (AtFn ((QPQuantityFn Speed) Ball-1) 
                (EndFn Upward- 1)) 
     (MetersPerSecond 0))) 
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event occurs on Earth.  This verification step helps guard 
against inappropriate applications of candidate inferences. 

It is important to note that the system does not start with 
any of the equations of physics – it only has access to them 
through examples of how they have been used in the 
worked solutions.  Thus, analogical reasoning is essential 
to a Companion’s ability to solve any problems. 

Before selecting a multiple choice answer, the system 
looks for any candidate inferences indicating a sanity 
check was used in the mapped worked solution.  For 
example, if a problem asked, “How far a ball would fall off 
a 200m building in 4s?” there would be a sanity checking 
step in which the computed answer, 80m, was compared to 
200m.  When this worked solution is used in solving future 
problems, the analogy produces candidate inferences 
indicating the type of check and corresponding quantities 
in the current problem that are involved.  Currently, we 
only employ this check if the quantity sought for is 
involved in the comparison.  This is because it is clear how 
to resolve a failure, i.e. use the value compared against it 
instead, because it constitutes a limit point (Forbus 1984) 
for that quantity2.  In other cases what to do is much less 
clear, and we plan to learn rules for resolving such 
problems in the future. 

After an answer is found to be consistent, it is compared 
against each of the answer choices.  The system selects 
either the closest answer for quantity value questions or the 
consistent answer choice in a qualitative behavior problem, 
such as Problem 3 in Figure 1. 

Model formulation via analogy 
Solving physics problems typically requires four kinds of 
modeling decisions and assumptions. (1) Which equations 
are applicable for a given situation.  Even in a relatively 
constrained domain like physics, the number of potentially 
relevant equations can be quite large due to specialized 
forms. (2) Some parameter values are inferred from 
circumstances.  For instance, Problem 2 is not solvable if 
the system fails to recognize that the ball's velocity at the 
top of the projectile motion event is zero. (3) Some 
circumstances are assumed by default.  The most common 
of these in AP Physics is to assume that events happen on 
Earth and are subject to Earth’s gravity unless otherwise 
mentioned. (4) Simplifying assumptions, such as viewing 
an object as a point mass or assuming a collision is elastic, 
are often required for tractability. 

Three of the four types of modeling assumptions are 
handled by our system directly through analogical 
reasoning.  That is, relevant equations, determining 
parameter values, and default circumstances are handled 

                                                
2 This heuristic is reasonable for mechanics but would not be appropriate 
for other domains, such as thermodynamics. 

directly by the analogy with the worked solution.  Only the 
fourth type, categorizing an everyday object in terms of an 
abstraction, is not currently handled by our system.  
Instead, we take the categorization as acceptable if it is 
compatible with the rest of the mapping.  This works well 
when the analogous problems are close, but we expect to 
run into trouble when the analogs are more distant. 

Learning conditions for such categorizations is one of 
our goals, but it turns out to be complex.  Worked solutions 
provide little information about why a modeling 
assumption they used is reasonable.  For example, 
modeling the ball as a point mass in Problem 2 is not even 
mentioned in the worked solution.  Students must 
generalize from a body of examples they have seen to learn 
when to apply such ideas.  We conjecture that this is 
because the ontology of everyday things is very broad, and 
the subsets of object types that are appropriate for a 
particular idealization are not tightly localized to one part 
of the ontology.  For example, rocks, coins, soda cans, and 
ferrets can all be considered as point masses for some 
kinds of problems, but most ontologies would not consider 
these categories as being particularly close otherwise.  
Furthermore, the idealizations are very context dependent.  
A coin falling off a building could be considered a point 
mass, but to model the exact same coin spinning on a table 
as a point mass would be a mistake.  On the other hand, 
applying modeling knowledge via within-domain analogies 
turns out to be quite robust, as our experiment illustrates. 

An Experiment 
An experiment was conducted to evaluate a Companion’s 
ability to transfer knowledge.  The evaluation was carried 
out by the Educational Testing Service, who remotely 
accessed a Companion running on our cluster.  

Methodology 
Each training set consisted of 5 quizzes, each containing a 
variation of the four problem types illustrated in Figure 1, 
for a total of 20 problems.  After a quiz was administered, 
the Companion would get the worked solutions for the 
problems on the quiz.  Thus the worked solutions from 
earlier quizzes were available for use in solving later 
quizzes within the training set.  To ascertain whether the 
Companion could transfer what it learned, for each original 
training set, 30 additional transfer training sets were 
created, five for each transfer level.  The structure of the 
transfer training sets was the same as the original training 
set minus one quiz, e.g., four quizzes of four problems 
each.  Thus the Companion would be run with the training 
set followed by the transfer training set (the transfer 
condition), after which its memory would be reset.  Then it 
would be run again with just the transfer training set (the 
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no-transfer condition).  Comparing the learning curves for 
these two conditions provides a measure of how much was 
learned via transfer. 
 There are three ways for transfer to manifest itself.  (1) 
The system may get a jump start, i.e., the learning curve in 
the transfer condition has a higher y-intercept.  (2) The 
system may learn faster.  (3) The system may reach a 
higher level of performance.  These are not mutually 
exclusive.  Given the rapidity of analogical learning, we 
were most interested in jump start. 

Results 
Figure 4 shows the learning curves for both the transfer 
and no-transfer conditions for each transfer level.  All 
levels showed a statistically significant jump start (p<.01).  
For TL-1, TL-4, and TL-5, the jump start was 88 percent.  
Other levels were not as high: TL-2 was 50 percent, TL-3 
was 25 percent, and TL-6 was 44 percent. 
 While the jump start results support our hypothesis, 
there are some results that require further explanation.  
First, in TL-2, there was apparent negative transfer; the no-
transfer condition out-performed the transfer condition.  
This occurred because the Companion was repeatedly 
getting a multiple choice question correct for the wrong 
reasons. An error in the worked solution representations 
for problem type 3 caused the Companion to incorrectly 
assume a value for acceleration, which coincidently led to 
the correct answer, in the no-transfer condition.  This could 
not be corrected given the external nature of this 
evaluation. 
 Second, there are low ceilings in TL-3 and TL-6, where 

the Companion was unable to score above 50 percent on 
any of the quizzes.  A careful analysis of these problems 
indicates that they are due to limitations in the 
Companion’s strategies, rather than any issues with the 
analogical reasoning portions of the system.  For Problem 
Type 3, the Companion does not handle “plugging in” 
different parameter values for each answer choice 
efficiently enough to prevent timeouts.  The low scores on 
TL-6 are because the Companion’s strategies assume that a 
given problem either demands numerical values or 
symbolic values, but not both, and thus it could not handle 
a composition of a symbolic problem with a numerical 
problem.  Given our current focus on learning domain 
knowledge rather than strategies, the current system’s 
behavior cannot improve to overcome such problems.  This 
is one reason why we are expanding our investigations to 
include strategy learning in future work. 

Related Work 
There have been several explorations of solving textbook 
problems.  Within qualitative reasoning, de Kleer’s (1977) 
pioneering work in reasoning about sliding motion 
problems demonstrated that qualitative reasoning was 
required for solving many quantitative mechanics 
problems.  The majority of the work on physics problem 
solving has focused on equation search and solving.  Two 
such systems, Mecho (Bundy 1979) and Isaac (Novak 
1977), take natural language input and move to structural 
abstractions via rule-based systems to solve the problems.  
In contrast, our work uses analogy to apply modeling 
assumptions and relevant equations.  The HALO project 
(Barker et al. 2004) built knowledge-based systems that 
solved AP Chemistry problems based on 5 pages of 
textbook knowledge.  Like the HALO project, our system 
was evaluated on unseen problems administered by non-
developers.  None of these efforts address learning, 
whereas learning domain knowledge is our central focus. 
 The relevant AI research on analogy in problem solving 
includes (Melis & Whittle 1999; Veloso & Carbonell 
1993).  The closest systems to ours are Cascade (VanLehn 
1998) and APSS (Ouyang & Forbus 2006).  Both Cascade 
and APSS start with equations and other domain 
knowledge, and use analogy primarily for search control.  
Our use of analogy differs from Cascade and APSS by 
learning domain knowledge. 
 There has been an increasing interest in transfer learning 
recently.  Lui and Stone (2006) use a version of SME to 
accelerate learning of state action policies in novel, but 
similar, tasks within keep-away soccer. Instead of using 
structure mapping to accelerate learning, we use structure 
mapping as our learning mechanism.  Sharma et al. (2007) 
use reinforcement learning for credit assignment and case-
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based reasoning to learn value functions for variations in a 
real-time strategy game.  As in our work, similarities 
between the current situation and previous cases drive 
knowledge transfer. 

Discussion 
This paper has examined how a Companion can use 
analogy to go from the unruly, broad common sense world 
to the refined world of parameters, equations, and 
modeling assumptions.  While the overall performance is 
already quite good, it should be noted that only represents 
roughly 20% of the material in the Newtonian Mechanics 
portion of the AP Physics exam.  Our future work is 
motivated by the goal of expanding the system to the point 
where it can learn all of the material on an AP Physics 
exam, which is even broader than Mechanics. 

In addition to testing the system on more problem types, 
there are certain additions that we believe to be essential to 
handle more complex transfer.  First, we plan to move 
beyond learning by accumulating examples.  We plan to 
construct generalizations using SEQL (Kuehne et al. 2000) 
to facilitate the Companion’s ability to transfer what it 
learns more broadly.  Also, equations might be learned as 
encapsulated histories (Forbus 1984), which, being 
parameterized, could extend a Companion’s reach still 
further.  Second, as Companions accumulates 
generalizations in one area of physics, we will explore how 
dynamical analogies (Olsen 1966) can facilitate transfer 
learning into other areas of physics, such as electrical and 
hydraulic domains. Cross domain analogies, while risky, 
accelerate one’s understanding of a new domain. Because 
of this, we plan on increasing interactivity so that advice 
such as “heat flow is like water flow” can be understood 
and leveraged by a Companion. 
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