Framework Concept for Satellite Operations

Miguel Angel Molina, Jose Prieto
GMV – c/ Isaac Newton, 11
PTM Tres Cantos
28760 Madrid
SPAIN
Tel: +34 918072100; Fax: +34 918072199
mamc@gmv.es, jjpm@gmv.es

Gonzalo Garcia, Theresa Beech
GMV Space Systems
1 Research Ct, Suite 450
Rockville, MD 20850
USA
Tel: +1 301 216 3840; Fax: +1 301 519 8001
US_marketing@gmvspacesystems.com

ABSTRACT

GMV has developed an internal project, called focus, to produce a new generation multi-satellite and multi-mission framework. Project focus came through successful requirements definition during the first half of 1999 and the development phase started in August 1999. focus has very ambitious goals in mind, in particular the development of a truly generic operational framework for all types of satellite missions (including GEO, LEOP, LEO, satellite formations, constellations, etc.) to be commercialised as a COTS product. This led in the last few years to focusSuite, a suite of operational products that cover all these types of missions.

1.0 INTRODUCTION

The design of new satellite control systems is driven by the imperative need to reuse legacy software, exhaustively exploited during years of operations which have qualified them as “flight proven”, and the desire to use modern software technologies which dramatically boost system usability, accessibility and stability. In order to fulfill those objectives, the “framework” concept appears as the required support for future on-ground satellite systems development.

Framework concept is thus oriented to minimize program development schedule, costs and risks, and at the same time to improve the efficiency of operations (minimizing operations workload) and reducing the risk of human errors. In order to meet these ambitious goals, the framework should provide a number of ready to use components for data manipulation and visualization as well as event logging, overall framework architecture, communications layers, process management, automation and reporting. Nevertheless, the real power behind the framework lies in its ability to integrate external components. While the integration of disparate software is usually a hard task plagued with difficulties (programs not conceived to act as components, wealth of protocols and formats, unclean interfaces, etc.), a framework makes this issue straightforward. The framework should also provide well-designed, high performance, robust, customizable, extensible, flexible and coherent Graphical User Interfaces (GUIs), promoting graphical views as much as possible.

Such a framework would allow integration of flight dynamics algorithms with unprecedented ease. Those flight dynamics functions may come from different origins in terms of programming language. Interface between the framework and the flight dynamics algorithms should be based on the implementation of an API (Application Programming Interface) in order to manage the processing and the data interfaces. Management of new entities (e.g. satellites) in the system should be performed by simply modifying editable configuration files. Those configuration files can be interpreted by the framework system in order

Framework Concept for Satellite Operations

1. REPORT DATE
01 AUG 2006

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
Framework Concept for Satellite Operations

5a. CONTRACT NUMBER
-

5b. GRANT NUMBER
-

5c. PROGRAM ELEMENT NUMBER
-

6. AUTHOR(S)
-

5d. PROJECT NUMBER
-

5e. TASK NUMBER
-

5f. WORK UNIT NUMBER
-

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
GMV c/ Isaac Newton, 11 PTM Tres Cantos 28760 Madrid SPAIN

8. PERFORMING ORGANIZATION REPORT NUMBER
-

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
-

10. SPONSOR/MONITOR'S ACRONYM(S)
-

11. SPONSOR/MONITOR'S REPORT NUMBER(S)
-

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM202138, Integration of Space-Based Assets within Full Spectrum Operations (Integration des moyens spatiaux dans toute la gamme des operations., The original document contains color images.

14. ABSTRACT
-

15. SUBJECT TERMS
-

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
49

19a. NAME OF RESPONSIBLE PERSON
-

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
to create the required database structure, to construct the overall GUI and to generate the required functionality including additional (if needed) generic functions like plotting or data acquisition and pre-processing. The issue of users and privileges needs also to be managed by the framework, in addition to automation which deserves special attention.

focusSuite includes a suite of generic operational satellite control systems (initially devoted to Flight Dynamics activities) sharing the same architecture and many common components. Each of them has a different computational layer, all of them based originally on flight proven ESA’s packages like PEPSOC, NAPEOS and LEOPOLD. The following stand-alone products are included within focusSuite:

focusGEO is targeted to Geostationary satellites (see later on this paper).

- focusLEOP is a complement to focusGEO providing support for the Launch and Early Orbit Phase for geostationary satellites
- focusLEO is targeted to Low Earth Orbit satellites
- focusCn is targeted to satellite constellations
- focusPlanet is targeted for interplanetary missions
- focusReentry is targeted for re-entry missions
- focusRdV is targeted for rendezvous and formation flying missions

2.0 DESIGN DRIVERS

The following paragraphs describe at a high level functionalities of focusSuite which are common for all the members of the focus families:

- A computation and data layer based on the extensive reuse of existing and improved software. A large variety of satellite platforms in different orbit conditions (e.g. GEO, LEO, MEO, constellation, reentry, interplanetary, formation flying, etc.)
- A client/server architecture: All data and functionalities reside on a server which is accessed via a client GUI. Communications between client and server are done via TCP/IP. The possibility to work over the Internet with the appropriate degree of security has been foreseen.
- Database driven: All important mission data is stored in a database residing on the server side. The possibility to plug a commercial RDBMS like ORACLE into focus has been foreseen, although this is not mandatory being a proprietary database by default.
- An advanced GUI: The GUI integrates advanced widgets and a design philosophy based on commercial desktop applications for the office: “everything-in-one-working-area” and “all-one-click-away” (tabs). The GUI implementation is based on a proprietary toolkit called Tkforms that allows a development through configuration files rather than through code.
- Procedures automation capability through the AutoFocus extension, which is able to produce an automatic sequence and execution of modules required to fulfill a particular procedure. This automation is based on a dedicated language: SoL (Spacecraft Operations Language) also developed and integrated by GMV.
- Advanced graphical capabilities: Dedicated widgets for generic X-Y plots and Events visualization have been developed for focusSuite.
- On-line help: Complete User Manual available on-line in PDF format, with hypertext and navigation capabilities.
• **Portability (UNIX/Windows NT):** Both the client and the server part run under UNIX and Windows-NT. Any combination of the two operating systems is possible (UNIX/UNIX, UNIX/Windows-NT, Windows-NT/Windows-NT, Windows-NT/UNIX). Virtually all flavours of UNIX are supported, including Linux. At the client side any of Windows 95/98/2000/NT/XP are also supported.

• **Extensibility:** Any extra functionality following certain I/O rules can be easily integrated within focusSuite via configuration files. A server Interface Description and a graphical Server Manager are available.

• Capability to perform **unlimited Undo/Redo** operations: Any data editing and function execution operation can be undone and redone an unlimited number of times. This allows a quick and user-friendly operating of the product while maintaining at the same time the user confidence and the data integrity.

• **No licenses** of external products are required.

3.0 ARCHITECTURE

focusSuite is a database-driven framework, built as a three-layer architecture (GUI Layer/Computation Layer/Data Layer). Focus is also conceived as a client-server system, where multiple clients may be accessing concurrently the same server and database.

Figure 1 focusSuite Components.

focusSuite integrates many common components shared across the suite:

- GUI
- Events Logging
- Automation
- Process Management
- Data Management

A **client/server architecture** is considered as baseline for data transmission. All data and functionalities reside on a server which is accessed via a client GUI. Communications between client and server are done via TCP/IP. The possibility to work over the Internet with the appropriate degree of security has been foreseen.
The **Computaion Layer** is the bridge between user and data services. It responds to requests from the user (or other computation processes) in order to execute a process. This protocol insulates the user from direct interaction with the database. Two different types of processes are included in this layer:

- The Process Manager is a single process, receiving requests from the clients and starting and controlling the computation processes.
- The Computation Processes are multiple processes that can run concurrently and perform the computations needed by the system.

The **computation and data layer** are based on the extensive reuse of existing and improved software (e.g. PEPSOC, NAPEOS). The **Data Layer** maintains, accesses, and updates data. It also manages and satisfies requests to manipulate data that are initiated by computation processes. Separation of data services allows the data structure and access mechanisms to be maintained, modified, or, if necessary, even redesigned without affecting the computation or user layer.

Two different single processes running permanently can be identified in this layer:

- The **Database API Back-end** handles all the requests received from the computation processes.
- The Relational database (RDBMS).

All important mission data is stored in a database residing on the server side. In the standard version of Focus the relational database has been implemented as a set of standard ASCII files. However the interface between the database and the Computation Layer is done though a dedicated API, in such a way that the database data can be easily ported to a commercial relational database system (RDBMS) such as ORACLE.

Both the client and the server part run under UNIX and Windows. Any combination of the two operating systems is possible (UNIX/UNIX, UNIX/Windows, Windows/Windows, Windows/UNIX). Virtually all flavors of UNIX are supported, including Linux. At the client side any of Windows 95/98/2000/NT/XP are also supported. This allows complete portability of the system.

4.0 FOCUSSUITE GUI

focusSuite GUI is largely based on a proprietary toolkit for rapid GUI development called `tkforms` that has been developed by GMV. The `tkforms` toolkit is a piece of middleware that allows GUI development based on configuration files rather than on code (more details are provided in the following sections).

The most outstanding features of the **focusSuite** GUI are:

- **Efficiency and ergonomy**: Current Flight Dynamics GUIs do not fully exploit capabilities for easing the access of the data and facilitating the use of the system. The figure below show a screen shot of the **focusSuite** GUI and highlight some of the advantages that the GUI brings.
- **Additional functionality, reliability, efficiency**: The new GUI not only brings substantial improvements in terms of efficiency and ergonomy but also provides additional functionality, including:
 - Detailed **Events Logging** mechanism including capabilities to visualise key results characterising the execution of the programs and therefore allowing for very efficient monitoring of station keeping planning procedure behaviour both in manual and automatic mode.
 - Capability to perform unlimited **Undo** and **Redo** operations which represents a dramatic improvement of the system in terms of reliability. Every data modification and program execution operation can be undone and redone.
• **Advanced data management capabilities** including the possibility to manage data sets (duplication, modification, deletion). The GUI includes the concept of private and public data sets thus reinforcing the reliability of the operations performed with the system and enabling far more efficient concurrent use of the system. Also capability for the user to perform on the fly duplication of operational data for performing trial executions before bringing data operational.

• **Improved mechanisms for work groups (concurrent system access),** dramatically improved locking mechanisms.

• **Capability of integrating new pieces of software** without the need of performing software rebuild, making maintenance a lot easier and dramatically less costly.

• **Ease of use and learning curve:** from the screen shot shown below it can be observed that the focusSuite GUI represents a dramatic improvement in terms of ease of use and learning curve of the system. The system offers two levels of grouping of tasks that can be customised for each customer, therefore being capable of adapting to different operational approaches. Moreover, the system can be customized such that at any time the user is confronted with the normal sequence of operations making the system extremely easy to use.

• **Additional graphic capabilities** to the system will dramatically improve the productivity of the operations staff and provide a user-friendlier environment. A better output would also provide better view and better understanding of the results. In summary productivity and reliability will both be considerably improved. There are three types of graphical information to be presented to the user, each of them visualized by a dedicated `tkforms` widget:
 • X-Y plots (for example orbital elements versus time or orbit determination measurements residuals) provide by `focusGrafos` component
 • Events (for example Orbital Events or a Timeline) managed by the
 • 2D/3D orbit visualization using the `VisualFocus` component

![Figure 2 System GUI.](image-url)
5.0 HOW INTEGRATE APPLICATIONS

On the following we are listing the requirements on any given application (program) to be integrated into the focusSuite framework:

- focusSuite data is organised in data structure composed of three levels (system, scenario and workspace). The data of the external application shall be adapted to this structure.
- The developer shall create the configuration file of the program (COF file), which defines the environment of the program, containing the definition of datasets (inputs and outputs) required to run the associated program by the process manager.
- The program shall have at least one main input dataset and one Autofocus specific dataset, the latter one being required only if we want to invoke the corresponding program from Autofocus. There is also a specific dataset naming convention to be applied.
- Both the main input dataset and the Autofocus specific dataset shall be compatible with the Tkforms component, which provides the data access services used by the data manager component. This is a crucial requirement if we want to get access to the inputs and output of a program from Autofocus.
- The developer shall create the Client GUI configuration files. These files also shall be compatible with the Tkforms components. The client GUI allows the user to get data access, to command program execution and to browser program results. Access to these functions is enabled through configuration files as described later.

Tkforms toolkit provides all data access services including GUI panel edition and data access libraries to be used from computation programs. Notice however that the computational programs do not necessarily have to use the Tkforms library to access the data, though this is highly recommended. A common data file format (TKF) and the use of this toolkit improve commonality throughout the system and allows faster...
development of new components and easier integration of new components (such as new computation programs). In particular, the GUI, the DataManager and AutoFocus use this toolkit.

The idea behind Tkforms is to split data content and data visualisation in two (or three) different files:

- **Configuration file**: written in very simple language and containing the details on how the data will be accessed and visualised. These details consist of the type, the layout, format and description of the parameters, etc. A typical definition of a piece is

  ```
  integer
  <
  name 'ITEM1'
  label 'An Integer:'
  format 'i7'
  units 'deg'
  iulim 1000
  illim -1000
  help 'This is an integer number'
  >
  ```

- **Data file**: contains the actual data either as a sequence of pairs identifier/value or as list of values. When a program or application requires a data file with more complex structure than the standard, it is necessary to combine this data file with the wildcard file.

- **Wildcard file**: this is used for non-standard Tkforms data files and works as a template of the data files. This file is a copy of the data file in which it has replaced the values by @.

The types currently supported by standard Tkforms are:

- **Separator**: This item does not correspond to any data element. Only it is used by graphical modules (i.e. focusPanel which generate a horizontal line).

- **Tabs**: This item does not correspond to any data element. Only it is used by graphical modules (i.e. focusPanel which generate a new tab page).

- **Integer**: This item corresponds to an integer datum. It is an elementary item.

- **Real**: This item corresponds to a real datum. It is a elementary item.

- **String**: This item correspond to a string datum. It is a elementary item.

- **Epoch**: This item corresponds to a date datum. It is a elementary item.

- **Array**: This item correspond to a vector of dimension 1xN. It is a elementary item.

- **Yesno**: This item correspond to a logical datum. It is a elementary item.

- **Menu**: This item correspond to a enumerate datum. It is a elementary item.

- **List**: This item correspond to a list of records. It is a composed item, where each record is a finite number of elementary items.

- **Matrix**: This item correspond to a matrix NxM of real, integer or string data. It is a composed item.

The consistency and coherence between the above set of files is crucial for the GUI and the rest of the system to work properly. Tkforms is the main mechanism that guarantees this consistency. Then additional modules translate the information stored in the Tkforms files in new components, which are integrated easily in high-level applications or computation programs.
6.0 PROCEDURES AUTOMATION: AUTOFOCUS

Autofocus is an advanced component that delivers full automation support for hands-off operations to the entire focusSuite. The solution is based on an integrated set of tools for the definition, scheduling, execution, monitoring, and control of high-level user-defined operational procedures.

Autofocus is fully compatible with today’s operations based on procedures, but assists the human operator by means of an agent that handles procedures written in SOL, the spacecraft operations language. Autofocus provides two user environments,

- one for procedure definition (the SOL factory),
- another for procedure execution (the procedure AGENDA).

SOL is a GMV automation language specifically designed to support spacecraft operations. Oriented towards spacecraft operators (not programmers), SOL is a very high-level language with natural language-like syntax in which the number of language elements has been minimised.

Figure 4 Tkforms concept.

Figure 5 Autofocus SOL editor.
SOL is a procedural language which features numeric, text, Boolean and date (relative and absolute) data as well as list handling.

A rich set of mathematical (trigonometric and hyperbolic functions, logarithms, power, etc.) and logical expressions (equal to, less than or equal to, logical and, or and not, etc.) is available in SOL. Date expressions and arithmetic operations are also supported, such as in:

```
set endEpoch to today + maneuverDuration
increment eclipseDuration by 0.5 hours
```

In the above example `today` gets substituted by today date.

SOL features the ability to call procedures from within other procedures. Procedure call, via the `execute` construct, allows to explicitly enumerate the inputs and outputs of a procedure for improved legibility:

```
execute orbitDetermination
& inputs are
&    set satellite to "H02"
&    set epochStart to 22-jul-1999
& outputs are
&    set newStatus to status
&    set newOrbit to orbit
```

SOL control structures include branching via `if/otherwise/end if` and flexible looping: repeat a block of instructions a fixed number of times (`repeat for/end repeat`), repeat while a condition is true (`repeat while/end repeat`) and iterate over the elements of a list (`repeat for each/end repeat`). For example:

```
repeat while residuals > 1.0e-3
    # Perform computation here
  end repeat
```

SOL supports the whole focusSuite for full focusSuite framework automation. It is possible, for example, to activate external focusSuite components from a SOL procedure, collect its output and process it afterwards.

The Autofocus integrated procedure definition environment allows the user to write, validate and test procedures.

- **Writing SOL procedures**: The Autofocus SOL editor includes all features common in text editors (search, search and replace, copy, paste, …) as well as providing SOL syntax coloring and contextual help and examples for all SOL syntax elements.
- **Validating SOL procedures**: SOL has been designed so as to allow extensive static procedure validation, both at the syntactic (keywords incorrectly spelled, incorrect expressions, a missing `end repeat` construct, …) and semantic (executing a procedure with an incorrect set of inputs, trying to add two absolute dates, …) levels. The validation feature ensures that procedures scheduled for execution are free of all but run-time execution errors (such as a division by zero). Errors found when validating SOL procedures are displayed in a dedicated window: click on an error and the editor automatically jumps to the offending line. Contextual help for all errors is available.
- **Testing SOL procedures**: The Autofocus integrated procedure definition environment allows to test validated SOL procedures in a safe way so as not to modify operational data. SOL procedures can be run in debug mode, providing controlled execution (line by line, jump to a given line or breakpoint, etc.) and introspection capabilities (showing the list of defined procedures with their inputs and outputs, the list of defined variables and their contents, etc.).
regression-testing mode is also available, by which SOL procedures run with a given input and their output is compared with the expected output. The debug and regression-testing mode are in the implementation stage.

![Figure 6 Autofocus procedures editor.](image)

The Autofocus AGENDA allows the operator to schedule, monitor and control SOL procedures. Validated procedures can be scheduled immediately, at a given time (either absolute or relative) or by means of links to other procedures (soon before, late after, right before, etc.). The Autofocus scheduler takes care of the execution of the procedures when their activation condition becomes true. The list of scheduled procedures can be viewed in both a full mode, where all scheduling details are available, or in a Gantt chart.

Running procedures behave as focusSuite component instances. As an example, focusSuite locks the appropriate shared resources needed by the procedure and allows undoing its effects when finished. Running procedures can also be paused, resumed and aborted.

Procedures can run in either unattended or attended modes. In attended mode, every operation which modifies operational data requires operator confirmation; this feature can be enabled or disable at any given time during a procedure execution. A real-time view of the procedure execution progress similar to the SOL factory-testing mode is currently being implemented.

Great care has been taken to ensure that the scheduler keeps a consistent state at all times. The Autofocus scheduler is able to perform cold and warm restarts after an uncontrolled abort. Upon a cold restart, all procedures that were running when the system failed are flagged as crashed, and all scheduled procedures are put into the standby state. Upon a warm start, running procedures are restarted and scheduled procedures are re-scheduled. In both cases, all data modified by the interrupted procedure is automatically restored to the state just before each procedure started execution.
7.0 OPERATIONAL EXPERIENCE: FOCUSGEO

focusSuite has been progressing in a phased approach and the several operational members of this family have been developed, in particular focusGEO product has been conceived in order to provide a new generation Flight Dynamics product for geostationary satellites.

This focusGEO version is now available and operational at HISPA SAT and EUTELSAT. This tool is used as part of the end-to-end activities from Flight Dynamics point of view. In particular the following operations are executed using focusGEO:

- Routine and contingency operations over more than 20 satellites under control by EUTELSAT and over 4 satellites under control by HISPA SAT. Routine operations include at least the following capabilities:
 - orbit determination and manoeuvres estimation,
 - orbit propagation,
 - manoeuvres computation,
 - manoeuvres calibration,
 - manoeuvres implementation and TC computation,
 - events computation,
 - reporting,
 - TM retrieval.
- Collocation routine operations, including combined ionic and chemical propulsion.
- Collocation cluster initialization.
- De-orbiting.
- Longitude relocation.
- Inclined orbit control (free inclination drift).
- Ionic propulsion management.
- Mass evolution and lifetime prediction.

focusGEO integrates the following elements as part the common focusSuite infrastructure:

- Mission independent SW inherited originally from PEPSOC, but highly modified by GMV internal developments and improvements of the original control algorithms, in particular
optimization of the orbit control under critical constraints (e.g. reduced control window, high cross-coupling, etc.) Multi-satellite platform system: Astrium’s Eurostar 2000/2000+/3000

- Alcatel’s Spacebus 3000/3000B
- NPO/PM’s SESAT (ionic propulsion)
- Alenia’s SATELCOM
- HP376 Boeing (spinning satellite)
- FS1300 SS/Loral
- Collocation Station Keeping and Inclined orbit (in collocation also) Multiple reference frames
- Ion thrusting
- Reporting capabilities
- Contingencies and AOCS support
- LEOP support (launch window, transfer optimization)

From computational point of view we can highlight the following strategies:

- Orbit determination is based on a weighted least squares method able to estimate orbit, station biases, CpSM, delays, maneuvers......using ranging, angular, doppler, turn-around, interferometry data.
- Numerical orbit propagator is based on a Runge Kutta, taking into account impulsive and continuous maneuvers.
- Maneuver computation is based on minimum fuel (several options depending on the cycle length,...) inclination control.
- Maneuver computation is based on sun pointing perigee strategy for eccentricity and longitude control. Additional eccentricity/longitude control strategies implemented for severe satellite constraints (reduce window, high cross-coupling.

REFERENCES

BIOGRAPHY

Miguel Angel Molina is a Senior Aeronautical Engineer currently responsible of the Flight Engineering Business Unit at GMV S.A. This Business Unit is mostly dedicated to Flight Dynamics and Mission Analysis activities.
Framework concept for satellite operations

M. A. Molina, J. Prieto (GMV S.A.)
G. Garcia, T. Beech (GMV Space Systems)
Agenda

- GMV presentation
- Motivation and Profile
- Architecture
- Components
- focusSuite Family and Operational Experience
Motivation and Profile

Architecture

Components

focusSuite Family and Operational Experience
Motivation

background experience on satellite control systems
design of new control systems is driven by
 • reuse of legacy software, exhaustively exploited during years: “flight proven”, versus new developments and
 • the use modern software technologies boosting system usability, accessibility and stability.

“framework” concept appears as the required support for future control systems development.
framework shall provides a number of ready to use components for data manipulation and visualization as well as event logging, communications, process management, automation and reporting
Motivation

- framework initial objectives are:
 - to minimize programme development schedule, costs and risks, and
 - at the same time to improve the efficiency of operations (minimising operations workload) and reducing the risk of human errors

- the real power behind the framework lies in its ability to integrate external components

- GMV has developed an internal project, aimed at producing a new generation of control systems: focusSuite
Requirements

focusSuite framework:

- is **mission independent**: generic infrastructure
- is ready for Real time and off-line capabilities
- is **portable** to any standard hardware (Unix, Windows, Linux)
- is multi-satellite, multi-user
- implement privileged data access mechanisms
- allows **concurrent access** and data access locking
- allows simultaneous operational scenarios
- has an advance/easy Man-Machine Interface
- performs **Undo/Redo** of all operations
- adds new programs to the infrastructure easily
- is able to operate any **third-party** software
- accepts **automation** of operations
- is free of third-party licenses, based on free software packages
Components

<table>
<thead>
<tr>
<th>Components</th>
<th>Mission Analysis, Preparation & Support</th>
<th>Launch & Early Operations</th>
<th>Routine Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generic Services (interfaces, database, comms, users management, internal API)</td>
<td>focusSuite</td>
<td>focusSuite</td>
<td>focusSuite</td>
</tr>
<tr>
<td>Advance MMI</td>
<td>focusGui</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graphics</td>
<td>focusGrafos</td>
<td>focusGrafos</td>
<td>focusGrafos</td>
</tr>
<tr>
<td>Events</td>
<td>focusEbro</td>
<td>focusEbro</td>
<td>focusEbro</td>
</tr>
<tr>
<td>Real-time TM</td>
<td></td>
<td>focusTelma</td>
<td>focusTelma</td>
</tr>
<tr>
<td>Events Logging</td>
<td></td>
<td>focusEvelog</td>
<td>focusEvelog</td>
</tr>
<tr>
<td>Automation</td>
<td></td>
<td></td>
<td>Autofocus</td>
</tr>
<tr>
<td>2D/3D Visualisation</td>
<td>Visualfocus</td>
<td>Visualfocus</td>
<td>Visualfocus</td>
</tr>
<tr>
<td>Remote Operations</td>
<td></td>
<td></td>
<td>focusRemote</td>
</tr>
<tr>
<td>Data Export</td>
<td>OrbitML</td>
<td>OrbitML, focusNotes</td>
<td>OrbitML, focusNotes</td>
</tr>
<tr>
<td>Software Maintenance</td>
<td>focusArt</td>
<td>focusArt</td>
<td>focusArt</td>
</tr>
</tbody>
</table>
Motivation and Profile

Architecture

Components

cocusSuite Family and Operational Experience

focusGEO
focusLEO
focusCn
focusPOD
focusPLANET
A client/server architecture:

- All data and functionalities reside in the server
- Data and functionality requested by the clients to the server
- TCP/IP based communications
- Possibility to work over the Internet (security issue)
Motivation and Profile
Architecture
Components
focusSuite Family and Operational Experience
An advanced MMI

- Integrates advanced widgets
- Design philosophy based on commercial desktop applications
- “everything-in-one-working-area”
- “all-one-click-away” (tabs)
- Based on Tcl/Tk
- 100% portable

The proprietary toolkit TkForms

- Homogeneous data access
- Development through configuration
- Synchronisation of data access layer and computational layer
Man-Machine Interface

Identification of current session: host, user and user level

Menu bar with File, Edit, View and Tools deployable menus

Tools bar including the workspace selector and Undo/Redo

Program selection accordion: selection of active program to play with (fully customisable)

Programs commanding window:
- input selection,
- run/stop,
- output selection

Programs grouping facility:
allows flexible grouping of programs in separated accordions (e.g. routine, contingency, automation, etc., but also procedure oriented approaches are possible)
includes also database edition

Tags supported to ease navigation and data setting

Events Logging

Input setting and display window:
- input data editing,
- input data view

Output display window:
- run-time display of programs execution,
- programs outputs
- plots
- events browsing

Tags supported to ease navigation and data setting

Input setting and display window:
- input data editing,
- input data view

Output display window:
- run-time display of programs execution,
- programs outputs
- plots
- events browsing

Tags supported to ease navigation and data setting

Input setting and display window:
- input data editing,
- input data view

Output display window:
- run-time display of programs execution,
- programs outputs
- plots
- events browsing

Tags supported to ease navigation and data setting

Input setting and display window:
- input data editing,
- input data view

Output display window:
- run-time display of programs execution,
- programs outputs
- plots
- events browsing

Tags supported to ease navigation and data setting

Input setting and display window:
- input data editing,
- input data view

Output display window:
- run-time display of programs execution,
- programs outputs
- plots
- events browsing

Tags supported to ease navigation and data setting

Input setting and display window:
- input data editing,
- input data view

Output display window:
- run-time display of programs execution,
- programs outputs
- plots
- events browsing

Tags supported to ease navigation and data setting

Input setting and display window:
- input data editing,
- input data view

Output display window:
- run-time display of programs execution,
- programs outputs
- plots
- events browsing

Tags supported to ease navigation and data setting

Input setting and display window:
- input data editing,
- input data view

Output display window:
- run-time display of programs execution,
- programs outputs
- plots
- events browsing

Tags supported to ease navigation and data setting

Input setting and display window:
- input data editing,
- input data view

Output display window:
- run-time display of programs execution,
- programs outputs
- plots
- events browsing

Tags supported to ease navigation and data setting

Input setting and display window:
- input data editing,
- input data view

Output display window:
- run-time display of programs execution,
- programs outputs
- plots
- events browsing

Tags supported to ease navigation and data setting

Input setting and display window:
- input data editing,
- input data view

Output display window:
- run-time display of programs execution,
- programs outputs
- plots
- events browsing

Tags supported to ease navigation and data setting

Input setting and display window:
- input data editing,
- input data view

Output display window:
- run-time display of programs execution,
- programs outputs
- plots
- events browsing

Tags supported to ease navigation and data setting

Input setting and display window:
- input data editing,
- input data view

Output display window:
- run-time display of programs execution,
- programs outputs
- plots
- events browsing

Tags supported to ease navigation and data setting

Input setting and display window:
- input data editing,
- input data view

Output display window:
- run-time display of programs execution,
- programs outputs
- plots
- events browsing

Tags supported to ease navigation and data setting

Input setting and display window:
- input data editing,
- input data view

Output display window:
- run-time display of programs execution,
- programs outputs
- plots
- events browsing

Tags supported to ease navigation and data setting

Input setting and display window:
- input data editing,
- input data view

Output display window:
- run-time display of programs execution,
- programs outputs
- plots
- events browsing

Tags supported to ease navigation and data setting

Input setting and display window:
- input data editing,
- input data view

Output display window:
- run-time display of programs execution,
- programs outputs
- plots
- events browsing

Tags supported to ease navigation and data setting

Input setting and display window:
- input data editing,
- input data view

Output display window:
- run-time display of programs execution,
- programs outputs
- plots
- events browsing

Tags supported to ease navigation and data setting

Input setting and display window:
- input data editing,
- input data view

Output display window:
- run-time display of programs execution,
- programs outputs
- plots
- events browsing

Tags supported to ease navigation and data setting

Input setting and display window:
- input data editing,
- input data view

Output display window:
- run-time display of programs execution,
- programs outputs
- plots
- events browsing

Tags supported to ease navigation and data setting

Input setting and display window:
- input data editing,
- input data view

Output display window:
- run-time display of programs execution,
- programs outputs
- plots
- events browsing

Tags supported to ease navigation and data setting

Input setting and display window:
- input data editing,
- input data view

Output display window:
- run-time display of programs execution,
- programs outputs
- plots
- events browsing

Tags supported to ease navigation and data setting

Input setting and display window:
- input data editing,
- input data view

Output display window:
- run-time display of programs execution,
- programs outputs
- plots
- events browsing

Tags supported to ease navigation and data setting

Input setting and display window:
- input data editing,
- input data view

Output display window:
- run-time display of programs execution,
- programs outputs
- plots
- events browsing

Tags supported to ease navigation and data setting

Input setting and display window:
- input data editing,
- input data view

Output display window:
- run-time display of programs execution,
- programs outputs
- plots
- events browsing

Tags supported to ease navigation and data setting

Input setting and display window:
- input data editing,
Key point in the success of focusSuite

1. TkForms: interface to MMI dynamic panel generation
2. TkfLib: interface to user software data access

Decoupling of
- Configuration and data
- Infrastructure and user software

TkForms & TkfLib synchronisation
focusSuite data structure

- **Global**
- **Scenario**
- **Workspace**

focusSuite Configuration System databases

- **MMI Configuration Dedicated databases**

Program configuration Program data

www.focusSuite.com

NATO RTA SCI-150 Symposium on “Integration of Space-based Assets Within Full Spectrum Operations” 10-12 Oct 2005
Databases

- Database driven
 - mission data stored in a database
 - database in the server
 - easy data import/export
 - Application dependent

- Databases: Satellite, Station / Site, Payload, Tracking systems, Central body, Physical constant, Sensors

- Interface between the database and the Computation Layer done through dedicated API.

- Database data can be easily ported to any commercial relational database system (RDBMS) such as ORACLE
Configuration

- Interface between the framework and the control algorithms is based on the implementation of an API in order to manage the processing and the data interfaces.

- Management of new entities to the system is performed by simply modifying editable configuration file.

- Configuration files are interpreted by the framework system in order:
 - to create the required database structure,
 - to construct the overall MMI and
 - to generate the flight dynamics functionality including generic functions like plotting or data acquisition and pre-processing.
Server Administrator

Configuration
- User accounts
- Scenarios / Workspaces
- Privileges

Key aspect to
- Concurrent access
- Data locking

On-line tasks
- Server status monitoring
- Server start/stop
- Server data synchronisation
- Back-up/restore
Graphical tools

- Widget oriented
- Multi-format
 - by columns
 - Extensions: OrbitML, SP3
- Powerful configuration capabilities
 - Inspired in existing packages
 - Tuned to flight dynamics
- Tools
 - focusGrafos
 - focusEbro
 - Visualfocus

www.focusSuite.com
2D/3D visualisation tool
- OpenGL technology (multi-platform)
- Zooming and panning
- Subjective view
- Celestial bodies true ephemeris
- Detailed maps and textures
- Sensor view

Operation modes
- Real-Time mode
- Playback mode
focusSuite automation component for hand-off operations.

Fully compatible with today’s operations based on procedures

Components

- Procedures definition tool
- Agenda (Scheduler
- Procedures language (Sol)

Sol (Spacecraft Operations Language)

- Targeted to spacecraft operations
- Very high-level
Data Export: OrbitML

- Data representation in XML and Defined with XML schema
- Design drivers
 - Heritage from *European packages* ...
 - Improved *consistency* and *portability*
 - *Readability*
 - Suitability for *automation*
 - Extensibility to other space applications
- CCSDS OPM/OEM XML representation supported by OrbitML
Motivation and Profile
Architecture
Components
focusSuite Family and Operational Experience
focusSuite framework has been deeply used to generate different control system like COTS devoted to different type of mission and mission phases.

Target is to cover any type of space mission, and any phase on these missions.
Mission Profile Coverage

<table>
<thead>
<tr>
<th></th>
<th>Telecommunication</th>
<th>Earth Observation</th>
<th>Navigation</th>
<th>Scientific</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEO/MEO</td>
<td>focusCn</td>
<td>focusLEO</td>
<td>focusLEO focusCn</td>
<td>focusLEO</td>
</tr>
<tr>
<td>GEO</td>
<td>focusGEO</td>
<td>focusGEO</td>
<td>focusLEO</td>
<td>focusLEO</td>
</tr>
<tr>
<td>Interplanetary</td>
<td></td>
<td></td>
<td></td>
<td>focusPLANET</td>
</tr>
<tr>
<td>Re-entry</td>
<td></td>
<td></td>
<td></td>
<td>focusReentry</td>
</tr>
<tr>
<td>Launch/Ascent</td>
<td>focusAscent</td>
<td>focusAscent</td>
<td>focusAscent</td>
<td>focusAscent</td>
</tr>
<tr>
<td>FF and RdV</td>
<td>focusRdV</td>
<td>focusRdV</td>
<td>focusRdV</td>
<td>focusRdV</td>
</tr>
<tr>
<td>Multi-satellite</td>
<td>focusGEO</td>
<td>focusLEO</td>
<td>focusCn</td>
<td></td>
</tr>
<tr>
<td>LEOP</td>
<td>focusLEOP</td>
<td>focusLEO</td>
<td>focusLEO focusCn</td>
<td>focusLEO, focusLEO</td>
</tr>
<tr>
<td>POD</td>
<td></td>
<td>focusPOD</td>
<td></td>
<td>focusPOD</td>
</tr>
<tr>
<td>Automation</td>
<td>focusGEO</td>
<td>focusLEO</td>
<td>focusCn</td>
<td></td>
</tr>
<tr>
<td>Collision risk</td>
<td>focusCloseAp</td>
<td>focusCloseAp</td>
<td>focusCloseAp</td>
<td>focusCloseAp</td>
</tr>
</tbody>
</table>
GEO missions

Flight Proven Mission independent SW (ESA heritage and GMV development)

Multi-satellite platform system:
Astrium’s Eurostar, Alcatel’s Spacebus,
Alenia’s Satelcom, Boeing HP376,
SS/Loral FS1300, NPO/PM’s Ekspress

Collocation Station Keeping and Inclined orbit including ionic propulsion

Contingencies and AOCS support

Status: **Operational (EUTELSAT, HISPASAT and HISDESAT)**
LEO/MEO missions

Computational layer
- ESA NAPEOS
- Enhancements from EPS Metop

GSTBV2 (first GALILEO satellite) implementation

Status: Pre-Operational (Astrium Ltd)
Launch and Early Orbit Phase

Computational layer
- focusLEO
- Manoeuvre optimisation based on proprietary AEFOS algorithm

Status: Operational (Parallel operations with HISPASAT)
Precise Orbit Determination and geodesy

Computational layer
- ESA NAPEOS version GPS
- Enhanced detailed models for POD

Scenarios
- GPS (IGS & LEO)
- SLR, DORIS & PRARE
- Altimetry

Status: Ready
Constellations management

- Computational layer
 - ESA NAPEOS version GPS
 - Components from focusLEO

- Enhanced specific items
 - Specific widgets for constellations
 - Integrated constellation
 - Management
 - Performance monitoring

Status: Under development for GALILEO
focusSuite for interplanetary and specific missions
Mission analysis
Internal R&D: Application of focusSuite in other areas of GMV expertise

Status: Recent delivery to ESA (excepts for Ascent)
Generic collision risk assessment tool

Algorithms

- Initial assessment through TLE
- Combination with operational solutions
- Improvement by GMV by proprietary adjustment

Status: **Operational GEO version (New Skies and HISPASAT)**
AOCS Performance Evaluation and Calibration Tool

Generic real time telemetry monitoring system
- Dynamic interfaces loading
- Dynamic users procedures loading

Status: Under operational evaluation (ESA-ESOC)
GeoSuite: Mission analysis tools for GEO satellites

- Station keeping and collocation control strategies design
- Transfer Strategy design
- Launch Window computation
- Tracking scenario analysis
- Time and reference frames conversion

Status: Operational (LORAL and SCC-Superbird)