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Abstract

With recent advances in research and technology, autonomous surface vessel capabilities
have steadily increased. These autonomous surface vessel technologies enable missions and
tasks to be performed without the direction of human operators, and have changed the way
scientists and engineers approach problems. Because these robotic devices can work without
manned guidance, they can execute missions that are too difficult, dangerous, expensive, or
tedious for human operators to attempt. The United States government is currently expanding
the use of autonomous surface vessel technologies through the United States Navy’s Spartan
Scout unmanned surface vessel (USV) and NASA’s Ocean-Atmosphere Sensor Integration
System (OASIS) USV. These USVs are well-suited to complete monotonous, dangerous, and
time-consuming missions. The USVs provide better performance, lower cost, and reduced risk
to human life than manned systems.

In this thesis, we explore how to plan multiple USV observation schedules for two
significant notional observation scenarios, collecting water temperatures ahead of the path of a
hurricane, and collecting fluorometer readings to observe and track a harmful algal bloom. A
control system must be in place that coordinates a fleet of USVs to targets in an efficient manner.

We develop three algorithms to solve the unmanned surface vehicle observation-planning
problem. A greedy construction heuristic runs fastest, but produces suboptimal plans; a 3-phase
algorithm which combines a greedy construction heuristic with an improvement phase and an
insertion phase, requires more execution time, but generates significantly better plans; an optimal
mixed integer programming algorithm produces optimal plans, but can only solve small problem
1stances.
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Chapter 1

Introduction

With recent advances in research and technology, autonomous surface vessel capabilities
have steadily increased. These autonomous surface vessel technologies enable missions and
tasks to be performed without the direction of human operators, and have changed the way
scientists and engineers approach problems. Because these robotic devices can work without
manned guidance, they can execute missions that are too difficult, dangerous, expensive, or
tedious for human operators to attempt. The United States government is currently expanding
the use of autonomous surface vessel technologies through the United States Navy’s Spartan
Scout unmanned surface vessel (USV) and NASA’s Ocean-Atmosphere Sensor Integration
System (OASIS) USV. These USVs are well-suited to complete monotonous, dangerous, and
time-consuming missions. The USVs provide better performance, lower cost, and reduced risk
to human life than manned systems.

In this thesis, we explore how to plan multiple USV observation schedules for two

significant notional observation scenarios, collecting water temperatures ahead of the path of a
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hurricane, and collecting fluorometer readings to observe and track a harmful algal bloom. To
properly manage and fully realize the capabilities of the USVs, a control system must be in place
that directs a fleet of USVs to targets and coordinates the fleet in an efficient manner. The
control system should be able to plan for many USVs over many thousands of targets. It also
should create plans very quickly to allow for dynamic re-planning to react to changes in the

environment and observation needs.

1.1 Thesis Overview

The goal of this research is to develop an automated observation planner for a fleet of
USVs that allocates the fleet efficiently and takes advantage of the USV’s true potential. We
now present a chapter overview of the remainder of the thesis:

Chapter 2 — Observing Dynamic Oceanic Phenomena Operational Description. In
this chapter, we present the problem of autonomous coordinated observation of dynamic
oceanographic phenomena such as hurricanes and algae blooms. We describe ocean phenomena
in general, two significant example observation scenarios, and how each phenomenon is
currently observed. In addition, we describe the physical components of a notional sensor web
that will enable enhanced observation methods. Furthermore, we sketch how the sensor web
could be applied in each of the ocean observation scenarios. Finally, we describe the specific
problem of unmanned surface vessel fleet path and observation planning that this thesis
addresses.

Chapter 3 — Model Development. In this chapter, we refine the scope of the USV
scheduling problem and model to be considered. The model is mid-level, in particular, we are
not concerned with how to decide which targets are significant (high-level), nor are we
concerned with the detailed engineering design of the vessels themselves (low-level). We
explain with a functional architecture to identify the inputs, outputs, and assumptions relevant to
the unmanned surface vessel observation-planning problem (USVOPP) model. Then we address
the research classification of the USVOPP by comparing it to other problems in the literature
such as the selective traveling salesman problem and team orienteering problem.

Chapter 4 — Problem Formulation. In this chapter, we develop the mathematical

formulation of the USVOPP. We propose a combinatorial optimization model for the USVOPP.
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In this chapter, we propose a mathematical formulation to the USVOPP based on orienteering
problem models in the literature adapted to meet the constraints and requirements of the
UVSOPP. We explain what data is required and how we converted the real-world scenarios into
a mathematical representation useful for our tests. In addition, we present the mathematical
notation and mixed-integer programming formulation of the USVOPP. After the mixed integer
formulation, we review the various heuristics that could solve the USVOPP. The fourth section
describes the various heuristics we developed to solve the theoretical USVOPP implemented.

Chapter 5 — Results and Analysis. This chapter covers the tests we have run on our
model and reports the results and analysis of the tests. It establishes our objectives in the testing,
provides the hypotheses that we test, describes the metrics used to discriminate among plans, and
presents the test bed used for experimentation. We compare the results of our developed
heuristic against a basic greedy construction heuristic and in small cases, with the optimal
solution.

Chapter 6 — Conclusion. This chapter summarizes our work and findings. We discuss
the effectiveness of our heuristic formulation, present suggestions for the modification of our
algorithm and provide suggestions for future work in regards to USVs and team orienteering

problems like the USVOPP in general.

1.2 Contributions

This research makes the following contributions:

1. A mixed-integer programming formulation for the USVOPP

2. The development and implementation of the optimal formulation implemented in ILOG
OPL Studio 5.0

3. The development and implementation of a new greedy construction heuristic to solve the
USVOPP and serve as a baseline to test against

4. The development and implementation of a new three-phase heuristic algorithm to solve
the USVOPP implemented in Java

5. The development of a series of test datasets for hurricane and harmful algal bloom

scenarios for the USVOPP
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6. Experimentation and comparison of the implemented formulations
7. Recommendations for future modifications to solve the USVOPP and similar problems in

general

The formulations in this thesis can serve as the role of an automated mid-level planner for
a fleet of USVs. Specifically, this thesis proposes a new three-phase local search algorithm that
exploits the unique structure of the problem to run quickly and efficiently for large problems. To
the best of our knowledge, this is the first application of a local search heuristic to a variant of
the team orienteering problem with time windows problem. The testing of the two scenarios
provides insight into the quality of the algorithms we developed. The advancements made in this
research could aid in automated fleet routing problems that could arise in future real-world

observation applications.
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Chapter 2

Observing Dynamic Oceanic Phenomena

Operational Description

In this chapter, we present the problem of autonomous coordinated observation of
dynamic oceanographic phenomena to predict and observe events such as hurricanes and algal
blooms. The first section describes ocean phenomena in general, two significant example
observation scenarios, and how each phenomenon is currently observed. The second section
describes the physical components of the sensor web that enable enhanced observation methods.
The third section describes the two scenarios for the sensor web. Finally, the fourth section
describes the specific problem of unmanned surface vessel fleet path and observation planning

that this thesis addresses.
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2.1 Oceanic Phenomena Background

The ocean plays a major role in the world’s climate and economy. For hundreds of years,
scientists, mainly physical oceanographers, collected data to study oceanic phenomena. The
oceanic phenomena include, “Interaction of the ocean with the atmosphere, how the ocean stores
and releases heat, the physical properties of water throughout the ocean, and the formation and
movement of currents and coastal dynamics” [53]. Currently, buoys, balloons, and satellites
collect the majority of the world’s oceanic data. “With satellite data, scientists can understand
not only how the ocean behaves at a given point in time, but also how the ocean changes and
fluctuates. For example, the patterns of heat distribution within the ocean and the geographic
extent of current systems affect climate and weather” [53]. We can use this data to make models
that more accurately forecast weather patterns. However, when dense clouds cover a region,
satellite imagery instruments such as NASA’s Moderate-resolution Imaging Spectroradiometer
(MODIS) on NASA’s Aqua and Terra satellites cannot produce pictures of the land and water.
Therefore, in these regions MODIS cannot collect useful data. Recently, NASA developed the
Advanced Microwave Scanning Radiometer (AMSR-E), a sensor on Aqua that can penetrate
most types of clouds. However, the image resolution is lower than the thermal sensor operating
in MODIS. Other means to collect MODIS-quality data over cloud-covered regions include
utilizing unmanned aerial vehicles (UAVs), NASA’s Ocean-Atmosphere Sensor Integration
System (OASIS) unmanned surface vessel platform, or the Department of Defense Spartan Scout
unmanned surface vessel.

The specific unmanned surface vessels (USVs) of interest are the OASIS USVs and the
United States Navy Spartan Scout. The OASIS platform is an autonomous oceangoing surface
vessel currently in development by National Oceanic and Atmospheric Administration (NOAA)
in coordination with NASA. The Navy’s Spartan Scout is a program aimed at developing and
demonstrating a USV capable of performing various missions such as submarine reconnaissance
and anti-submarine. USVs provide unique observation abilities. One important ability of the
OASIS boats is the ability to act autonomously up to 60 continuous days in the water, while
traveling at 2 knots. The most capable UAVs, such as NASA’s Global Hawk, only have a flight
time range of 42 continuous hours. The Spartan Scout acts more like a UAV and only has 5

hours of endurance when traveling at top speed. At lower speed, the Spartan Scout can travel up
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to 100 hours continuously. The Spartan Scout does have the ability to travel at speeds up to 40
knots through the water. Either of these USVs is less expensive than an UAV; OASIS USVs are
estimated to cost less than $20,000. A major advantage of USVs is that they can collect in-situ
measurements from the water. The vessels can take samples directly from the water, collect
accurate temperatures up to several feet below the surface, and have the ability to collect those
samples in adverse weather conditions, unlike UAVs.

NASA is developing the Adaptive Sensor Fleet (ASF) system. The ASF system is a
proposed control software package in development for application to a wide array of sensor-
equipped autonomous vehicles. The software is designed so that a user can adapt the system to
the dynamics of various types of vehicles and their operating environment. We will take this
idea of an ASF to develop a coordinated USV Planner. We focus on using the USV Planner to
coordinate USVs to observe two oceanic phenomena that cause major problems for the United
States and the world: harmful algal blooms (HABs) and hurricanes. The USVs can collect in-
situ data used to identify the occurrence of harmful algal blooms and predict a hurricane’s path
and intensity. Both of these phenomena could be better understood if more accurate in-situ

measurement capabilities existed.

2.1.1 Harmful Algal Bloom Identification and Monitoring

Marine life is important as a source of food for the United States and the world. Algae
form the base of the marine life food chain. Under certain conditions, millions of algae
concentrate together, produce and release toxins, and cause a Harmful Algal Bloom (HAB).
HABs can have detrimental impacts of major concern. Certain naturally occurring plant
organism toxins can cause severe consequences for marine life, human health, the environment,
and the economy. The National Science and Technology Council Committee reported that,
“Harmful algal blooms threaten human health and natural resources throughout US coastal
waters, from Alaska to the Gulf of Maine” [33]. The Woods Hole Oceanographic Institute
estimated that, ““...The annual aggregate economic impact (in millions of 2000 dollars) of HABs
in the United States during the 1987-1992 period... average $49 million per year, ranging from
$34 million to $82 million. Over the last several decades, the cumulative impacts thus approach

$1 billion” [24]. An important objective is to reduce the negative impact with better
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identification techniques and more accurate data collection on the movement of HABs. This will
enable scientists to produce forecasts that are more precise and mitigate problems in the future.

Most types of algae in the Earth’s coastal waters and oceans are harmless. Out of several
thousand species of phytoplankton (cyanobacteria) only a few species are known to be harmful.
“Certain species of phytoplankton (e.g. Alexandrium, Gambierdiscus, Prorocentrum) are known
to produce toxins that are harmful, and potentially lethal, to marine life and to humans” [59].
Pfiesteria is another; it thrives in polluted waters and has caused numerous fish kills in the Mid-
Atlantic States. Some of the algae have been found to be responsible for the human bacterial
disease cholera [49]. It is difficult to distinguish between the harmful and harmless types of
algae, but with in-situ measurement, it is possible. HABs occur in high water temperature areas
with low salinity, high sunlight, little wind, and minimal mixing of the water. Areas
experiencing these conditions are ripe for intense HABs and are high-value areas to monitor
actively.

Today, the method for HAB detection is periodic monitoring. Scientists use Global
Information Systems (GIS) to map and observe HABs, but initial notification and response
involves a chain of events that are based largely upon human involvement and interaction.
Scientists routinely monitor marine environments thought to contain conditions conducive to
HAB outbreaks. Additionally, regions that are commercially fished are actively monitored by
scientists working for the Department of Natural Resources or hired by the commercial
fishermen. This process is inefficient in the utilization of time and people. “There are also
inefficiencies associated with the time (and therefore the cost) for the researchers that are
required to travel to the location(s); take measurements and retrieve samples; record information
(e.g. time, location); return samples to the lab; and then test, analyze, and document findings”
[59]. When a scientist identifies an HAB, a subsequent chain-reaction of events occurs to lessen
its negative impact. The scientist first notifies the environmental protection organizations such
as the National Center for Coastal Ocean Science and the Environmental Protection Agency; if
resources are available, the organizations travel to the region, collect water samples, perform the
in-situ analysis, confirm the toxicity concern, map the characteristics of the HAB, and predict the
future growth and dispersion. Because the process is very time consuming, scientists have
placed buoys to collect continuous data in some of the areas of interest. However, buoys cannot

move, making it difficult to track HABs, and need routine maintenance when operated over a
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long period of time. Many buoys could offer good data from an area, but additional buoys

provide minimal benefit for the additional cost.

2.1.2 Hurricane Path and Intensity Prediction

Hurricanes have had significant impact on life and prosperity. Hurricane Andrew (1992)
and Hurricane Katrina (2005) devastated parts of the United States. Scientists have suggested
that global warming has contributed to an upward trend in stronger hurricanes over the past 30
years. Massachusetts Institute of Technology Professor Kerry Emanuel of the Program in
Atmospheres, Oceans, and Climate stated that, “The energy released by the average hurricane
(again considering all hurricanes worldwide) seems to have increased by around 70% in the past
30 years or so, corresponding to about a 15% increase in the maximum wind speed and a 60%
increase in storm lifetime,” [23]. Stronger hurricanes have greater economic impact. The
Annual Meetings of the American Economic Association estimated, ““...That the average annual
U.S. hurricane damages will increase by $8 billion at 2005 incomes (0.06 percent of GDP) due to
global warming. However, this number may be underestimated by current storm models,” [46].
An objective is to mitigate the effect of hurricanes by collecting more data used to predict more
accurately the future paths and the impact on coastal locations affects from hurricanes.

Weather prediction, including the prediction of hurricane path and intensity, is a difficult
and often inaccurate science. Billions of dollars have been spent to make the prediction process
better, and it has improved to some extent. However forecasting hurricanes is still problematical.
Currently, scientists use satellite data, specially equipped aircraft data, and hurricane history to
predict the path, landfall location, and intensity of a hurricane. NOAA maintains a network of
buoy and Coastal-Marine Automated Network (C-MAN) stations. This network provides
forecasters with marine measurements related to wind conditions, barometric pressure,
temperature (air and sea surface), and wave data. This data is transmitted to the National
Hurricane Center in Miami and the National Centers for Environmental Prediction in Camp
Springs, Md. During the past several years, the addition of the Gulfstream-IV aircraft has
increased data collection capabilities by flying in and around each hurricane. “G-IV flight data
are expected to help numerical guidance computer models improve hurricane landfall and

observe forecasts by up to 20 percent, and to further refine storm intensity forecasts,” [45].
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Professor Kerry Emanuel stated that, “If the average wind speeds near the surface of the tropical
oceans does not change; theory predicts that the wind speeds in hurricane should increase about
5% for every 1°C increase in tropical ocean temperature,” [23]. Observations taken of the
surface of the ocean will provide estimates of average wind speeds. To forecast hurricanes to the
same level of accuracy as the forecasting of storms across the United States, more observations
are needed. University of South Carolina marine biologist Madelyn Fletcher said, “The density
of U.S. coastal weather observations is relatively low compared to those over land. Only 140
sites collect data along the coasts compared to 14,000 on land. A lot of our weather comes from
the ocean, that emphasizes the great need to have more measurements, more observations, and
the serious need for a higher density of observations sites in coastal oceans,” [43]. Data from in-
situ measurements from the water can increase the accuracy of forecasts, provide calibration and
validation of aircraft and satellite data, and increase the overall resolution of observations. In
order to collect the data required, additional and more sophisticated data collection methods are

needed.

2.2 Sensor Web Description

In order to increase the amount of observation data gathered effectively, we will use the
innovative idea of a sensor web. NASA’s Stephen Talabac characterizes a sensor web as
follows:

A sensor web is a distributed, organized system of nodes, interconnected by a
communications fabric that behaves as a single, coherent instrument. The
exchange of measurement data and other information, produced and consumed by
its sensing and non-sensing nodes, causes the sensor web to dynamically react by
appropriately modifying subsequent sensor measurements and reconfiguring node
information processing states in ways that tend to optimize useful science return
[59].

A sensor web enables more refined and effective methods to monitor the dynamic behavior of
events and phenomena. These methods incorporate interconnected resources that can coordinate
autonomously and reconfigure themselves in a manner that passive observation systems in use
today cannot generally do. The sensor web’s resources exist on or below the surface of the

Earth, within the atmosphere, and in space. Each resource either contributes measurements and
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information from its sensors, or supplies computing and storage capabilities to complement the
Sensors.

A sensor web encompasses more than just a distributed data collection system.
Distributed data collection processes have existed for many years. A distributed data collection
system has multiple distributed nodes, such as ground, air, and space resources that make
measurements and report raw sensor data to a central site where the measurement data is
collected. The central site then formats, calibrates, and combines the data to enable higher-level
decisions based on the processed data. But in a sensor web, the data flows in multiple directions.
The distributed data collection system sends data from the sensor nodes to the processing nodes.
A sensor web interchanges information among sensor nodes, and data processing nodes. A
sensor web system enables dynamic reaction to sensor measurements, events, and state changes
of the other nodes in the web. An illustration of a sensor web is shown in Figure 2.1. The
interconnected dotted lines between the different vantage points represent the flow of data from
one data collection node to another. Distributed data collection systems only send data to

collection points in the system.
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Figure 2.1: Sensor Web Diagram *”!
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2.2.1 Unmanned Surface Vessels Operational Description

We focus on the role that USVs will play in an overall sensor web. The idea stems from
the envisioned mission of the Adaptive Sensor Fleet (ASF), which is, “To provide the capability
for autonomous cooperative survey and sampling of dynamic oceanographic phenomena such as
ocean current systems and algae blooms,” [55]. Our goal for our research is to enable USVs to
perform coordinated observations and data collection of a dynamic environment optimally. The
design of the OASIS USV and the Spartan Scout enables them to be used as part of a dynamic
sensor web. Many features of the OASIS USV and the Spartan Scout make them ideal for data

collection, calibration, and validation of remote sensing satellite measurements.

Figure 2.2: OASIS Platform "®

OASIS, illustrated in Figure 2.2, provides a low-cost (less than $20,000 dollars), mobile,
self-navigating surface platform for ocean sensors as an alternative to stationary buoys. We plan
to provide software that enables the USVs to navigate to different locations in order to perform
coordinated in-situ measurements, and then return home to recalibrate and replace instruments if
necessary. This will provide scientists the ability to map and observe phenomena in regions
remote sensors cannot view. Many different types of instruments and sensors can be carried by

the OASIS platform allowing diverse scientific experiments. In this thesis, we will focus on the
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surface temperature sensor, below surface temperature sensor, and the Prototype Phytoplankton
Fluorescence Sensing System (PPFSS) Fluorometer. These sensors provide data for HAB
detection and hurricane path and intensity prediction.

Another USV that could potentially perform similar functions as the OASIS USV is the
United States Navy’s Spartan Scout. The Scout can perform military missions such as anti-
submarine, mine countermeasures, surveillance, reconnaissance, and precision strike depending
on the attached equipment and weapons. We are assuming for this research that we could utilize
the OASIS platform equipment on the Spartan Scout. Figure 2.3 illustrates the Spartan Scout
USV.

[34]

Figure 2.3: Spartan Scout Picture

The USV observation planner that we will develop will formulate a quick and efficient
configuration of the USVs for conducting the observations based on current environmental
conditions and USV characteristics. Our algorithm will efficiently coordinate the USVs using a
local search heuristic. Users of the USVs will be able to update observation goals in real-time

based on the data the USVs collect, or on changes in the environment.
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2.3 Scenario Descriptions

We now describe how a future sensor web that includes a fleet of USVs could be utilized

in the harmful algal bloom and hurricane scenarios and discuss the advantages of a sensor web

for these scenarios.

2.3.1 HAB Monitoring Scenario

The following scenario is an illustration of how a reconfigurable sensor web could be used to

identify, locate, analyze, and observe a harmful algal bloom. This process could improve the

current ability to collect data, observe, and forecast the evolution of a harmful algal bloom

outbreak. The use of existing Earth observing satellites and other sensor systems is notional.

1.

The MODIS sensor onboard NASA’s Aqua EOS (Earth Observing System) satellite
produces data images of the ocean color and temperature from space. On a routine pass
over the United States, MODIS produces photographic images of various areas from the
Gulf of Mexico and the Atlantic Ocean off the eastern shoreline of the United States.
During ground processing of one of the images from MODIS, a scanning algorithm
identifies a potentially high concentration of chlorophyll within the image in the
Chesapeake Bay region by identifying a discolored region in the water and irregular
temperature readings in the area. HABs, among other phenomena, can cause this high
chlorophyll concentration. The coordinates of the region are sent to another satellite
carrying MODIS, such as Terra, to specifically target and image the area for HAB
discrimination. If available in the region, the ground station sends a warning to the USV
observation planner and to an Altus II unmanned aerial vehicle from the Goddard Space
flight center via an onboard UHF/VHF omnidirectional antenna.

The ground station receives the image and also sends a warning that a possible HAB has
developed to the automated science goal analyzer for the sensor web. The science goal
analyzer calculates the probability that an HAB has developed from the given
information in the image. If this probability is 95% or higher, the science goal analyzer

sends a warning to the coastal observation service in Virginia of the HAB outbreak and
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alerts the USV observation planner of the current size and location of the HAB. The
USV observation planner is the automated controller of a fleet of USVs. If the USV
planner is given an order by the science goal analyzer, it efficiently routes the USVs to
collect data and/or observe the HAB outbreak. The science goal analyzer also passes on
current weather patterns, so the USVs can collect specific data about potential harmful
effects from the HAB and observe the expansion of the possible HAB. If the probability
is between 75% and 95%, the science goal analyzer orders the USV observation planner
to observe the area and collect in-situ measurements to determine if the outbreak is truly
harmful. If the probability is between 50% and 75 %, the science goal analyzer either
orders a NASA UAYV already in the air to observe the specific coordinates or schedules a
new flight to observe the specific coordinates under the cloud cover. If the probability is
less than 50%, it schedules instruments on trailing satellites to observe the coordinates
again.

. If the probability is in range that calls for USV observation, but the outbreak is found to
be too far away from any of the USVs, then the station automatically sends notification to
commercial fishing boats and the public that a potential HAB is in the specified area.
Otherwise, it waits for resources to reach the potential HAB area and uses UAV and
satellite data until the ASF can collect the specific in-situ measurements necessary to
accurately predict the ill effects and diagnose the cause of the outbreak.

Steps 1-4 create a cycle that continues until the HAB warning clears, or the HAB is
identified and proper actions taken. The warning could be cleared by a UAV uploading
images to the science goal analyzer, the USV uploading collected data readings, or
satellite images uploaded to the analyzer. If an HAB is identified and USVs are
observing an HAB outbreak, the USVs provide continuous feedback on the size, location,
and movements of the HAB. The feedback is sent to the science goal analyzer and to the
Coastal Observation network. Once the possible ill effects of the HAB have been
determined, the information is sent to the emergency response personnel. The coastal
observation network and emergency personnel notify the fishing industry and the public

of the areas to avoid and of any potential health risks.

. The USVs, UAVs, and satellites continue to monitor the outbreak area until the HAB is

nontoxic. Data gathered by the three sensor systems in the area is collected to validate
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the remote sensing data against the in-situ measurements from the USVs. The data is
also used to improve methods for future forecasting of HAB outbreaks.
7. The warnings and improvements from the system ensure that commercial fishermen do
not fish the harmful areas and swimmers avoid toxic areas. End result: a minimization of
a potentially costly and unhealthy threat.
The scenario can start with any sensor; OASIS may find the first sign on a routine pass, or any of
the other sensors such as a UAV, a satellite, or a human detection node could start the cycle. In
any case, the information is shared with the nodes of the sensor web that need to know and the
scientific analyzer determines how to break up the next assignments among the gathering
sources. We plan to take this overall sensor web scenario and analyze how the fleet manager of
the ASF can optimize the OASIS vessels.
For the purpose of this thesis, we assume that the HAB has already been identified. We
then take on the role of the fleet manager and assign the boats to work together to monitor the
expansion and growth of the HAB. A series of pictures of a scenario where an HAB was

identified in the Chesapeake Bay off Virginia follows:

Figure 2.4: Time Snap Shots of HAB Identification Scenario

The first snapshot shows the initial location of six boats when a potential HAB is identified by a
satellite image. The blue dots represent the six boats; the red oval represents the outline of the
HAB. The boats in the region are all called to the scene to observe the growth of the bloom. In
the second snapshot, the boats move toward the scene. The nearest boat has already started
mapping the southern edge of the bloom. In the third scene, four more boats reach the edge of
the bloom and start observing the bloom on each side. The final scene depicts the boats

following the algal bloom until it dissipates.
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2.3.2 Hurricane Intensity and Path Prediction Scenario

The second scenario describes how a notional reconfigurable sensor web might be used to

improve prediction of the future path and intensity of a hurricane approaching the United States.

[60]

Figure 2.5 Coordinated Hurricane Observation Picture

1. One of NASA’s satellites in low Earth orbit, Aqua, using the MODIS sensor, produces
data images of the ocean temperature from space. On a routine pass over the Caribbean
Sea, the satellite produces photographic images from the predicted path of a newly
formed tropical storm.

2. Within one of the images, a science survey algorithm identifies high water temperatures
in the Atlantic Ocean off the coast of Florida in the current projected path of the tropical
storm. The science survey algorithm also finds wind speeds topping the hurricane level
and immediately identifies the storm as a hurricane. The science survey algorithm sends
a warning to NOAA’s “Hurricane Hunter” aircraft with any new information it gathers
and the hurricane coordinates. It also sends a warning to the USV observation planner if

the USVs are in the region. Finally, the satellite downloads the image to the ground
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station to alert the National Weather Service (NWS) and National Hurricane Center
(NHC) for further analysis.

3. The “Hurricane Hunter” aircraft flies to the scene of the new hurricane and scientists
aboard the aircraft deploy instruments called GPS (Global Positioning System)
dropwindsondes. These devices continuously radio back to the USVs, NWS, and NHC,
measurements of pressure, humidity, temperature, wind direction, and speed as a function
of position and altitude, as they fall toward the sea, which provide a detailed look at the
structure of the storm and its intensity.

4. The USV observation planner deploys the USVs in the region to the area in the path of
the hurricane. The planner efficiently routes the USVs to collect data ahead of the storm
that aircraft, satellites, and buoys cannot collect. Because of the harsh weather
conditions, the USVs provide a unique and novel data collection capability. As they
collect the data, the USVs upload the water temperature, surface wind speeds, and water
currents to the other resources in the sensor web.

5. The data is analyzed, and the NHC issues more detailed and accurate path predictions,
evacuation orders, and intensity readings taken from the sensor web. Meanwhile, the
sensor web keeps working together to provide up-to-the-minute readings and forecasts.
The sensor web will also call in more resources if deemed necessary.

6. The USVs, UAVs, and satellites continue to monitor the critical region until the hurricane
has left the region or no longer threatens land. Data gathered by the three sensor systems
of the area is collected to validate remote sensing data against the actual in-situ
measurements from the USVs.

7. End users of the USVs and the sensor web use the information to enhance forecast
models and better predict future hurricane paths and intensities. The better predictions
enable the citizens in the landing zone to be evacuated and noticed in record times, and

the avoidance of evacuating citizens not in harms way.
In our research, we assumed that a hurricane has been identified, and the OASIS USVs in the

region have been directed to the region. We then take on the role of the USV planner and assign

the boats to work together to collect data ahead of the hurricane in order to optimize the
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prediction of the path and intensity of the storm. Figure 2.6 illustrates the search region in a

scenario where a hurricane is approaching Florida:

Figure 2.6: Hurricane Scenario Diagram

The red area in the figure shows the most important region in determining the intensity and path
of the hurricane. The yellow region represents the area with a less significant data value for the

USVs to collect than the red region, but still valuable enough to explore.

2.4 Problem Statement

For each of the two scenarios, our problem for the USV planner is very similar. Consider
the HAB scenario in section 2.3. Somewhere in the sea is an algal bloom. A USV planner
customer suspects the feature is out there, but does not know the precise location or extent.
Therefore, the customer identifies a polygonal region of interest, and requests an USV fleet to
observe it. The USVs, beginning from arbitrary initial positions, are tasked to travel quickly to
the region, and then observe it in an efficient manner. In transit, there are land features, and
other navigational hazards, that must be avoided. Water currents exist, that need to be accounted
for, as they affect travel time of the USVs. In the region, the observations must be assigned to
individual USVs based on initial locations, travel times, and the value of different locations in

the region.
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In a similar manner, the USVs react to a customer concerned with the hurricane scenario.
Instead of observing the spread of the bloom as in the HAB scenario, the USVs coordinate to
gather data observations from the water that improve hurricane path prediction. The challenge
for both of these scenarios is how to coordinate multiple USVs to observe many thousands of
target locations with time sensitive observation values. Optimized coordination of many vessels
observing many targets has the potential to require massive amounts of computing power and
time. This problem requires dynamic solutions computed in under a few minutes. We need
algorithms that solve the coordination problem quickly so that the USVs observation and
movement plan evolve over time as the state of the system changes. Algorithms that accomplish

these tasks in a time efficient manner are developed in this thesis.

32



Chapter 3

Model Development

As was depicted in the section on the notional Sensor Web (Section 2.2), many different
elements of a sensor web work together to monitor the dynamic behavior of events and
phenomena. The rest of this thesis focuses on observation planning for unmanned surface
vessels. As the previous chapter presented the operational background, this chapter explains the
development of our model by comparing our problem to other problems in the literature. The
model is mid-level, in particular, we are not concerned with how to decide which targets are
significant, nor are we concerned with the detailed engineering design of the vessels themselves.
This chapter begins with a functional architecture to identify the inputs, outputs, and assumptions
relevant to the model. Then we address the research classification through a literature review of

similar problems.
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3.1 Functional Architecture

The focus of our research is guided by our estimation of USV utilization. We envision that
the USVs would be dispersed along the coastal areas observing a collection of various targets to
aid in normal operational data collection for an overarching sensor web. The overarching sensor
web consists of space-based sensors, airborne sensors, and surface-based sensors. Figure 3.1
illustrates the coordination of the different resources working together under a sensor web

observation coordination planner.
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system-level value function Coordination Planner

|

targets allocated to SBSs targets allocated to UAVs targets allocated to USVs
value function value function value function
SBS Planner UAV Planner USV Planner
observation plan movement and observation plan movement and observation plan
(e.g., location, time, sensor mode) (e.g., location, time, sensor mode) (e.g., location, time, sensor mode)
]
| L L
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] ] ]
] 1 I
Satellites w Sensors UAVs w Sensors USVs w Sensors

SBS = space-based sensor
UAV = unmanned air vehicle
USV = unmanned surface vehicle

Figure 3.1: Functional Architecture for Sensor Web Planning

The sensor web observation coordination planner allocates all the targets deemed significant to
observe optimally among the space, airborne, and surface planners. Depending on the resolution
demanded and the type of target, one or more mid-level planners could receive the same target.
After the targets have been allocated among the different planners, each planner adds the new

target list from the Observation Coordination Planner to its ongoing observation target list. After
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combining the target lists, each planner dynamically reformulates how to utilize its resources
effectively for the new problem. For the USV Planner, target lists include points where
measurements of water temperatures, chlorophyll levels, and surface wind speeds are required.
In addition, the target lists include points that could verify and validate other devices by

collecting data in the same location as a satellite, UAV or a buoy.

3.1.1 USYV Observation Planning Overview

To optimally plan and coordinate USV observations, there are many different decisions of
the overall process to consider. For the purposes of this research, we generalize the process of
USV Observation Planning into three levels of decisions: high-level, mid-level, and low-level.
The overall process encompasses the time from target identification to data transmission of the
target collected. The high-level decisions of the process include the establishment of objectives
and development of target lists to accomplish these objectives. The mid-level decisions include
assigning orders for the USVs by producing a schedule for observation planning for each USV.
The low-level orders include how the boat physically travels, transmits information, and receives

information. Examples of the types of questions for each level:

High-Level Decision Examples:

=  What are our objectives? =  What targets are significant?

= How many vessels do we utilize? = What targets have priority?

=  Which events are important to = What is the planning horizon?
observe? =  What instruments do we use?

Mid-Level Decision Examples:

= How do we assign boats efficiently, = How do we satisfy the constraints for
maximize value, and meet the problem?
objectives? = How well does the plan satisfy our
goals?
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Low-Level Decision Examples:

= How does the boat observe a target ? = How does the boat move from one
= How does the boat download target to another?
instructions? =  What trajectory is optimal?

= How does the boat upload data?

We focus our research to answering the mid-level questions. We assume that the high-level
decisions are decided by the overarching Observation Coordination Planner. In addition, we
assume that the boats have the required equipment and procedures to collect data, travel in the
water, transmit and download information, and find a trajectory to travel point to point, all low-
level decisions. With these assumptions, we can successfully confine the scope of our research
to explore the mid-level decisions of the USV Planner. Because USVs have a very long
endurance, USVs can perform several tasks and visit many targets in a specified time period.
This fact makes observation planning for these USVs a good candidate for optimization, as
improved observation assignments among USVs could mean more tasks accomplished and
scientific value attained over each planning period. However, when we apply an optimization
method to a problem that has uncertainty, such as this problem, we must model carefully to
return good results. We need to decide how to translate our physical problem into a model that

represents the real-world problem well and that we can easily analyze.

3.1.2 USV Observation-Planning Problem

This section describes the USV Observation-Planning Problem (USVOPP) and defines the
inputs and outputs of the problem. It presents the assumptions that we make on the capabilities
of the USVs, and explains any other assumptions that we make in the model. For simplicity, we
include only two types of USVs, the Spartan Scout, and the OASIS. The Spartan, which is
faster, has a higher range in a given time, but has less duration. OASIS, which is slower, has

minimal range in a given time, but has greater duration.
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3.1.2.1 Characteristics of the USVOPP

At the initialization of the USVOPP, we are given an initial configuration of USVs
together with a list of targets. The location, value, and time window to be observed of each
target is specified. In addition, the travel times are computed with a time-variant method to
account for tidal currents. We wish to create an observation plan for the USVs in a way that
maximizes the total value of the targets observed in a specified length of time. The objective of

the USVOPP is to maximize the total value collected by the USVs from the targets.

3.1.2.2 Inputs

The inputs to the USVOPP model include:

Model Inputs:
1. Number of USVs available
Number of targets
Coordinate locations of USV starting locations and targets
Velocity and direction of the tidal current
Velocity of each USV
Required target observation times
Target observation values

Time windows of opportunity for each target to be observed

A S A T i

Planning horizon

The data inputs are used to define a particular scenario and are required to initialize our
model. The number of USVs available and the number of targets define the size of the problem.
The coordinate locations of USV starting locations and targets, the velocity and direction of the
current, and the velocity of each USV define the travel times for the problem. The required
observation times define the time a USV spends stabilized to accomplish a particular task at a
target. The times are specified by target and task required. The target observation values define

the target’s significance to the overall science goals when observed. In addition, the scientific
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value is a positive constant if the target is observed during an inputted particular interval of time,
called the time window of opportunity, and zero otherwise. The last input to the USVOPP is the
specific operating planning horizon that defines the ending time for an observation plan. All of
the data inputs we mention are mean values, which are subject to uncertainty. The data inputs

for the model are representative of what we believe to be logical values for estimation.

3.1.2.3 Outputs

The outputs to the USVOPP model include:

Model Outputs:
1. Inter-target observation path used in plan for each USV
2. Finished observation times for each location observed
3. Idle times at each leg for each USV
4. Total value for each USV plan

The output from the USVOPP is an observation plan, which schedules the USVs and
assigns the tasks required of each USV. The plans specify the paths that the USVs follow
through their assigned tasks, the finished observation time of each boat at each location on the
route, and the idle time for each USV at each location. The routes are defined by legs that
correspond to the inter-target paths selected by the automated planner on which the USVs travel

between targets. The plan also includes the valuation of each route and total value for all USVs.
3.1.2.4 Assumptions

The assumptions to the USVOPP model include:
Model Assumptions:

1. Two types of USVs, Spartan Scout and OASIS

2. The speed and endurance are the only differences between the two types of USVs
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10.

1.

12.

OASIS USVs travel at a constant 2 knots, Spartan Scout USVs travel at any constant
speed less than a maximum speed of 40 knots

OASIS has an endurance of 60 days; Spartan Scout has an endurance that changes
polynomially with its speed as illustrated in Figure 3.2

No USVs can be lost or damaged

Temperature readings can be completed in route, i.e. observation times at each target are
Zero

Time to collect a fluorometer reading requires a complete stop, and 1 minute of time to
observe the target

Routes are open ended, i.e. no designated finish location

Targets may or may not be observed, but value is received for successful observations
Inter-target travel times are approximated by dividing straight-line distance between the
targets by current-adjusted speed of the USV

Currents in the Chesapeake Bay are tidal, and direction and magnitude at any location
varies with time, in an approximated periodic way

Specific planning horizons range from a two hours up to 14 days

Spartan Scout Endurance
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Figure 3.2: Assumed Spartan Scout Endurance Graph
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For our model, we are focusing on the use of only the OASIS and Spartan Scout USVs.
In addition, we assume that the only difference between the two USVs is the speed and
endurance. This assumption infers that all tasks are completed homogenously for each type of
USV. We assume the maximum speed of the OASIS USV is 2 knots, and the Spartan Scout is
40 knots. The range for the OASIS USV is up to 60 days and the Spartan Scout range is
dependent on the speed, illustrated in Figure 3.2. In addition, we assume the time to record a
temperature reading at a target does not require a USV to stop. This assumption is reasonable
because a target represents a specific coordinate representing a square area dependent on the
resolution. We assume that during the time the USV is moving to the specific coordinate in the
center of the square of area, it can collect the water temperature-reading representative of that
target. However, we assume collecting a fluorometer reading requires a full stop and 1 minute to
collect the reading. This assumption gives us a different scenario where the vehicles have to stop
at targets instead of collecting in route. In addition, we assume that USVs are never lost or
damaged. This assumption simplifies our decision variables for the model because we do not
have to account for a ship losing speed or becoming disabled.

We assume that the observation plans can end at any target, and do not have to include
observing all the targets. Distances are approximated by dividing straight-line distance between
locations. The travel time is approximated by dividing the distance by current-adjusted speed of
the USV. We assume typical planning horizons range from a couple of hours up to a couple

days. USVs begin a plan at any initial location.

3.2 Graphical Representation

This section describes how we transform the physical real-world problem into a graphical
structure we can visualize. We first describe a simple static graph of the problem and then build

into a time-space graph.
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3.2.1 Static Graph Representation

Applying analytic techniques to evaluate the USVOPP requires that the physical system be
mapped to the proper theoretical framework. Large-scale transportation problems, such as
vehicle routing problems, whose structure is similar to the USVOPP, are often represented using

a directed graph, G(N, A), consisting of a set of nodes, N, and a set of arcs, A. There are many

ways to translate the physical characteristics of the USVOPP into such a graph.

We present one possible directed graphical representation of the USVOPP. Nodes
correspond to initial USV locations and target locations. Directed arcs represent permitted
motions of the USVS between the nodes. The directed arcs between the nodes indicate the
direction of the flow between the two nodes; the tail of the arc corresponds to the origin and the
head of the arc corresponds to the destination. An example diagram of a static graph is in Figure

3.3.

Target
Location
1

Target
Location
2

Initial Boat Location

Figure 3.3: Static Graph Representation

3.2.2 Time-Space Graph Representation

The graph in Figure 3.3 is static, which means it does not allow USV movement to be
modeled in the time dimension. The static graph is modified to create a time-space graph, which
captures the USV movements through both the spatial and temporal dimensions. The time-space

graph is constructed by creating a node for each location at each time in the planning horizon.
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The planning interval is the entire time period of user interest. The planning horizon for the
USVOPP can be any length of time, in hours or days, in which an oceanic phenomenon may last.
Each node in the time-space graph is indexed by target and time period. For instance, the index

(1,7) corresponds to location 1 at time ¢. Directed arcs connect the nodes and represent USV

flows in time and space. A time-space graph representation of the static graph in Figure 3.3 is
illustrated in Figure 3.4.

An arc in the time-space graph that connects two nodes with the same location index
means that the USV did not travel during that time period. This could be due to the USV
observing a node, or the USV simply idling during that period. The rest of the arcs represent the
USV traveling from one location to another location during that time period.  This simple
graphical representation does not distinguish between idling and observing at a location. It also
does not account for time window constraints. However, it illustrates a good framework to
visualize the problem.

The formulations in the remainder of the thesis use a modified time-space graph to
visualize a coordinated observation plan. A plan contains the routing and execution details for
the USV paths through the network of target nodes. The execution details make up the USV
action at a particular target. Specifically, how long the USV waits, how long it collects data, and

by what means it collects data.

Figure 3.4: Time-Space Graph Representation
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The time dimension in the Time-Space graph represents only a time period. The real-time
is not modeled in the time-space graph. The real-time is tracked with a label on each arc, or
arrow in the graph, of how long the vehicle spent on that arc in reaching the next location.

We show the advantage of this approach through a small example. If we assume that it
takes the complete planning horizon for a USV to travel to Target Location 2, we can eliminate
any arcs that cannot be reached within the specified planning horizon. Specifically, if the
planning horizon is 8 hours, the travel times from the USV Location to Target Locations 1 and 2
are 4 and 8 hours respectively, and traveling from Target Location 1 to Target Location 2 is 6
hours, we can formulate a new graph with fewer nodes and arcs. Figure 3.5 illustrates the new
graph for this example. The numbers next to the travel arcs represent the time in hours for an
USV to traverse that arc. Idle arcs do not have a definite label and are determined by the USV

Planner.

Figure 3.5: Modified Graph for Small Example

For this example, any location that would cause the USV to exceed 8 hours is eliminated.
Smaller planning horizons reduce the size of the problem greatly. Even for a problem with only
three locations, the planning horizon greatly affects the size. Figure 3.6 illustrates a graph for a

planning horizon of 12 hours.
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Figure 3.6: Time-Space Graph Larger Example

3.3 Problem Classification

Now that we have a visualization of our problem, we compare it to problems found in the
literature. Problems in the literature that solve vehicle flows on arcs and nodes are known
commonly as vehicle routing problems. . Many variations and formulations of routing problems
exist. Our goal is a utilize a formulation that handles the elements of time, multiple vehicles,
multiple vehicle specifications, very large numbers of target locations, and can be solved and re-
solved quickly to account for a dynamically changing environment to maximize the benefit
received. The purpose of this section is to classify properly the USVOPP problem in research so
we know what work has been previously completed and what methods to explore in solving the
USVOPP. In addition, this section describes the basis of the mathematical formulation that we

use for the USVOPP.

3.3.1 Mathematical Programming Background

Vehicle routing problems are omnipresent around us. A field of research dedicated to
solving them is known as Linear Programming. Linear programming uses mathematical models
to represent real-world problems. It is linear in that the objective and all of the constraints are
linear functions of the decision variables. The goal of linear programming is to either maximize

or minimize the objective function value, which represents either rewards or costs depending on
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the problem formulation. It does this with respect to a set of constraints that represent the
conditions that limit the problem.

The conventional linear programming problem requires that the formulation decision
variables are continuous and come from the domain of non-negative real numbers. This,
however, is not the case for many problems and not for the USVOPP. The USVOPP has
decision variables that are constrained to be discrete integers. Specifically, the decision for
whether to send an USV to a target or not is a binary decision, either yes or no. We cannot send
half an USV to one target and half to another. In addition, we have positive continuous real-
value decision variables for the idling time at each location. Formulations that include binary
decision variables and continuous real-valued variables are known as Mixed Integer
Programming (MIP) problems, and fall under the mathematical programming classification of
Integer Programming.

When formulated as a MIP, our USVOPP is a unique type of problem that falls under the
more general class of problems known as the Traveling Salesman Problem (TSP). TSPs also use
a network of nodes and arcs to represent the problem. However, our problem has significant

differences from the standard TSP.

3.3.2 Literature Review

In this section, we introduce the literature of some models relevant to the USVOPP. The
TSP and its variants are presented, and algorithms for this class of problems are reviewed. In
this section, we discuss the problem definitions, formulations, and both exact and heuristic
algorithms formulated to solve the various problems. However, these algorithms do not
incorporate all of the types of constraints that are critically important in the USVOPP. In
addition, generally the algorithms given in the literature were applied to much smaller scale
problems than the USVOPP. This section describes the relationships of the different types of
formulations to the USVOPP. In the end, we define a classification of the team orienteering

problem with time windows as the basis for our model for the USVOPP.
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3.3.2.1 Traveling Salesman Problem (TSP)

One of the classic problems in Operations Research that mathematical programming is
applied to solve is the TSP. In this section, we partly reference the work of Bodin, L., Golden,

B., Assad, A., and Ball, M. [13] to explain the TSP.

3.3.2.1.1 Problem Definition

The classical Traveling Salesman Problem is frequently referred to as the TSP [50]. A
traveling salesperson wants to visit each node of a set of nodes, or cities for example, exactly
once, starting from, and returning to his original starting point, or home. The objective is to
minimize the total distance traveled by the salesperson.

Mathematically, the TSP problem can be defined as follows:
Consider a graph (N, A), where N = {1, 2,..., n} is a set of vertices, containing n vertices which
represent cities to visit, and A = {(i,j): i, j € N} is an arc set. Associated with each arc, (i, j), is a

nonnegative cost, denoted by ¢;;. The TSP is this:

Given (N, A) and C = { ¢ }, find an optimal route from and back to the starting vertex, covering
every vertex in the network exactly once, with the least total cost. When c;= ¢y for all i,
JE 1,..., n, the problem is symmetrical; when c; does not necessarily equal ¢, the problem is

asymmetrical. We consider only the asymmetrical one because the symmetrical problem can be

treated as a special case of the asymmetrical one.

3.3.2.1.2 TSP Algorithms

To solve these problems when the number of nodes becomes large is very difficult. The
algorithms to solve the TSP can be classified into two categories: exact algorithms and
approximate algorithms. The known exact algorithms that search the whole solution space can
be as difficult as exhaustive search (a particular exact algorithm) in the worst case. Known
approximate algorithms avoid searching the whole solution space and attempt only to find a

solution that is within certain proximity of an optimal solution.
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Exact algorithms:

It is a mathematical conjecture that the complexity class of the TSP is Nondeterministic
Polynomial-time Complete or NP -Complete. A problem is in class NP if we can check in
polynomial time whether a “lucky guess” is actually a solution. For a given directed graph with
edge costs, the problem of determining whether there is a path of cost C (for any particular C) is
in NP — if somebody gives us a path, we can check in polynomial time whether the cost of that
path is C. Any particular TSP can be solved by solving a sequence of these “does there exist a
path of cost C” special problems; we choose the C’s as a binary search sequence. A problem is
NP-complete if whenever we have an engine that solves this problem in polynomial time, you
can use this engine as part of an algorithm that solves any other problem in class NP in
polynomial time. This means that we cannot find a solution algorithm that gives an optimal
solution in a time that has polynomial variation with the number of nodes (n), as in n*. The best
we can currently do is to solve the problem that varies exponentially with the number of nodes,
as in 2". This makes solving TSP problems intractable for a large number of nodes. Because the
TSP is a NP -Complete problem, it is very difficult to solve optimally. For example, a complete
graph with N vertices requires (N-1)! ways to choose a circuit of length N. As N becomes large,
the number of possible sequences explodes.

Algorithms do exist that are usually good at solving the TSP exactly. The branch and
bound algorithm is used frequently to solve the TSP exactly. However, in the worst case, branch
and bound is equal to exhaustive search. The origin of the branch and bound algorithm goes
back to the work of Dantzig, Fulkerson, and Johnson [21]. The branch and bound method solves
a discrete optimization problem by breaking up its feasible set into successively smaller subsets,
calculating bounds on the objective function value over each subset, and using them to discard
certain subsets from further consideration. The bounds are obtained by replacing the problem
over a given subset with an easier (relaxed) problem, such that the solution value of the latter
bounds that of the former. The algorithm ends when either each subset has produced a feasible
solution or has been shown to contain no better solution than the one already attained by the
algorithm. The best solution found during the algorithm is a global optimum.

Other exact algorithms such as cutting planes and dynamic programming have also been
used to find a global optimal solution to the TSP. Exact algorithms which involve exhaustive

search of all possibilities are limited to problems with a relatively small number of vertices and,
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usually, with only a few constraints. Even when they are applicable, exact algorithms tend to
require more computing time compared to approximate algorithms, which are described next.

Approximate Algorithms or Heuristic Algorithms:

Laporte [39] classified heuristic algorithms into two categories: tour construction
procedures, which incorporate vertices systematically into a solution, and tour improvement
procedures, which first generate a feasible, but not optimal, solution and then improve the
solution by repeatedly removing and adding vertices into the solution. Composite procedures
construct a starting tour from one of the tour construction procedures and then attempt to find a
better tour using one or more of the tour improvement procedures.

Tour Construction Procedures:

We explain one of the frequently used methods, the Nearest Neighbor Procedure by Rosenkrantz
and Lewis [52].

Step 1: Start with any vertex or node as the beginning of a path.

Step 2: Find the vertex closest to the last vertex added to the path. Add this vertex to the path.
Step 3: Repeat step 2 until all vertices are contained in the path. Then, join the first and last
vertices.

This procedure requires approximately n’ computations.  There are other tour
construction procedures that fall under the classification of Insertion Procedures; examples
include Nearest Insertion, Cheapest Insertion, Arbitrary Insertion, Greatest Angle Insertion, and
others [52].

Tour improvement procedures:

Perhaps, the best-known heuristics for the TSP are the branch exchange heuristics
introduced by Lin [41]. These heuristics work as follows:
Step 1: Find an initial tour. Generally, this tour is chosen randomly (but not required) from the
set of all possible tours.
Step 2: Improve the tour using one of the branch exchange heuristics.
Step 3: Continue step 2 until no additional improvement can be made.

In the general sense, a certain number of edges, k, in a feasible tour, are exchanged for k
edges that are not in the solution as long as the result remains a tour and the length of that tour is
less than the length of the previous tour. Exchange procedures are referred to as k-opt

procedures where k is the number of edges exchanged at each iteration. Normally, 2-opt or 3-opt
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are the most common procedures in practice. They are used to generate excellent solutions to
large-scale TSPs in a reasonable amount of time.

Composite procedures:

The basic composite procedure can be stated as follows:
Step 1: Obtain an initial tour using one of the tour construction procedures.
Step 2: Apply a 2-opt procedure to the tour found in step 1.
Step 3: Apply a 3-opt procedure to the tour found in step 2.

The composite procedure is relatively fast computationally and gives excellent results.
The idea behind the composite procedure is to get a good initial solution rapidly and hope that
the 2-opt and 3-opt procedures will then find an almost-optimal solution. In this way, the 3-opt
procedure, which is the computationally most expensive step of the three, need only be used
once [13]. Laporte [39] noted that the best approach to use would be composite procedures,
which combine both the tour construction and tour improvement procedures. The TSP is a good
starting point, but because the USVOPP has time window requirements on each vertex, we need

to explore methods that handle the extra complexity.

3.3.2.2 The Traveling Salesman Problem with Time Windows (TSPTW)

The TSPTW is defined as follows:

A single traveling salesman is required to visit a set of N vertices on a tour constructed on a fully
connected network, just like the original TSP. He begins at a designated vertex and returns to
the same vertex at the end of the tour. There is a cost associated with traveling between any
vertex pair. In addition, each vertex has a time window in which it must be visited. The
objective is to visit all vertices exactly once within their time windows at minimum cost.

The exact algorithm to solve the TSPTW was introduced by Mingozzi et al. [44]. They
utilized dynamic programming strategies for the TSPTW and considered precedence constraints
as well. Precedence constraints ensure that the route constructed is in time order. For example,
the first vertex is visited at time 2, and the second vertex is visited no earlier than the preceding
vertex. In 1998, Gendreau et al. [27] mentioned a heuristic method, a generalized insertion

heuristic for the TSPTW. This formulation is closer to what the USVOPP requires, but since our
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goal is to maximize the value collected at each point, and not necessarily visit each point and

find the minimum distance, we need to explore a method that maximizes value.

3.3.2.3 The Prize Collecting Traveling Salesman Problem (PCTSP)

The prize collecting traveling salesman problem (PCTSP) is the problem where a
salesperson travels from one customer to another at a given cost, pays a penalty for every
customer he fails to visit and collects a prize for each customer he visits. This type of problem is
also known by other names such as the selective TSP, TSP with profits, and others. The
salesperson’s objective is to collect an amount of prize money greater than or equal to a given
amount while minimizing the sum of his travel costs and penalties to be paid [25]. When the
given amount g is equal to the total amount of all possible prizes collected from all customers,
the PCTSP is reduced to the TSP.

The PCTSP was introduced by Balas and Martin [9] as a model for scheduling the daily
operation of a steel rolling mill. Balas [10] discussed the structural properties of its polytope and
Fischetti and Toth [25] developed a branch and bound algorithm for its optimal solution. This
problem formulation is closer to the desired formulation than the TSPTW, especially if we add
time windows. However, we are not concerned with setting a certain amount to collect, and then
minimizing distance. In addition, the USVOPP does not have the requirement of starting and

finishing in the same location.

3.3.2.4 The Orienteering Problem (OP)

The Orienteering Problem (OP) can be described as follows: given n vertices, each vertex

1 has a score s,> 0 and the scores of the starting vertex, denoted by 1, and the ending vertex,
denoted by n, are set to O; i.e., s,= s,= 0. The arc between vertices 1 and j has a cost
c; associated with it. Since n vertices are usually considered in the Euclidean plane, and the

distance and travel times between vertices are determined by the geographical measure, they are
assumed to be known quantities and distance is used as the representative of cost. Each vertex

can be visited at most once. Therefore, the objective of the OP is to maximize the score of a
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route that consists of a subset of vertices starting from vertex 1 and finishing at vertex n without
violating the cost (distance) constraint max T. Another common name for the OP is the
Generalized TSP.

While the OP was originally modeled and applied for the sport of orienteering, it has
practical applications in production scheduling and vehicle routing as discussed by Golden et al.
[31]. They also proved that the OP is NP-hard. This is worse than NP-complete, but has NP-
complete problems as special cases. It should be noted that the OP with very close starting and
ending vertices can be transformed to the PCTSP. They solve the PCTSP with all possible
values of g. The maximum value of g that results in a feasible solution for the PCTSP is the
result of the corresponding OP. Meanwhile, The PCTSP can be reduced to the TSP when g is
equal to the total prize of all vertices. In some situations, when the starting and ending vertices
of the OP are very close and the time constraint T is great enough to cover all vertices, the OP is
equivalent to the TSP. Solving the TSP in that case results in a feasible solution of the OP.
Work has been done on exact methods for the OP such as integer programming, dynamic
programming, and branch-and-cut algorithms. Although these approaches have yielded solutions
to smaller sized problems, as in other NP-hard problems, the computational limitations of exact

algorithms encourage the exploration of heuristic procedures.

3.3.2.4.1 Algorithms for the OP

Exact Algorithms:

The branch-and-cut algorithm of Fischetti et al. [26] could be used to solve the OP
exactly. It consists of a two-phase method. In the first phase, the algorithm avoids branching by
adding branch cover cuts. In the second phase, the algorithm works on a sparse graph (resulting
from the branch cover cuts produced in the first phase), and utilizes a classical branching strategy
to close the integrality gap and converge to the solution. Other exact methods have also been
developed to solve the OP, such as dynamic algorithms and other linear relaxation algorithms.

Heuristic Algorithms:

The first heuristics for the OP, the S-algorithm and the D-algorithm, were proposed by
Tsiligirides [62]. The S-algorithm uses the Monte Carlo Simulation method to construct routes

using probabilities correlated to the ratio of vertex score to vertex distance from the current
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vertex. The D-algorithm is based on the vehicle scheduling method proposed by Wren and
Holiday [67]. This approach operates by dividing the search area into sectors that are determined
by two concentric circles and an arc of the known length. Sectors are varied by changing the two
radii of the circles and by rotating the arcs. A route is built when all vertices in a particular
sector have been visited, or it is impossible to visit any other vertex of the same circle without
violating the max T constraint. Tsiligirides [62] also proposed the most well known test
problems for the OP, which have 21, 32, and 43 vertices. Golden, Levy and Vohra [31]
proposed an iterative heuristic for the OP, which consists of three steps: route construction using
a greedy method, route improvement that uses a 2-opt swap, and center-of-gravity which guides
the next search step. Golden, Wang and Liu [32] combined Tsiligirides’s S-algorithm concept
(randomness), the center of gravity, and learning capabilities into another approach to solve the
OP. To provide probabilities for vertex selection, the score of neighboring vertices are also
considered. Wang, et al. [64] proposed an artificial neural network approach to solve the OP. A
Hopfield-like neural network is formulated and a fourth order convex energy function is devised.
Ramesh and Brown [47] proposed a four-phase heuristic algorithm for the generalized
orienteering problem, i.e., the cost function is not limited to a Euclidean function. The four
phases consist of vertex insertion, cost improvement, vertex deletion, and maximal insertions.
The route is improved by a 2-opt procedure followed by a 3-opt procedure in the second phase.
In the third phase, one vertex is removed from the current route and one vertex is then inserted in
an attempt to decrease the length of the route. Finally, as many unassigned vertices as possible
are inserted onto the current route in order to increase the total score. Chao, et al. [16]
introduced a two-step heuristic to solve the OP. In the first step, initialization, by using the
starting and ending vertices as the two foci of an ellipse and the max T constraint as the length of
the major axis, several routes are generated and the one with the highest score is the initial
solution. The initial route is then improved by a 2-vertex exchange in the cheapest-cost way, and
then improved by a 1-vertex improvement that tries to increase the total score. They applied this
algorithm to Tsiligirides’s problems [62] and 40 new test problems. This framework is much
closer to our envisioned USVOPP formulation, but we still have not included time windows for

the OP and have not considered multiple vehicles.

52



3.3.2.5 The Team Orienteering Problem (TOP)

The Team Orienteering Problem (TOP) is an extension to the OP. The distinction being
that the TOP has the generalization to the case of multiple tours of the OP. In relation to the
sport of orienteering, it involves a team of contestants trying to coordinate together to collect as
many points as possible in a given amount of time. In the multiple vehicle case, this relates to
the classic vehicle routing problem classification. Other names for the TOP include the multiple
depot vehicle routing problem with profits, multiple depot selective vehicle routing problem, or
multiple tour maximum collection problem.

Only very recently have researchers begun to explore the TOP. Because of the difficulty
of the problems mentioned prior to this, most of the research done today in this field is focused
on the multiple vehicle TSPTW. The focus is to find better and faster methods to solve larger
and more complex problems. Some research has been done on this problem and a few heuristics
have been developed for the TOP. In 2004, Hao Tang and Elise Miller-Hooks developed a
TABU search heuristic for the TOP [56]. In 2005, C. Archetti, A. Hertz, and M.G. Speranza
compared TABU search and Variable Neighborhood search and concluded that Variable
Neighborhood search outperformed two different TABU search heuristics [8]. This formulation
is very close to what we want to model the USVOPP to; only without the time windows the

USVOPP requires.

3.3.2.6 The Team Orienteering Problem with Time Windows (TOPTW)

The closest formulation for our model is the Team Orienteering Problem with Time
Windows. To the best of our knowledge, no formal papers have addressed this exact problem to
date. With the addition of time windows to the TOP, the USVOPP is very similar to the TOPTW
framework. Figure 3.7 illustrates an example solution to a USVOPP with two USVs each

visiting four targets in the planning horizon.
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Figure 3.7: Orienteering Problem Solution
3.3.3 Relation of TOPTW to the USVOPP

To the best of our knowledge and assumptions, a modified TOPTW can be applied to
solve the USVOPP. There are a few minor differences between the TOPTW and the USVOPP.
The TOPTW requires the vehicles to return to the home location. The USVOPP is open ended.
In order to take advantage of this model we map the real-world characteristics of the USVOPP
to the objective and constraints of an open-ended TOPTW. A specific target is worth some
scientific value depending on the location and point in time. Therefore, we construct an
objective function to reflect these values by prizes in the USVOPP formulation model. We will
explain the notations and assumptions in detail in Chapter 4 and Chapter 5 when we develop and

test the models for the USVOPP.

3.4 Choosing the Solution Method

The choice of solution method for solving the USVOPP problem depends on solution
techniques considerations (such as existing algorithms in the available literature), available
computer software, computer/hardware, and time. In order to limit the search for existing
algorithms to solve the problem, it is first considered whether to use exact or heuristic

algorithms.
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When solving an optimization problem, we are really only optimizing a model of a
problem originating in the real world. There is no guarantee that the best solution to the model is
also the best solution to the underlying real-world problem. Two reasons for why the best
solutions do not match are that some real-world constraints can be decided to be omitted in the
model, because they are not considered important, and the numbers used in the
model/implementation are not precise (e.g. estimated measurements). Even though heuristics are
not guaranteed to provide us with an optimal solution to the underlying problem, neither are
exact methods. Furthermore, heuristic methods are usually more flexible and capable of coping
with more complicated and realistic objective functions and/or constraints than exact algorithms.
Another reason for considering heuristics for solving the USVOPP is the complexity of the
USVOPP, which makes the problem solvable using exact algorithms only for small problem
sizes.

We will cover the different available heuristics and compare them in detail in the next
chapter. After we present the formulation of the problem, we analyze which heuristics could
potentially solve the USVOPP. We then adapt our heuristics of choice from the given heuristics
to solve the USVOPP to meet our requirements for speed, efficiency, and additional constraints.
Because no research has directly been applied to the TOPTW, we should compare a couple of

different heuristics to compare how our heuristic performs.
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Chapter 4

Problem Formulation

In this chapter, we propose a mathematical formulation for the USVOPP, which is
adapted from Orienteering Problem models in the literature. The first section explains what data
is required and how we converted the real-world scenarios into a mathematical representation
useful for our tests. The second section presents the mathematical notation and MIP formulation
of the USVOPP. The third section presents a literature review of the various heuristics that
could solve the USVOPP. The fourth section describes the various heuristics we developed and

implemented to solve the theoretical USVOPP.

4.1 Data Representation

We envision a USVOPP scenario consisting of the following data:
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Initial locations of all USVs

Locations of all targets

Speed of each USV

Time Windows of Opportunity for each target
Planning horizon

Required Observation Time

N o kR v

Target Observation Value

The geographical locations of the USVs and targets are represented by latitude/longitude
coordinates. Without loss of generality, we represent the initial USV and target locations with x-
y coordinates as opposed to latitudes and longitudes. Each target has an associated time window
of opportunity represented with an early and late time, a required observation time to observe the
target, and a value that represents the scientific value added if observed. To explain the data in

detail, we examine a sample dataset.

4.1.1 Sample Data

Table 4.1 illustrates the first 17 rows of a dataset with 2613 rows for an example
hurricane scenario. The top row of the data represents the initialization data for the number of
USVs, number of targets, and the planning time horizon. The sample data given initializes with
12 USVs, 2601 targets, and a planning horizon of 24 hours respectively reading from left to right
across the first row. The next row of data represents the data for the first USV. The USV data is
always initialized first. The number of USVs initialized in the first row of the data gives the
computer the number of rows that represent USV data. For this scenario, the next 12 rows of
data represent the USV data because the first number in the first row is 12. For each USV data
row, the first column holds an index number, the second holds the x coordinate location, the third
holds the y coordinate location, the fourth holds the USV speed, and the remaining columns are
ignored. For each target data row, the first column holds an index number, the second holds the
x coordinate location, the third holds the y coordinate location, the fourth holds the required
observation time, the fifth holds the scientific value, the sixth holds the early time window value,
and the seventh holds the late time window value. The datasets are generated in this format

because this is similar to how J.-F. Cordeau and M. M. Solomon [20] set up standard multi-depot
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vehicle routing problems with time window datasets. A sample table of the data follows in Table

4.1.

HMumber of Targets Plannming Horizon (hrs) Boat Speed Column
\ \ / / Early Time

/ Window Column
2601 24.00 o _—
0]399339| g2372| 100| o000 o0oo]| 2400
1] 43803 o614 100 oDoolooo] 24.00
2letri12 915181 100 o000 ooo]| 2400
3| 74164 | 2003827 | 100| o0oo|ooo| 2400
4] 234216 [ 89.6493 [ 1.00 [ 000000 2400
5| 7a7754 182077 | 100 o000 ooo| 2400
G| s05736 ] B.0%85 | 2000 ooo|ooo| 2400
71135282 222422000 000000 2400
8| 669825 | 614122 [ 2000 | o000 ooo| 2400
9] 339142 [ sgse62 [ 2000 [ ooofooo| 2400
10 [ 21,7381 [ 231431 [ 2000 o0o0]o0n0| 2400

11 [ 442216 | 33.3872 | 2000 | 0.00| 000 2400 Break between

«— | USWVs and targets
12 0.00 0.00 | 0.0 000|ooo| o000
13 0.00 200 001 | ooes] 000 01333
14 0.00 400 001 | 00266 000 02667
15 0.00 g.00 | 0.01 | 00326 | 0.00 [ 04000
16 0.00 5.00 | 0.01 | 00376 | 000 | 05333

~.

Late Time
“Window Column

\

Index Column

I Coordinate T Coordinate

Column Column Soientific Value Column

Ohservation Time Column

Table 4.1: Sample Data

Some of the data represented in Table 4.1 with the addition of the rest of the 2595 targets
is illustrated more intuitively with a graph. Figure 4.1 illustrates a sample hurricane scenario
where the eye of the hurricane is in the bottom-left corner of the graph. Each colored square in
the figure corresponds to a target specified in Table 4.1. The white dots in the figure represent
the USV starting locations. The scale on the right side of the figure illustrates the relative
scientific value of each point in the area. The number corresponding to each scientific value is

externally specified, and how that occurs is not discussed further in this thesis. The dark red on
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the graph represents an area with high importance (high uncertainty or high benefit for prediction
model) and the blue represents an area with lower importance (low uncertainty or low benefit for
prediction model) for the next planning period. The time windows, observation times, vehicle

speeds, and planning horizon are not illustrated in this graph.
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Figure 4.1: Sample Hurricane Graph

4.1.2 Mathematical Estimation of HAB and Hurricane Scenario Data

In this section, we describe how we create test data for the HAB and hurricane scenarios.
Because the USVs have not yet been implemented, and their purpose is to provide the means
necessary to collect HAB data, we do not have real algal bloom data. Data for past hurricane
paths and intensities exist, but for the purposes of testing our algorithm we chose to simplify the
data and create simple mathematical hurricane paths because we desire generic data that is easy
to create and test. To create the datasets, we used MATLAB software to construct the data and

plot the graphs of the data.
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4.1.2.1 Hurricane Scenario Data

Many different models exist today that attempt to predict hurricane movement, intensity,
and surge. Both statistical and dynamic models exist. Statistical models predict hurricane
behavior by considering the historical behavior of “similar” hurricanes. Dynamic models predict
hurricane behavior by the use of thermodynamic and fluid mechanics models; the partial
differential equations given by these models are solved numerically, with initial conditions that
correspond to physical observations of wind velocity, pressure, temperature, and relative
humidity. Generally, it is best to have a large number of physical observations.

The data collected by the USVs is meant to support a dynamic model’s prediction. The
addition of the sub-surface water temperature could add another element to a dynamic model,
which could require this data. We assume that observing the underwater temperature with the
USVs is valuable to the dynamic hurricane-forecasting model. For our test scenarios, we assume
that a hurricane has a predicted straight-line path from the eye of the hurricane to the end of the
desired observation area from the latest dynamic model output available. The values we have
specified in Figure 4.1 are artificial, but are meant to suggest that observations along the
projected path of the hurricane are more important than observations far from this path. In
addition, targets further from the current position of the hurricane are more important than
targets near the current position.

We estimate the scientific value at each point in the grid with a simple mathematical

function. For each x-y coordinate pair, starting with (0,0), the value function is the radial

distance away from the eye, r =, x*+ y2 , raised to a smoothing power value of choice (s).

For the example data in Table 4.1, we used 1.5 and multiplied r by the normal probability

distribution function evaluated at the absolute value difference of x and y, with mean # =0, and
. r o ) . .
variance 0~ = 5 We assume that the uncertainty in the grid can be adequately estimated with a

normal distribution function. This creates a bell shaped fit with the peak of the bell on the
trajectory of the hurricane. The variance that we use for the normal probability function is the
radial distance away from the eye of the hurricane divided by 2 so that the variance fits the grid

and points on the edge of the grid have minimal scientific gain. In equation form:
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(x-p)*
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This function creates a scientific value field that is adjustable to any defined parameters for the

V=r" *n(|x— y

U=0,0= %) where n(x) = 4.1)

normal probability distribution function, or storm size, or path.

The time windows for the scenario are dependent on the estimated speed of the hurricane.
We assume the early time window for all locations is zero because we assume that at the
beginning of the scenario, the value is determined to be important right now. The late time
window is proportional to the speed of the hurricane and the distance away from the eye. The
points closest to the hurricane have the earliest late time window values and the points furthest
away have the latest late time window values. For example, hurricanes travel, on average, 10 to
20 knots across the water. For a point 30 nautical miles away from the eye of the storm,

assuming the hurricane is traveling at 15 knots, the upper time window is 2 hours.
4.1.2.2 HAB Scenario Data

For the HAB scenario, the construction method is more complicated. We know that the Woods
Hole Institute desires to, “Develop a regional, rapid-response communications network to
facilitate coordinated sampling and interpretation of HAB events and provide early warning and
data dissemination,” [24]. We assume that the Prototype Phytoplankton Fluorescence Sensing
System Fluorometer on a USV can collect data to help the network’s predictions. The Global
Ecology and Oceanography of Harmful Algal Blooms reported, “Despite the proven utility of
models in so many oceanographic disciplines, there are no predictive models of population
development, transport, and toxin accumulation for any of the major harmful algal species,” [1].
Therefore, there is a clear need to develop realistic physical models to monitor and predict
HABs. Because we do not have data or information on the spread of HABs, we create plausible
scenarios to test our algorithms for the USVs. HABs can last days, weeks, or months and move
typically very slowly. The USVs could be the tool that will enable future models to measure

growth rates and predict the spread of algal blooms.
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For our HAB scenario, we assume that the HAB has been identified, and is spreading over time.
We assume that the HAB spreads in an elliptical manner and typically only .02-.05 knots in
addition to the tidal current. We assume that the boats observe the HAB as it spreads.

Figure 4.2 illustrates four snapshots of a notional example HAB spreading over four

days.
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Figure 4.2: Sample HAB Spread

We estimate the scientific value at each target in the grid with a simple mathematical function.
For each x-y coordinate pair, starting with (0,0), the value function is the beta probability density

function evaluated at the elliptical distance away from the center of the bloom (xc,yc),

. (x—xc)’ +(y—yc)2

2 b2

, where a and b are the semi-major axis and semi-minor axis assuming
a

. . r o .
that a>b, with mean z = 0, and variance ¢ = 3 We assume that the uncertainty in the grid can
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be adequately estimated with a beta distribution function with the two free parameters, & and

set to 2 and 15 respectively. This creates a desired shaped fit with the peak on the expected
ellipse of the HAB. Figure 4.3 illustrates the shape of the desired probability density function
that represents the value of the data observed in a straight-line from the center of the ellipse at

zero to the end of the grid. In equation form:

a1, _ p-1
V=B(r.a=2/=15) where B(x) =1~ 4.2)

J't““ (1-1)""dt

0

This function creates a value field that is adjustable to any defined parameters for the beta
probability distribution function to represent the values for any HAB size or path. As a HAB

spreads, the same points could be observed again, but will have different scientific value.
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Figure 4.3: Beta Function PDF with A=2, B=15

The value of observing any particular location is the value of a certain beta probability density
function. Unfortunately, this beta probability density function changes as time passes, in a way
that models the growth of the HAB. Therefore, the value of observing a particular target
depends on the time of the observation. The input format we use to describe a scenario does not

allow values that are time varying. We only specify one number for value. The input format
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does allow us to specify time window, though. Therefore, we can select the time window at a
given location to be the interval during which the value (computed using the beta probability

density function) is larger than a particular threshold.

4.1.3 Translating Data to Mathematical Programming Formulation

With the ability to create notional datasets, we can convert the data and requirements
from the created scenarios into a mathematical presentation. In the following section, we
describe how to convert the scenario data of USV and target locations and routes, into a graph of
targets and arcs that conform to formal mathematical programming formulation terminology.
USYV Locations: Each initial USV location is represented by a vertex of typeu of the graph.
USVs that have the same initial location are represented by unique nodes. We write U to denote
the set of all USV Locations.

Target Locations: Each target location is represented by a vertex of type!/ of the graph. Target
locations with the same coordinates, but different time windows, are represented by unique
nodes. In addition, targets and initial USV locations at the same location have unique nodes.
We write L to denote the set of all target locations.

Routes: The route between an initial target location and a target or two target locations is
represented by the arc connecting two corresponding vertices in the graph. Vertices between
USV initial locations are not necessary because no value is added for traversing these arcs. We
write A to denote the set of all arcs.

Traveling Time: The time a USV spends when traveling from one location to another is
represented by the time along the arc connecting two corresponding vertices in the graph. We
compute the travel times by using a simple technique that assumes that USVs travel at a constant
speed, and that it is feasible to travel in a straight line between any two targets and that tidal
currents can be ignored. The set of all “time arcs” is denoted by the matrix travelTime .
Observation Time: The time a USV spends serving a location is represented by the time of
serving the corresponding vertex in the graph. The set of all observation times at vertices is
denoted by observation .

Idle Time: The time an USV spends idling at a location is represented by the idle time at the

corresponding vertex in the graph. We use two decision variables, arrival and departure, to
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represent the arrival time at a target and the departure time at a target. The set of all idle times at
each vertex is inferred in the model by calculating the difference between the departure time and
the arrival plus observation times at each target for each vertex visited.

idletime, = departure, — (arrive, + observation,) (4.3)

If the vertex was not visited, then the equation is irrelevant and the idle time is zero.

Time Windows: The time window of opportunity of a target is represented by the time window
of the corresponding vertex. For a USV location, there is no time window. In case of a long
planning horizon, there could be a set of multiple time windows on each vertex. The sets of all
the earliest and latest observation times are denoted by early and late respectively.

Value: When observing a location, USV’s collect value for the mission. The value is
represented by the score of the corresponding vertex. The set of all scores at vertices is donated
byvalue .

Time: The planning horizon is notated by T.

Objective: The objective of finding an optimal trip is converted to the problem of finding a path
from the starting vertices in a 2-weighted, undirected, complete graph
G =(M U N, A,travelTime, observation, early,late,value) that maximizes the total value
collected from the observed targets. The value collected must be completed within their time

windows, without violating the constraint of the total route time is less than or equal to T for

each USV.

4.2 Mathematical Model

In this section, we present the USVOPP as a modified TOPTW. We present a linear
programming formulation that can readily be formatted to optimization software. We discuss the
mathematical notation, the formulation, the objective function, and the constraints of the

formulation.
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4.2.1 Notation

Sets
Set of target locations In our work, L can have thousands of elements
U Set of initial USV locations In our work, U can have at most 24 elements
A Set of travel arcs From each initial USV location to each target location, to

and from all target locations

Decision Variables

observe,,

travel,

arrive;,

departure,

Constants

observation,

travel Timeij

early,

late,
horizon
value,

m

n

Binary, 1 if target iis observed by USV k, at position ¢, 0 otherwise, the position
t represents the ™ target observed, for example, if USV #2 traveled from its
initial location to target 10, observe,,, =1, note ¢ has nothing to do with time,
only order for all targets, all USVs, and all positions

Binary, 1 if arc (i, j) is traveled by USV &k, O otherwise, for all locations and
USVs

Positive real number, arrival time for USV k& at target i, for all locations and
USVs

Positive real number, departure time for USV k at target i, for all locations and

USVs

Positive real number, time required for USV to collect data at target i, for all
targets

Positive real number, travel time from target i to j, travelTime[j can be different
from travelTime,

Positive real number, earliest time we accumulate value by observing target i

Positive real number, latest time target i can be observed

Positive real number, length of time of the planning interval

Positive real number, value at target i

Integer, number of USVs

Integer, number of targets
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4.2.2 MIP Formulation
The resulting mathematical model then becomes:
4.2.2.1 Objective Function

Maximize

m+n n

z z 2valuei *observe,, 4.4)

keU i=m+1 t=1
The objective function, equation 4.3, of the USVOPP consists of the total sum of the value

received by observed targets. It represents the maximization of the total scientific value over all

of the m USVs.
4.2.2.2 Constraints

Subject to

Zobserveikl <1 t=0,n,Vke U, 4.5)

i=m+1

- Every position on the route for a given USV £k, has at most one target assigned.

observe,, <1 ielL, (4.6)

t=0

NgE

=~
LN

- Every target is assigned to at most one target over each USV route.

m+n m+n
Z:observeiml - Zobserveik, <0 t=0,n-1LVkeU, 4.7)
i=1

i=1
- Ensures the targets are assigned to the positions in the route in a successive manner. For

example, if a target is assigned to position ¢ for a USV’s route, where #>0, then a target must be

assigned to position #-1.
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observe ;, —travel,;, =0 j=m+lm+n,VkeU, (4.8)

- Ensures that each USV’s route starts at the corresponding USV’s starting location, or if a target
is in the second position on a route,z=1, then there must be an arc from the starting location to

that target.

observe, +observe,,,, —travel, <1 t=0,n-lielL, je L,VkeU, 4.9)
- Ensures that if targets i and jhold to successive positions, ¢ and #+1, on an USV route, then

the arc (7, j ) must exist, which means travel; i =1.

z travel,, — Z travel,, =0 Vke U, (4.10)

ieL icl

- Forces each of the USV routes to end at its starting location, this is a logical constraint that is
implemented to force closed routes. Even though the USVOPP requires open routes, by setting
the travel time to return to each USV starting location to zero the end result is the same with the

last target visited on the route acting as the end of the route.

Ztmveliik —ZObserveik, =0 i=m+lm+n,VkeU, (4.11)
t=1

jeu

- If target i is on a route, this constraint forces an arc to emanate from it.

ZIravelﬁk —ZObserveik, =0 i=m+lm+n,VkeU, (4.12)
t=1

jeL

- If target i is on a route, this constraint forces an arc to enter it.

departure, +travelTime; —a;(1—travel, ) < arrive, @.13)
j=m+lm+nVie LNVNke U,
- This constraint ensures that there is at least departure time + travel time separation between the

targets on each route (further discussion in section 4.2.2.3).
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early, (Z observe,,) < arrive,, i=m+lm+nVkeU, (4.14)
t=0

- This constraint restricts arrival times for each target to fall after early arrival time allowed.

arrive, + observation; < late, (Z observe,, ) i=m+lLm+nVkeU, (4.15)
t=0

- This constraint restricts arrival times added to the observation time for each target to fall before

the latest time allowed.

arrive, +observation, < departure, i=m+lm+nVkeU, (4.16)

- This constraint ensures the connection between the arrival time and departure time for each

target.

arrive, +observation; < horizon i=m+1lm+nVkeU, 4.17)

- This constraint ensures all arrivals and observation times occur before the planning time limit.

observe,, € {0,1} Vke U,Vie L, (4.18)

- This is a binary constraint for each target observed.

travel, € {0,1} V(i,j)e A Vke U, (4.19)

- This is a binary constraint for each arc traveled.

arrive, € R” i=m+1,m+nVkeU, (4.20)

- This constraint ensures arrival times have to be a positive real number for each target and USV.
departure, € R* i=m+1l,m+nVkeU, 4.21)

- This constraint ensures departure times have to be a positive real number for each target and

USV.
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4.2.2.3 Linearization of Precedence Constraints

Equation 4.12 was not the first constraint developed to ensure the consistency of the time

separation. The first constraint equation we developed was:

travel, (departure, + travelTime;) < arrive,, 422)
j=m+1lm+nVie N,.Vke M,

However, this equation is nonlinear because two decision variables are multiplied together. In

order to linearize equation 4.19, we utilized the method Ropke, Cordeau, and Laporte developed

in [51]. We introduced a constant a; , which forces the algorithm to abide by the time
constraints without multiplying decision variables together. Constant a;; is set before running

the linear formulation by:

a; = max{0,late; + observation, + travelTime; —early ;} (4.23)

4.2.3 Solving Mathematical Program Optimal Solution

After we formulated the problem as a mixed integer program, we solved the problem
using optimization software. Even though we knew that we could not solve the size of problems
we were planning to solve, we wanted to test our formulation and test how large of a problem we
could solve. A myriad of optimization software exists to solve Mixed Integer Programming
(MIP) problems. Many noncommercial stand-alone programs or codes exist that can solve MIP
problems.  However, these generally lack reliability, technical support, fine-tuning of
optimization parameters and suffer performance issues. Therefore, we chose to use commercial
optimization software. The software that we chose as the optimization platform is ILOG [36].

ILOG is an optimization suite that supports linear programming, integer programming,
mixed integer programming, mixed quadratic programming, constraint programming,
scheduling, and modeling languages. There are several ways of running a problem in ILOG.
ILOG provides a language that permits the matrix entries in the LP to be specified one at a time
(which is very tedious) since it needs a very explicit formulation and write up of the whole
problem. This is an extremely time-consuming, outmoded way of loading the problem and was

not considered. Secondly, the dynamic libraries provided to interface the optimization solver to
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any of the popular programming languages such as C + +, C#, or Java could be used. With this
method, a code in either C + +, C#, or Java needs to be developed. Although this is a very
powerful way of approaching the problem, it was not preferred due to the existence of an even
more powerful alternative.

Apart from the two aforementioned methods, ILOG provides a special high-level
optimization environment called ILOG OPL Studio, which makes it much easier and faster to
model an optimization problem. Given the ease it brings, the ILOG OPL Studio was chosen as
the implementation platform for the optimization problem. We will discuss the results of the

optimization solver in Chapter 5.

4.3 Heuristic Methods Background

Many combinatorial optimization problems are computationally hard. Exact algorithms
that deterministically find optimal solutions usually take too much time to be practical for large
problems. In practice, these problems are solved approximately, using heuristics. Because of
this, and reasons discussed in section 3.3.2.1.2, to solve problems of realistic size we need to
explore heuristic algorithms for the USVOPP. Even though heuristics can solve the problem
quickly, they do not guarantee optimal results or bounds on the distance from the optimal
solution.

Many heuristics have been developed and tested to solve the OP and the VRPTW. In this
section, we explore a couple different heuristic methods that exist that we could potentially

implement to solve the USVOPP.

4.3.1 Approximate Dynamic Programming

Dynamic programming offers a cohesive approach to solving problems of stochastic
control, which could solve the USVOPP. Essential to the technique is the optimal value
function, which can be obtained via solving Bellman’s equation [12]. For every possible m-tuple
of USV initial positions, we determine the optimal path plan when the plan horizon is one time
unit, and we store these optimal plans. Then for each m-tuple of USV initial positions, we

determine the optimal path plan when the horizon is two time units. Each USV path in this plan
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is either a move which requires two time units followed by an observation or a move which
requires one time unit, takes an observation, and then performs a previously stored optimal plan
for horizon=1. This process repeats until the plan horizon solved equals the plan horizon for the
scenario. In this setting, a “state” gives the location (at some particular time) of all the USVs.
Therefore, the number of points in the state space is the number of nodes in the static graph
raised to the power “number of USVs”; we can see the curse of dimensionality explicitly.

Approximate dynamic programming was developed to alleviate the curse of
dimensionality by considering approximations to the optimal value function, known as scoring
functions that can be computed and stored efficiently. This approach can be applied to
approximate a linear programming problem. The method generalizes the linear programming
approach to exact dynamic programming [22].

However, the application of approximate dynamic programming appears to be technically

difficult, so it is not pursued further in this thesis, but it is a possible area of future work.

4.3.2 Local Search Overview

Local Search algorithms, like approximate dynamic programming, came about as an
attempt to circumvent the tractability issues confronted by the exact methods. They usually
provide no bound on the optimality of their solutions, but generally provide a good solution
quickly. The general concept of a Local Search method is to find and evaluate a solution within
the feasible region, and then to evaluate neighbors to this solution. If a neighbor proves to yield
a better objective function value, the algorithm moves to it and explores its neighbors. If not, the
algorithm has found a local optimum, or a feasible solution that is at least as good as its
neighbors. A typical Local Search algorithm will repeat this process several times with different
initial starting solutions. What constitutes a “neighbor” to a solution can be interpreted
differently, and the definition of a neighbor is often picked somewhat arbitrarily. Popular Local
Search algorithms include Ant Colony, Genetic Algorithms, Neighborhood Search, Tabu Search,

and Simulated Annealing.
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4.3.2.1 Ant Colony System

Bullheimer et al. [14] describe the Ant Colony System as a, “Distributed meta-heuristic
for solving hard combinatorial optimization problems, first used to solve the TSP.” The method
was introduced by Colorni, Dorigo and Maniezzo, and is based on observed behavior of real ant
colonies searching for food [19]. Specifically, ants communicate the information about food
sources by marking the routes that lead to food with pheromones. Fellow ants can follow the
pheromone trail and while following it, they will additionally mark it with new pheromones, thus
attracting more ants. In result, routes that quickly lead to rich food sources will be reinforced. In
solving a problem, simulated ants are searching the solution space, the quality and size of the
food source correspond to the objective values that are being optimized, and adaptive memory
plays the role of the pheromone trail. Ant systems are commonly used in production and route
scheduling problems. An advantage to Ant systems is that they are easily updated for dynamic
changes in the graph.

The application of an Ant Colony System appears to be technically difficult, so it is not

pursued further in this thesis, but it is a possible area of future work to solve the USVOPP.

4.3.2.2 Genetic Algorithms

Genetic algorithms (GA) are a class of adaptive heuristics based on the Darwinian
concept of evolution of survival of the fittest. They were first developed by John Holland at the
University of Michigan in 1975 [35]. Two main aspects of a GA that are problem specific are
the genetic representation of the solution domain and the fitness function to evaluate the solution
domain [66]. The most common way to encode a solution is as an array of binary numbers that
represents them as a bit string. For example, if the range of values a variable can take is from
zero to 32, we use a 5-bit string to encode the variable. Another popular encoding method is
permutation encoding, which is more suitable for ordering problems. An evaluation function

estimates the performance of a particular solution.
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Genetic algorithms typically have the following structure Pseudo-Code:
1. Initialize a timer
2. Generate a random population
3. Evaluate fitness function
4. While not meeting the termination requirements do:
5. Increment timer
6. Select the fittest parents
7. Recombine genes of selected parents
8. Introduce mutations
9. Evaluate fitness function

10. Select survivors that will become the next generation

A GA initializes with a set of chromosomes referred to as initial population. Each
chromosome represents a solution to the problem. The initial population is either randomly
generated, which causes it to take longer for the algorithm to converge to the solution, or is
generated using some form of heuristic, which takes less time to converge, but typically covers a
smaller solution space and thus will converge to local optimal solutions.

A selection mechanism is used to select the potential parents based on their fitness
computed by the evaluation function. Their offspring represent the subsequent generation. The
selected parent chromosomes are then recombined via the crossover operator to create a potential
new population. The next step is to mutate a few of the newly obtained chromosomes, in order
to introduce a level of randomness that will prevent the GA from prematurely converging to a
local optimum. A mutation is typically a random swap in the gene sequence, or a random denial
of a bit if the chromosome was bit encoded. Then the new population is selected based on the
fitness of the candidate chromosomes.

The genetic algorithm will then iterate through this process until a predefined number of
generations have been met, or until a predefined level of fitness has been reached, or until there
was no improvement in the population, which would mean that the GA has found an optimal
solution. An application of GA to the USVOPP is beyond the scope of this thesis, but could be

interesting future work.
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4.3.2.3 Neighborhood Search

Neighborhood search is a class of heuristics that seek to improve a feasible solution
incrementally. It is applicable to many optimization problems. We refer partly to Ahuja,
Dergun, and Orlin who give an overview of neighborhood search in [4].

Neighborhood search begins with an initial feasible solution, which may be obtained by
randomizing or by another fast heuristic. Then, the algorithm searches the “neighborhood,” a set
of feasible solutions obtained by perturbing the initial solution. The solutions in the
neighborhood include both better and worse solutions. As a rule of thumb, the larger the
neighborhood, the more likely it contains better solutions, but at the expense of a longer search
time. The algorithm then searches the neighborhood for a better solution, selects the best
solution, and restarts using the best solution found as a current solution for generating another
neighborhood. When there are no better solutions in the neighborhood, the cu