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Large Eddy Simulation Using a Transport Equation
for the Subgrid-Scale Stress Tensor

FA9550-04-1-0023

Blair Perot
Department of Mechanical Engineering
University of Massachusetts, Amherst

Abstract

The objective of this research was to demonstrate that classical transport equation (RANS)
models can be applied at any mesh resolution. In particular, we show that transport equation
models like the classical k/e model also make excellent subgrid scale models for Large Eddy
Simulation (LES). However, this research is not concerned with the development of a particular
RANS/LES model but a general approach to turbulence modeling for any mesh resolution. To
confirm the generality of the approach, a Reynolds stress transport (RST) equation model is also
shown to work well as an automatically adaptive LES subgrid scale model.

Unlike other hybrid modeling approaches that can address a range of mesh scales, the
demonstrated approach is self-adaptive. It will always calculate using first principals as much of
the turbulence as the mesh allows, and will model the rest. Unlike other hybrid models, this
approach is not a blending of two models, nor does it require additional user specified constants.
The character of the model is self-adjusting and is not a function of some external input such as
the geometry. The approach is easy to implement using existing CFD codes.

Turbulence modeling is the bottleneck in current Computational Fluid Dynamics (CFD)
predictions of engineering flows. The proposed modeling approach is fundamentally different
from prior LES models and current hybrid models in that it achieves a completely natural
evolution from RANS to LES to DNS, using largely existing modeling technology.



1. Introduction

Turbulence models are frequently classified by the ratio of how much turbulent energy is
represented by the model compared to how much turbulent energy is computed via first
principals. RANS (Reynolds averaged Navier-Stokes) models represent the most turbulent
energy in the model. LES (large eddy simulation) computes considerably more of the turbulent
energy via first principals and DNS (direct numerical simulation) computes all the turbulent
energy correctly and models none. If a more detailed terminology is desired, in between RANS
and LES lies URANS (unsteady RANS) and VLES (very large eddy simulation). The range of
these turbulence models is shown in Figure 1 in relation to a 3D turbulent energy spectrum. Each
model, tries to represent the energy in the spectrum to the right of the model's name.
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RANS URANS VLES LES DNS

Figure 1. Illustration of turbulence modeling (RANS-DNS) on a 3D energy spectra.

Classic LES subgrid-scale models (like Smagoriski or its dynamic model varients) are algebraic
in nature and assume that equilibrium is present between the unresolved and resolved scales.
Unfortunately, this equilibrium is actually present only on average. The motivation for using a
transport equation model is both theoretical and practical. Theoretically, a transport equation
model can capture the inherently non-equilibrium subgrid-scale turbulence physics more
accurately. Practically, a transport equation based model can easily transition to a RANS or
URANS model at coarse mesh resolutions. In low Mach number flows, the solution for the
pressure dominates the calculation time, and the solution of additional transport equations are not
expected to incur a large performance penalty. In high Mach number flows, the turbulence
equations can be advanced less frequently and with a larger timestep, and the conclusion remains
the same.

Classical algebraic LES models require the mesh spacing to lie in the self-similar inertial range of
the energy spectrum. In practical applied simulations is not always possible to ensure that the
mesh spacing lies in some inertial or self-similar regime. Near walls, there is no inertial range. In



complex flows predicting the inertial range a priori is practically impossible. A model that can
perform at any mesh resolution will not be restricted by this current LES limitation on the mesh
size. In addition, in many situations it is wasteful to perform LES in regions of the computation
(flat plate boundary layers and simple mixing layers) where RANS models are known to perform
quite well. LES becomes more useful if the model can function in the RANS limit for those
regions of the flow that are not too complex. Classic LES models cannot function in the RANS
(coarse mesh) or DNS (very fine mesh) limits because the mesh size is no longer a useful
indicator of the turbulent length scales (as it is in the inertial range).

There are a number of existing hybrid turbulence models that are designed to be able to address
these issues and perform over a broad range of the mesh spectrum (i.e. URANS down through
LES). For example, the very popular DES (detached eddy simulation) model'® behaves like a
RANS or URANS model near walls, but away from walls the lengthscale is changed to the mesh
size and the model has an LES character. Other hybrid models do not change their character
based on location relative to a wall, but on whether the mesh is much smaller than the energy
containing turbulence scales (leading to LES) or not (leading to RANS or URANS). The earliest
implementation of such an approach Speziale® used classic LES (Smagorinsky) and RANS
(k/e) models to solve for both an LES and a RANS eddy viscosity and then blended these two
viscosities together based on a function of the mesh size. Girimaji'® has developed a hybrid
model (PANS) that can change its character based on input from the user (the user sets the
desired ratio of modeled turbulent kinetic energy). The results presented in the following report
can not be obtained with any of these previous approaches.

In this research, a self-adapting turbulence modeling approach was developed that works for any
mesh resolution and over the entire energy spectrum. It can therefore do, RANS, URANS, VLES,
LES and even DNS. More importantly, the character of the model is not set by the user (like
PANS) or geometric location (like DES), but instead will adapt to whatever level the mesh can
support. The proposed approach therefore models only as much kinetic energy is necessary (for a
given mesh) and resolves as much of the energy using first principals as possible. It is not
technically correct to consider the proposed approach to be a hybrid model in the classic sense
(though it has many similarities to those models) because it does not blend an LES and a RANS
model together. The proposed approach is a ‘universal’ modeling approach. It is a single model
that works naturally at any mesh resolution.

2. A Universal Model

The classic mathematical theory behind RANS and LES makes these two modeling approaches
look fundamentally different. RANS is based on ensemble averages and LES on filtering. At first
glance, the possibility of a single model that does both (without some sort of switch or blending
function) seems remote. However, a closer examination by Germano® revealed some very
important insights. Most importantly, the exact but unclosed governing equations for RANS and
LES (and URANS, VLES and DNS) are all mathematically identical. While the RANS
equations can be derived from the assumption of ensemble averaging and the LES equations
from filtering operations, these assumptions are overly restrictive and neither system must be
derived with those assumptions. The only required assumption is that the velocity field can be
split into two parts and that this splitting operation commutes with differentiation. With this
assumption the equations for turbulence evolution are (from Appendix A),
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where #, and p are the computed velocity and pressure and R, =wu, —uw,u, is the unknown

turbulent stress tensor. The exact (but unclosed) evolution equation for this stress tensor is,
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where the bracket operation is given by <a,,b, >=ab, —a,b, and the turbulent transport is
defined by T, =wwu, —uR, —u R, —u,R —wu u,. Note that the stress tensor can also be
defined using the bracket notation, R, =<uw,,u, >. The turbulent transport and bracketed terms

require a model if the system is to be solved. In RANS the overbar might denote an ensemble
average. In LES the overbar might be an explicit filtering operation. However, it can also be an
implicit operation, because in practice when these equations are modeled and then solved on a
computer, the overbar operation is never actually performed. In this case, it is assumed that an
overbar represents whatever the calculation computes. It is not possible to prove that an implicit
filter commutes with differentiation but it is a fairly reasonable assumption to make at least to
first order.

To accurately model some of the terms in (1) and (2), a third 'scale' equation is often postulated
that captures the turbulent energetic length or timescale. The epsilon equation'? is perhaps the
most commonly used scale equation, but omega (inverse timescale)””> and lengthscale
equations'*'® also are possible and can be advantageous. In theory, these scale equations can be
derived from first principals but the number of modeling assumptions, in practice, makes them
largely empirical.

Starting from these exact equations numerous modeling approaches are possible. In order of
increasing simplicity a brief description is given for some of the more common approaches.
Reynolds stress transport (RST) models use a modeled form of the tensor equation (2). The more
popular two-equation RANS models (such as k/e or k/@w) are a simplification of equation (2)
from a tensor equation to a scalar equation (by taking its trace). The primary unknown must then
be reconstructed from this scalar kinetic energy, &, using a hypothesized algebraic relation such
as the eddy viscosity hypothesis. One-equation models, such as the Spalart-Allmaras'’ model
used as the basis for DES? solve a single transport equation directly for the eddy viscosity and
use an algebraic expression for the lengthscale (such as the distance to the wall). Classic LES
models (such as Smagorinsky and its variants) are the simplest models of all, they solve no
transport equations for the turbulence variables but algebraically obtain the necessary length and
timescales from the mesh size and the resolved velocity gradients.



Traditionally, LES models have used the very simplest modeling approach because of the issue of
cost. Early attempts at using more complex transport equations were deemed not worth the extra
effort. Deardorff’ used a RST model and Schumann'” used a /¢ model. Models and computing
power have changed considerably in the 30 years since those first simulations. Some more recent
LES models now carry a single transport equation. This is certainly the case in DES, and a kinetic
energy transport equation was used by Ghosal e.t. al.’. As the mathematical analysis of Germano®
makes clear, there is no fundamental reason why these more complex modeling approaches (used
currently only by RANS models) cannot also be applied to LES. The apparent natural evolution
of turbulence models to include more physics and therefore more complexity, suggests that two-
equation and RST transport models for LES are, in fact, the next logical step. The ‘universal’ k/e
model and its results are presented first (section 3), and the RST model and its performance are
present in section 7.

3. A Two-Equation LES Model

The classical k/e equation system is used in this first section in order to reach the largest
audience possible. There are very good reasons to prefer other two-equation model systems.
However, since all two-equation transport models are closely related, the proposed modeling
ideas can be easily generalized to these other transport equation models. It should be very easy to
implement the model presented in this section into existing commercial and industrial CFD
codes.

The unclosed equations (1) and (2) will be modeled using the following transport equations,
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where the overbar on the velocity and pressure are now dropped for convenience. The

production is given by P =v,(u, . +u, )u, , and eddy viscosity is given by v, = C, -k-(k kk )s
‘ : +

It is now necessary to distinguish between the modeled (or unresolved) turbulent kinetic energy,

k, and the resolved kinetic energy, k, =4(uu, +u,u, +uu,), which is calculated from the

resolved velocity.
The constants are fairly standard k/¢ constants, C,, =1.55, 0, =1.2, 6, =1.0, C, =0.18. The

11 25 .5 . -
J+——f" is sensitive to the local unresolved turbulent Reynolds number

parameter C,, = —
“ 6 Re,
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Reés = K of the modeled turbulence via the function f = &( I+@~ —1) as per the analysis
VE 30 Re,

of Perot and de Bruyn Kops'®. This varies C,, from its theoretical limits of 11/6 at high
Reynolds numbers to 3/2 at low Reynolds numbers. Any Reynolds number dependent C,,
would probably be sufficient. Reynolds number dependence is important in LES because the
effective turbulent Reynolds number Re, = k’/ve becomes small as the mesh is refined (and
goes towards zero for DNS). For incompressible flow, the pressure in equation (3) is determined
from the incompressibility constraint, », , =0.

The two major differences in this equation system from the classical k/e model is the definition of

the eddy viscosity which now contains the kinetic energy ration, and the presence of the
additional parameter o which is discussed in the next section.

3.1 Backscatter of Energy

One key component of a self-adaptive turbulence model is that it must be able to backscatter
energy from the unresolved (modeled) turbulence to the calculated (resolved) velocity field. For
example, a fine grid (128”) simulation of isotropic turbulence would resolve most of the energy
and very little would need to be modeled. If this simulation were set up incorrectly, and most of
the energy were defined to be modeled and very little resolved (i.e. initialized from a RANS
simulation), the adaptive turbulence model ought to remove energy from the modeled kinetic
energy and energize the resolved velocity field to correct this error. Figure 2 illustrates the
behavior of backscatter (and the physically more dominant - forward scatter) for a 1d energy
spectra. Here the resolved turbulence is on the left and the modeled turbulence is to the right
(shaded), the arrows indicate the direction of energy flow.
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Figure 2. Illustration of backscatter and forward scatter on a 1D energy spectra.



With the ability to backscatter, a turbulence model can automatically correct errors in the initial
conditions, and most importantly, perform model adaptation without user intervention. The idea
of allowing backscatter in a turbulence model is not a new one. It has been shown by Chasnov’
and Carati' et al., that the —5/3 power law in isotropic decay is better predicted by LES
(dynamic) models that account for backscatter. Along similar lines, classical DES can not
backscatter energy but it has been recently shown by Piomelli et al.'® that adding noise, a crude
form of energy backscatter, to the DES model improved results for channel flow.

If e =1, the propsed system (Equations (3), (4), (5)) is very close to a classic &£ model. The
proposed formulation assumes that the turbulent stress tensor is reconstructed using the eddy

viscosity hypothesis, R, = 5!(5,} —vya(u, ;+u,,). This of course is the simplest reconstruction

hypothesis to use. Nonlinear eddy viscosity and algebraic Reynolds stress models use more
complex (but still algebraic) reconstructions. Again, the proposed ideas can easily be generalized
to that context as well. The simplest model possible is used in this work in order to focus as
directly as possible on the key idea - that it is possible to develop turbulence models that
automatically work at any mesh resolution.

RST models based on equation (2) can, and do, backscatter energy. We will show this effect later.
But RST models are more complex and less familiar, to we wish to enable the two-equation
models to perform as universal models, and this will require adding backscatter. The classical
two-equation models are based on a positive definite eddy viscosity which is too simplified an
assumption (eddy viscosity should actually only be positive on average) and therefore classical
two-equation models can not backscatter energy. The eddy viscosity is always positive and
therefore the model always removes energy from the mean flow and puts it into the modeled
kinetic energy, k , where it is eventually dissipated by £ to heat. It can never move energy from
the model to the resolved scales. This is the correct average behavior for a turbulence model, but
not necessarily locally correct (in space or time).

The additional parameter a has been added to the classic &/ model to correct this important
flaw and control the energy flow. Usually ¢ is positive (and order 1), but it can become small or
even negative. When a <0 the model is backscattering energy. This parameter is not a model
constant, instead it is a field that varies in space and time, so that backscatter can happen in
different regions at different times. The transfer variable, e, also appears in Equation (4), the k-
equation, so that the total kinetic energy (modeled k plus resolved £, ) is a conserved quantity

and can only disappear via dissipation to heat. Its presence is not necessary in the scale equation,
Equation (4), so we do not include it.

When @ < 0, the eddy viscosity in (4) is essentially negative. Negative viscosity is anti-diffusive,
it amplifies (rather than damps) existing resolved velocity fluctuations. It amplifies small
wavelength modes (those closest to the mesh resolution) the most rapidly. This is a very
reasonable model for backscatter. It is not injecting energy via some random forcing of the
resolved flow, rather it works to enhance the existing instabilities and modes. Moreover, the
energy transfer is local in spectral space. It tends to take energy from the model (which has most
of its energy at scales just below the mesh resolution) and preferentially delivers it to the resolved
flow at almost the same length scale (but just above the mesh resolution).



The model for « the energy flow parameter, uses ideas from error estimation for mesh
adaptation. If the error in the computed solution is small, then the mesh is deemed to be sufficient
for first principals simulation and the model should go away (the modeled kinetic energy should
become very small). This is akin to the situation described earlier, where a 128’ grid is initialized
with a RANS solution and some small resolved flow fluctuations. The model will detect this
situation as very highly resolved (lots of mesh resolution). Due to energy conservation inherent in
Equations (3) and (4), the modeled kinetic energy can not just disappear. In order to become
small the modeled kinetic energy must be transferred somewhere - the only possibility is to the
resolved flow. Small estimated errors (in the resolved quantities) implies there should be energy
backscatter (the mesh can handle more fluctuations via direct simulation). So small errors result
inax<0.

At some point later in time, the resolved velocity on the 128° mesh will be fully energized. If the
Reynolds number is high, then a 128> mesh is still not sufficient to perform DNS (a model is still
necessary). In this case the error estimate will become larger and larger until & becomes positive
and a normal forward energy scatter down the energy cascade will be imposed. The larger the
error, the more energy is fed to the modeled kinetic energy and the more the model influences the
resolved flow evolution. If the Reynolds number is low enough, then a 128’ mesh may actually
be sufficient resolution for DNS and the error estimate stays small. In this case the model
continues to backscatter until the model has almost no energy. At this point the model has no
affect on the resolved modes and DNS is achieved.

3.2 Energy Transfer Variable

The proposed equation for controlling the energy transfer is,

a=l.5(l.0—C'(kfk )2[(Ax*' a‘/"7')%0.11]") (6)

\[i: ox,

where k,_ is the resolved kinetic energy (at a certain location and time), & is the modeled kinetic

energy, and C =0.28. The quantity
NLS d\k ok d\Jk

(Ax, )Tk, = ((Ax——5) +(Ay——L) +(Az——2)*)/k, is a dimensionless measure of
ox, ox dy 9z

the error (similar to what is sometimes used in mesh adaptation). In this formulation the resolved
kinetic energy &, =5(uf +u; +u;) is the indicator function that is being used to estimate the

mesh resolution. If the flow is DNS or over-resolved (like a RANS initial condition on an LES
mesh) then this quantity is small, its inverse is large (but limited away from infinity by the fairly
arbitrary 0.11 term), and the model tends to backscatter energy. In contrast, normal energy
transfer (from resolved scales to the modeled scales) occurs in the regions of the flow where the
gradient length scales are comparable to the mesh size. On very coarse meshes, RANS like
behavior should be recovered. In this limit, &, is expected to be very small, but note that

r



ok 5 : : ; ;
(Ax, a—\r')‘ﬂ'fr will remain finite and independent of the magnitude of the resolved fluctuations.

For the simulations of isotropic turbulence performed, this term obtains an average value of 0.8 in

the RANS limit. This means that @—1.5-0.42/(0.840.11)=1.04 and the standard RANS
model is very closely recovered in the RANS limit.

The particular form of the energy transfer function was developed largely by intuition and tuned
solely to obtain the correct limits. Many other functional expressions and/or indicator quantities
are certainly possible. The goal of this work is not to advocate for this particular function but to
demonstrate that self-adaptive turbulence models are possible, and this particular function serves
this purpose adequately.

3.3 Numerical Method

Simulations of isotropic turbulence are frequently performed with Fourier spectral methods that
use discrete FFTs to solve the pressure Poisson equation. Spectral methods are not indicative of
what is used in commercial codes. On the other hand, commercial codes tend to have excessive
numerical dissipation (because high robustness is sought). This numerical dissipation can lead to
poor results — even in the DNS cases that do not involve the model. This work compromised
between the two extremes by using a 2™ order Cartesian staggered mesh method'' (see Figure 3)
with exact projection” for the pressure solution. This is essentially a low order finite volume
method (like the commercial codes) that conserves mass, energy, and vorticity properly (like the
spectral methods). The code is fully parallel (using MPI) and optimized for execution on PC
clusters.
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Figure 3. Fully staggered arrangement of velocity (u,v) and pressure (p). The
actual simulation is three dimensional.



4. Isotropic Decaying Turbulence

We wish to demonstrate the validity of the approach using one of the simplest turbulence models
(k/e) and one of the simplest turbulent flows possible (decaying turbulence). This is intentionally
done so there is no room for ambiguity. Neither the complexity of the problem nor the model can
obfuscate the results.

It should be noted that other hybrid methods, such as DES, do not work well for this very simple
problem. In the absence of walls DES always does LES, and when the mesh becomes too coarse
it will fail like any other classical LES model. PANS will not adapt as the turbulence decays, so
when the turbulence has decayed into the DNS limit, PANS will still be applying an LES eddy
viscosity.

Isotropic decaying turbulence was calculated using periodic boundary conditions on a box of size
of 187x187x36/. This initial box size was used in order to compare our results with an

independently performed DNS simulation of this flow. Our mesh size will always be double in
the third direction so that the actual mesh spacing is always equal in all three directions.

Figure 4 shows a mid-plane slice of an initial condition 256x256x512 isotropic field for reader
visualization. It is apparent from figure 4 that the 256x256x512 initial condition is turbulent and
isotropic (no preferential direction). While the following results focus on isotropic turbulence
because of its simplicity, it must be stressed that this methodology can easily be applied to any
flow field, and makes no assumptions about the problem being solved.

Figure 4: Mid-plane slice (x-y plane) through initial 256x256x512 isotropic field, Re = 640.
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4. 1 High Re Isotropic Decay

In isotropic turbulence, the turbulent kinetic energy decays with time. This process can be
simulated with a simple RANS model using only one spatial grid cell, with LES using many
cells, or with DNS using enough cells to resolve the smallest length scales of motion. Results
from such a test are shown in Figure 5. The ordinate shows total kinetic energy (k+k,)

normalized by the initial total kinetic energy at time t=0.0, the abscissa 7, is given by simulation

time (seconds) non-dimensionalized by the inverse time scale (—~) at time t=0.0 (where ,

'
indicates total quantities). Normalization of the abscissa can be interpreted as 'eddy' turn over
times.
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Figure 5. Total kinetic energy predictions of isotropic decay at initial Re=640.

2
The initial turbulent Reynolds number, Re, = k—' , for this test case is 640, comparable to the
VE,
Comte-Bellot and Corrsin 1971 experiment®. The DNS result was performed independently by de
Bruyn I(ops5 on a 768x768x 1536 mesh using a Fourier spectral method and is given by the large
circles. Many aspects of the DNS (including spectra) have been closely compared with Comte-
Bellot and Corrsin and shown® to agree well. The mesh resolution is identical in each direction,

with the box size in the z-direction twice as large.



A number of different simulations were performed using mesh resolutions from 1x1x2 to
256x256x512. In each case the model is identical and only the mesh and initial conditions are
changed. The initial conditions are obtained from the full DNS. The DNS initial condition is not
random Fourier modes - but full Navier-Stokes turbulence that was obtained by running for a
long time with as little forcing of the large scales as possible, to maintain the kinetic energy.

Each model initial condition was formed by averaging the same initial 768x768x1536 velocity
field to the appropriate mesh size using a simple box average. The initial modeled kinetic energy
at each mesh location was then determined by comparing the exact 768x768x1536 velocity field
to the smoother coarse mesh field and calculating the sum of its difference. The modeled
dissipation was calculated similarly, by using a box average of the exact DNS dissipation field,
and comparing to the known total dissipation at time zero. Because dissiaption tends to occur at
the smallest scales, the modeled dissipation is very close to the total dissipation (very little
dissipation is resolved) except for the very finest mesh (256x256x512).

The results in Figure 5 are boring to look at but profound. They show that at any mesh
resolution, the model predicts the decay of the turbulence accurately. The very smallest mesh
resolution is clearly a RANS simulation and the largest mesh, 256x256x512, is an LES
(bordering on DNS) simulation. The intermediate resolutions might be considered URANS,
VLES, or LES. The spectra for the initial conditions are shown in Figure 6. These spectra
represent VLES (32x32x64), LES (64x64x128, 128x128x256), and LES/DNS (256x256x512)
simulations. The box average of the initial data takes some energy from the lowest wavenumbers
but most of the energy from the highest wavenumbers. All energy that is not resolved is modeled
by the spatially and temporally varying variable & .

- 323264
-%- 64x64x128
-6- 128x128x256
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LOG Energy (E1)
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0 05 1 15
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Figure 6. Spectrum of initial conditions (32x32x64, 64x64x128, 128x128x256, 256x256x512)
for (Re=640) isotropic decaying turbulence.
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4.2 Kinetic Energy Ratio

It has been hypothesized that RANS equations must give RANS (essentially the 1x1x2) results
irrespective of the mesh resolution used to solve those equations. This would indeed be the case,
if the equations were linear. Here we clearly show that in fact, different meshes produces
different solutions to this coupled equation system (even though the total behavior, figure 5,
remains the same for all meshes).
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Figure 7. Ratio of modeled kinetic energy to total kinetic energy, Re=640.

The ratio of the modeled kinetic energy to the total kinetic energy is shown in Figure 7 with one
curve for each of the mesh resolutions. The 1x1x2 solution is the top curve, with all its energy
contained in the model (giving a ratio of 1.0) and the 256x256x512 simulation is the bottom line,
with the smallest ratio of modeled kinetic energy (<10 percent). Note that these curves are
relatively constant and decrease slightly with time as the simulation proceeds. They do not
approach each other, or the RANS limit (1.0). Each mesh resolution is operating with a different
average value for the modeled kinetic energy. Those resolutions that require less modeling of the
energy start with less model energy and maintain that lower level.

The LES solutions stay entirely unsteady and three-dimensional. The slight decrease in the ratio
over time is the correct behavior. It is due to the fact that over time the Reynolds number of the
flow is slowly decreasing and the mesh can, and therefore does, resolve a larger percentage of the
turbulent fluctuations. If the simulation was run long enough, then the Reynolds number would
drop sufficiently for the 256x256x512 mesh to perform DNS, and at this point the ratio should be
essentially zero. The small variation at the beginning of each simulation shows the initial



condition is close to the correct ratio supportable by that mesh, but not perfect. The long time
behavior of this ratio is shown in Figure 8. These decay rates are consistent with the Reynolds
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number decay rate (Re ~t"7).
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Figure 8. Ratio of modeled kinetic energy to total kinetic energy for extended time, Re=640.

Figure 8 shows that the coarse mesh (4x4x8) might approaching the 'RANS' solution (a ratio of
1.0) at very long times. When the mesh is larger than the largest eddies this is possible. The finer
meshes (8x8x16 - 128x128x256) have enough resolution to compute a solution that does not
return to the RANS limit. It is hypothesized that steady (RANS-like) solutions occur when the
resolution is not sufficient to maintain an energy cascade. For this test case, the initial large eddy
lengthscale of the turbulence (L = k**/£ ) is 6.0, and the 8x8x16 simulation has a mesh size close
to 7.0. The 4x4x8 simulation therefore has a mesh size that is twice the size of the energy
containing eddies. It can not resolve many eddies, and can not set up a nonlinear energy cascade.
Nikitin et al."* has noted that a similar affect occurs in very under-resolved DES simulations.

4. 3 Perturbation of Initial Conditions

A truly adaptive model should be able to obtain the correct behavior from incorrect initial
conditions. For example, it is of considerable interest to see if a 64x64x128 mesh initialized with
a RANS solution can, over time, develop into a full LES simulation. In order to test the model in
this way, the initial conditions were either smoothed or sharpened using a filtering operation. The
filter used to alter the initial conditions was a nearest neighbor averaging procedure,

Jilvered

] .
= (= BX i F Uy Pl e U +u¢.‘_,)g. For smoothing, =0 was

used. This replaces the value at a mesh point by the average of its nearest neighbors. This type of
filter removes energy primarily from the highly oscillatory modes with wavelengths close to the
mesh size. In spectral terms it damps the spectra in the region just above the cutoff wave number.
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The affect is shown in Figure 9, which shows the original initial spectra for the 64x64x128
simulation, and the spectra for the smoothed and sharpened initial conditions. Sharpening the
velocity field is performed by using £ =1.5. This adds energy to the existing high frequency

modes.
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Figure 9. 1D energy spectra for 64x64x128 case, Re=640 (Sharp, Normal, Smooth).

Figure 10 shows the affect of smoothing and sharpening the initial conditions on the kinetic
energy ratio. When smoothing is used, energy is removed from the resolved modes. In order to
keep the total kinetic energy the same, the model now must start with more modeled kinetic
energy. The ratio therefore starts higher than before. We would like this model energy to
backscatter into the resolved velocity field, since the mesh can in fact support more turbulence
than was introduced at the initial condition.

Note that as time proceeds the model achieves the same ratio irrespective of the initial conditions.
At early times, the smoothed solution has less error and therefore backscatters somewhat more
than the unperturbed initial condition. This removes energy from the model and makes the ratio
decrease faster, so that it approaches its original state. A similar (but opposite) process happens
when the spectra is sharpened. In this case, the model senses that the mesh can not support the
input resolved fluctuations, and quickly sends that energy to the model (by damping the resolved
velocities). Note that the rate at which the model adjusts to perturbed initial conditions depends
on the mesh resolution. The higher mesh resolutions adjust more rapidly. It is hypothesized that
the time it takes to transfer the energy scales on the timescale of the turbulence at the cutoff
(transfer) lengthscale (k/€).
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Figure 10. Ratio of modeled kinetic energy to total kinetic energy, Re=640, for perturbed initial
conditions.

4.4 Low Re Isotropic Decay

In order to verify that the model works in the DNS regime, a lower Reynolds number simulation
was performed which is well resolved (DNS) at the largest simulation of 256x256x512. The
initial condition for this lower Reynolds number case was generated by running the high Re

simulation with a larger viscosity (v = 0.3743 ¢m’/s) and with a very small amount of modeled

kinetic energy (k =107 cm?/s*). Using the higher viscosity reduces the Reynolds number and
also quickly damps the smallest scales of the turbulence.

The turbulent time scale (k,/€,) , is plotted versus simulation time (solid line) in Figure 11 for the

low Re case. As was expected, at early times the turbulence is adjusting and the curve is not
linear. This is due to the simulation reacting to the increased viscosity and reduced modeled
kinetic energy. Eventually, a power law decay for the kinetic energy is obtained, and the
simulation is considered fully adjusted. A power law decay should appear as a straight line in
Figure 11. A linear curve fit is given by the plus symbols. The inverse of the slope given by the
curve fit is the kinetic energy decay exponent, n=1.38. The simulation was considered to be
well developed at a time of 0.14s. This field (at t=0.14s) was used in all the subsequent
simulations, as the well developed low Reynolds number (Re=211) initial condition. The same
box averaging procedure as the high Re number case was used to create initial conditions for the
smaller meshes.
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Figure 11. Turbulent time scale (k,/£,) vs. simulation time for a 256x256x512 simulation with
increased viscosity and small amount of modeled kinetic energy (DNS).

Figure 12 shows the total kinetic energy predictions for the low Re test case. The circles represent
the essentially DNS simulation (though the model is on), the lines represent the various
simulations from 1x1x2 through 128x128x256. These are in fairly good agreement with the DNS
data, as was observed for the high Reynolds number case. The slight discrepancy at long times is
most likely due to errors in the RANS model at lower Re.
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Figure 12. Total kinetic energy predictions of isotropic decay at initial Re=211.
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Figure 13. Ratio of modeled kinetic energy to total kinetic energy, Re=211.

The ratio of modeled kinetic energy is plotted in Figure 13. The full RANS simulation (1x1x2) is
at the top of the figure (ratio of 1.0) and the DNS is shown at the bottom of the figure with a ratio
of roughly 107 . Once again it is observed that there is no tendency for these solutions to move
towards the RANS solution (ratio of 1.0). The LES solutions stay entirely unsteady and three-
dimensional, and the correct decrease in this ratio over time is shown. The 128x128x256 mesh
is close to DNS and the 256x256x512 mesh is clearly a DNS simulation even though the model
1s technically on.

4.5 Scaling

In classic LES models the lengthscale is assumed to be proportional to the mesh size, Ax, and it
| 2

can shown that the gradients scale like », = €A ' . The eddy viscosity is then constructed from
1 4
this scaling and has the form, v, =u'.‘jA2 =g'A’. The use of the mesh size to infer the

lengthscale is why classic LES fails outside of the inertial range (close to the DNS or RANS
regimes). It is also one reason why the proposed self-adaptive model (which predicts the
lengthscale and does not infer it) can operate at any mesh size. However, the current model



should still obtain the classical LES scaling in the inertial subrange. In other words, the
lengthscale predicted by the model ( L, = k**/£ ) should be proportional to the mesh size, when

the model is operating in the LES regime.

Figure 14 looks at predicted lengthscale (in log scale) at a fixed time t=0.5 for the various
meshes. At small values of Ax (large number of mesh points) it is obvious that the lengthscale is
indeed a linear function of grid spacing as would be expected with classic LES. A reference line
has been added (dotted line) with a slope of 1.0 for comparison. If a well defined -5/3 slope were
to be observed in the energy spectra, one would assume that classic LES would closely match the
reference line in that -5/3 region.
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Figure 14. Lengthscale behavior at time = 0.5s.

Because the spectra at this moderate Reynolds number (Figures 6 and 9) show only a weakly
observable -5/3 slope, it is not surprising that the lengthscale shown in figure 15 does not match
the reference line exactly. One would also expect viscous effects (the influence of a viscous
lengthscale) to reduce the scaling below linear and this is indeed observed. The figure clearly
shows how the turbulent lengthscale is not related to the mesh spacing outside the LES regime.

Mesh resolutions smaller than 64x64x128 do not exhibit the linear behavior because now the
relevant turbulent lengthscale is no longer related to the mesh size. There is a transition region
that one might call VLES (32x32x64) but not full LES. The 8x8x16 mesh might be considered
the start of URANS (as shown in Figure 14), where the largest scales can just be resolved, and
unsteady 3D solutions maintained. These smallest mesh sizes are where the solutions can not
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sustain a cascade because all the largest turbulence has scales that are smaller than the mesh size.
Interestingly, Carati et. al.' conducted LES simulations for isotropic decaying turbulence and
determined that the smallest mesh size possible for a classic (dynamic model) LES simulation
was 48 . This is in very good agreement with Figure 14, and is just where the elbow in the curve
oceurs.

5 Parallel Programming

Even with current technological advances in computer hardware, large simulations can require an
extraordinary amount of computer resources. Performing a 256x256x512 simulation for these test
cases requires the computer to solve approximately 34 million grid points. It is obvious that a
standard PC will not be able to handle the computational requirements for this case anytime in the
near future. In order to decrease simulation time and lower the memory requirements, the code
was parallelized. This was accomplished by utilizing the Messaging Passing Interface (MPI)
library. MPI is a library of functions for Fortran and C/C++ that distributes information from a
single processor to multiple processors. Using more processors allows the larger simulations in
this work to be accomplished.

5.1 Boundary Conditions

While MPI facilitates the transfer of data between processors, care must be taken to ensure the
correct data is passed between neighboring processors. All simulations performed in this work
use periodic boundary conditions as shown on the left side of Figure 15.
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Figure 15. Single processor (left side) and MPI (right side) partitioning of the problem.

This figure (left side) shows how data is stored and distributed for periodic boundary conditions
on a single processor. All of the interior points are within a domain of Lx and Ly (shaded area)
and stored on a single processor. The ghost cells are used for the periodic boundary conditions
and are given by the values of the interior points at each face in this rectangle. Here, Nemo the
fish is seen swimming out of the left side of the domain. Because of periodicity, he is wrapped
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around to the opposite face he just left, and is seen swimming into the domain from the right hand
side. Similarly, if he swims out of any other face, he will wrap around to the opposite face he just
left. This ensures that Nemo continues swimming inside the periodic domain.

Suppose that the same data set is desired to be split in half, then each processor should get half of
the interior points as shown (right side of Figure 15). Here the x-direction, with an initial domain
of (Lx) has been split in half (Lx/2) for two processors. It is now apparent that care must be taken
when determining the correct transfer of data between these two processors. The only way to
correctly determine this information is by allowing every processor to locate its neighbor for each
of the (cubic) domain's six faces. From Figure 15 for the partial domain, interior information
must be shared with neighboring processors (given by the smiley face). However, at domain
edges, the boundary information should wrap around to the opposing face, (given by Nemo). An
algorithm was developed to do exactly this and is explained in detail in the next section.

5.2 Neighboring CPU Data

The algorithm used to compute neighboring CPU information is detailed in Appendix B. Figure
16 shows a parallel simulation consisting of eight processors. The left side of Figure 16 shows the
data together, the right side shows the front and back plane separated for clarity with each of the 8
processors numbered from 0-7. Since each cube of data has six sides it is clear that there will be
six neighboring CPU locations calculated for each processor. This algorithm uses simple integer
division 1o allow each processor to find its correct neighbors for an arbitrary partition..

—_—

6 7
2 3
PARTITION 2 3 6 7
3 —_—
2 3
5
—=X 0 | 4 5
1
0 1
FRONT BACK
//
Z

Figure 16. Neighboring CPU location.

By visual inspection the processor to the right of 0 is processor 1. There is no processor to the left
of 0, however periodicity tells us that the information should wrap around from processor 1. The
processor above 0 is processor 2, and below is also 2 (from periodicity). Finally, the processor in
front of 0 is 4 (periodicity) and the processor behind 0 is also processor 4.

21



This simple reasoning is exactly what the algorithm computes in Appendix B. For the processor
in question, the MPI assigned integer 'myid' is 0. Because there are two processors in every
direction, NXP = NYP = NZP = 2. The values of ix, iy, and iz are calculated as 1. The CPU to
the right of processor 0 will be calculated as (CPUinfol = 1), the CPU to the left (CPUinfo2 = 1),
the CPU at the top and bottom are given by (CPUinfo3 = 2, CPUinfo4 = 2) respectively. Finally,
the CPU located at the back and front of the CPU in question are (CPUinfo5 = 4, CPUinfo6 = 4)
respectively. Simple integer division based on the variable 'myid' computes neighboring
processor locations. The 'If' statements shown in Appendix B are used whenever a processor is on
the edge of a domain (such as computing the processor to the left of 0). If any of these processors
are on this domain edge, it is computed that boundary information will wrap around to ensure
periodicity. It is clear from the above figure that the algorithm has correctly determined the
location of the neighboring CPUs relative to processor 0.

5.3 Transfer of Boundary Condition Information

With everything in place, the actual passing of the boundary information will now be explained in
detail. The cell indexing convention is shown in Figure 17. This shows that the interior points are
given by the data values from 1-NX and 1-NY, where NX is the number of points in the x-
direction and NY is the number of points in the y-direction. The ghost cells (dashed lines) used
for the boundary conditions are placed at index locations around the interior values. The location
of cell 1 (0,0), cell 2 (NX+1,0), cell 3 (NX+1,NY+1), and cell 4 (O,NY+1) are the four corners for
this 2d example. The correct procedure must be followed in order for these four corner cells to
contain the correct data. The z-direction (out of the page) follows the same logic, but for clarity is
not shown.
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Figure 17. Cell indexing convention.
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In order to enforce periodic boundary conditions on this cell, there are four update steps for this
2d example. These update steps are shown in Figure 18. Step one updates the ghost cells with
values from the right side interiors (NX,1-NY) as shown. Because interior values are used, these
are correct. The second step takes the top interior values (1-NX,NY) along with ghost cell values
at (ONY) and (NX+I,NY). When transferred to the bottom ghost cell plane, cell 2 now has
incorrect information as shown. To correct this cell, the third step is performed. This step takes
the left interior values (1,1-NY) along with ghost cell values at (1,0) and (1,NY+1), and transfers
these to the ghost cells on the right side. When step three has completed, the incorrect cell 2 value
has been replaced with a correct value, but now cell 3 contains bad information as shown.
Finally, the fourth step takes the bottom plane (0-NX+1,1) and transfers these corrected values to
the top ghost cells at NY+1. Now cell 3 has been replaced with correct data and all ghost cell
information is correct. This exact procedure must be followed in this precise order to ensure that
all ghost cells (especially the comers) are indeed updated with the correct information. For three
dimensions (z-direction) would also have two additional update steps (after x and y), following
the same logic.
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Figure 18. Ghost cell update procedure.
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The Fortran code used for the the procedure in Figure 18 is given in Appendix C. For brevity
only the x-direction will be explained in great detail, it really is trivial to understand and apply the
same information for the y and z directions. The values of NX, NY, NZ are given by the number
of interior points in the domain for each direction. The variable (xx) is a 3D array of data with
correct interior domain information, but with incorrect boundary information stored at the ghost
cells. The routines Send BCX and Recv BCX, are given in Appendix C. These are the
procedures that update the ghost cell information.

Subroutine pPeriodic_ BC(xx)
Call Send BCX (NX,NY,NZ,xx) !Send B/C info for x dir
Call Recv BCX(NX,NY,NZ,xx) !Recv B/C info for x dir

Call Send BCY(NX,NY,NZ,xx) !Send B/C info for dir

Call Recv_ BCY(NX,NY,NZ,xx) !Recv B/C info for y dir

Call Send BCZ(NX,NY,NZ,xx) !Send B/C info for z dir
Call Recv BCZ(NX,NY,NZ,xx) !Recv B/C info for z dir

End Subroutine pPeriodic BC

The routine above performs ghost cell updates | and 2 with Send/Recv. BCX. Ghost cell updates
3 and 4 are performed with Send/Recv_BCY. The send operation in Send BCX uses the MPI
function call MPI ISEND and MPI IRECV (commonly used MPI functions are shown in
Appendix D). There are two basic ways to transfer information with MPI, these are blocking and
non-blocking operations. A blocking operation (such as MPI_SEND) will perform the function
call requested and also halts all processors from continuing any further until the requested process
is completed. A non-blocking operation (such as a MPI_ISEND) will send the required data to all
processors, but will not halt any processors from doing useful work while the send operation is in
progress. This (will be shown shortly) can affect the overall performance of the code and care
should be taken to decide which operation to perform. It was decided that the boundary
conditions will use non-blocking send/receives and use MPI WAITALL to guarantee this data is
received in the appropriate order of Figure 18. The MPI WAITALL command (Appendix D)
allows the programmer to decide when a manual block should be placed in the code. The
structure of the pPeriodic BC routine uses MPI_ISEND and MP1 _IRECV to send and receive
the correct ghost cell boundary information. Because these are non-blocking, all of this data is
sent at once 1o all processors. The routine Recv. BCX is just a MPI WAITALL that will not let
any processor continue until all of the send/receives for the x-direction are finished. Because non-
blocking operations are performed, if the WAITALL incurs any performance penalty at all, it will
be much less than performing a blocking send and a blocking receive. This same methodology is
applied to the y and z directions. This strictly guarantees that the x-direction information is sent
and received first, y-direction follows second, and the z direction is last.
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The reader is now referred to the Send BCX subroutine in Appendix C. The variables sent into
this routine are the NX,NY ,NZ, and the 3D array that is to be updated with periodic boundary
conditions. A send buffer is created, (sbuffx_r) that contains the values of the y-z plane at fixed
interior x-location (beginning (1) or ending (NX)). To take out any ambiguity, the send buffer (x-
direction) left plane and send buffer (x-direction) right plane are clearly shown in Figure 19,
along with orientation axis.

sbuffx 1

LEFT

Figure 19. Orientation and planar data values used by periodic boundary conditions.

As is shown in Recv_ BCX routine these x-direction planar values are now (once the operation is
complete) used to update the ghost cell information for the input array that is desired to be
periodic. For clarity these values are given by the receive buffer (x-direction) right side (rbuffx r)
and receive buffer (x-direction) left side (rbuffx_I). With the process explained in detail, it should
be apparent that the y and z directions follow the exact same procedure outlined above, with only
slight changes in orientation and by the naming convention of the send and receive buffers. For
example the send buffer (y-direction) top x-z planar data is stored as sbuffy t, and the sent
bottom planar data is stored as sbuffy b, etc.
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54 MPI11/O

The CPU order shown in Figure 16 is determined by the input routine shown below.

NXP = DNX/NX ! # processors in x-dir
NYP = DNY/NY ! # processors in y-dir
NZP = DNZ/NZ ! # processors in z-dir

! CPU location indices

k1l = myid/ (NXP*NYP) + 1
kr = mod (myid, NYP*NXP)
jl = kxr/NXP + 1

il = mod(kr,NXP) + 1

! read in the total field and store in a temporary array
! called ud.
open (unit=503,file=trim(str4), form='formatted')
read (503,*) (((uJ(i,j,k),i=0,DNX+1),j=0,DNY+1),k=0,DNZ+1)
!'! now, let every processor get it's own "chunk" of data.
tke (0:NX+1,0:NY+1,0:NZ+1) =

uJ (NX* (il1-1) : (11*NX)+1,NY*(j1-1): (j1*NY)+1,NZ*(kl-1): (k1*NZ)+1
)

close (unit=503) !close the large field ud.

The input routine is shown for the kinetic energy (tke). All other data fields (u, v, w, eps) are read
in exactly the same way. In Fortran the expression mod(n,m) gives the remainder when n is
divided by m; it is applied to integers. Examples are mod(8,3) = 2, mod(27,4) = 3, mod(11,2) = 1,
mod(20,5) = 0. The number of processors in each direction are determined by dividing the total
domain size (DNX, DNY, DNZ) into smaller problem sizes (NX, NY, NZ). Then integer division
and the mod(n,m) expression are used to compute three integer variables (il, j1, kl). The problem
size plus boundaries is then defined for every processor and the code uses (il, jl, k) to correctly
grab a 'chunk’ of data from the total domain. Finally the large (total) array ul is closed.
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Refer to the domain decomposition show in Figure 20, where a domain is split in half (x-
direction). Assume (for this example) that we wish to run a 64x64x128 simulation on two
processors as shown. The total domain is given as (DNX=64, DNY=64, DNZ=128), the problem
size for each processor would be (NX=32, NY=64, NZ=128).
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Figure 20. Single processor (left side) and MPI (right side) partitioning of the 64x64x128
example problem.

MPI will randomly assign the variable 'myid' to each processor it uses. In this case, two
processors would be available with 'myid=0' and 'myid=1". To ensure that the correct processor is
located exactly as shown in Figure 20, the input routine above is used. This routine, reads in the
total energy array (with boundaries) and stores this in a temporary array (uJ(0:65,0:65,0:129)) on
each CPU. The processor with 'myid = 0', computes (il=1, jl=1, kl=1). This stores its 'chunk' of
kinetic energy (tke) with information from the total domain uJ(0:33, 0:65, 0:129), exactly as
shown in Figure 20. Likewise, the processor 'myid = 1', computes (il=2, jI=1, kl=1), which stores
it's (tke) from the values ul(32:65, 0:65, 0:129). Finally, now that the large temporary array (ul)
has been partitioned correctly, it is closed. It is clear from this example, that these are indeed the
correct indices for the input arrays. This guarantees that the input data will indeed follow the
numbering sequence shown in Figure 18, with the appropriate interior domain and boundary
(ghost cell) information.

5.5 Data Output

The output routine (Appendix F) follows exactly the same logic as the input routine, except in
reverse order. Although this routine is shown for kinetic energy (tke), the other fields (u, v, w,
eps) follow the same procedure. Typically a root processor is chosen, usually 'myid=0', is
selected. This root processor will be the processor that collects all data from other CPUs using a
(MPI_RECYV) and pieces together the total domain by using the values of il, jI ,kl. A simple 'If
statement allows all other processors (not root) to send (MPI Send) their data along with the
corresponding values (myid, i, jl, kl). Once the root processor has received all of the data from
each processor and pieced together the total domain, it then writes out data for post-processing

27



use. The output routine shown does just this, and is clearly explained in Appendix F by the
programmer comments.

5.6 Global Calculations

This last section deals with global variables used in the calculations of the code. Namely, these
are the SUM, MINVAL, and MAXVAL Fortran calls. With the total domain now decomposed
and sent to 'N' number of processors there must be a way to figure out the total SUM of data
values globally (not just on each processor). Similarly the MINVAL/MAXVAL functions must
give values for the total domain and not for each processor. In order to accomplish this, three
extra routines were used in conjunction with the MPI_ ALLREDUCE function (Appendix D).
These three routines are shown in Appendix E. It should be straightforward to see that the
ALLREDUCE function simply combines the values from all processors to calculate a desired
global value. This global value is then distributed to all processors. For example, if an array is
given by (1.02.03.04.0), and each value is sent to a parallel job with four processors, each
processor stores the entries 1.0 - 4.0. If a Fortran SUM is performed, processor 1 calculates the
total sum of the given array as 1.0, processor 2 calculates the total sum to be 2.0, etc. However
with MPI ALLREDUCE, the actual global sum of (1.0+2.0+3.0+4.0=10.0) is calculated

and this global value is then sent to every processor.
5.7 Parallel Optimization

With all the pieces mentioned above in place, the code was fully parallelized. Extensive testing
and debugging proved that the parallel version of the code gives (almost to machine precision)
the same solution as the serial version. The next and last step was to optimize the code in order to
fully take advantage of using multiple processors. Optimization in parallel consists of efficiently
sending, receiving, and computing data.

Start_ MPI
!Non-Optimized

Compute Sqgrt (Data B) computes square root of Data

MPI SEND (Data A) ! (blocking) send to all processors

(takes a while)
lprocessors sit 1idle at this point wuntil the send is
completed.

Answer = (Data A and Sqgrt (Data B))

IOptimized

MPI_ ISEND (Data A) 'non-blocking send to all
processors (takes a while)

Compute Sgrt (Data B) lwith send in progress,

computer continues to work
lonce the Sgrt is calculated, the send has completed

MPI_ WAITALL !manual stopping point to make
sure Data A was sent

Answer = (Data A and Sgrt (Data B))
End_MPI

A simple example is shown obove, where a non-optimized and an optimized solution are
computed with two arrays (Data A, Data B). The non-optimized code computes the square root of
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(Data B) and then sends (Data A) to all processors. At this point, the answer cannot be computed
until this sending operation has been completed. Recall that MPI SEND is a blocking function
call, and will halt all processors until the sending operation is completed. If (Data A) is very
large, this send operation can take a long time, and at this point all processors sit idle and wait.
When the send is completed the solution (Answer) is calculated. Obviously this will yield a
correct answer, but it is not the best use of available resources because now an additional penalty
1s incurred by the communication time between processors.

The optimized code however, will yield the correct answer, and will do so faster! This is because
the MPI1 ISEND is performed (as shown). Recall that MP1 ISEND is a non-blocking operation.
While this information is being sent, there is no reason why the processors cannot continue to do
some useful work. As (Data A) is sent (optimized code), all processors begin computing the
square root of (Data B). When the square root has been calculated, most (or ideally all) of (Data
A) has been sent. If all of (Data A) was sent during the computation on (Data B), the WAITALL
function incurs no communication penalty. Even if all of (Data A) was not sent, the WAITALL
still takes less time than the blocking send performed by the non-optimized code. The final
answer will be computed much faster. This hides the MPI communication times behind actual
computational work in order to develop an ideally optimized code. By letting each processor do
as much work as possible during these MPI communication function calls, better parallel
performance is obviously obtained. This idea was mentioned above and shown to be effective for
the periodic boundary condition routine shown in Section 4.1.2.

Figure 21 shows the total simulation time for a 128x128x256 and a 64x64x128 simulation before
and after MPI optimization. This figure shows that once parallelized, the total simulation time for
a 128x128x256 simulation was 5.2 hours and 0.71 hours for the 64x64x128 case, using eight
processors. After the code was optimized by hiding as much of the communication time as
possible, the total simulation time for both cases (again with 8 processors) dropped by roughly 20
percent. This reduction with the optimized code saves valuable supercomputing time.

12Bx128x256 (8 proc)

[0128x128x256 (8 proc, optimized)

| | E564x64x128 (8 proc)

[164x64x128 (8 proc, optimized)

Time (hrs)

Figure 21. Total simulation time (hrs) for 64x64x128 and 128x128x256 before and after
optimization on the UMass cluster.

5.8 MPI Performance
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Figure 22 shows the parallel performance (log scale) as recorded on the UMass cluster named
'von Karman'. This figure shows the total simulation time (min) versus the number of CPUs used.
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Figure 22. Total simulation time (min) on the UMass cluster vs. number of CPUs.

It is apparent that for the 32x32x64 simulation (squares), that using additional processors with
von Karman increases the time to run a simulation. This is because the communication time
between processors is greater than actual processor work. Luckily, the 64x64x128 (diamonds)
and 128x128x256 (x's) have enough work on each processor so that the communication time is
better hidden and is much lower. Here we see that using additional processors immediately
decreases the simulation time. Because the UMass cluster was used extensively for testing and
debugging, a plot of MPI performance such as Figure 22 was needed. It should be noted that von
Karman is an old machine with a slow interconnect between processors. This is especially
noticeable at the 32x32x64 mesh. A more accurate comparison of parallel performance is shown
in Figure 23.
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Figure 23. Speed-up factor vs. number of processors (UMass and ARSC).

This figure shows the parallel performance of the developed code as recorded on the Arctic
Region Supercomputing center IBM/P690 named 'Iceberg' (symbols with solid lines) compared
against 'von Karman' (symbols with dashed lines). The speed-up factor is given by the total
simulation time on a single processor divided by the simulation time for multiple processors. It is
not necessarily a measure of how fast a given CPU is, but rather, a measure of the communication
time between processors for any given architecture. The ideal performance is also shown (solid
line - circles) and shows a linear relationship. For example, using twice as many processors,
should give (ideally) a speed-up factor of two, etc. Because von Karman has a slow interconnect,
it is not surprising to see that it gives the worst performance (bottom three curves). Von Karman
does not even begin to follow the ideal speed-up curve until the 128x128x256 mesh size. Even at
this large mesh, the slow communication time between processors only gives a speed-up factor of
4.7 for eight processors. More interesting however, is how well the DoD funded supercomputer
performs with the developed code. It has much faster communication between processors.

It is clear from Figure 23 increasing the number of processors on Iceberg immediately results in a
faster simulation time. This is shown by (solid lines - symbols) the close behavior of the
simulations on Iceberg to the ideal speed-up. Even with the small 32x32x64 simulation, Iceberg's
communication time is so fast, that using additional processors immediately decreases simulation
time (unlike von Karman). At the largest resolution of 128x128x256 (for eight processors) the
speed-up on Iceberg is 6.8 compared to von Karman with 4.7, and the ideal of 8.0. As was
expected, Iceberg outperforms von Karman. It should be mentioned that the increased speed-up
factor for the 64x64x128 simulation on Iceberg has nothing to do with MPI or optimization. This
has to do with the particular architecture the code is running on. In this case, Iceberg appears to
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handle the 64x64x128 extremely well and gives better than ideal speed-up factors. With the
available information on parallel performance, all of the large simulations 32x32x64 -
256x256x512 were performed with multiple processors at ARSC.

6 Reynolds Stress Transport Models

We wish to demonstrate that the ability to model turbulence at all mesh scales (universal
modeling) is not a particular property of the modified (backscattering) k/e model presented in
section 4. It is a general approach that can work for many different RANS models. In this
section we will show the behavior of a Reynolds stress transport (RST) model when it is used on
a fine mesh as an LES subgrid scale model.

RST are the next level in complexity for turbulence modeling beyond two-equation models.
They are particularly interesting in the context of this work because they can backscatter energy

without any explicit modification. In particular, a modification such as a in the k/e model is not
necessary.

RST models contain more physics than two-equation models so they can lead to better
predictions in the coarse mesh limit, and might even lead to better predictions at the LES mesh
level. The exact Reynolds stress transport equation is,

DR, "
E=f’l+91+81_£”+n” +81 (15)

el exac!  modeled n!n:}:fcd maodeled  exact

This equation states that: the material derivative of R, equals the rate of production (7)), plus
transport by diffusion (D] + D, ), minus the rate of dissipation (¢,), plus redistribution due to
turbulent pressure-strain interaction (I'1,), plus redistribution due to rotation € . The known

quantities are labeled 'exact' and the unknown quantities require models to solve this system.

Major advantages with this approach are that the production term (usually a dominant term) is
now exact, along with any rotational effects. Because transport equations are solved for the
evolution of R, the eddy viscosity hypothesis is not needed. Because an eddy viscosity
assumption is not used, backscatter is possible.  Finally, since most of the computational
expense for this finite volume code is spent on solving a Poisson equation for pressure, additional
transport equations may improve the accuracy of the model significantly, with only a minimal
increase in computational requirements.
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6.1 Universal RST Model

The modeled transport equation for the Reynolds stress tensor is,

aﬁmn a(u,'_R_""‘)_ a |: a-k‘mn
+ (v+v,)

+ F)mn (g ;Emu +
ot ox, ox :|

/

Cp2°(S,, Rin +S,, Rim + PRun)+Cp2" (W, Rjn + W, Rm) (16)
2 - 4 | ok ORm
+Cpl(E)N=6,. —Rwn)+Cp2 S +2v. | ——
p (j—)(3 mn ) p i T[k ax* axJt J

3 : ; ; = = R, .
This equation predicts the evolution of R; where R; = T” is the dimensionless stress tensor.

The model constants are given by, Cpl=09, Cp2* =08, Cp2" =0.6. The value of
Cp2’ =-0.2F*, where F :detenninanl(%ﬁg). The resolved strain rate tensor is defined as
S, =%, +u,) and the resolved vorticity tensor is given by W, =%(u,, —u,,). The

production term is given as P = —(E:& u, +R u, ) . The value of P = %f_’;; , and the turbulent

- el
viscosity is defined as v, = ('":* . Note that the turbulent viscosity is only used in the diffusion

terms. It is not used to determine the stresses.

Additionally, the transport equations for u,, k and £ are again needed for closure and are shown

below.
du d dp+ik) 0 du =
e e = Lo R
TR (u,u,) > +ax,Ivax,. kR, (17)
ok 9 0 v+v, odk. —
—+—(k — i it P—- 18
3 a3 P ae g T T T “
88 o0 o5 O p W Mo B S5
al + a.l'; (8”]) 8x} [( O'r )ax} ]+k[crlp Cﬂe] (Ig)

Once again, overbars on the velocity and pressure have been dropped for convenience. The

production term (P) is defined above. The constants are fairly standard A/ constants,
C,=155,0,=12,0,=10, C,=0.15. The parameter C,, is determined from the analysis

of Perot and de Bruyn Kops'*.

6.2 Results

A number of simulations were performed with the RST model described above using the same
isotropic decaying turbulence (Re=640) initial conditions used for the two-equation universal &/&
model. Simulations were performed for 32x32x64 - 128x128x256 mesh sizes and total kinetic
energy predictions are shown in Figure 24. Once again the DNS data is shown by the large
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circles. These VLES and LES simulations match the DNS data well.  Small improvements
might be possible by tuning some of the RST model constants.

1000 T T T T T T
800 O O DNS (768x768x1536) i
32x32x64
64x64x128
128x128x256
600 256x256x512 =

400

TKE (cm?/s?)

200

3.5

Figure 24. RST model total kinetic energy predictions for (initial Re=640) isotropic decaying
turbulence.

Two of the kinetic energy ratios are shown in figure 25. These two mesh resolutions are the most
difficult to capture since they are where the VLES behavior transitions to URANS.  As with the
previous k/e model, the RST model maintains a relatively constant kinetic energy ratio, that tends
to drift downwards after long times. This means that while the different meshes give the same
total behavior (figure 24), they have different underlying solutions. The finer mesh cases
automatically resolve more of the turbulence using first principals and model less of the
turbulence.  Unlike the k/e version of this approach (that required a modification to enable
energy backscatter) this RST model is identical to its RANS counterpart. It is simply being
applied to LES meshes, and is shown to automatically perform as an LES subgrid scale model.
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Figure 25. RST model ratio of modeled kinetic energy to total kinetic energy, Re=640.

7 Conclusions

The primary goal of this project was to demonstrate that RANS models can be used to model
turbulence at any mesh resolution. This demonstration has been successfully performed using
two very different types of RANS models. The key requirement of these models is that they must
be able to backscatter energy. So some classical models which enforce a unidirectional energy
transfer (such as simple eddy viscosity models) cannot automatically adapt to the available mesh
resolution. The effectiveness of the RST model suggests that many algebraic Reynolds stress
models and nonlinear k/e models (that theoretically have the ability to backscatter) probably
would perform like RST model and not require any backscatter modification.

We have demonstrated that this modeling approach automatically computes as much of the
turbulence as the mesh allows, and models the rest. Different mesh resolutions produce the same
total behavior, but produce very different underlying solutions. The finer the mesh, the more
three-dimensional and unsteady the solution stays.  Despite the fact that the equations are
identical, the nonlinearity of the equation system means that solutions are sensitive to the mesh
resolution. The method is robust. Starting with very different initial conditions, results in
essentially the same solution behavior after long times. The length of time to adjust from
arbitrary initial conditions appears to be proportional to the modeled turbulence eddy turn over

time.
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It was also demonstrated that this approach reproduces the classical LES length scale assumption
(eddy length proportional to the mesh size) in the limit that that assumption is valid (in the inertial
range). The advantage of the demonstrated approach is that it is valid much more broadly — both
in the RANS and DNS limits, and in complex flows where an inertial range may well not exist.

The practical utility of a turbulence modeling approach that can be applied to any mesh cannot be
overstated. This model is not dictated by the proximity of walls (like DES). 1t is not controlled
by the user (like PANS), since it is rarely known to the user beforehand what kinetic energy ratio
would be correct for a particular mesh. It does not blend an LES and RANS model together in
an ad hoc way, like the other hybrid models. This approach is, in many ways, much simpler.
We have demonstrated that appropriately chosen RANS models can function well at any mesh
resolution. These models lead to a universal modeling approach that can be applied at any mesh
resolution. The user specifies what they can afford, and the model provides the best solution it
can with what the user can afford.

This approach has the potential to make LES far more accessible. Existing commercial and
industrial CFD codes with RANS models can very easily do LES now. A new code and model is
not necessary. New expertise is not necessary.

Finally, this project has broken the artificial wall that had been built between the LES and RANS
modeling approaches. Despite the differences in terminology, and the insistence of various
model developers to the contrary, this work unambiguously shows there is no fundamental
distinction between the RANS and LES modeling approaches.
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9 Appendices
A. Derivation of the Evolution Equations
The incompressible Navier-Stokes equations are:

U =0 (7)
u!,! + (”aul )Jr = _p.i + o-ll’.l (8)

Following the ideas of Germano, the moment of (8) is taken with u,, another moment of this
same equation with indices interchanged yields (9) and (10).

uu,, +u, (wu,), = —pu, U0, 9)
wu,, u (), = =P U+ UO (10)

Adding together (9) and (10) and using a little calculus, it can be shown that the resulting
equation can be written as:

(nr:uJ ],, +(upu,), = _[puﬁ’jE + pu 6, —v(u‘.uj )J]* +2ps,; —2vu, u,, (1)

if a Newtonian fluid o, = vu, , is assumed. Recall that the turbulent stress tensor was previously

defined as R =wu,—wu, , the double bracket was <a,b, >= ;bj—ﬁlf_); , and the turbulent
( SUuu —uR, —u,
equations (7), (8), and (11) and substituting for the stress tensor, double bracket, and turbulent
transport will recover the equations below:

transport term was defined by T

A R, —u, R, —uuu, . Simply averaging

wix =0 (12)
wi+ @), ==p,+vus, =R, (13)

Ru..‘ i u.i Rij.l = VR:;'..H

a (Rji E!.l + Rl'iE,l.-k )

14
S T:ﬁ 5.* —(< Pl >4 < P })—ZV < Uy s, > ( )

Hence it is shown that the averaging invariance procedure of Germano does indeed provide
evolution equations that are exactly the same as the Reynolds stress transport (RST) equations.

B. CPU Neighbors

Subroutine CPU neigh()
Implicit None
Integer :: iz,iy,ix, tmp
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t1location in CPU grid

iz = myid/ (NXP*NYP) + 1
tmp = myid- (iz-1) *NXP*NYP
iy = tmp/NXP + 1

ix = tmp - (iy-1)*NXP + 1

!Compute neighboring CPU locations below

CPU info(1l) = myid+1 !x-dir right
if ( ix == NXP) CPU_info(l) = CPU_info(l) - NXP

CPU_info(2) = myid-1 !x-dir left
if ( ix == 1 ) CPU_info(2) = CPU_info(2) + NXP

CPU_info(3) = myid+NXP !y-dir top
if ( iy == NYP) CPU_info(3) = CPU_info(3) - NXP*NYP

CPU_info(4) = myid-NXP !y-dir bottom
if ( iy == 1 ) CPU_info(4) = CPU_info(4) + NXP*NYP

CPU_info(5) = myid+NXP*NYP !z-dir back
if ( iz == NZP) CPU_info(5) = CPU_info(5) - NXP*NYP*NZP

CPU_info(6) = myid-NXP*NYP !z-dir front
if ( iz == ) CPU_info(6) = CPU_info(6) + NXP*NYP*NZP

End Subroutine CPU_neigh

Integer 'myid!, is a variable MPI assigns to each processor in use. If eight processors are used in
parallel 'myid' would range from 0 - 7. The variables NXP, NYP, and NZP correspond to the
number of processors in each direction (x,y,z). The calculated integer, CPUinfol, is the CPU
located to the right of the processor in question. CPUinfo2 computes the CPU to the left of the
processor in question. CPUinfo3 and CPUinfo4 correspond to the top and bottom CPUs
respectively. Lastly, CPUinfoS and CPUinfo6 are the back and front CPUs located relative to the
CPU in question. Further clarification by (top, bottom, etc.) was clearly shown in Figure 16.

C. Periodic Boundary Condition Data Transfer

! Nonblocking MPI send x
Subroutine Send BCX (NX,NY,NZ,var)
Implicit None

Integer :: NX,NY,NZ

Real, Intent(IN) :: var(0:NX+1,0:NY+1,0:NZ+1)
Integer :: num, tagl,tag2, cpul,cpu2

Real :: tmpl, tmp2

num = (NY+2)* (NZ+2)

cpul = CPU_info(1)

cpu2 = CPU_info(2)
tagl = tag+l
tag2 = tag+2

!Sending right y-z plane
sbuffx_r(0:NY+1,0:NZ+1) = var(NX,0:NY+1,0:NZ+1)
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call mpi_isend (sbuffx_r,num,datasize,cpul,tagl,MPI_COMM WORLD,
handle_sx(1),ierr)

tSending left y-z plane

sbuffx 1(0:NY+1,0:NZ+1) = var(1,0:NY+1,0:NZ+1)

call mpi_isend (sbuffx_1l,num,datasize,cpu2,tag2,MPI_COMM_WORLD,
handle_sx(2),ierr)

'Receiving right y-z plane
call mpi_irecv (rbuffx r,num,datasize,cpul,tag2,MPI_COMM WORLD,
handle_rx(1),ierr)

!Receiving left y-z plane
call mpi irecv (rbuffx 1,num,datasize,cpu2,tagl,MPI_COMM WORLD,
handle_rx(2),ierr)

End Subroutine Send BCX

R R S S S R R R R R S R S R R R R
! Nonblocking MPI recieve - x

Subroutine Recv_BCX(NX,NY,NZ,var)

Implicit None

Integer :: NX,NY,NZ , i

Real :: var(0:NX+1,0:NY+1,0:NZ+1)

! wait for recv and send to complete
call mpi waitall(2,handle sx,status_s,ierr) !wait for sends
call mpi waitall(2,handle_rx,status_r,ierr) !wait for recvs

tfrom the left (high #)

'move data values from buffers into ghost cells
var (0,0:NY+1,0:NZ+1) = rbuffx 1(0:NY+1,0:N2Z+1)
from the right CPU (low #)

!move data values from buffers into ghost cells

var (NX+1,0:NY+1,0:NZ+1) = rbuffx r(0:NY+1,60:NZ+1)

End Subroutine Recv BCX

D. Typical MPI Functions Used

Great detail explaining MPI function calls can be found at: http://www-unix.mcs.anl.gov/
Below are a selection of the main function calls used in this project.

IR R R A R R R S R R AR R R R SRR S RS ES R E R E SRS R EEE R

MPI_Isend( void *buf, int count, MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm, MPI_Request *request )

MPI_Irecv( void *buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Request *request )

Input Parameters:
buf: initial address of send/recieve buffer (choice).
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count : number of elements in send/receive buffer (integer).
datatype: datatype of each send/receive buffer element (handle).

source: rank of source (integer).
dest: rank of destination (integer) .
tag: message tag (integer).

comm : communicator (handle).

Output Parameter
request: communication request (handle)

All MPI routines in Fortran have an additional argument ierr at the end of
the argument list.
ISR R E R S R SR R R R R R R R R R R R R R R R R R R R RS R R SRR R R R
MPI_Send( void *buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm }

MPI_Recv( void *buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Status *status )

Input Parameters:

buf : initial address of send/receive buffer (choice)

count : number of elements in send buffer (nonnegative integer)
datatype: datatype of each send/receive buffer element (handle)
dest: rank of destination (integer)

tag: message tag (integer)

comm: communicator (handle)

Output Parameters:
buf : initial address of receive buffer (choice)
status: status object (Status)
I R e R R R R R R R R S R R
MPI_Waitall(
int count,
MPI_Request array of requests|],
MPI_Status array of statuses[] )

Input Parameters:

count : lists length (integer).
array_of requests: array of requests (array of handles)
Output Parameter: array of statuses

array of status objects (array of Status). May be MPI_STATUSES_IGNORE
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MPI_Allreduce ( void *sendbuf, void *recvbuf, int count,
MPI Datatype datatype, MPI _Op op, MPI_Comm comm )

Input Parameters:

sendbuf : starting address of send buffer (choice)
count : number of elements in send buffer (integer)
datatype: data type of elements of send buffer (handle)
op: operation (handle)

comm : communicator (handle)

Output Parameter:
recvbuf :
starting address of receive buffer (choice)
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E. Global Values

Real Function pSUM(var)
Implicit None

Real :: num, var(:,:,:)
Real :: data G

num = SUM(var)
if (numprocs > 1) then

Call MPI_Allreduce (num,data_G,1,datasize,MPI_SUM,MPI_COMM WORLD,
ierr) !MPI_REAL

pSUM = data G
else

PSUM = num
end if

End Function pSUM
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Real Function pMAXVAL(var)

Implicit None

Real :: num, var(:,:,:)
Real :: data G

num = MAXVAL(var)

if (numprocs > 1) then
Call MPI_Allreduce{num,dataﬁG,l,datasize,MPI_MAX,MPI_COMM_WORLD,
ierr) !MPI_REAL
PMAXVAL = data G
else
PMAXVAL
end if

num

End Function pMAXVAL

LR R R R S R R R R R RS R R R R R R R R R R R R

Real Function pMINVAL(var)

Implicit None

Real :: num, var(:,:,:)
Real :: data G

num = MINVAL (var)

if (numprocs > 1) then
Call MPI_Allreduce (num,data G,1,datasize, MPI_MIN,MPI_COMM_WORLD,
ierr) !MPI_REAL
PMINVAL = data G
else
PMINVAL
end if

1]

num

End Function pMINVAL
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F. Data Output

Subroutine TKE OUT (dir)
Implicit None

Real :: uJ(0:DNX+1,0:DNY+1,0:DNZ+1)
Real,dimension(0:NX+1,0:NY+1,0:NZ+1) :: rbuff

Real :: intsend(1:3),intrecv(1:3)

Integer :: sendcount,recvcount,root,tag,tag2,ierr,ss(MPI_STATUS SIZE)

! (NXP, NYP, NZP, il, jl ,kl) are computed exactly as in input
root = 0 !assign root processor to be myid = 0.

recvcount = ((NX+2)* (NY+2)*(NZ+2)) !size of data to be sent
sendcount = recvcount !size of data to be received.

If (myid == 0) Then

!Store root processor data section into larger array (uJd).
uJ( NX*(il-1): (i1*NX)+1 , NY*(jl-1):(j1*NY)+1, NZ*(kl-1): (k1*NZ)+1 ) =
tke(0:NX+1, 0:NY+1, 0:NZ+1)

!After storing root information, receive the values (myid, il, jl, kl)
!from all other processors

do i = 1, numprocs-1 !loop over all processors (exept root)

!Now receive data from processor "i"
Call MPI_RECV(rbuff, recvcount,datasize,i,tag,MPI_COMM WORLD, ss,ierr)

!Now receive (il,jk,kl) from the processor that just sent data

Call MPI_RECV(intrecv,3,datasize,i,tag2,MPI_COMM WORLD, ss,ierr)

!with myid known, along with (il,jl,kl) reconstruct the large array (udJ)
'from the receive buffer.

uJ( NX*(il-1):(il*NX)+1 , NY*(jl-1):(j1l*NY)+1, NZ*(k1l-1):(k1*N2)+1 )

= rbuff (0:NX+1, 0:NY+1l, 0:NZ+1)

end do !stops loop on root

111! now write out total domain to binary file.
open (unit=500,file=trim(strl), form='binary"')
write(500) (((uJd(i,j,k),i=1,DNX),j=1,DNY),h k=1,DNZ)
close (unit=500)

Else

!If processor is not root, then send your tke data to root.

Call MPI_SEND(tke, sendcount,datasize,root,tag,MPI_COMM WORLD,ierr)
!store il,jl,kl in an array called (intsend)

intsend (1) = real (il)

intsend(2) = real(3j1)

intsend(3) = real (kl)

!Now send values of (il,jl,kl) to root.
Call MPI_SEND(intsend, 3,datasize,root,tag2,MPI_COMM_WORLD,ierr)

End If

Return
End Subroutine TKE OUT
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