14. ABSTRACT
We show confinement of light traveling in micron-size waveguides into nm-size regions. Most photonic dielectric cavities have been traditionally limited to sizes that are on the order of the wavelength of light. Here we show a decrease in mode volume by several orders of magnitude over previous dielectric microcavities based on wavelength independent dielectric discontinuities. The principle of reduction of effective mode volume, well below the dimensions of the wavelength of light can be applied to nearly every existing microcavity resonator to enhance not only light emission but also non-linear effects. Such a reduction can enable the demonstration of effective mode volumes of nm-size and increase of Purcell factor by orders of magnitude. This technique may enable new experiments in cavity Quantum Electrodynamics, ultra-sensitive single atom detection, and low threshold lasers.
Contents

Original research proposal Summary ... 2
Technical report .. 3
Participants ... 5
Refereed publications ... 5
Expenditures ... 6
Appendix: Published papers .. 7
Abstract

The bottleneck of Nanophotonics has been the lack of an “optical solder” for bridging between scales and dimensions. Our objective is to develop a new class of devices for lossless coupling, based on a new concept of strongly delocalizing the field using nano-tips. We intend to demonstrate strong coupling between micron size fibers and nano-size waveguides, 3D coupling between waveguide and strong coupling to-photonic crystals.

Our preliminary results show an enhancement of the coupling efficiency between an optical fiber and a waveguide by one order of magnitude due to the nano-tip coupler. The nano-tip coupler corresponds to the shortest SOI-based mode converter with high coupling efficiency for bridging between optical structures across size scales.

Future battlefields environments require ultra compact integrated nanophotonic structures. This novel class of devices will enable applications for on-chip, chip-to-chip and optical communication networks. It will open the door to the dream of integrated all-optical chips.

The expected budget is 150K/year for three years. The budget will cover the effort of one postdoc, one graduate student and one undergraduate student.

Objectives and goals

Bridging between nano and micron scale have been a long standing problem in the photonics field. Our objective is to develop a new class of devices for lossless coupling between optical scales. We propose a new concept for micron-size coupling between completely different types of waveguides, with different geometries and scales. In this proposal we intend to achieve coupling efficiencies of up to 95% between fiber and nano-size waveguide, and between fiber and photonic crystal waveguide using these novel structures. We also intend to demonstrate 3D coupling between waveguides in different planes. Preliminary results show order of magnitude enhancement of coupling efficiencies between micron-sized fibers and nano-scale waveguides.

Our goal in this proposal is to demonstrate
- Coupling between micron-scale and nano-scale waveguides
- Coupling between fibers and photonic crystals
- 3D coupling between waveguides
TECHNICAL REPORT

Confinement of light traveling in micron-size waveguides into nm-size regions

Using the “slot waveguide” reported in our previous report, we show that light can be confined in sub-wavelength nm-regions.

Most photonic dielectric cavities have been traditionally limited to sizes that are on the order of the wavelength of light. Cavities based on photonic crystals have been demonstrated with mode volumes as small as a few half wavelengths in each dimension [1-3]. This lower bound on the effective mode volume (V_{eff}) arises from a mechanism of confinement based on interference effects and is therefore wavelength dependent. Here we show a decrease in mode volume by several orders of magnitude over previous dielectric microcavities based on wavelength independent dielectric discontinuities.

Reducing V_{eff} in cavities enables one to control the degree of light-matter interaction for processes such as spontaneous emission, non-linear optical responses and strong coupling. The control of these interactions is crucial for applications in light emitting devices, as well as for optical switches and modulators [3-7].

In order to analyze the effect of the reduced mode volume on the Purcell effect, we embed the waveguide with a slot in a quasi-one-dimensional microcavity with a relatively high Q. The microcavity shown in Fig. 1 is a 460 nm x 260 nm buried waveguide with a refractive index of 3.48 and a cladding index of 1.46 [3]. The 1D photonic crystal on either side of the cavity consists of five 200 nm diameter holes spaced 360 nm center-to-center with a refractive index of 1.46. The cavity length at the center of the structure is 880 nm between the hole centers. The slot at the center of the cavity in Fig. 1(a) has a refractive index of 1.0 which is similar to recently reported fabrication [8]. Fig. 1(b) shows the squared magnitude of the electric field at the resonant wavelength of 1556.4 nm in the cross-sectional plane at z = 130 nm. Fig. 1(a) shows the same cavity after the introduction of a 20 nm wide slot with a refractive index of 1.0 in the cavity region. The magnitude of the major electric field component is determined using finite difference time domain (FDTD) technique for the resonant mode in each of the cavities (note that a shift of the resonance occurs, from 1556 nm to 1431 nm, when the slot is introduced due to the resulting decrease in the effective index). We calculate a decrease in \tilde{V}_{eff} from approximately $3.34(\lambda/2n)^3$ in Fig. 1(b) to $0.042(\lambda/2n)^3$ in Fig. 1(a). This corresponds to nearly an 80-fold increase in the Purcell factor and an increase in spontaneous emission rate for atoms in the cavity center by more than a factor of 20. A smaller slot in the same materials could yield over 500-fold increase in the Purcell factor.
Fig. 1 (a) Spatial distribution of $|E|^2$ from 3D FDTD in a cavity based on a buried waveguide with an embedded low index slot at its resonant wavelength of 1431.3 nm. (b) Spatial distribution of $|E|^2$ from 3D FDTD in a quasi-1D microcavity based on a buried waveguide without a slot for the resonant wavelength of 1556.4 nm.

The principle of reduction of effective mode volume, well below the dimensions of the wavelength of light can be applied to nearly every existing microcavity resonator to enhance not only light emission but also non-linear effects. Such a reduction can enable the demonstration of effective mode volumes on the order of $10^{-2}(\lambda/2n)^3$ or smaller and increase of Purcell factor by orders of magnitude. This technique may enable new experiments in cavity Quantum Electrodynamics, ultra-sensitive single atom detection, and low threshold lasers.
PARTICIPANTS

The following personnel have participated and were funded by the project:

Principal investigator
Michal Lipson, Assistant professor, School of Electrical and computer Engineering, Cornell University

Postdoctoral associates
Christina Manolatou, postdoctoral associate, School of Electrical and computer Engineering, Cornell University

Graduate students
Jacob Robinson, graduate student, School of Electrical and computer Engineering, Cornell University

REFEREED JOURNAL PUBLICATIONS

Jacob T. Robinson, Christina Manolatou, Long Chen, and Michal Lipson," Ultrasmall Mode Volumes in High Index Contrast Dielectric Cavities", Physical review Letters

Abstract

We theoretically demonstrate a mechanism for reduction of mode volume in high index contrast microcavities to below a cubic half-wavelength. We show that by using dielectric discontinuities with sub-wavelength dimensions as a means of local field enhancement, the effective mode volume (V_{eff}) becomes wavelength independent. Cavities with V_{eff} on the order of $10^{-2} (\lambda/2\pi)^3$ can be achieved using such discontinuities, with a corresponding increase in the Purcell factor of nearly two orders of magnitude relative to previously demonstrated high index photonic crystal cavities.
EXPENDITURES

Summary

The following table summarizes the current and cumulative expenditures of the project

<table>
<thead>
<tr>
<th>Category</th>
<th>Period 8/15/03-10/14/03</th>
<th>Period 10/15/03-10/14/04</th>
<th>Period 10/15/04-10/14/05</th>
<th>Cumulative Expenditure 8/15/03-10/14/05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries</td>
<td>1,590.91</td>
<td>22,125.58</td>
<td>22,169.25</td>
<td>45,885.74</td>
</tr>
<tr>
<td>Fringe Benefits</td>
<td>493.18</td>
<td>6,858.89</td>
<td>0</td>
<td>7,352.07</td>
</tr>
<tr>
<td>Supplies</td>
<td>6,562.74</td>
<td>17,786.20</td>
<td>7,762.40</td>
<td>32,111.34</td>
</tr>
<tr>
<td>Travel</td>
<td>12,615.18</td>
<td>6,009.48</td>
<td>18,624.66</td>
<td></td>
</tr>
<tr>
<td>Equipment Other</td>
<td>9,616.09</td>
<td>24,249.97</td>
<td>19,912.30</td>
<td>53,778.36</td>
</tr>
<tr>
<td>Total direct Cost</td>
<td>18,262.92</td>
<td>83,635.82</td>
<td>55,853.43</td>
<td>157,752.17</td>
</tr>
<tr>
<td>Indirect Cost</td>
<td>10,592.49</td>
<td>48,508.78</td>
<td>27,130.29</td>
<td>86,231.56</td>
</tr>
<tr>
<td>Total</td>
<td>28,855.41</td>
<td>132,144.60</td>
<td>82,983.72</td>
<td>243,983.73</td>
</tr>
</tbody>
</table>

Requisition

Miscellaneous laboratory tooling, supplies and books

Travel

- Jacob Robinson, Cleo, Baltimore, May 2005
- Brad Schmidt, Cleo, Baltimore, May 2005
- Michal Lipson, Cleo, Baltimore, May 2005
- Michal Lipson, IPR, San Diego, April 2005
- Michal Lipson, MRS Boston December, 2004
APPENDIX: PUBLISHED PAPERS
Ultrasmall Mode Volumes in Dielectric Optical Microcavities

Jacob T. Robinson, Christina Manolatou, Long Chen, and Michal Lipson
Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA
(Received 3 May 2005; published 27 September 2005)

We theoretically demonstrate a mechanism for reduction of mode volume in high index contrast optical microcavities to below a cubic half wavelength. We show that by using dielectric discontinuities with subwavelength dimensions as a means of local field enhancement, the effective mode volume (V_{eff}) becomes wavelength independent. Cavities with V_{eff} on the order of $10^{-2}(\lambda/2\pi)^3$ can be achieved using such discontinuities, with a corresponding increase in the Purcell factor of nearly 2 orders of magnitude relative to previously demonstrated high index photonic crystal cavities.

Most photonic dielectric cavities have been traditionally limited to sizes that are on the order of the wavelength of light. Cavities based on photonic crystals have been demonstrated with mode volumes as small as a few half wavelengths in each dimension [1-3]. This lower bound on the effective mode volume (V_{eff}) arises from a mechanism of confinement based on interference effects and is therefore wavelength dependent. Here, using dielectric discontinuities, we show a wavelength-independent decrease in mode volume by several orders of magnitude over previous high index dielectric microcavities.

Reducing V_{eff} in cavities enables one to control the degree of light-matter interaction for processes such as spontaneous emission, nonlinear optical responses, and strong coupling. The control of these interactions is crucial for applications in light emitting devices, as well as for optical switches and modulators [3-7]. Here we focus on the interaction of light with an emitter and analyze the enhancement of the spontaneous emission rate due to the decrease in V_{eff}. The Purcell factor (a measure of the spontaneous emission rate enhancement) for an emitter in a resonant cavity is derived directly from Fermi's golden rule [5,6]:

$$\Gamma = \frac{2\pi}{h^2} \int_{\omega_m}^{\omega_m+2\Delta\omega} \langle \hat{p}_d \cdot \alpha \hat{E}(\tau) \rangle \rho_{\omega}(\omega) \rho_{\omega}(\omega) d\omega,$$

where $\rho_{\omega}(\omega)$ is the density of photon modes in the cavity, $\rho_{\alpha}(\omega)$ is the density of states for the dipole transition (material emission spectrum), \hat{p}_d is the atomic dipole moment, and $\hat{E}(\tau)$ is the electric field at the location of the emitter normalized by a factor $\alpha^2 = \frac{\hbar v}{2} \int |\hat{E}(\tau)|^2 d^3 r$ to the zero point energy. From Eq. (1) we see that for a given emitter with $\rho_{\omega}(\omega)$, there are two ways to increase the spontaneous emission rate. First one can increase the cavity mode density $\rho_{\omega}(\omega)$. This is commonly measured as an increase in the cavity quality factor ($Q = \omega_0/\Delta\omega$) where ω_0 is the resonant frequency and $\Delta\omega$ is resonant linewidth. Second one can increase the value of the normalized electric field at the emitter ($\alpha|\hat{E}(\tau)|$). As we will show below, this amounts to decreasing the effective volume of the electromagnetic energy in the resonant mode (V_{eff}). Thus the common figure of merit for resonant cavities is the ratio Q/V_{eff} [4,5,8]. This can be seen from the Purcell factor (F_p) in Eq. (2). From Eq. (1) when the emitter is paced at the peak of the electric field and the cavity resonant frequency equals the peak emission frequency (ω_e), the ratio of spontaneous emission rate in the cavity compared to bulk can be written as [1,5,9]

$$F_p = \frac{\Gamma}{\Gamma_0} = \frac{6Q(\lambda/2\pi)^3}{\pi^2} \frac{\varepsilon_{\text{max}}}{\varepsilon_{\text{max}}} \left[\frac{|\hat{E}(\tau)|}{e^2} \right]^2 \int |\hat{E}(\tau)|^2 d^3 r$$

$$= \frac{6Q(\lambda/2\pi)^3}{\pi^2 V_{\text{eff}}} = \frac{6Q(\lambda/2\pi)^3}{\pi^2 V_{\text{eff}}},$$

where n is the index of refraction at the peak field (τ_{max}).

We define the normalized unitless effective mode volume as:

$$V_{\text{eff}} = V_{\text{eff}} \left(\frac{2n(\tau_{\text{max}})}{\lambda} \right)^3$$

$$= \frac{\int |\hat{E}(\tau)|^2 d^3 r}{\varepsilon(\tau_{\text{max}}) \left[\frac{|\hat{E}(\tau)|}{e^2} \right]^2 \left(\frac{2n(\tau_{\text{max}})}{\lambda} \right)},$$

where τ_{max} is the location of the maximum squared field. It is important to note that Eq. (2) is valid under the condition that the cavity's resonance linewidth is greater than the emission linewidth of the active element [1,5]. When the resonance linewidth of the cavity is much smaller than that of the emitter (as is the case at room temperature for high-Q cavities in rare-earth-metal-doped materials), $\rho_{\omega}(\omega)$ in Eq. (1) is replaced by $\delta(\omega)$. In this regime the “material Q” ($Q_m = \omega_0/\Delta\omega_\text{c}$, where $\Delta\omega_\text{c}$ is the linewidth of the emitter) replaces the cavity Q in Eq. (2) [1]. Thus increasing the cavity Q has no effect on the spontaneous emission rate. The only means of increasing the spontaneous emission rate in this regime is to decrease V_{eff}.

Recently donor-type photonic crystal cavities have shown reduced V_{eff} by localizing light in a low index defect region ($n(\tau_{\text{max}}) = 1.0$) [10]. While there has been much advancement in creating resonators with high Q factors [2,11,12],

PACS numbers: 42.70.Qs, 32.80.-t, 42.50.Pq, 42.82.-m

DOI: 10.1103/PhysRevLett.95.143901

PHYSICAL REVIEW LETTERS week ending 30 SEPTEMBER 2005

© 2005 The American Physical Society
little progress has been made in creating mechanisms for
decreasing V_{eff}. In this work we demonstrate a method for
reducing V_{eff} by systematically increasing the maximum
value of the normalized squared field $\left(\frac{\max |E(\vec{r})|^2}{\int \epsilon(\vec{r})|E(\vec{r})|^2 d^3 r} \right)$ in
Eq. (3).

We achieve an increase in the normalized maximum field by using sub-wavelength-sized dielectric material discontinuities [13]. For example, consider a one-
dimensional high index contrast slab [Fig. 1(a)]. Figure 1(d) shows the field distribution of the fundamental mode in this structure for an electric field polarized normal
to the interface. One can introduce an infinitesimal low index slot at the location of peak intensity oriented perpendicular to the electric field polarization. Figure 1(b)
shows an example of this slot introduced in a one-
dimensional slab. We recall from Maxwell’s equations
that the normal component of the electric displacement (D) is continuous across the boundary of two dielectrics, thus $\epsilon_L E_L = \epsilon_H E_H$ where L and H denote low and high
refractive index regions, respectively. Figure 1(e) shows
the new eigenmode of the slab waveguide after the intro-
duction of a narrow slot. The unitless effective mode
volume in a waveguide with an infinitesimal slot is given by:

$$V^*_{\text{eff}} = \frac{\int |E(\vec{r})|^2 d^3 r}{\epsilon_L |E_L|/\epsilon_H E_0 |^2} \left(\frac{2n_L}{\lambda} \right)^3,$$

where E_0 is the maximum value of the electric field in the high
index region before introducing the slot. The infinitesimal slot has a negligible effect on the integral in the numerator; therefore, the ratio of unitless mode volumes, or the Purcell
factors [see Eq. (2)], before and after the introduction of a
slot is approximately given by

$$\frac{F_p}{F_{p^*}} = \frac{V^*_{\text{eff}}}{V_{\text{eff}}} \approx \left(\frac{\epsilon_L}{\epsilon_H} \right)^{5/2}. \quad (5)$$

The above decrease in effective mode volume is wavelength independent and can represent more than an order of
magnitude reduction. For example, using dielectric materials such as air ($\epsilon = 1$) and amorphous silicon in the
infrared ($\epsilon = 13.9$) results in a reduction in V_{eff} by a factor
of over 700. Because of the normalization to the bulk
spontaneous emission rate in the Purcell factor, the radia-
tive decay rate in the cavity is proportional to the Purcell
factor times the bulk index. This bulk index is different for
the cavity with and without the slot since the emitter is
embedded in different bulk materials (n_H for the cavity
without the slot and with n_L for the cavity with the slot).
Thus the increase in the spontaneous emission rate at the
peak field resulting from the introduction of the slot is
given as:

$$\Gamma^* = \frac{V^*_{\text{eff}}}{V_{\text{eff}}} \left(\frac{n_L}{n_H} \right) \approx \left(\frac{\epsilon_H}{\epsilon_L} \right)^2. \quad (6)$$

Field enhancement in the low index region of slot wave-
guides has recently been demonstrated experimentally in
[14] showing over 30% of the power contained in the slot
region. In Figs. 1(e) and 1(f) we show the field distribu-
tions in a slab waveguide with two different slot widths
shown in Figs. 1(c) and 1(d). As the slot width increases the
mode no longer resembles the original mode with a dis-
continuity, but becomes more confined to either side of the

![FIG. 1 (color online). (a)-(c) The index profile for the slab waveguide with embedded low index slot regions of various slot widths (w_s). (d)-(f) The field distribution of the fundamental mode in the slab waveguide for various values of w_s. The electric field is polarized normal to the interface. E_0 is the maximum value of the electric field for the slab with no slot and Δn is the ratio n_H/n_L.](image-url)
FIG. 2 (color online). The ratio of the effective mode volume of a slot waveguide compared to a slab waveguide for \(\Delta n = 1.5 \) (circles), \(\Delta n = 2.5 \) (triangles), and \(\Delta n = 3.5 \) (squares), where \(\Delta n \) is the ratio of high to low refractive indices. The slab thickness is \(\lambda/n_H \).

In order to analyze the effect of the reduced mode volume on the Purcell effect, we embed the waveguide with a slot in a quasi-one-dimensional microcavity with \(Q \sim 10^2 \). The microcavity shown in Fig. 3(b) is a 460 nm \(\times 260 \) nm buried waveguide with refractive index of 3.48 and a cladding index of 1.46 [3]. The 1D photonic crystal on either side of the cavity consists of five 200 nm diameter holes spaced 360 nm center to center with a refractive index of 1.46. The cavity length at the center of the structure is 880 nm between the hole centers. The slot at the center of the cavity in Fig. 3(a) has a refractive index of 1.0 which is similar to recently reported fabrication [14]. Figure 3(b) shows the squared magnitude of the electric field at the resonant wavelength of 1556 nm in the cross-sectional plane at the waveguide center (\(z = 130 \) nm). Figure 3(a) shows the same cavity after the introduction of a 20 nm wide slot with a refractive index of 1.0 in the cavity region. The magnitude of the electric field is determined using 3D finite difference time domain (FDTD) technique to calculate the resonant mode in each of the cavities (note that a shift of the resonance occurs, from 1556 nm to 1431 nm, when the slot is introduced due to the resulting decrease in the effective index of the cavity). Using Eq. (3) and the results of the 3D FDTD we calculate a decrease in \(V_{\text{eff}} \) from approximately

FIG. 3 (color online). (a) \(|E|^2 \) field spatial distribution from 3D FDTD in the a cavity based a on buried waveguide with an embedded low index slot at its resonant wavelength of 1431.3 nm. (b) \(|E|^2 \) field spatial distribution from 3D FDTD in a quasi-1D microcavity based on a buried waveguide without a slot for the resonant wavelength of 1556.4 nm.

3.34(\(\lambda/2n \))^3 in Fig. 3(b) to 0.042(\(\lambda/2n \))^3 in Fig. 3(a). From Eq. (5) this corresponds to nearly an 80-fold increase in the Purcell factor and an increase in spontaneous emission rate for atoms in the cavity center by more than a factor of 20. Note from Eqs. (5) and (6) that the increase in the Purcell factor is larger than the increase in the spontaneous emission rate by a factor of \(n_H/n_L \). The increase is smaller than the one predicted from Eqs. (5) and (6) due to the finite width of the slot. A smaller slot in the same materials could yield over 500-fold increase in the Purcell factor. The \(Q \) factor [determined by measuring the intensity decay rate of the cavity mode (1/\(\tau_p \)) where \(Q = \omega \tau_p \) [15]] is slightly lowered by the introduction of the slot, decreasing from 305 to 175. Optimization of the cavity to better confine the new mode could be used to raise the new \(Q \) factor [16].

Note that the Purcell formalism described above in Eqs. (1) and (2) is valid in the regime in which the field does not vary significantly over the size of the emitter. To verify the proposed structure is indeed in this regime, we compare the field decay length in the slot (1/\(\gamma_s \)) to the size of the emitter. Taking \(\lambda \) to be 1.55 \(\mu m \), for slots ranging from 0.001 to 0.2 \(\lambda/2n_H \), 1/\(\gamma_s \) is about 3 orders of magni-
tude larger than the size of an atom or ion-based emitters. Thus these structures are well within the regime described by Eq. (1) [13]. Also note that throughout the Letter we assume that the coupling of the cavity to the emitters is in the weak coupling regime; i.e., the photon lifetime (τ_p) is much smaller than the inverse of the emitter-cavity coupling frequency. In the present work, for realistic sub-micron cavities with $Q \sim 10^3$ ($\tau_p \sim 0.8$ ps) we are well within this regime.

The principle of reduction of effective mode volume, well below the dimensions of the wavelength of light, can be applied to nearly every existing microcavity resonator to enhance not only light emission but also nonlinear effects. Examples of emitters embedded in low index media that could be used are gas-phase atoms and rare-earth-metal-doped oxides. Such a reduction can enable the demonstration of effective mode volumes on the order of $10^{-2}(\lambda/2n)^3$ or smaller and increase the Purcell factor by orders of magnitude. This technique may enable new experiments in cavity quantum electrodynamics, ultrasensitive single atom detection, and low threshold lasers.

The authors would like to thank Shanhui Fan for useful discussions. This work was supported by the Science and Technology Centers program of the National Science Foundation (NSF) under agreement DMR-0120967, the Semiconductor Research Corporation under Grant No. 2005-RJ-1296, the Cornell Center for Nanoscale Systems, the Cornell Center for Material Research, and the National Science Foundation’s CAREER Grant No. 0446571. The authors would also like to thank Gernot Pomrenke from the Air Force Office of Scientific Research for supporting the work under Grants No. F49620-03-1-0424 and No. FA9550-05-C-0102.