USING RELOCATABLE
BiTsTrREAMS FOR
FauLT TOLERANCE

THESIS

David P. Montminy, Captain, USAF

AFIT/GCE/ENG /07-09

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCFE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the U.S.
Government.

AFIT/GCE/ENG /07-09

USING RELOCATABLE
BIiTSTREAMS FOR
FAuLT TOLERANCE

THESIS

Presented to the Faculty
Department of Electrical and Computer Engineering
Graduate School of Engineering and Management
Air Force Institute of Technology
Air University
Air Education and Training Command
In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

David P. Montminy, B.S.E.E.
Captain, USAF

March 2007

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCE/ENG/07-09

USING RELOCATABLE
BI1TsSTREAMS FOR
FAuLT TOLERANCE

David Montminy, B.S.E.E.
Captain, USAF

Approved:

%ﬂ/’%g/— 20 Feb @7

Dr. ’ﬁusty Baldwin (Chairman) , date

mﬁr\/\mw 20 G 07

Mullins Member date

=0 r%?b .

Maj Paul Williams, PhD (Member) \ date

AFIT/GCE/ENG /07-09

Abstract

This research develops a method for relocating reconfigurable modules on the
Virtex-IT (Pro) family of Field Programmable Gate Arrays (FPGAs). A bitstream
translation program is developed which correctly changes the location of a partial
bitstream that implements a module on the FPGA. To take advantage of relocatable
modules, three fault-tolerance circuit designs are developed and tested. This circuit
can operate through a fault by efficiently removing the faulty module and replacing
it with a relocated module without faults. The FPGA can recover from faults at
a known location, without the need for external intervention using an embedded
fault recovery system. The recovery system uses an internal PowerPC to relocate
the modules and reprogram the FPGA. Due to the limited architecture of the target
FPGA and Xilinx tool errors, an FPGA with automatic fault recovery could not be
demonstrated. However, the various components needed to do this type of recovery

have been implemented and demonstrated individually.

v

Acknowledgements

First and foremost, without the loving support of my wife this research would
not have been possible. I am very grateful to Dr. Rusty Baldwin for giving me the
freedom and support to explore and develop applications for partial configuration as
I conceived them while keeping me headed in the right direction. Maj Paul Williams
provided a great sounding board for new ideas and helped me develop troubleshooting
techniques whenever it looked like I had reached a dead end. I also like to thank the
international partial reconfiguration community, especially Dr. John Williams of the

University of Queensland and Xilinx Research Labs.

David P. Montminy

Table of Contents

Page
Abstract iv
Acknowledgements v
List of Figures ix
List of Tables xi
List of Abbreviations xii
L. Introduction 1
1.1 Overview 1
1.2 Motivation and Goals 1
1.3 Organization, 1
IT. Literature Review, 3
2.1 Introduction. oL 3
2.1.1 Applications of Fault Tolerance 3
2.1.2 Motivation for using FPGA reconfiguration for
Fault-Tolerance 3
2.2 Fault Tolerance 4
2.2.1 Methods for Fault Tolerance 6
2.2.2 Reconfiguration as a Method for Fault Tolerance 9
23 FPGAs 9
2.3.1 SRAM FPGA Technology 13
2.3.2 SRAM FPGA Reconfiguration 14
2.4 Current Research in FPGA Reconfiguration 17
2.4.1 Methods for Partial Reconfiguration 17
2.4.2 Hardware Bitstream Relocation 22
2.4.3 Automatic Dynamic Active Partial Reconfigura-
tion for Fault Tolerance 23
2.5 SUmMmary .. o. ... 30
I11. Development of a Dynamic Reconfiguration System 32
3.1 Introduction. 32
3.2 Problem Definition 32
3.2.1 Goals and Hypothesis 32
3.2.2 Approach 33
3.3 A Column-Based Fault Tolerant Configuration 33

vi

3.3.1 Benefits oo
3.3.2 Routing and Timing

3.4 Using Relocatable Modules in TMR Designs

3.4.1 Bitstream Storage Savings With Relocatable Mod-
ules

3.4.2 Routing with Relocatable Interconnect Modules
3.4.3 Rerouting Using Difference Based Reconfiguration
3.5 The Target FPGA
3.6 Developing the Bitstream Translation Program
3.6.1 Virtex-II Pro Bitstream Composition
3.6.2 Configuration Memory Addressing
3.6.3 Bitstream Packet Type

3.6.4 Software Emulation of the Packet Processor
3.6.5 Virtex-II Pro Configuration Registers

3.6.6 Calculating the New Major Address
3.6.7 Updating the CRC Value
3.6.8 Overall Organization of the BTP
3.7 FPGA Design Tools
3.8 Implementing a Relocatable Partial Reconfiguration Design
3.8.1 Reconfigurable Modules

3.82 BusMacros L.
3.8.3 Making Reconfigurable Modules Relocatable . .

3.9 Internal Reconfiguration

3.9.1 Using an Embedded Microprocessor to Run the
BTP

3.9.2 MicroBlaze and uClinux
3.9.3 PowerPC.
3.10 Summary

IV. Implementation

4.1 Introduction.
4.2 Verifying Relocation of Partial Modules

4.2.1 Testing the Interconnect Module Designs
4.2.2 Testing the Direct Connect Modular Design . .
4.2.3 Implementing the LUT-based Modular Design .
4.3 Adding a Microprocessor to the Design
4.3.1 Resources Used By Microprocessors
4.3.2 Changes to BTP for PowerPC
4.3.3 Internal Reconfiguration using the PowerPC . .
4.4 Preventing Static Routing

vil

36
37

38
40
42
43
43
44
45
46
47
49
20
20
93
23

23
95

26

56
57
o8
29

60

60
60

61
65
66
68
68
69
70
71

4.5
4.6

4.7

4.8

4.9

4.4.1 Problems Caused by Restricting Routing
4.4.2 Programming of 1/O Blocks

Safe Locations for Relocatable Modules on the XUPV2P
Errors During Bitstream Generation

Relocatable Module Support in 8.2 Partial Reconfigura-
tion Toolchain

Relocatable Modules in the Virtex-4
4.8.1 Drawbacks of the Virtex-4
Comparison with REPLICA2Pro

4.10 Summary

V. Conclusions
5.1 Imntroduction.
5.2 Problem Summary
5.3 Conclusion of Research
5.4 Significance of Research
5.5 Recommendations for Future Research
Appendix A. Using the PowerPC for Partial Reconfiguration
A.1 Creating the EDK Project
A.2 Adding Software, Exporting, and Integration.
Appendix B. Bitstream Translation Programs
Appendix C. ISE 8.1 and PlanAhead Design Flow
C.1 ISE 8.1 Partial Reconfiguration Design Flow
C.2 ISE 8.2 Partial Reconfiguration Toolchain
C.3 Example PR Implementation Script
Bibliography

viil

Page

71
73

75
75

7
78
79
80

81

82
82
82

82
84

84

86
86
89

90

106
106
109
109

113

Figure

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
4.1

List of Figures

One Stage of a TMR Circuit
NAND Multiplexer
The Basic Structure of an FPGA
Key Elements of a Xilinx FPGA Logic Block
Architecture of the Virtex-I FPGA
Design Layout with Two Reconfigurable Modules
TMR with Boundary Scan
The Overlapping Precompiled Column Scheme.
Basic TMR Design
Modular Functions Before and After Reconfiguration
Relocatable Functional and Interconnect Module Configuration
Relocatable Modules with LUT Selected Bus Connections System
Layout of the Virtex-II Pro in PlanAhead
Frame Address Composition
Column-Level (MJA) Configuration Memory Map
Bitstream Packet Type 1
Bitstream Packet Type 2
Distance between BRAM columns
V2P Serial 16-bit CRC Circuity
Flowchart for Processing a Packet
Areas with Homogenous Resource Between Columns
The Layout of a Bus Macro in FPGA Editor
MicroBlaze System Block Diagram
PowerPC System Block Diagram

Interconnect Module Layout Test Configuration

1X

Page

10
11
15
19
25
28
34
36
38
39
41
43
44
45
45
48
49
o1
o4
95
o7
o8
61

Figure
4.2
4.3
4.4
4.5
4.6
4.7

4.8
4.9

4.10
4.11
4.12
C.1
C.2

Partial Reconfiguration Status Display
Top Level VHDL Organization
PlanAhead Layout for the Interconnect Module Configuration .
FPGA Editor View of NCD for Interconnect Modules Design .
Area Constraints Direct Connect and LUT-based Configurations

Top Level VHDL Organization for the Direct Connect and LUT-
based Designs

Footprint for each Microprocessor and Peripherals

FPGA Editor View of Interconnect Module Design with the
Power PC o

I/O Blocks Used by Static Logic
Location Suitability for Relocatable Modules
Layout of the Virtex-II and Virtex-4
Partial Reconfiguration Design Flow (1)

Partial Reconfiguration Design Flow (2)

Table

2.1
3.1
3.2
4.1

List of Tables

Comparison of Core Generation Tools
Writing to Configuration Memory
Bitstream Command Codes that Required Special Actions . . .

Resources Required to Implemented each Microprocessor and Pe-

ripherals

x1

Page

20
46
47

69

Abbreviation

FPGAs
SEU
SHEs
TMR
NMR
LC

LUT
CLB
SRAM
EEPROM
P

HDL
BRAM
JTAG
TAP
ICAP
OPB
MCNC
DRSs
MGTs
APIs
ADB
XPART
PARBIT
BITPOS

List of Abbreviations

Field Programmable Gate Arrays
Single Event Upset
Single Hard-Errors 0oL
Triple Modular Redundancy
N-modular Redundancy
Logic Cell o
Look Up Table
Configuration Logic Block
Static Random Access Memory
Electronically Erasable Programmable Read-Only Memory
Intellectual Property
Hardware Description Language
Block Random Access Memory
Joint Test Action Group
Test Access Port
Internal Configuration Access Port
On-chip Peripheral Bus
Microelectronic Center of North Carolina
Dynamically Reconfigurable Systems
Multi-Gigabit Transceiver
Application Programming Interfaces
Alternative Wire Database
Xilinx Partial Reconfiguration Toolkit

PARt¢tial Bltfile Transformer

BlITstream POSitioner

x1i

Page

N 9w w

10
10
11
12

12
13
13
13
13
14
14
16
18
19
20
21
21
22
22

Abbreviation

BISH
NCD
XUPV2P
ACE
MGT
BTP
BA
MJA
MNA
GCLK
10B
101
FDIR
FDOR
LOUT
ISE
EDK
UCF
LMB
XMD
BSB

Build-In Self-Healing

Native Circuit Description

Xilinx University Program Virtex-II Pro

Advanced Configuration Environment

Multi Gigabit Transceivers.

Bitstream Translation Program

Block Address . . .
Major Address . . .
Minor Address . . .
Global Clock

Input/Output Block

Input/Output Interface

Frame Data Input Register

Frame Data Output Register

Legacy Output Register

Integrated Synthesis Environment

Embedded Development Kit

User Constraints File

Local Memory Bus .

Xilinx Microprocessor Debugger

Base System Builder

xlil

USING RELOCATABLE
BITSTREAMS FOR

FAuLT TOLERANCE

I. Introduction
1.1 Owverview

he modern military, in fact modern society, has become reliant on complex elec-
Ttronic systems, such as satellites, which must provide reliable service. Designing
these system to be fault tolerant means these systems can continue operating even if
a fault occurs. Methods to incorporate fault tolerance in Field Programmable Gate
Arrays (FPGASs) include implementing redundancy and reprogramming the FPGA to

recover from a fault.

1.2 Motivation and Goals

The use of FPGAs in operational systems continues to grow as their capabilities
increase. Using FPGAs in space and military applications require them to be highly
dependable and reliable. Partial reconfiguration can be used to make FPGAs fault
tolerant, increasing their dependability and availability, by allowing an FPGA to
restore its functionality after a fault has been detected. Traditionally, fault tolerance

has been achieved through redundancy, implementing critical systems multiple times.

The goal of this research is to develop a more efficient method for implementing
a fault tolerant system on an FPGA, based on bitstream relocation, which implements

additional redundancy only when needed.

1.3 Organization

Chapter II provides an introduction to fault tolerance, FPGAs, and using partial

reconfiguration to implement fault tolerance. Chapter I1I describes three fault tolerant

configurations that use relocatable modules and describes the software used to perform
bitstream relocation. Chapter IV explains the challenges of implementing a dynamic
reconfiguration system on the target FPGA. Chapter V presents the conclusions of

this study and suggestions for future research.

II. Literature Review
2.1 Introduction

ield programmable gate arrays are digital integrated circuits that can be pro-
Fgrammed and reprogrammed post-fabrication by a user to implement a custom
circuit. As they have evolved, the size, complexity and computational power of FP-
GAs have increased making FPGAs not only a valuable tool for rapid prototyping

and testing, but also for implementing actual production systems.

The submicron scale of FPGAs increased the number of transistors on each de-
vice making them more powerful. As the transistor size has been reduced, the current
density in the devices has increased making them more vulnerable to gamma particle
radiation [LMSP99]. Changes in the state of a transistor as a result of radiation is
called is a Single Event Upset (SEU). Two types of SEUs, soft and hard can be caused
by a charged particle. Non-destructive soft errors appear as transient pulses in logic
or bitflips when they occur in memory. Single hard-errors (SHEs) are potentially
destructive, causing a permanent change in the operation of the device. SHEs include

Single Event Latchups, gate rupture, and frozen bits [NAS00].

2.1.1 Applications of Fault Tolerance. — Spacecraft engineers design to min-
imize power, weight, volume and cost while increasing functionality. Many of the
components that provide these characteristics, including FPGAs, are susceptible to
SEUs [NASO00]. Terrestrial devices can be repaired in place, but intervention in space
applications is usually too expensive or impossible. With their increased use in crit-
ical scientific and military systems with high reliability requirements, fault-tolerance
techniques to improve the reliability and dependability of FPGAs must advance as

well.

2.1.2 Motiwation for using FPGA reconfiguration for Fault-Tolerance. Fault
tolerance has traditionally been provided by building redundancy into a design. In
FPGAs, designs have been hardened by replicating components and using techniques

such as Triple Modular Redundancy. However, since the area within an FPGA is lim-

ited, replication is an expensive approach. An alternative is to provide fault tolerance

through dynamic reprogramming of the FPGA.

2.2 Fault Tolerance

Fault-tolerance is one way of providing a dependable computing system. A
dependable system provides a quality of service that can justifiably be relied upon. A
system’s service is the expected behavior of a system as perceived by a user or other
systems [Lap85]. A system failure is caused by an error which results in a system
response not in compliance with its expected service. An error in a component or the

design of a system is called a fault [AL81].

Faults can be classified by their duration, nature and extent [Nel90]. A fault’s
duration is transient, intermittent or permanent. Transient faults are nonrecurrent,
are typically caused by external forces, and are manifested for a finite amount of
time. Intermittent faults can cause the system to cycle between faulty and error-free
operation. Hard faults are permanent and can be the result of a defect in the design
of a component or physical damage. The extent of a fault can be measured by the
number of components affected. A local fault affects a single component, while a

global fault affects multiple components.

System dependability can be achieved through the use of one or more methods

which can be classified into four categories [Lap85]:

e Fault-avoidance: Prevents fault occurrence by construction,

e Fault-tolerance: Provides, by redundancy, service complying with the system

requirement despite faults,

e Error-removal: Minimizes, through verification, the presence of latent errors,

and

e Estimating: by evaluation, the presence, the creation and the consequences of

eIrors.

A fault tolerant circuit continues to provide dependable results even if a fault
occurs during operation. In an environment where multiple faults can be expected
such as space applications, systems may be required to tolerate multiple faults before

the system malfunctions [KZJS00].

There are four phases of fault-tolerance [AL81].

1. Error detection: The manifestation of a fault, that is the errors it causes,

must be detected so action can be taken.

2. Damage confinement and assessment: Since there will likely be a delay
between when a fault occurs and when an error is detected, the state of the
system must be evaluated to determine if the error has spread within the system.

Unless the error is confined, it could cause errors throughout the system.

3. Error recovery: To continue operation, the system must be restored to an

error-free state.

4. Fault treatment and continued service: Once the system has been restored
to an error-free state, steps must be taken to enable the system to resume

providing the service required by its specification.

The design of a system determines the complexity of performing each of these
phases. The relationship between a fault and the error that results can be complex
and careful consideration by the designer is needed to isolate faults. Although error
detection is usually the starting point for fault tolerance, the other three phases can
occur in any order. Decisions made during design can eliminate the need for one or

more of the fault-tolerant phases [AL81].

The effectiveness of a fault tolerant system is measured by its reliability and
availability. Reliability can be measured by evaluating how a circuit functions when
a fault is introduced to the circuit [KZJS00]. Availability is determined by the time
needed to restore the circuit to proper operation. Reliability and availability are key

measures of dependability.

More formally, reliability, is [Nel90]

Rgystem = P(no fault) + P(correct operation|fault) x P(fault). (2.1)

Reliability is a function of how faults affect the system and what mechanisms

are in place to prevent system failure when a fault occurs [Nel90].

For systems where maintenance cannot be performed and dependable service
must be provided for a long period of time, reliability must be high. Reliability can
be achieved in two ways. First, the probability that a system does not have a fault
can be increased by using higher quality components and other fault avoidance design
techniques [Nel90]. Alternatively, the system can be designed to recover from a fault
when one occurs. For systems where maintenance cannot be performed such as space

systems, mechanisms must be in place so the system can repair itself.

For systems that can be repaired or can perform their own repairs, availability
is a useful measure of dependability. Availability is the probability a system is op-
erational at time ¢. In steady state, availability is the probability that a system will
be operational at any random time. Availability can also be expressed as the amount
of downtime over a specified interval. Availability can be increased by increasing the
expected time between system failures or by reducing the expected amount of time

to restore a failed system to operation [Nel90].

2.2.1 Methods for Fault Tolerance. There are a number of methods that
can improve a system’s fault tolerance. Fault tolerant strategies typically include one

or more of the following [Nel90]:

e Masking: Correction of generated errors,
e Detection: Detection of an error or the manifestation of a fault,
e Containment: Preventing an error from propagating across boundaries,

e Diagnosis: Identification of the faulty module causing the error,

Input A
Input B V Module A Output A
Input C
Vv Module B Output B
— v Module C Output C
Inputs from Majority Redundant Outputs to
previous stage voters modules next stage

Figure 2.1: One Stage of a TMR Circuit [Nel90].

e Repair/Reconfiguration: Repairing, replacing, or bypassing the module, and
e Recovery: Restoring the system to a stable state to allow continued operation.

The cost and complexity of implementing these techniques is highly dependent
on the system they are implemented in. Combinations of these strategies can be

implemented through hardware, software, information and time redundancy [ALS81].

Hardware redundancy uses additional hardware to detect or tolerate faults.
There are three types of hardware redundancy: passive, active, and hybrid [McF94].
For systems that cannot afford down-time associated with repairing faults, static or
passive techniques allow a system to mask some number of faults [Nel90]. Active
redundancy techniques detect faults and take action to correct faults. Hybrid redun-
dancy combine masking to prevent fault propagation with fault detection and recovery

to remove the faulty module from the system [McF94].

One common form of passive redundancy is triple modular redundancy (TMR).
In TMR, three modules compute the same function and the three results are sent to
a voter which chooses the majority result. To prevent the voter from being a single
point of failure, three voters can be used at each stage. Figure 2.1 illustrates one stage
of a TMR circuit. TMR can be generalized to have more than three modules. This
is called N-modular redundancy (NMR) and can tolerate up to |(N —2)/2| module

failures.

Permutation

Unit
U u u
X X
Xr Xo Y XD X3 I, Xo Kz —
X X1 yg ——‘_/f} T R oy ——l_/t’ Ve TRy T
Xz Lo X2 b / TR
) 1

2w Y N e ,
N vy —)3" (A TR v A TR T

i\
Xz — AN XN _:[) iRy *1 —EO -
¥ —:DD' WA ¥z — S Y2 —

YA A
- Lve i o 1 o
¥ ¥ fib—mn = ,f\'—- Yoo
L 5o L ! L
AT DR AT D D
Y™ _ —T M | h —T YN _ ;
Yo v ¥ v ¥ 7
Executive Stage Restorative Stage(s)

Figure 2.2: NAND Multiplexer [VN56].

NAND multiplexing can be used to reliably perform the Boolean NAND function
in the presence of errors that would change the output of a single NAND gate [VN56].
A NAND multiplexer performs the NAND operation redundantly, increasing the prob-
ability of a correct result. As shown in Figure 2.2, a NAND multiplexer is comprised
of an executive stage and one or more restorative stages. The restorative stage con-
sists of two executive stages in series. Each executive stage has a row of NAND gates
in parallel and a permutation unit which determines which input signals will serve as
inputs to each NAND gate. If there are no errors, all of the outputs are identical.
When all outputs are not identical, a threshold for the number of matching outputs

determines the correct result.

In dynamic redundancy, faulty components are detected, diagnosed, and or re-
paired or replaced [Nel90]. Dynamic redundancy methods typically switch module
and/or reconfigure communication routes as faults occur. The location, use and num-
ber of spares differentiate active redundancy techniques. These techniques provide

diagnosis and repair, but do not mask the fault.

Hybrid redundancy combines passive and dynamic techniques to provide redun-
dancy which both mask faults and repairs the circuit. N-modular redundancy with

K-standby sparing uses N-modules which each perform the same function. As with

TMR and NMR, a voter or group of voters determines the correct result. If one of

the N-modules fails, it is replaced by one of K-spares.

2.2.2 Reconfiguration as a Method for Fault Tolerance. Since modern FP-
GAs can be configured to reprogram themselves, they make excellent platforms for
dynamic and hybrid redundancy systems. Furthermore, passive redundancy tech-
niques such as NMR or NAND multiplexing although expensive to implement using
traditional hardware, can mask faults while a module is replaced or bypassed using

reconfiguration techniques.

A number of techniques have been proposed for reconfiguration, including logic
block replacement via rerouting, reconfiguring entire columns or rows and shifting
entire circuits by row or column within an FPGA to avoid a fault cell in a col-
umn [DP94]. A number of techniques are described in Section 2.4, but the specific
FPGA architecture and reprogramming methods are important considerations for
each method since the viability of each technique is a function of the architecture of

the target FPGA.

2.3 FPGAs

In 1984, Xilinx introduced a new class of integrated circuits called the field
programmable gate array, or FPGA. The basic FPGA is an integrated circuit con-
sisting of logic blocks, interconnects, and I1/O blocks. Logic blocks can be individu-
ally configured to perform various functions and are connected using programmable
interconnects. Figure 2.3 shows the basic structure of an FPGA. An FPGA config-
uration, including the function each logic block implements and its connections, is
determined when the FPGA is programmed. This programmable architecture means
FPGAs are highly configurable with fast design and modification times. In addition,
the large number of logic cells, embedded RAM blocks, embedded multipliers, and
adders that make up today’s FPGAs means they can implement large and complex

functions [Max04].

OO0 OO 0o odd Logic

RO || ||| |||

TN
ST
ST

Interconnect = OO0 OO OO oo

Figure 2.3: The Basic Structure of an FPGA [Kha02].

OO0 OO OO Od
OO0 OO OO0 OO

The design of the logic blocks vary between types of FPGAs and FPGA manu-
facturers. The granularity of an FPGA refers to the complexity of the logic blocks. If
a logic block can support a simple function, the FPGA is considered to be fine-grained.
A coarse-grained FPGA architecture can implement a more complex function. Since
each coarse-grained logic block has more logic in it, the number of logic blocks needed
to implement a function is less than the number of logic blocks needed in fine-grained
FPGAs. Although fine-grained FPGAs usually implement a function more efficiently
(since most resources in the logic blocks are used), a larger number of interconnects

are needed to connect the finer-grained logic blocks.

In Xilinx FPGAs, logic blocks are known as logic cells (LC). Although the
exact configuration of logic cells differ between device families, each contains a 3, 4
or 0-input look up table (LUT), which can be configured as a 16 x 1 RAM or a 16-
bit shift register, a multiplexer and a register as well as other logic [Max04, Xil07b].
Figure 2.4 shows how the basic elements are arranged within the LC. Logic functions
are implemented using the LUT. An n-input LUT is programmed to return the result

of a logic function based on the values of its n-inputs. A multiplexer can select the

10

3- or 4-
input oy
LUT mux
flip-flop
l) I o— q
P |
Figure 2.4: Key Elements of a Xilinx FPGA Logic

Block [Max04].

result from the LUT or from an input external to the LC. The register acts as a

flip-flop or a latch.

In the Virtex-II Pro, logic cells are grouped into slices [Xil05b]. Each slice
has two logic blocks and each configuration logic block (CLB) is made up of four
vertical slices. There are different types of connections between FPGA resources. The
connections lengths vary from connecting CLBs to their neighbors to the connecting
to the backbone routing network 24 horizontal and vertical long line routing resources

that span the full height and width of the device [Xil05b].

The function an FPGA performs is determined by the programmer and must
be programmed into the FPGA. There are two basic types of programmable FPGAs:

anti-fused based and memory-based.

Anti-fuse FPGAs are one-time programmable devices with special connections
that start as high resistance open circuits but become low resistance connections when
programmed. Anti-fuse based FPGAs are non-volatile. They retain their configura-
tion even when power is removed. Additionally, the anti-fuse interconnect structure
is relatively immune to the effects of radiation so its configuration not changed as a
result of a SEU. However, other transistors on the device remain susceptible to SEUS,
so designs and radiation hardening must still be used for anti-fuse devices in high

radiation environments [Max04].

11

Memory-based FPGAs can be reprogrammed in the field, giving them added
flexibility, thus making them a viable platform for testing reconfigurable fault-tolerance
methods. Two currently available memory-based FPGAs are static random access
memory (SRAM) and electronically erasable programmable read-only memory-based
(EEPROM). SRAM FPGAs use SRAM configuration cells that can be reconfigured
over and over. The function of the circuit is based entirely on the contents of the

configuration memory.

EEPROM-based FPGAs have the advantage of being non-volatile. Once they
have been programmed they retain their programming even when the device is pow-
ered down. Although they can be reprogrammed in the field, their programming time

is typically three times longer than similar SRAM devices [Max04].

State of the art FPGAs have multiple embedded microprocessors known as
microprocessor cores. A hard microprocessor core is implemented in a pre-defined
and dedicated area within the FPGA. Xilinx offers FPGAs with one, two, or four
PowerPC 405 hard microprocessor cores. These cores are embedded directly into the
FPGA fabric and can be connected to user defined circuitry. A soft microprocessor
core is a group of programmable logic blocks configured as a microprocessor. Soft
cores are slower and simpler than hard cores, but as many soft core processors as
space allows can be placed onto an FPGA. Soft microprocessor cores are available
as intellectual property (IP) from FPGA vendors. The MicroBlaze™ processor is a
classic 32-bit processor designed specifically to work with the hardware features of

Xilinx FPGA devices [WB04].

Designs for the MicroBlaze?™ processor can be obtained as intellectual property
from Xilinx. For FPGAs, intellectual property, commonly referred to as IP, can be
developed by the FPGA vender or a third party. Available IP cores implement a
wide array of functions, from signal processing to 1/O interfaces. There are three
types of IP cores offering different levels of abstraction and flexibility: soft, firm and

hard cores [KJAITRO5]. Soft cores are hardware independent synthesizable Hardware

12

Description Language (HDL) descriptions with a high level of flexibility since they
can be extensively modified. Firm cores are technology independent netlists that offer
some flexibility through customizable parameters. Hard cores are preplaced and have
fixed routing limiting their flexibility. Although a number of IP designs can be used

without licensing, typically a fee must be paid to use the designs.

2.3.1 SRAM FPGA Technology. The basic structure of Xilinx SRAM-based
FPGAs is a two-dimensional array of logic blocks are linked with vertical and hor-
izontal programmable interconnect channels [Tor02]. The configuration of SRAM
FPGAs is controlled by memory cells that are volatile and must be configured each
time the FPGA is powered-up. All aspects of the user design are implemented by the
configuration memory including LUT equations, signal routing, BlockRAM (BRAM)
configuration and BRAM interconnects [Xil05b]. A bitstream provides the config-
uration control commands and configuration data to the FPGA. On Virtex-II Pro
devices, the bitstream is delivered through a serial, boundary scan, or Select MAP

interfaces. The bitstreams for each interface are, for the most part, identical [XilO5b].

Serial mode programs an FPGA using a serial programmable read-only memory
device. In serial configuration mode, the bitstream is clocked into the FPGA one bit at
a time. In master serial mode, the FPGA drives the clock. Slave serial configuration
mode allows FPGAs to be configured by another device such as a microprocessor or

master FPGA, with the other device controlling the clock of the slave FPGA [Xil05b].

The JTAG interface (named for the Joint Test Action Group (JTAG) respon-
sible for development of the IEEE 1149.1 standard), the Test Access Port (TAP)
and Boundary Scan Architecture, allows in-system programming. Boundary scans
allow devices and internal circuitry to be tested. The boundary-scan TAP is used
to serially apply tests which can detect opens and shorts at the board and device
level. Many vendors have added vendor specific instructions to their boundary-scan
implementation allowing configuration instructions [Xil05b]. Using a special instruc-

tion, the FPGA can connect the internal SRAM configuration shift registers to the

13

JTAG scan chain, allowing the FPGA to be programmed using the data-in pin of
its TAP [Max04]. The Virtex-II Pro can also be reconfigured using the JTAG port
by applying an appropriate partial bitstream through the TAP [Xil05b]. Since par-
tial bitstreams are used to implement specific circuits at specific locations within the
FPGA, partial bitstreams used for dynamic reconfiguration are also referred to as

hard cores, or more generally cores, as described in Section 2.3.

For internal access to the FPGA configuration and read back operations, Vir-
tex II-Pro devices include an internal configuration access port (ICAP). The ICAP
provides access to the FPGA configuration memory using the Select MAP interface
with an 8-bit bidirectional data bus to the Virtex-II Pro configuration logic [Xil05b].
Xilinx developed an on-chip peripheral bus (OPB) core to interface to the ICAP. The
HWICAP core allows an embedded processor to read and write the FPGA configu-
ration bitstream through the ICAP at runtime one frame at a time [XilO4c|. A frame
is the smallest unit that can be reprogrammed on the Virtex-II Pro and is 1-bit wide
slice of a column as shown in Figure 2.5. Devices in the Virtex II-Pro family have be-
tween 22 and 94 CLB columns and 22 frames per column [Xil05b]. Software programs
running on the embedded processor can construct a custom bitstream by modifying
the frames sent to the HWICAP and thereby modify an FPGA circuit as desired at

runtime.

2.3.2 SRAM FPGA Reconfiguration. Reconfiguration is the act of repro-
gramming an SRAM FPGA without resetting, or powering down the device. Recon-
figuration can be performed on the whole device (full reconfiguration) or a portion
of it (partial reconfiguration). The device can be put into the shutdown state for
reprogramming or the device can continue to operate, a process known as active re-
configuration. Full reconfiguration reinitializes memory contents, while the content
of data memory is preserved during partial reconfiguration. In Virtex II-Pro devices
partial reconfiguration is only possible through the JTAG and Select MAP interfaces
which includes the ICAP [Xil05b].

14

I0Bs CLBs Block RAM, multipliers

\

S/EI[E]EIE%DDDD\DDD
OwnoNOoooOoy o0
oDow||looooool|oo
Dom||oooooo||oo
oomUooooooUoao
DowmQoooooonoo
OoWw||loooooo||od
oom||loooooo||oo
oDomlUoooooolUoo
oompoooooonoad
OoOWw||0o0000o||o0
OoW||loooooo||od
nomNJoooooolUono
oobONOOOOOOOO0

T
o}
Q
=

1 bit A—-||<— Configuration frame

Figure 2.5: Architecture of the Virtex-II FPGA [SBB106].
In the Virtex-II series the CLBs, BRAM and multiplier are or-
ganized in columns. The I/O blocks are arranged around the
perimeter of the FPGA. A configuration frame spans the entire
column programming a fraction of one CLB or BRAM column
and a portion of I/O blocks above and below the columns.

Dynamic partial reconfiguration partially reconfigures an active array while the
active circuits not being changed continue to function. Self-reconfiguration is a form
of dynamic reconfiguration in which specific circuits within an FPGA control the
reconfiguration of other portions of the FPGA. With such a dependency, the proper
operation of the reconfiguration circuitry must be ensured before, during and after

reconfiguration.

SRAM FPGA devices rely on an external configuration control interface to
boot and program the FPGA with an initial configuration when power is first ap-
plied or the device is reset. Once initially configured via some external method, self-
reconfiguration uses an interface within the FPGA driven by internal FPGA circuitry,
which may include a microprocessor. The ICAP provides this functionality on Virtex-
I1, Virtex-II Pro, and Virtex-4 devices. That is, the ICAP enables self-reconfiguration
without external hardware [BJRKT03].

15

Eliminating external circuitry through self-reconfiguration minimizes the la-
tency of accessing an external configuration port. It also minimizes the distance
between the control logic and the reconfiguration control logic within the same logic

array. System complexity is also reduced, since fewer discrete devices are required

[BJRK*03].

Although FPGAs are designed with a regular structure and every logic block
can be connected to another logic block, finding a path from one block to another
is not a trivial task. Because FPGAs, have a limited number of interconnections,
not all connections are possible for a given configuration. Algorithms to reconfigure
the FPGA must know the architecture of the FPGA, and which resources are being
used, for the algorithm to construct an appropriate reconfiguration bitstream. Al-
though quick reconfiguration, which improves availability, is a goal of fault-tolerant
systems, efficient utilization of the FPGA’s resources must also be considered. Recon-
figuration algorithms should minimize the FPGA resources used by the circuit after

reconfiguration and the time to perform the reconfiguration.

To compare the performance of fault-tolerance schemes, benchmark designs can
be used. The Microelectronic Center of North Carolina (MCNC) and ISPD98 bench-
mark suites are commonly used by developers of automated design systems to com-
pare and validate their designs [Alp98]|. Reconfiguration changes the layout of the
user circuit within the FPGA. By comparing the performance of benchmarks circuits
before and after fault-tolerance techniques have been applied, the effectiveness of dif-
ferent techniques can be evaluated. Hardware resources and the amount of downtime

required to perform the reconfiguration must also be considered.

Since most computational circuits are made up of sequential logic, a reconfig-
uration technique must be able resume operation in the last stable state before the
fault. This means the dynamically reprogrammed FPGA must save state informa-
tion, complete the repair through reconfiguration and reload state information before

resuming service.

16

2.4 Current Research in FPGA Reconfiguration

There are two different styles of partial reconfiguration in current implemen-
tations and research [Xil04c]. The first is a module-based reconfiguration in which
distinct portions of the FPGA are reconfigured while the remainder of the FPGA
is active. Depending on the communication between modules, special consideration
needs to be given to ensure proper I/O functionality between modules after recon-
figuration. The second type of reconfiguration is difference-based partial reconfigu-
ration in which custom bitstreams are used to change small sections of the device.
Difference-based partial reconfiguration is useful for changing the contents of a LUT
or switching to a different I/O standard during execution [Xil04c]. Each of these
styles can be used for a number of applications and Virtex FPGA reprogramming has
evolved to include both external reprogramming circuits and internal reprogramming
circuits which take advantage of the ICAP. External reconfiguration circuits can use
state of the art computer-aided design tools to produce partial bitstreams, while on
demand production of partial bitstreams is one of the most difficult challenges in a
dynamic reconfiguration system. Using externally produced partial bitstreams has
been demonstrated as well as the use of pre-generated partial bitstreams but both

required that the new FPGA configuration be known in advance [Xil04c].

FPGA reconfiguration systems can be categorized according to which device
controls reconfiguration, the level of reconfiguration granularity, and when the con-

figuration bitstream is generated [WBO04].

2.4.1 Methods for Partial Reconfiguration. Partial reconfiguration can be
controlled externally using the JTAG port of the FPGA. An external circuit, possibly
a computer or another FPGA initiates the reconfiguration and loads the partial bit-
stream into the FPGA to reprogram it. This technique is used in embedded FPGAs

that serve as computer coprocessors and reconfigured using the PCI bus.

Some FPGAs can initiate and internally control their own reconfiguration. A

self reconfiguring platform implemented on both the Virtex-II and the Virtex-1I Pro

17

takes advantage of the platforms’ embedded microprocessors to perform partial re-
configuration without external circuitry. It uses the ICAP, control logic, a small

configuration cache and the MicroBlaze?

embedded processor to support relocat-
able partial bitstreams. Relocatable partial bitstreams can be modified at run time

to be implemented at multiple locations within an FPGA [BJRK™03].

Hybrid configurations reprogram themselves, but the reconfiguration may be
initiated internally or externally and the configuration bitstream may be retrieved

from an external source, such as a bitstream server [WB04].

2.4.1.1 Module Based Dynamic Partial Reconfiguration. Modular
based partial reconfiguration methods for FPGAs have been used to develop Dy-
namically Reconfigurable Systems (DRSs) which actively reconfigure hardware based
on previously generated bitstreams. By using these bitstreams to reprogram portions
of the FPGA, unneeded parts of a system can be removed and replaced by another
part. Figure 2.6 shows the layout of two reconfigurable modules in a Virtex-II Pro.
Swappable modules are referred to as dynamic hardware plug-ins. A number of dif-
ferent configurations have been proposed for modular based reconfiguration platforms

including both externally controlled and internally controlled systems [CCMMO4].

For internal self-reconfiguration, the configuration controller must be imple-
mented within the FPGA. Custom controllers have been implemented in the fabric
of the FPGA for decoding secure bitstreams, for example a prototype using Blowfish
encryption used 64% of the slices of a VC2V1000 device, but without Blowfish sup-
port only used 5% of the slices [FHAO03]. Clearly the requirements for the controller
(i.e., speed, security, connectivity) as well as the target FPGA, affects the size con-
troller. Although custom controllers can be specialized for the target application, a
more flexible approach uses an embedded processor on the FPGA. In an FPGA with
hard microprocessors, the reconfiguration controller can use the microprocessors to

maximize the reconfigurable portion of the FPGA available to the user’s circuit.

18

Possible 1/0s
N— 1 o & T B = P e § e
=1 BT <AL= TT 1T <dd=2T] TFTF——]| this block
|| U g
i1 8
Il A
i ':;"' i1
B B
: : E u U FixedJI I
: : o S S| | Logic it
L Fixed 5 PR | M| PR ||M it
Logic Logic Logic {1
it g U g C g C i
! 8 R R i |1
! 0 o i1
! M H (1
| : A 1
i ¢ Fixed 41|
! Logic [
T P E—— ':J) —_—— - A :
| — === 'Iw-_____‘.,______,l l ________—_.____-'[[i p——|
i ~— i——y 1
Boundaries 20_01_ca2s02

Figure 2.6: Design Layout with Two Reconfigurable Mod-
ules [Xil04c].

One dynamic reconfiguration system uses a MicroBlaze”™ embedded processor
on the Virtex-II Pro [WB04]. Using uClinux, a version of Linux designed for mi-
croprocessors, bitstreams are retrieved from a remote server and used to reprogram
the FPGA. A Linux driver provides an interface between applications running on the
MicroBlaze™ and the HWICAP core through the CoreConnect OPB on the Virtex-1I
Pro which allows scripts to be run within uClinux to perform partial reconfiguration

using partial bitstreams from the server [WB04].

2.4.1.2 Difference Based Reconfiguration. By making small changes to
the configuration bitstream, the behavior of the user circuit can be changed. Among
other changes that can be made, the contents of a LUT can be altered changing the
Boolean function performed by the logic cell. The transmit and receive characteristics
of the RocketIOT™™ Multi-Gigabit Transceivers (MGTs) on the Virtex-IT Pro can also
be changed in this manner [Xil0O4a]. By changing the parameters based on the run-
time configuration, MGTs can compensate for unknown propagation delays at design

time.

19

Table 2.1: Comparison of Core Generation Tools (adapted from

[KJAITRO5]).
Design JBits API based tools Equations based tools
Flow
Name Modular JPG XPART Core Unifier | PARBIT | BITPOS
Design
Device All Xilinx | Virtex Virtex Virtex Series | Virtex Virtex 11
FPGAs Series II-Pro Series
CLB NO NO NO NO YES YES
Reallocation
BRAMs/MULs | YES NO NO not specified | NO YES
Reallocation
Controller N/A External | Internal External External | External
Location
References [Xil04a] [RS02] [BJKM+03] [MMPM+03] | [HLO1] [KJTRO5]
Approx Date 2004 2002 2002 2002 2002- 2004
2004

2.4.1.3 Bitstream Manipulation on Self Reconfiguration Platforms.
Modern FPGA architectures support dynamic modification of a design, but there
is a noticeable lack of design methodologies using non-proprietary tools to produce
bitstreams required to reprogram an FPGA [DFR*05]. A number of software ap-
plications for the PC and for embedded processors have been developed and imple-
mented on specific devices. The bitstream manipulation tools can be separated into
two groups according to how they access the bitstream and produce the partial re-
configuration bitstream [KJdITR05]. The first group uses application programming
interfaces (APIs) to access previously generated bitstreams and manipulates them to
produce the desired partial bitstream. The tools in the other group directly manipu-
late existing bitstreams to produce the desired bitstream. These tools are summarized

in Table 2.1.

JBits, developed by Xilinx, provides an API to access the bitstream of select
Xilinx FPGAs. JBits is a set of Java classes that provide an interface to operate on bit-
streams generated by Xilinx design tools, or on bitstreams retrieved from programmed

FPGAs. The original motivation of JBits was to support dynamic reconfiguration un-

20

der software control. The API allows all configurable resources in the device to be

programmed, thus providing direct support for dynamic reconfiguration [GLS99].

All action in JBits must be specified in the source code including routing. To
make routing as fast as possible, JBits does not use the heuristics to solve the known
NP-complete routing problems which produce routes that may not resemble the orig-
inal circuit. Instead, JBits uses a library with access to all of the configurable archi-
tecture features of a device including CLBs, BRAM and all routing resources. These
precompiled Java classes, specific to each type of device, produce the partial recon-
figuration bitstreams [GLS99]. The last official version of JBits, JBits 3.0, extended

support to the Virtex-II. However, JBits does not support the Virtex-II Pro.

A development that promises to expand the JBits support to other device fam-
ilies is the Alternative Wire Database (ADB), a supplemental connectivity database
that interfaces with JBits to provide wiring information, routing and unrouting ser-
vices. ADB extends JBits support to new FPGA families, including the Virtex-II
Pro, and provides a router based on JHDLBits, an open source project that connects
JHDL and JBits. JBits 3.0 does not include JRoute, a router than had been available
in previous versions. ADB can generate configuration bitstreams when interfaced
with JBits or a custom interface [SA04] and may be released with the next version of

JBits.

For self-reconfiguring circuits, bitstream manipulation similar to JBits must be
available on the embedded microprocessor. In Blodgett’s self reconfiguring FPGA
design, the software system relied on two APIs, the ICAP API and the Xilinx Partial
Reconfiguration Toolkit (XPART). Since JBits is implemented in Java, it requires
significant resources to run the Java Virtual Machine. Blodget’s design using XPART
is lightweight because XPART provides a minimal set of JBits API features imple-
mented in C [BJRKT03]. XPART has methods to read and modify select FPGA

resources using I[CAP and also provides basic support for the relocation of partial bit-

21

streams. Unfortunately, XPART has never been released to the developer/research

community [US05].

A number of additional tools have been developed to access and manipulate
supported FPGA bitstreams using the JBits API. These tools include JBitsDiff,
JBitsCopy, JPG, CoreUnifier and JHDLBits [KJdITRO05]. JBitsDiff generates cores
from a full bitstream which can the inserted into another bitstream. JBitCopy ex-
tracts a core from a full bitstream file and merges it into another full bitstream. JPG
uses files generated by Xilinx tools during design flow to extract cores. The JPG tool
selects multiple partial bitstreams (cores) using a custom GUI and loads the FPGA
through the JBits API [RS02]. Although these tools allow reconfiguration of CLBs,
they do not reallocate cores. Reallocation allows a core to be placed at any location
on the FPGA. Relocatable cores is a highly desirable capability in dynamic repro-
gramming of FPGAs since one partial bitstream can be used to generate multiple

configurations instead of pre-compiling and storing partial bitstreams.

The second group of core generation tools directly manipulate existing bit-
streams to produce partial bitstreams [KJdITRO05]. Using equations specific to the
target FPGA, the location of an FPGA resource within the bitstream can be deter-
mined. Using an original bitstream, a target bitstream and parameters, including
the coordinates for the source and destination of the core PARtial Bltfile Trans-
former (PARBIT) can relocate a core by transforming and restructuring the partial
bitstream [HLO1]. BITstream POSitioner (BITPOS) provides a similar capability for
the Virtex II family and includes the ability to reallocate BlockRAM memory space
and embedded multiplier data [KJdITRO05]. A tool called Core Unifier, with JBits
and equation base versions, has methods for inserting and connecting dynamic cores
based on a common route wiring configuration [MMP703]. With the exception of

XPART, all of these bitstream manipulation applications are external to the FPGA.

2.4.2 Hardware Bitstream Relocation. REPLICA2Pro is an implementation

that relocates bitstreams internally. REPLICA2Pro relocates partial bitstreams in

22

Virtex-I1I (Pro) devices by changing the addressing of the configuration frames in
hardware. The hardware decodes the partial bitstream finding the frame addresses
and adjusting them to implement the module in a new location. To avoid extra
configuration time, the REPLICA2Pro filter is inserted between the configuration
manager, which selects the bitstream and the offset distance, and the ICAP interface.
REPLICA2Pro relies heavily upon custom software to prepare the FPGA creating
the infrastructure to support reconfigurable modules. These programs generate the
communication infrastructure and clock trees to ensure the module will be properly

connected in its new location [KPO06].

2.4.8 Automatic Dynamic Active Partial Reconfiguration for Fault Tolerance.

A number of methodologies have been developed to enhance the yield of FPGAs
during the fabrication process using fault tolerance methods. A good summary of
these techniques can be found in [Ive06]. While based on similar techniques, active

dynamic reconfiguration operates at runtime.

To use SRAM-based FPGA for dynamic fault tolerance, the system must meet
the following objectives [XSHL99):

e Overhead must be as low as possible. The FPGA area used by the reconfigura-
tion circuit and during reconfiguration must be minimized since it determines

the maximum size of the user circuit and how many times it can be reconfigured.

e The replacement algorithm must be simple and have the shortest execution time

possible.

e The circuit after fault recovery must still meet functional and performance re-

quirements.

A number of reconfiguration schemes which reduce overhead associated with
reconfiguration have been proposed and demonstrated. One reduces the complexity
of reconfiguring by partitioning the physical design into tiles [LMSP99]. Multiple

configurations are generated for each tile—all of which perform the same function

23

and have the same connectivity with neighboring tiles. Reliability is achieved by
having multiple configurations of each tile that do not use certain resources within
the tile. The tile configurations are generated at design time and stored in memory

for access at run-time.

Assuming the location of the fault is known, a configuration that avoids the
faulty resource is retrieved from memory and used to reconfigure the device. Spare
interconnects between tiles can be reserved and activated if an interconnect fault is
identified. Compared to redundancy-based fault-tolerant techniques, the overhead
for this approach is low since redundant modules are not implemented in the FPGA
array. Although the regular structure of FPGAs makes them good platforms for this

approach, the implementation is architecture specific.

For the Xilinx architecture, each tile is made up of groups of CLBs. The number
of unused CLBs and interconnects in the tile determines the amount of redundancy
and overhead. Multiple configurations for each tile are generated at design-time—
each leaving a portion of the tile unused (i.e., CLBs and interconnections). Although
overhead is directly related to the size of the tiles and number of spare resources, the
area and reconfiguration time for this method is low. Tests of 9 circuits on a Xilinx
FPGA indicate timing and area increased between 17% and 45% and between 2.6%
and 10.2% respectively [LMSP99]. Although this approach reduced system downtime
since alternate configurations are readily available in memory, the memory required to
store the alternate configuration is many times greater than the original configuration

size.

A robust configurable system design with build-in self-healing (BISH) highlights
many of the considerations that must be made for a SRAM-based fault-tolerant sys-
tem [GAFO05]. Since many of the observations made in the design have implications

for SRAM-based fault-tolerant systems, they are summarized below.

As noted in Section 2.1, today’s FPGAs are susceptible to two types of errors:

soft errors, or SEUs, which are transient errors caused by radiation; and hard errors—

24

SO
A2 &S -V%% B2
A3 S > B3

2l

r Y
}g
['e)

> L

Figure 2.7: TMR with boundary scan [GAF05].

the result of permanent physical damage to the FPGA. Since SRAM memory is used
for both configuration memory and data memory in a SRAM FPGA, soft errors can

change both the function of the FPGA and the data stored within it.

Unlike previous fault tolerance approaches, the approach below includes detec-
tion, diagnosis and repair. To prevent faults from propagating through the system
TMR masks faults and reconfiguration replaces modules that have suffered a hard
error, similar to the N-modular redundancy with K-sparing approach discussed in
Section 2.2.1. In a traditional TMR circuit, it is difficult to determine which module
is faulty since the TMR circuit masks the fault. To determine the faulty module is
faulty, a boundary scan configuration can be added to the TMR circuit as shown in

Figure 2.7.

The boundary scan allows a microprocessor to analyze the output of each module
(A1-A3) and the output of each of the voters (V1-V3). If one of the redundant
modules has a different output, a fault is presumed to be causing the error. If all
module outputs are equal but the voter outputs are not equal, the fault is presumed
to be in the voters. Thus, the appropriate actions to take and how to repair of the

circuit can be determined.

Assuming no errors in retrieving and analyzing the output of the modules and
the voters with the boundary scan (a methodology for validating this is explained
in [GAF05]), the next step is to determine if the error is a soft or hard error. If it

is a soft error, it should automatically correct itself next time the registers within

25

the module is updated. Since voters are normally implemented in combinational
logic, this type of error will not affect them. If the error is not resolved after the
registers have updated, there are two possible causes for the error. A soft error in the
configuration memory has caused the behavior of the module or voter to change or a

hard error within the module or voter.

If there is a soft error in configuration memory, it can be detected by extracting
a partial bitstream from configuration memory and comparing it with the original
bitstream or by checking the bitstreams CRC. If an error is detected, a partial bit-
stream can be reloaded to configuration memory, repairing the configuration memory.
Once reconfiguration is complete, boundary scan can determine if reconfiguration was

successful.

If an error in the configuration memory is not detected, the most likely cause
of the error is a physical defect in the array. Physical defects in the array can not
be repaired and reconfiguration must remap the module to a fault free area of the
FPGA. Although the TMR configuration has masked the module error from the rest
of the FPGA, remapping the module restores the reliability index of the circuit.

To maximize resources, once a portion of the FPGA has been released by remap-
ping the module it contained, the embedded microprocessor can diagnose the released
resources to determine exactly which resource is faulty. By keeping track of precisely
which resources are defective, the microprocessor can maximize the use of the FPGA

by allowing modules that do not use an affected resource to be mapped to that area.

With TMR masking faults, there is some flexibility in the timing of detection,
diagnosis and repair actions. Although there is overhead associated with each of these
operations, the proposed BISH system performs these operations as background tasks

on the microprocessor, minimizing the circuitry dedicated to BISH.

Since the microprocessor is vulnerable to soft and hard errors, it is also im-

plemented using TMR. Each microprocessor is broken up into small modules, and

26

a malfunctioning microprocessor relies on the other two microprocessors to replicate

the malfunctioning module, remove it from service and replace it.

As with other proposed approaches, this approach has not been implemented

and relies upon JBit-based tools for reconfiguration which are under development.

Although this approach provides effective solutions for recovery from a number
of different soft and hard errors, its developers acknowledge a number of vulnerabilities
such as errors in the configurations control circuit, the ICAP and the boundary scan
architecture [GAF05]. Protections other than reconfiguration must ensure that the

reconfiguration system is available when needed.

An alternative to pre-compiled tiles or dynamically generated configuration bit-
streams is reconfiguring the FPGA using bitstreams based on precompiled columns
[HMO1]. This technique has a fast reconfiguration time since routing is not determined
dynamically. The regular structure of Xilinx FPGAs, mean they have the same cir-
cuitry, routing resources, and configuration architecture in every CLB column which
results in highly correlated bitstreams. Thus, multiple bitstreams can be compressed.
Two schemes for column-based reconfiguration and bitstream compression are pro-

posed in [HMO1].

The overlapping scheme relies on a base configuration being mapped into column-
based functional modules. The function of the circuit is defined by the modules and
their interconnections. As shown in Figure 2.8, unused columns in the base configu-

ration leave room for alternative configurations which remap the modules.

Since the structure of each CLB column is the same, groups of column-based
modules can be shifted and the only additional reconfiguration needed is to repair
the interconnections between groups. To reconfigure from the base configuration to
alternative configuration in Figure 2.8b, functions C and D are shifted to columns
4 and 5 and the interconnections between function B and function C were restored.
Since functions C and D remain in adjacent columns, interconnections between the

two column-based modules are intact.

27

Function A
Function B
Function D
Function C
Unusad
Function A
Functicn B
Unusad
Function C
Furction D

—_
[3¥]
3]
'S
L5]
i
4]
L]
£
h

(a) (b)

Figure 2.8: The Overlapping Precompiled Column Scheme.
(a) Base configuration with column 5 intentionally unused (b)
Alternative configuration with column 3 intentionally unused [?].

The number of unused CLB columns determines the fault tolerance of the
FPGA. To tolerate m faults, m spare columns are required. If the base circuit config-
uration required k£ columns to implement the user function, the overlapping scheme
required m+k CLB columns to map an m-tolerant configuration. To achieve a m-
column tolerant design, C(k+m, m) = (k+m)!/(m!k!) configurations (including the
base configuration) must be available or be calculated at runtime [HMO1|. However,
since alternate configurations are generated by shifting the column-based modules,
the bitstreams are similar and can be compressed and memory overhead reduced.

Details on the compression technique can be found in [HMO1].

If the user circuit can be implemented in less than 1/2 of the FPGA’s columns,
an alternative approach maps the entire user circuit into unused portions of the FPGA
during reconfiguration. In this scheme, the entire circuit is shifted into an unused
portion. For a circuit to be m-column tolerant it must be mapped in 1/(m+1) or less
of the entire FPGA columns. This approach uses less memory than the overlapping
scheme because there are only m+1 configurations (including the base) and since
the entire circuit is shifted as a block, the relative position among the column-based

modules is preserved in all configurations.

For both column-based module schemes, circuit performance, in terms of worst

case critical path, increases from 11% to 18%. For 4 test circuits, the minimum storage

28

overhead ranged from 15% to 35% for the over-lapping scheme and 2% to 6% for the
non-overlapping scheme [HMO1].

Using a column-based approach the degree of fault tolerance is constrained by
the number of columns in the FPGA and in the user’s circuit, as well as how the user’s
circuit can be divided into column-based modules. Because a frame is the smallest
reconfigurable segment, if reconfiguration is performed at the frame level, the degree

of fault tolerance can be greatly improve over the column-based approach.

One advantage of a column-based approach is the location of faults. Unlike fine-
grained approaches which try to determine which CLB or frame has a fault, faults
only need to be determined to be in a particular column. An alternative to fault
location is to try possible configurations until a configuration that works properly
is found [HMO1]. Although this approach lengthens reconfiguration time, reducing

availability, it eliminates the need for fault detection hardware.

Although single FPGAs can recover from faults in the user circuit using recon-
figuration, they are vulnerable to errors in the logic implementing the reconfiguration
circuit. The reconfiguration circuit can be made fault tolerant through traditional
hardware redundancy or a dual-FPGA configuration can be used. Expanding on the
column-based approach, a dual-FPGA reconfiguration architecture allows the system

to recover from all types of soft errors.

In the dual-FPGA configuration, each FPGA runs user applications and uses
soft microcontrollers so each FPGA can be reconfigured [MHS"04]. The microcon-
troller on each FPGA reprograms the other FPGA. User applications mapped on the
FPGA must include error detection and autonomous recovery techniques to maintain
proper operation. Once a non-recoverable error is detected and reported to the mi-
crocontroller, the microcontroller reports the error to the microcontroller on the other

FPGA and the second FPGA reconfigures the first FPGA.

Since temporary errors are more common than permanent faults, a soft error

is assumed and the second FPGA validates then corrects the configuration bits of

29

the first FPGA if necessary. If an error persists once execution of the first FPGA is
resumed, a permanent fault is presumed and the second FPGA reconfigures the first
FPGA using a modified column-based pre-compiled reconfiguration scheme to avoid
the fault [MHS™04]. Since error detection is incorporated into the user circuit, the
number of new configurations to be tried is reduced based on the location of the error

detected.

The dual-FPGA approach also allows for an alternative to TMR which adds
three microcontrollers to each FPGA (using considerable area). Instead, TMR concur-
rent error detection (CED) signals designed into the microcontrollers can determine if
the other FPGA’s microcontroller has an error and requires reconfiguration [MHS*04].
This approach can be expanded to include the entire reconfiguration circuit making
the dual-FPGA architecture capable of recovering for temporary or permanent errors

to both the user circuit and the reconfiguration circuit.

There are a number of resources within an FPGA vital to its proper operation
that can not be corrected through reconfiguration. These include external connections
(I/O pins) and the actual reconfiguration circuitry on the FPGA including the JTAG,
serial, or SelectMap interfaces. Reconfiguration can be used to avoid some of these
resources. In a single FPGA architecture, a fault in the ICAP would prevent the
FPGA from reconfiguring. However, in a dual FPGA architecture there are multiple
interfaces and configurations which use an alternative reconfiguration mode (JTAG
or serial) can be designed and implemented if an error in the FPGA reconfiguration
interface is detected or suspected [MHS'04]. Additionally, if the design permits,

configurations with alternate I/O can be compiled.

2.5 Summary

Reconfiguration of FPGAs and active fault tolerance techniques improve reli-
ability. The capability, quick development time and relatively low cost of today’s

FPGAs make them an attractive platform for computing applications, but without

30

effective, low-overhead methods for making them more dependable, their applications

in high radiation environments are limited.

Multiple approaches for fault tolerance through reconfiguration have been pro-
posed and some have been demonstrated. Since each approach is target specific, and
the overhead and improvement in reliability varies by benchmark and size of the tar-
get FPGA used, direct comparison is difficult. Due to the amount of time needed
to generate bitstreams dynamically, many of the techniques use pre-compiled partial

bitstream or portions of the bitstream to be reassembled at runtime.

Although there are a number of techniques to generate partial bitstreams exter-
nal to the FPGA being reprogrammed, no applications are readily available to dynam-
ically generate partial bitstreams within the FPGA. If the resources to be avoided are
known, dynamically generating partial bitstreams to reprogram the FPGA with frame
granularity, can increase the number of recoverable faults since the number of spares
would be maximized. Even so, the techniques developed to date focus on efficient
fault recovery and avoid dynamic generation of bitstreams due to the considerable

time involve and large memory overhead of available tools.

31

III. Development of a Dynamic Reconfiguration System
3.1 Introduction

sing partial reconfiguration as a method for fault tolerance adds adaptability
Uand flexibility to the system but also increases complexity. A fault tolerant
system must not only be able recover from a fault, it must be able to detect the fault.
Although detecting and repairing faults with frame granularity maximizes the number
of recoverable faults, detecting the fault and generating a partial bitstream to repair
the fault would be very difficult. Column-based modular reconfiguration performs
fault detection and recovery at the module level. Faulty modules are replaced by

modules in use at another locations or altered to avoid the faulty resource.

Most previous reconfiguration based fault tolerant systems store separate bit-
streams for each area on the FPGA that the module can be placed, even if the modules
are functionally equivalent. These static bitstreams are pre-generated and stored in
memory or perhaps externally until needed. Since the bitstreams are for specific loca-
tions on the FPGA, separate bitstreams for each location on the FPGA a bitstream
that targets that location on the FPGA must be available. This requires a large

amount of memory which typically is not available in microprocessing platforms.

3.2 Problem Definition

3.2.1 Goals and Hypothesis. ~ The primary goal of this research is to develop
an efficient fault recovery system that allows a user circuit to operate through faults.
The system will use relocatable modules to recover from faults without storing indi-
vidual bitstreams. Given the location of a fault in one of the relocatable modules,
the system will automatically replace the faulty module by properly translating the
bitstreams for the module and programming the FPGA through the ICAP. A user
circuit is considered to operate through a fault if it continues to operate properly de-
spite a fault occurring. A secondary goal is to evaluate column-based reconfiguration

techniques which take advantage of relocatable modules.

32

This research will determine whether the architecture of the Xilinx Virtex-1I
Pro, and the Xilinx partial reconfiguration toolchain, can implement such a system
and whether reconfiguration methods can be developed to take advantage of the

architecture of the Virtex-1I Pro.

3.2.2 Approach. To eliminate the need to store multiple partial bitstreams
for each module, that is, a separate bitstream for each possible location the module
could be placed within the FPGA, a method is developed to relocate the core by
manipulating the partial bitstream with an embedded microprocessor. Using this
approach, only one partial bitstream for each module needs to be stored in memory,
minimizing memory usage. To minimize the FPGA area dedicated to relocation, all
calculations needed to manipulate the bitstream are performed using a embedded
microprocessor. In an operational system the microprocessor could be used for other

tasks when not needed for reprogramming.

To achieve user circuit operation through faults, the user circuit is implemented
using TMR. Assuming the location of a fault is known, the microprocessor generates a
partial bit stream by manipulating an existing partial bitstream stored in memory for
the module determined to be faulty and relocating and reconnecting the replacement
module. Three TMR configurations that take advantage of relocatable modules are

developed.

3.3 A Column-Based Fault Tolerant Configuration

A column-based modular approach can be used to implement a fault-tolerant cir-
cuit that operates through faults. Partial bitstreams implement replacement modules
in spare locations to repair the circuit when a fault is discovered. The reconfigurable
modules that perform the primary function of the circuit are referred to as functional
modules. Figure 3.1 is a basic TMR circuit with three active functional modules and

room for two spare modules. Since the functional modules connect directly to the re-

33

Reconfigurable Area

ouT

Figure 3.1: Basic TMR Design. This TMR circuit contains
three modules (1, 2, and 3) perform the same function, denoted
f(x). Their results are send to a voting circuit which determines
the consensus output. Modules 4 and 5 are spares which pass
through the results. The input to each of the modules is deliv-
ered through a data input bus.

sult busses, this configuration is referred to as the “direct connect” design throughout

the remainder of this document

3.3.1 Benefits. Using TMR provides two key benefits. First, TMR provides
passive fault tolerance masking the fault and preventing errors from propagating
into other parts of the system. Assuming only one module is faulty at a time and
the two other modules continue to run correctly, the TMR circuit will select the
output of the two correctly functioning circuits. Although translating the bitstream
and reprogramming the FPGA takes time, the masking ability of the TMR circuit
allows the circuit to continue to produce the correct result. The second benefit is the
detection of errors. If two of the three modules are producing the same result, the
module that does not match the other two must have an error and should be replaced.
Although it is assumed that the location of the fault is know, a method similar to the
boundary scan techniques in the BISH design [GAFO05] could be used to determine
the location of the fault. Once the module is replaced redundancy is restored and

system is ready for another fault.

34

3.3.2 Routing and Timing. Reconfiguring a circuit introduces two related
problems, routing and timing. Once a module has been relocated it must be recon-
nected to the TMR circuit. All routing in the FPGA design is typically performed by
implementation tools prior to programming the FPGA. Although dynamic rerouting
has been demonstrated using JBits and ADB [SA04], all signals entering and exiting
a reconfigurable areas must pass through bus macros (cf., Section 3.8.2). Thus an

alternative solution for modular reconfiguration is needed.

One solution is to have multiple partial bitstreams which perform the same
function but are connected to different busses. Each data bus used in the TMR
design is labeled in Figure 3.1. Modules 1, 2 and 3 all perform the same function,
represented by f(x), but are connected to different busses. The busses carry the
result from each module to the TMR circuit where their results are compared. This

configuration eliminates the need for rerouting the design after reconfiguration.

When using a TMR circuit, the results from each source must arrive within
the same clock cycle. The three result busses carry the results from the functional
modules to the TMR circuit. The data input bus in this configuration provides the
same combined path length for the input and results signals no matter which location
the function module is placed in. This ensures that timing is not affected by the
location of the module. The input signal passes through each of the reconfigurable
modules then loops back to the static module. The function implemented by the
module receives input from the input bus as it passes through the modules the second

time.

3.4 Using Relocatable Modules itn TMR Designs

To implement a functional modules on an FPGA only one reference bitstream
is needed. This bitstream can be altered to allow the module to be placed at any
location on the FPGA. Using a technique similar to how bitstreams are manipulated
in the REPLICA2Pro [KP06], column-based modules can be relocated using software

to move them to any location on the FPGA.

35

Figure 3.2: Modular Functions Before and After Reconfiguration. Bus macros are
shown between modules. (a) Three modules 1, 2, and 3 have identical functionality
but are connected to three different busses feeding the TMR circuit. Modules 4 and
5 are spares but pass data. (b) The bitstream used to program location 1 has been
translated used to program location 4 changing which module produces the result on
bus 1 that reaches the TMR circuit.

Relocatable modules greatly reduce the memory needed to store bitstreams.
The module is relocated by altering its bitstream to change the target location. This

technique reduces the number of bitstreams needed to implement a module in n

locations from n to 1. A method for relocating bitstreams is developed in Section 3.6.

3.4.1 Bitstream Storage Savings With Relocatable Modules. Comparing Fig-
ures 3.2a and 3.2b it can be seen that by moving module 1 into the location of module
4 not only is the functionality of module 1 replicated but it is also properly connected
to the bus. This also prevents the faulty results of the module at location 1 from
reaching the TMR circuit. Although storing and relocating multiple version of each
functional module is a convenient way to reconnect modules in a dynamic partial re-
configuration system, the ability to place a module at multiple locations and connect
to multiple busses increases the number of bitstreams needed. Without bitstream

relocation, the number of bitstreams needed is

of bitstreams = # of functions X # of locations X # of busses. (3.1)

36

Although this technique allows a functional module to be placed in any location
on the FPGA using only one bitstream, separate bitstreams to connect the module
to different busses are still needed. With detailed knowledge of how the bitstream
establishes connections between CLB blocks it is possible to establish new connec-
tions within the FPGA by manipulating the bitstream bit-by-bit. However, since
the information required about how routes are connected in the FPGA is not readily
available, techniques described in Sections 3.4.2 and 3.4.3 have been developed for dy-
namic routing which eliminate the needed for intricate knowledge of the FPGA and
the need for separate versions of the functional module for each bus connection. The
first is based on column-based partial reconfiguration and the second uses difference

based partial reconfiguration.

3.4.2 Routing with Relocatable Interconnect Modules. To support dynamic
routing, interconnect modules can be added to the partial reconfiguration area as
in Figure 3.3. By adding separate modules to perform bus routing, each functional
module has a standard configuration. The output of each functional module is passed
through the bus macro in the upper right corner of each functional module and the
data on each of the busses passes through. The interconnect modules take the output
of the functional modules and connect it to the appropriate bus while allowing the
data on the other busses to pass through unchanged. Note that this configuration
can easily be expanded by adding additional busses.

Similar to the partial bitstream used to instantiate the functional modules, the
bitstreams for reference interconnect modules can be altered to change where the
module will be placed. Using interconnect modules, reconfiguring the circuit consists
of relocating the functional module followed by relocating the interconnect module

that connects it to the proper result bus.

The benefit of using module relocation depends on the number of functional
modules, the number of possible locations for the functional modules and the number

of busses they connect to. The number of column-based bitstreams needed using

37

Reconfigurable Area

Figure 3.3: Relocatable Functional and Interconnect Module
Configuration. Using interconnect modules, labelled I, allows
the all functional modules to have a standard configuration by
eliminating the need for different versions that connect to the
different result busses.

interconnect modules for dynamic routing is

of bitstreams = # of functions + # of busses. (3.2)

Only one partial bitstream is needed for each functional module and each interconnect

module since they can be relocated to the desired location.

In (3.1) all of the bitstreams are approximately the same size. Note that the
bitstreams for interconnect modules in (3.2) may be much smaller than bitstreams for
the functional modules. Limitations that reduce the benefit of interconnect modules

are examined in Section 4.2.1.

3.4.3 Rerouting Using Difference Based Reconfiguration. The other form
of partial reconfiguration is difference-based partial reconfiguration. When there are
small changes between two designs, a partial bitstream can be produced that only
reflects the changes between the two designs. Difference based partial reconfiguration
creates a partial bitstream by comparing two bitstreams and determining which frames
are different between them. The partial bitstream only reprograms the frames that

have changed.

38

Figure 3.4: Relocatable Modules with LUT Selected Bus Connections. In func-
tional modules, bus connections are controlled by LUTs which provide inputs to a
multiplexer to select between the module’s function and the incoming results bus. The
output of the LUTs shown as zeros or one above. (a) Modules 1, 2, and 3 provide
the inputs to the TMR circuit. Module 4 illustrates having a preprogrammed module
that does is not connect to the bus system. Module 5 is a spare module that passes
bus signals unaltered. (b) Modules 2, 4 and 5 now provide the inputs to the TMR
circuit. The LUTSs in module 4 have been changed to connect to bus 2 and module 5
has been reprogrammed using the relocated partial bitstream.

Like the interconnect module approach, this technique changes which bus each
functional module connects to. Consider two versions of a functional module. The
first connects to results bus 1 and another that connects to results bus 2. Since the
only functional difference between the two is which bus they connect there may be
little difference between the two partial bitstreams. If this is so, a difference-based
partial bitstream would be small. However, since each of the modules are placed
and routed independently and optimized based on the location of their output, the
difference between the two could be dramatic requiring a larger partial bitstream to

account for all of the changes.

To prevent large differences between the bitstreams for functional modules that
connect to different busses, a multiplexer shown in Figure 3.4a and 3.4b selects which
bus each functional module places its output on. The bus selected by the multiplexer
is determined by the value of LUTs. To change which bus the module is connected

to, the values in the LUTs are changed using partial reconfiguration.

39

To ensure that the only difference between functional modules that connect to
different busses is the change in the LUTSs, the modules that connect to different
bitstreams are created by editing the Native Circuit Description (NCD) file for the
functional module in location 1. The NCD file contains a physical representation of
the design mapped to specific resources in the target FPGA. The modified NCD file of
the functional module in location 1 that connects to results bus 1 results in a functional
module that passes through all signals. From these two NCD files, a difference-based
partial bitstream is generated which changed the values in the LUTs.

Unlike the previous two approaches, LUT-based routing requires special care to
prevent the relocated module from connecting to the wrong results bus. To prevent
result bus contamination, the initial configuration of the relocatable functional mod-
ular must pass signals on the result busses unaltered. Once the functional module
has been placed, the partial bitstream to change the values in the LUTs, selecting the

proper results bus, can be relocated and applied.

3.5 The Target FPGA

The Xilinx University Program Virtex-II Pro (XUPV2P) development system is
used to test the relocation technique and fault-tolerant modular configurations. Board
revision C uses a XC2VP30 Virtex-II Pro. For extended memory, 256MB of PC2100
Infineon DDR SDRAM (part number: HYS64D32000GU-7-B) is used and a 64MB
DG Vision Compact Flash stores the Advanced Configuration Environment (ACE)

file to program the FPGA and store reference partial bitstreams during testing.

In addition to the complexities of fault tolerance, the target XUPV2P board
introduces constraints that must be taken into consideration in when making a module
relocatable. The architecture of the Virtex-II (Pro) restricts the size and shape of
the reconfigurable modules. Although reconfigurable area can be defined as a small
rectangular area on the FPGA such as the one labeled “A” in Figure 3.5, since
the programmable frames span the length of a column all affected frames must be

reprogrammed. For example, to reconfigure module “A”, a partial bitstream that

40

Ik R Y A :
N :
Block RAM : DCMs
Block RAM Interconnects u
Multipliers
PowerPC Cores A
o— H
=S & E
THEED e \
N i :
i BUFGMUXs

“ s
% f

J‘ sa8 : MGT Cores
HEH -

Figure 3.5: Layout of Virtex-II Pro (xc2vp30ff896-7) in PlanAhead. The majority
of the FPGA is made up of CLB blocks. Four notional modules are labelled 1-4. The
inclusion of PowerPC cores and MGT make the CLB and BRAM resources available
to column-based modules vary by location. Additionallyy, BUFGMUX and DCM
resources are limited. Pin connections are made through the I/O banks bordering
the FPGA. Note that not all instances of each type of resource are labelled. The
resources are placed symmetrically horizontally and vertically.

contains all of the configuration data for module 2 with the changes to module “A”
is needed since each frame spans the entire column assuming the change in module
“A” affects every frame in the column. Otherwise, only affected frames are included
in the bitstream. The logic outside of module “A” can continue to operated during
configuration because the Virtex-II Pro offers “glitchless” reconfiguration. That is,
if a configuration bit holds the same value after reconfiguration as it did before, the
resource it programs will not “glitch” [BJRK™03]. Exceptions to this behavior in the
Virtex-1I (Pro) are the LUT RAM and SLR16 primitives [SBBT06].

41

Since the bitstream to reconfigure a module contains all affected frames, special
consideration must be made for the size and location of reconfigurable modules to
ensure they can be relocated. Consider, for example, 4 equal size modules have been
labeled 1-4 in Figure 3.5. Although the modules are the same size, the resources
available at each location varies. For example, consider moving module 2 which
includes submodule “A” to location 4. Due to the PowerPC, the CLB and BRAM
resources needed by submodule “A” may not be available in location 4. Further
inspection shows that, in this configuration, no two modules have the same resources
available due to the PowerPCs. In addition to resource availability irregularities, there
are a number of unique resources in the Virtex-II Pro. In addition to the resources

labeled in Figure 3.5, Input/Output Blocks surround the perimeter of the FPGA.

The configuration bitstream does not contain bits to program any portion of
the PowerPC but static inputs control adjacent BRAM columns. The XC2VP30 also
has Multi Gigabit Transceivers (MGT) cores which replace a portion of the BRAM.
These MGT cores are programmed using approximately 300 configuration bits in the
adjacent BRAM interconnect column [Xil05b]. Although the MGT cores may not be
used in a design, it should be recognized that relocatable modules can not rely on the

BRAM components to be consistent between all locations.

Despite these shortcomings, the XUPV2P board makes an acceptable test plat-
form because of excellent documentation and demonstrated use in previous partial re-
configuration experiments. Additionally, the XUPV2P can be reprogrammed through
multiple interfaces including the ICAP, JTAG and SystemACE.

3.6 Developing the Bitstream Translation Program

Following a column based modular design approach [Xil04c,HMO01], the location
of the reconfigurable modules is a function of the frame addresses in the bitstream.
This is also true for difference based bitstreams, but only frames that are different
between the two bitstreams are reprogrammed. To relocate a module or a difference

based bitstream, only the frame addresses and CRC values needed to be changed.

42

BA MJA MNA Byte Number
31(30|29(|28|27(26|25(24|23|22(21|20(19|18(17|16|15|14|13|12|11|10|9 |8 |7 |6 |5|4|3|2|1]|0

01010100 |x|x|x | X |X|xXx|X|x|X|x|x|x|x|x|x|x|x|x|0|0|0O|JO]O]|O]O]O]O

Figure 3.6: Frame Address Composition. The type of column is determined by
the BA, the columns is determined the MJA and the frame within the column is
determined by the MNA [Xil05b].

Before a method is developed for translating the bitstream, the composition of the
bitstreams and the configuration memory addressing scheme in the Virtex-II Pro is

addresses must be understood.

3.6.1 Virtex-1I Pro Bitstream Composition. The details about the com-
position and construction of the Virtex-II Pro and Virtex-II Pro X bitstreams are
in [Xil05b]. The following analysis and decomposition of the bitstreams relies heavily
on this document. To translate a bitstream, the format and structure of the entire
bitstream must be understood so that the addresses can be located and altered ap-
propriately. The bitstream translation program (BTP) assumes the original partial
bitstream is valid and contains all commands necessary in a partial bitstreams to

reprogram the FPGA.

Following an initial 32-bit synchronization sequence, the remainder of the bit-
stream is made up of multiple data packets. The format of the bitstream packets is

discussed in Section 3.6.3, but first the addressing scheme is presented.

3.6.2 Configuration Memory Addressing. Each configuration frame is ad-
dressed using a unique 32-bit frame address. The 32-bit address is composed of the
block address (BA), major address (MJA) and a minor address (MNA). The MJA
specifies the column and the MNA specifies a specific frame within a column. Figure
3.6 shows how the BA, MJA, MNA and byte address make up the frame address.
The relationship between the BA, MJA and MNA is illustrated in Figure 3.7 where
n is number of devices CLB columns and m is number of device BRAM/BRAM

Interconnect Columns. The values for n and m are device dependent.

43

= =

Z Z

Column X = = = =
m _ oo @ _ m < < <

Type 8 0 o o o 389 & & Z 5
BA|O|0O|0Of0O|O]|O 0|00 1 1 2 2

MJA |0[1|2(3]|4]|5|eee

T 0 X m AR

Mo+
W+
EN

3

ugooz2_cd_035_030405

Figure 3.7: Column-Level (MJA) Configuration Memory
Map [Xil05b].

Divided by BA, the configuration memory for the Virtex II-Pro is independently
addressable in three blocks [Xil05b]:

e Block Address 0 (BA 00) contains all Global Clock (GCLK), Input/Output
Block (IOB), Input/Output Interface (IOI), and CLB configuration columns

e Block Address 1 (BA 01) contains all BRAM columns
e Block Address 2 (BA 02) contains all BRAM interconnect columns

All configuration memory is programmed through a bitstream. To change the

addressing of the bitstream, the processing of the bitstream must be understood.

3.6.3 Bitstream Packet Type. Bitstream packets are used to write data to
the registers of the FPGA configuration logic. Configuration packets can set configu-
ration options, program configuration memory, or change the value of internal FPGA
configuration signals. Each bitstream packet contains a header and a body. Two

types of packets are used.

Type 1, is used for smaller packets, up to 2! — 1 words, and Type 2 is used
for larger packets, up to 2!7 — 1 words. As can be seen from the packets headers in
Figures 3.8 and 3.9, both Type 1 and Type 2 packet headers can be used for reading
and writing, but only Type 1 packets can specify a register address. Type 2 packets

44

Type Register Address RSVD Word Count

s
(=)

31|30(29(28|27|26(|25|24|23|22|21|20|19|18(17|16|15(14|13|12|11|10| 2 |8 |7 |6 |5|4 |3 |2|1|0

0|01l x| x| X |x|x|X|x|xXx|X|xXx|X|x|x|x|x|x|0|0 | x|x|x|x®x|®X|xXx|X|X|X|xX|X

Figure 3.8: Bitstream Packet Type 1 [Xil05b].

Type w Word Count

n
=)

31|30(29|28|27|26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11(10| 9 |8 |7 |6 |5|4 |3 |2|1|0

0110 | x| X |X|X|[X| X |X|X|X|X|X|X|X|X|X| XX | XXX | XXX |X|X|X|X|X|X

Figure 3.9: Bitstream Packet Type 2 [Xil0O5b].

must be used directly after a Type 1 packet and read or write to the register specified

by the Type 1 packet.

3.6.4 Software Emulation of the Packet Processor. — The packet processor is
the portion of the FPGA configuration control logic that drives incoming data into the
configuration register targeted by the packet header. The packet processor continues
to drive incoming data to the targeted register until the word count set by the packet
header reaches zero, signifying the end of the packet. The BTP must keep track of
how many words have been processed to determine when one packet ends and the
next one begins. Once the packet processor finishes processing a packet it waits for
the arrival of the next packet. This process is repeated for each packet until the end

of the bitstream is reached.

For Type 1 instructions, the word count is the 11 LSB of the packet header.
For Type 2 instruction, the word count is the 27 LSB of the packet header. A Type
2 write instruction is always preceded by a Type 1 header indicating that zero words
will be written to the Frame Data Input Register FDIR). Both Type 1 and Type 2
instructions can be used to read or write, but for the application of relocatable modules
the partial bitstreams, all packet headers have write commands. The translation
program as implemented in Appendix B supports changing the address bitstreams

that both read from and write to memory.

45

Table 3.1: Writing to Configuration Memory with CRC [Xil05b].

‘ Configuration Data ‘ Explanation |

30008001 Type 1 Packet Header: Write 1 word to CMD
00000001 Packet Data: WCFG Command

30002001 Type 1 Packet Header: Write 1 word to FAR
02000000 Packet Data: Frame Address = 0x02000000
3000401A Type 1 Packet Header: Write 26 word to FDIR
00000000 Packet Data: word 1

00000000 Packet Data: word 26

0000A53B AutoCRC word

3.6.5 Virtex-1I Pro Configuration Registers. — The bitstream translation pro-
gram must also account for the command words and settings written to each register
that affects the status of the FPGA. Of the 15 configuration registers, only the CRC
register, Frame Address Register (FAR), FDIR, Command Register, and Device ID

register are written to in partial bitstreams.

Writing a group of configuration frames starts with a Type 1 packet header
which indicates that 1 word will be written to the Command Register. The following
word is the Write Configuration Data Command. This command word is followed
by a Type 1 write header indicating 1 word is to be written to the FAR. The next
word is the frame address formatted as shown in Figure 3.6. The following word is a
Type 1 write instruction to write a specified number of words to the FDIR register.
The FDIR is the register that the actual frame configuration data is written to. This
sequence, shown in Table 3.1 is an excellent example of the commands needed to write

to configuration memory.

The FAR is automatically incremented with every write to the FDIR or read
from the Frame Data Output Register FDOR). Every time the address the FAR
changes, the command in the Command Register is executed. For packets larger than
21 — 1 words, the Type 1 packet can be immediately followed by Type 2 header which

can specify higher word counts

46

Table 3.2: Bitstream Command Codes that Required Special Actions

Reset CRC | Set the calculated CRC value to 0
DESYNCH | Indicates the end of the bitstream. Program can exit.
IDCODE | Set BTP variables. No change to bitstream.

To ensure the bitstream being used for configuration was created for the target
device, the FPGA configuration control logic requires that the correct device ID be
written to the Device ID register. The BTP uses the device ID to determine the
number of CLB, BRAM and BRAM interconnect columns in the FPGA.

The Write Configuration Data command and the correct Device ID must be
written to the FPGA before writing to the FDIR register. These command are already
part of the original bitstream and must remain unaltered. To translate a bitstream,
only the frame address written to the FAR needs to altered since the remaining frames
are addressed relative to the first frame in the packet. The method for calculating

the new MJA is in Section 3.6.6.

3.6.5.1 Command Code Handling. Additional command codes that
change the state of the FPGA configuration logic must be incorperated into the BTP.
The codes that occur in partial bitstreams that require action are listed in Table 3.2.
The remaining of command codes require no action must be and are left unchanged

in the translated bitstream.

3.6.6 Calculating the New Major Address. ~ Once the address being sent to
the FAR has been identified, the Block Type and MJA is extracted from the frame
address. Only the MJA will be altered, but the block type determines how it will
be altered. Additionally, the architecture of the target Virtex-II (Pro) FPGA affects
how the BTP calculates the new address. Using the number of CLB columns and
BRAM columns in the target FPGA, the BTP performs error checking to verify
that the address calculated targets an actual column within the reconfigurable area.

The number of columns in each Virtex-II Pro device is listed in [Xil05b] and can be

47

AT EMT T T T T T D ETOTTTO N OOy

6 CLB Columns

*ﬁ 1}
=

Figure 3.10: Distance between BRAM columns label in a view
of the top left-hand corner of the XCV2P30 displayed in the
PlanAhead.

automatically set by the BTP based on the Device ID read from the partial bitstream.

The XC2VP30 has 46 CLB columns and 8 BRAM columns.

Critical to the calculation of BRAM addresses is the number of CLB columns
between each BRAM/BRAM Interconnect column as illustrated in Figure 3.10. In all
Virtex-IT Pro devices there are 6 CLB columns between BRAM/BRAM Interconnect
columns. Given the width of each reconfigurable module, mod_width, the width of the
interconnect modules, inter_width and the number of CLBs between BRAM columns,
CLBs_between_BRAM, the new MJA is calculated based on the current address and

the number of modules the module is being moved as

new-CLB_-MJA = old_MJA + (dist_in-mods)(mod_width + inter_width), (3.3)

(dist_in_mods)(mod_width + inter_width)

new-BRAM_-MJA = old_MJA + CLBs_between_.BRAM

(3.4)

A Block Type of 0, indicates that the MJA is a CLB column and the new MJA is
calculated using (3.3). A Block Type of 1 or 2, indicates a BRAM column or BRAM

interconnect column and (3.4) is used.

If interconnect modules are not used, inter_width is zero. Additionally, (3.3)
and (3.4) could easily be altered to calculate the new MJA based on translation
distance as in [KP06]. Specifying the translation distance allows more flexibility in

the placement of the reconfigurable modules since they do not all have to be adjacent

48

CRC Calculation Register
| EEECECEEEREER) O
n DATA_IN

CRC Data Input Register

Address 32-bit Data Word
4laf2]1]o]st]sofzefes]e7fes] e @ @ Js]a]sf2]1]o
SHIFT -
0000 0000 0000 0000 16-bit CRC
31:16 15:0

CRC Register [31:0]

Figure 3.11: V2P Serial 16-bit CRC Circuity [Xil05b].

to one another. Since all of the proposed configurations use the modular design,

translation distance is specified in modules for convenience of the user.

3.6.7 Updating the CRC" Value. A 16-bit CRC verifies the integrity of the
bitstream. For each 32-bit word written, with the exception of the Legacy Output
register (LOUT), the CRC is updated. As shown in Figure 3.11, the 5-bit address

code for the register and the 32-bit data word are used as input to the CRC calculation
[Xil05b].

Also included in the CRC calculation is the Frame Address written to the FAR.
Since this address is altered during the translation process, the original CRC value in
the bitstream will not match the CRC calculated by the FPGA. To avoid a CRC error,
the bitstream translation software must calculate the proper CRC value and alter the
bitstream accordingly. Each time the bitstream translation software processes a 32-
bit word that will be written to a resister other than the LOUT or CRC, the CRC

value is updated.

In the Virtex-II Pro, CRC checks are performed in two different ways. In the first
method, the CRC value is explicitly written to the CRC register using a Type 1 write
packet header targeting the CRC register followed by the pre-calculated CRC value.
This is referred to as an Explicit CRC. The second type of CRC check automatically

49

takes place at the end of a write to the FDIR. Once the number of words indicated by
the Type 1 or Type 2 read instruction have been written to the FDIR, the next word
in the bitstream is a CRC value which is automatically written to the CRC register.
This type of CRC check is referred to as an AutoCRC. The calculated CRC value
is set to zero each time the CRC reset command is written to the command register
or after the CRC register is written to using an Explicit CRC or AutoCRC with the

current calculated CRC value.

To perform the CRC calculation in software an algorithm written for the Virtex
series [Xil04d] was altered for the Virtex-II Pro and incorporated into the bitstream
translation program. Changes included support for additional register designations
and 5-bit register addressing. The code for updating the CRC can be found in Ap-
pendix B. As an option, bitstreams can be generated with CRC disabled. Before a
partial bitstream with CRC disabled can be used to reprogram an FPGA, the FPGA
must have been initially programmed using a bitstream with CRC disabled. The ini-
tial bitstream disables CRC checking on the FPGAs and all CRC values are expected
to be set to 0x0000DEFC. The BTP has the option to disable CRC. If this option is
set, the new bitstream uses the CRC values from the original bitstream (which should

be 0x0000DEFC).

3.6.8 Qwerall Organization of the BTP. The high level organization of the
BTP is shown in Figure 3.12. Since the CRC is not updated when a word is read
from a register, no changes to the bitstream are necessary for a read packet. Since
the frame address is written to the FAR using a Type 1 write before reading from
the FDOR, the BTP can be used without modification to change the location that a

bitstream will read from configuration memory.

3.7 FPGA Design Tools

To use a microprocessor in a partially reconfigurable design, both Xilinx Plat-

form Studio and Xilinx Project Navigator are required. These two software suites are

20

Stan Process
Packet

i

Gat Next Packat
Header

¥
Determine ward
count and
destination register

Figure 3.12:
each packet header type. The program in Appendix B implements the above using
a number of functions which decode command registers and commands to allow for
debugging. Note all of actions that alter the bitstream occur in Type 1 or Type 2
write packets. All read packets are left unchanged in the translated bitstream. The
CRC is updated for words written to all configuration registers except the LOUT. A
valid partial bitstream will never write to the FDOR.

Determine Packet 5 o
Header Type
Dy

etermine word

count

—

Skip word count
while updating
CRC

.

Type 1 5 Type 1 - Type 2
NOOP? Read? Read?

Skip word count

Wiite Current CRC
Value to Bitstream — Reset CRC
Ch:gg;g:] A » Update CRC
Skip word count -
i i _ | Write AutoCRC to
mh&fgahng . Bitstraam
ine Resat lgnore Command
s o>
Yes Yes
— ¥
= Bitstream Translation
SetCRC =0 o
Skip ward count
Get Device ID
from bitstream
Determine model
and sel variables
d L 4
hit et ./ End Process
with CRC update v Packet

51

Flowchart for Processing a Packet. This flowchart shows actions for

typically referred to by their major components the Integrated Synthesis Environment
(ISE) and Embedded Development Kit (EDK), respectively. To perform partial re-
configuration, a supported version of ISE must be patched to include the appropriate
version of partial reconfiguration implementation tools. The implementation tools
are modified MAP, Place and Route (PAR), and library files that support partial
reconfiguration [Xil07a]. The version of EDK that is used depends on the version of

ISE that the implementation tools are available for.

Although implementation tools are available for ISE version 8.2i SP1, the design
flow for implementing EDK projects changed dramatically between versions 8.1 and
8.2 of the tools. At this time, the of documentation explaining how to incorporate
microprocessors developed in EDK 8.2 into partially reconfigurable designs created
in ISE 8.2i SP1 is inadequate, so version 8.1 is used. All design and testing of the
partial bitstream is conducted using ISE 8.1i SP1 with “PR_8” implementation tools
(ISE 8.1.01i_.PR_8_) and EDK 8.1 (Build_ EDK I.18.8).

PlanAhead provides a graphical environment for modular design and partial
reconfiguration. PlanAhead version 8.2.6 is used to designate reconfigurable areas
and to place bus macros. Although the constraints needed for modular designs can
be created using the Floorplanner tool in ISE, PlanAhead provides a more intuitive
and easier to use design environment. For reconfigurable designs that to do not

incorporate a microprocessor, PlanAhead is used to build the partial bitstreams.

The partial reconfiguration support for PlanAhead greatly streamlines the gen-
eration of partial bitstream and eliminates the need for the rigid directory structure
required by the traditional partial reconfiguration design flow. Unfortunately, at this
time the PlanAhead partial reconfiguration flow does not include programming em-
bedded microprocessors or the creation of the ACE file to load the FPGA configuration

from a CompactFlash card.

For more control over the partial reconfiguration process, batch scripts are tai-

lored for each design that uses a microprocessor. Custom batch scripts enable the

52

process of building the partial bitstreams and creating a custom ACE file to be auto-

mated. An example script is included in Appendix C.

3.8 Implementing a Relocatable Partial Reconfiguration Design

The partial reconfiguration design flow for ISE 8.1.01i is well documented on
the Partial Reconfiguration Early Access software tools web site [Xil07a]. The 8.1.01i
partial reconfiguration design flow is not designed for relocatable modules and special

considerations must be made when designing relocatable modules.

3.8.1 Reconfigurable Modules. Relocatable modules are reconfigurable mod-
ules that can be moved on the FPGA. As part of the User Constraints File (UCF),
which defines logical constraints such as pin connections, instances of VHDL com-
ponents can be given area constraints to restrict the area they will be implemented
in. These area groups can be designated reconfigurable regions. Each reconfigurable
module is defined as its own reconfigurable region. Although a frame in a partial
bitstreams reprograms a fraction of a column, the partial reconfiguration design flow
for ISE 8.1.01i allows reconfigurable regions to be defined as any rectangular size.
Thus, for reconfigurable modules in Virtex II series devices no longer have to be the
full height of the column [Xil06]. The partial bitstream produced reprograms an en-
tire column if any portion of the frame in the reconfigurable area changes. Since the
resources available on the XUPV2P are not homogenous between columns (cf., 3.5),
the ability to specify shorter reconfigurable modules allows the logic used by each
reconfigurable module to be targeted to the portion of the column that has consis-
tent resources across the FPGA. Figure 3.13 shows the areas that have homogenous

resources as rectangles above and below the PowerPCs.

3.8.2 Bus Macros. All signals entering or exiting a reconfigurable region
must be routed through bus macros. Bus macros connect two reconfigurable regions
together or connect a reconfigurable region to a static portion of the design. Bus

macros define intermodular routing, forcing the interconnections of different reconfig-

23

Figure 3.13: Areas with Homogenous Resources Across
Columns. Restricting the reconfigurable area to the portions
of the FPGA that have consistent resource across all columns
ensures that the resources needed by module is available when
relocated. The regions shown above avoid the MGT, PowerPCs
and I/O banks.

urable modules to be identical. This insures the reconfigurable modules have identical
interfaces. Bus macros are hard-placed and hard-routed. The bus macros compat-
ible with ISE version 6.x are available as part of XAPP290 [Xil04c] and versions
compatible with ISE 8.x are available from the Early Access Partial Reconfiguration

lounge [Xil07al.

Partial reconfiguration for ISE 8.x allows static routes inside the partially recon-
figurable regions [Xil06]. This is a change from the requirements of XAPP290 [Xil04c]|,
which specifies that all signals must be routed through bus macros. This change sim-
plifies the design of Partial Reconfiguration design with non-relocatable modules and
improves timing. In non-relocatable designs, different version of the modules are
created by the partial reconfiguration tools. Partial bitstreams include the unique
functionality of that version and the static routing at that location. Since the static
routing is included in all versions of the reconfigurable module, static routing remain
intact during reconfiguration. However, relocatable modules static routes within re-

configurable modules must be prevented since reprogramming a module with a bit-

o4

Figure 3.14: The Layout of a Bus Macro in FPGA Editor.

stream that does not program the static route will destroy any static routes that pass

through the module.

3.8.8 Making Reconfigurable Modules Relocatable. 1If static components are
placed on the FPGA and the reconfigurable modules are relocated, static logic must
not be allowed to use any resources within the reconfigurable areas. Static rout-
ing in reconfigurable modules can be prevented by using the XIL_PRCONTROL file
to override the default behavior of the partial reconfiguration design flow. The Al-
low_Routing In_Dynamic_Area field prevents the static portions of the design from

routing through the reconfigurable regions.

Using area constraints to confine a reconfigurable module to a subregion of the
column-based module, as explained in Section 3.8.1, ensures resources needed by the
module are available at all locations but allows static routes to use the resources above
and below the reconfigurable area. In order for Allow_Routing In_Dynamic_Area to
prevent any static routes from being programmed by the partial bitstream, the recon-
figurable module must span the entire height of the column. For systems with static
logic, this further reduces the number of locations for relocatable reconfigurable mod-

ules.

95

Using Allow_Routing In_Dynamic_Area severely limits the number of locations
that a reconfigurable module can be placed. In addition to resources such as DCMs
and BUFMUXs which must have routing resource available, designs using the Pow-
erPC require connections to the BRAM interconnect columns around the PowerPC
core as well as a connection to the PowerPC JTAG. Thus, if connections to unique re-
sources must pass through the reconfigurable regions, using Allow_Routing In_Dynamic_Area

effectively prevents the router from making necessary connections.

3.9 Internal Reconfiguration

To support internal partial reconfiguration, a microprocessor feeds the partial
bitstream to the HWICAP. The microprocessor can also translate the partial bit-
streams. To support internal partial reconfiguration, the design includes static and
reconfigurable regions. The static regions contain the microprocessor, peripherals and

other portions of the circuit that will not be altered during reconfiguration.

3.9.1 Using an Embedded Microprocessor to Run the BTP. BTP was de-
veloped and testing on a PC using Microsoft Visual Studio 6.0. To test the BTP,
bitstreams created by the Xilinx partial reconfiguration tools were translated and
used to program the FPGA through the JTAG. Since partial bitstreams are the same

no matter which configuration method is used, the same bitstreams can be used to

program the FPGA through the ICAP.

To actively restore redundancy on an FPGA, the microprocessor can translate
a stored bitstream and reprogram the FPGA. The Virtex-II Pro supports both Mi-
croBlaze and PowerPC microprocessors processors. Each of these microprocessors
supports internal reconfiguration through the ICAP so either could be used to trans-
late partial bitstreams, relocate a module, and send the partial bitstream to the ICAP

interface. Each processor has advantages and drawbacks.

o6

256MB

SDRAM BRAM
Fy k
¥
SDRAM _ LMB BRAM
Controller MicroBlaze Controller
OFB
| | I |
, ICAP
Debug OPB Arbiter UART Lite Interface Timer
Module Module
Module

Figure 3.15: MicroBlaze System Block Diagram. The connec-
tions between the MicroBlaze and its peripherals are shown. The

MicroBlaze uses a Local Memory Bus (LMB) to access BRAM,
but uses the OPB to connect to all other peripherals.

3.9.2 MicroBlaze and uClinuz. Presumably, the microprocessor on the
FPGA will be used for other purposes until it is needed to reconfigure the FPGA to
recover from a fault. To show that the bitstream translation program can be run on the
microprocessor along with other applications, the BTP is run on uClinux. uClinux
is a port of Linux designed to work on microcontrollers that do not have Memory
Management Units. A benefit of using uClinux with the MicroBlaze is availability
of ICAP drivers [WBO04]. These drivers take the low level drivers written by Xilinx
and “wrap” them so the ICAP can be mounted as a device in the operating system
and accessed using build-in Linux device commands. The block diagram for the
MicroBlaze design is shown in Figure 3.15. The requirements for using uClinux on
the MicroBlaze can be found in [WSWO06]. Instructions for using the ICAP in custom
program can be found in [WB04]. The BTP program only requires minor changes to

work in uClinux to account for the reversed byte order in uClinux fread() and fwrite().

One drawback of using the MicroBlaze is the additional area needed to instan-
tiate the microprocessor. Since the PowerPCs are already on the FPGA, not using
them is waste of reconfigurable area that could be used to increase the number of
locations for spare modules. Furthermore, in addition to the MicroBlaze, all neces-
sary peripherals including the HWICAP, memory controller, OPB controller, UART,

timer, debug module, and DCMs must be instantiated.

o7

JTAG PPC

256MB
BRAM
SDRAM FowerPC
L. L]

SDRAM DDDDDDIII:III?I:BIIUU BRAM
Controller . Controller
PLB20OPB Bridge

OPB
| | | |
. ICAP SystemACE
OPB Arbiter UART Lite Interface Interface Timer
Module
Module Controller

Figure 3.16: PowerPC System Block Diagram. The connec-
tions between the PowerPC and its peripherals are shown. The
PowerPC uses a Processor Local Bus which must be bridged to
access peripherals on the OPB.

3.9.3 PowerPC. The XUPV2P has two PowerPC 405 cores embedded in
the FPGA. Although many of the same peripherals used on the MicroBlaze need
to be instantiated for use with the PowerPC, the actual microprocessor does not
use any reconfigurable area on the FPGA with the exception of a small number of
configuration bits stored in adjacent BRAM interconnect columns. Xilinx’s ICAP
drivers can be used to write bitstreams to the ICAP. Figure 3.16 is the block diagram
of the PowerPC with the necessary peripherals to take a partial bitstream from a
compact flash, store it in memory, translate the bitstream and reprogram the FPGA
through the ICAP. Instructions on how to set up a PowerPC for partial reconfiguration

are found Appendix B. The BTP for the PowerPC can be found in Appendix B.

Like the MicroBlaze, the PowerPC as some drawbacks. In FPGAs with mul-
tiple PowerPCs, both PowerPCs must be connected to the PowerPC JTAG chain.
Unless both PowerPCs are instantiated in the design and properly connected to the
jtagppc_cntlr signal, the EDK design will not pass EDK design rule checks. The exis-
tence of the non-global jtagppc_cntlr signal which needs to connect to the otherwise
unused PowerPC core requires static logic be routed through the reconfigurable area

around the PowerPC.

o8

3.10 Summary

This research determines if an efficient fault recovery system can be developed
which allows a user circuit to operate through fault. Efficiency is gained by not
storing individual bitstreams that implement the same function multiple locations on
the FPGA. Instead, the bitstreams are relocated by the BTP. The BTP is evaluated to
determine if successfully translates bitstreams. The suitability of using the XUPV2P

to implement the fault recovery system is also determined.

Additionally, this research explores using relocatable modules to implement fault
tolerant designs in FPGAs. The designs take advantage of portions of the Virtex-
IT Pro that have homogenous resources to make the modules relocatable by simply
changing the frame addresses in the partial bitstreams. Each configuration will be

tested to validate that the designs work.

29

IV. Implementation

4.1 Introduction

he primary goal of this research is to develop an efficient fault recovery system
Tthat allows a user circuit to operation through faults. Three TMR configura-
tions are developed. Each of these configurations can provide passive redundancy
and support the replacement of modules without interrupting the correct operation
of the user circuit. The BTP correctly translates the partial bitstreams and can be
implemented on an embedded microprocessor to perform internal partial reconfigura-
tion. Additionally, the XUPV2P development board provides sufficient resources to

implement the fault recovery system and user circuit.

4.2 Verifying Relocation of Partial Modules

The changes made by performing partial reconfiguration must be verified. Since
all changes are internal to the FPGA, the only way to determine if the modules are
relocated properly is to design the circuit so that the effect of the reconfiguration is
evident. A straightforward design to test is the interconnect module design shown in
Figure 3.3. Modules 1, 2, and 3 are programmed to add 1, 2 and 3, respectively, to the
input received on the input bus. All other functional modules pass data through the
bus macros unchanged. The results from the functional modules are placed on their
corresponding data busses by connecting through the interconnect modules as shown
in Figure 4.1. The 4 LSB of the data received on each result bus and the input bus is
displayed in hexadecimal on four 7-segment displays. Each of the 7-segment displays

correspond to one of the result busses or the data input bus as shown in Figure 4.2.

Figure 4.2a shows the initial configuration with modules 1, 2, and 3, connecting
through interconnect modules to busses 1, 2 and 3 respectively. Figure 4.2 shows
the results of the partial bitstream for module 1 being translated and used to replace
module 2. Similarly, the results of routing changes can also be observed using this

configuration.

60

Reconfigurable Area

Figure 4.1: Interconnect Module Layout Test Configuration.
To determine if module translation is successful redundant func-
tional modules are replaced with modules that add 1, 2 or 3 to
the input. A T7-segment display is used to display the results.
The spare modules is labeled with “S”.

Before implementing the modular designs developed in Chapter III on an FPGA
with a microprocessor, each configuration is tested by translating the partial bit-
streams using the BTP running on a PC and reprogramming the FPGA using the
JTAG. This technique determines if the translation and reprogramming of the module

is successful.

4.2.1 Testing the Interconnect Module Designs. Testing the interconnect
module design requires bitstreams for the functional module and each of the inter-

connect modules. To generate these partial bitstreams, the configuration shown in

Results Bus Input
~————— Bus
1 2 3 ¥

(a) (b)

Figure 4.2: Partial Reconfiguration Status Display. The test
modules and top level layout are designed to show which module
connects to each bus.

61

Sy
Staticfn'j';'?z _.____ |i:'4§8|tjagic
ot ||| ||
BUFGP

Figure 4.3: Top Level VHDL Organization.

Figure 4.1 is implemented. The configuration uses 3 active functional modules, 1
spare functional modules, and 4 interconnect modules. The top level design, shown
in Figure 4.3, contains all 1/O instances, clock buffers, base design instantiations,
partial reconfiguration module instantiations, signal declarations and bus macro in-
stantiations needed for the design in accordance with [Xil06]. Each of the static and

reconfigurable modules are created and synthesized separately.

4.2.1.1 Setting Design Constraints Using PlanAhead. To avoid the
nonhomogeneous resources on the FPGA, the design is placed in the lower right corner
of the FPGA below the PowerPC as shown in Figure 4.4. All module constraints and
bus macros placement are set using PlanAhead. PlanAhead also performs design
rule checking to verify that all design rules have been met for partial reconfiguration.
The process of laying out the design in PlanAhead uncovered a major flaw in the
use of interconnect modules. According to design rules, the minimum width for a
reconfigurable area with bus macros placed on both sides of the reconfigurable area is
two CLB columns. Since very little logic is implemented by the interconnect modules,
and no other logic is allowed in the region, using two entire columns for routing

prevents valuable resources from being used.

The configuration shown has 4 CLB wide functional modules and 2 CLB wide
interconnect modules thus, approximately 33% of the CLB resources the reconfig-
urable region is used by the interconnect columns. Considering that the only purpose

of the interconnect modules is routing, this may be an unacceptable use of resources.

62

26 1 2 2 A2 I N

i fne el iz e g

Figure 4.4: PlanAhead Layout for the Interconnect Module
Configuration. A portion of the area constraints of the recon-
figurable modules are shown. Bus macros can be seen along the
right and left sides of the reconfigurable regions.

Although this configuration shows 100% of the BRAM/BRAM Interconnect columns
in the reconfigurable region being used by the interconnect columns, this was only for

convenience of module placement and could be used by the functional modules.

4.2.1.2 Translating the Modules. To test the BTP each of the four
functional module are translated to target each of the other functional module loca-
tions. The bitstreams produced by the BTP program the FPGA and their effect is
determined by the status of the system shown on the 7-segment display. The circuit
works as expected except when bitstreams for modules 2, 3, 4 are translated to target
the location of module 1. Using a translated partial bitstream to reprogram module
1 causes the circuit on the FPGA to crash. The result is that only one digit on the

7-segment display remains lit.

The 7-segment display is a common anode display which uses the same anodes

to drive all 4 digits on the display. Displaying only one digit is an indication that

63

L R Ly
I inginiaiepabaiiiedegng bt = 2 b e e

urable Area

g

FPAFES

b_nf

i1
I

TEERER

Rec

..||;r_;|_|;.

AR EER

FPGA Editor View of NCD for Interconnect Mod-

ules Design. The reconfigurable modules are outlined in black.

Figure 4.5

The buffered clock signal that is distributed to all reconfigurable

modules and the 7-segment display driver
highlighted. The BUFMUX connect

as module 1.

1C 1S

in the static log

in the same column

on 1s

64

STATIC

Figure 4.6: Area Constraints Direct Connect and LUT-based
Configurations. To avoid disconnecting the system from the
clock, the columns that include the I/O blocks for the system
clock are not using in the reconfigurable modules.

the clock driving the state machine to determine which of the 4 digits should being
drive has been disconnected. By examining the NCD file in FPGA editor, shown in
Figure 4.5, it can be seen that static routing in the same column as module 1 connects
the system clock input to the BUFGMUX for clock distribution. Moving functional
module 2, 3, or 4 to location 1 removes the connection to the buffered system clock
and reprograms the I/O block. To prevent the system from crashing, modules that
have static routing can not be written over using translated bitstreams from another
location. However, in the configuration developed in Chapter III, the columns that
include connections to the clock pins and for routing the output of the BUFGMUX

can be used as one of the initial locations of the modules.

To test the interconnect modules, each of the interconnect modules were trans-
lated to each of the other interconnect module locations. The circuit performed as

expected for each reconfiguration; no problems were observed.

4.2.2 Testing the Direct Connect Modular Design. To test the direct connect
module design, a top level-design based on the layout in Figure 3.1 is developed using

functional modules that add 1, 2, and 3 to the value on the input bus. Modules 4 and

65

5 pass input and data bus values without changing them. A diagram of the top level
design is shown in Figure 4.7. Interconnect modules are not used in this layout and
the functional modules must be altered, and resynthesized to connect directly to result
busses. That is, each of the active functional modules replace the data on one of the
results busses with the result of the function it implements. Once again PlanAhead is
used to layout the reconfigurable area and produce partial bitstreams. The layout for
the reconfigurable modules is shown in Figure 4.6. It avoids static routing and clock
pin connections in the center of the FPGA by creating a gap between reconfigurable
modules where static logic can be placed. Since functional modules implemented by

the partial bitstreams connect to specific busses, the design is more difficult to test.

To verify that the partial bitstreams reprogram the FPGA properly, the partial
bitstream for module 4, which only passes through the data is used to “remove” all
of the modules. When modules are “removed” the display reads “0000” since the
modules in all locations place the data they receive on the inbound result busses
onto the outbound result busses without changing the data. Translated bitstreams
for modules 1-3 are used to implement functional modules in locations other than
their original locations. Since the proper translation of the module 4 bitstreams is
confirmed by their successful removal to the original modules, they can be used to
verify that other bitstreams are translated properly. Using the module 4 bitstreams,
the target of translated bitstream can be verified by replacing it with the module 4

bitstream targeted to the same location.

4.2.83 Implementing the LUT-based Modular Design. The LUT-based mod-
ular design, shown in Figure 3.4, requires additional constraints to be placed on the
modules for synthesis and implementation. Care must be taken to ensure the LUTs
used to control the multiplexors are not broken into multiple LUTs or eliminated due
to optimizations during implementation. To test the concepts behind the LUT con-

figuration, a simple design with three LUT controlled multiplexors is created using

the LOC, BEL, and LOCK_PINS constraints. The LUT and BEL constraints force

66

~{EmH
Static fnﬁ* _ __ fnRS Slt%ic
Yo L | |
BLIFGP

Figure 4.7: Top Level VHDL Organization for the Direct Con-
nect and LUT-based Designs.

the three LUTSs to be implemented in specific locations and LOCK_PINS prevents the
pins of the LUT from being switched [Xil05a]. Forcing the LUTSs to be in the same
column, not only makes them easier to find, it also minimizes the number of frames
changed by the difference-based partial bitstream. Since the locations of the LUTs
are known, the NCD file is easily edited to invert the equations implemented by the
LUTs.

Producing the difference based partial bitstream using the BitGen utility, as
described in [Xil04c], produces a bitstream which changes 49 frames. This is higher
than expected since an entire CLB column is only 22 frames [Xil05b]. The BitGen
utility takes a .NCD file and compares it to an existing bitstream to determine which
frames changed. Using the BitGen utility on the original .NCD file reveals that 48
frames have changed. Using the BTP to analyze the bitstreams, it can be seen that
both bitstreams change a series of frames with MJAs equal to 3, 4, 47, 48, and 49,
but only the partial bitstream produced from the altered .NCD file programs a frame
with a MJA of 35. This MJA corresponds with the location of the LUTs.

Although PlanAhead identifies the LUTs in the .NCD file for the reconfigurable
modules and permits the addition of location constraints, it does not include these
constraints in the user constraint file it creates for generating the partial bitstreams.
Only top level constraints are included. Even when the constraints are manually

added to the .UCF file used by the NGCBuild process for each reconfigurable module,

67

the LUTs cannot be constrained and are optimized out of the design. Due to this
limitation in the partial reconfiguration design flow, a reconfigurable design which

changed the routing within a reconfigurable region could not be demonstrated.

4.3 Adding a Microprocessor to the Design

Adding a microprocessor to the same FPGA as the reconfigurable circuit in-
creases the complexity of the design. For testing, the microprocessor is added as a
module of the top-level design and has no direct connection to the reconfigurable
area. Assuming the location of the fault is known, the microprocessor on the FPGA
can perform reconfigurations to repair the fault. In an actual system the reconfig-
urable area would be connected to the microprocessor to report faults that have been

detected.

4.3.1 Resources Used By Microprocessors. To evaluate the amount of re-
sources needed by each microprocessor and the peripherals used in the configurations
in Figures 3.15 and 3.16, the designs are synthesized in EDK and exported to PlanA-
head. In a typical FPGA design, the number of resources needed to implement the
design is a good indication of how much of the FPGA the design will use because
unused resources can usually be used by other components in the system. However,
in a modular reconfigurable system only static modules can be placed in the same
region as the microprocessor and peripherals. PlanAhead is used to determine how
large the module containing the microprocessor and peripherals must be to provided
the required resources. In both cases, the modular areas needed to be expanded until

they included the required amounts of BRAM.

Resources needed by the MicroBlaze and PowerPC with the peripherals shown
in Figures 3.15 and 3.16, are shown in Table 4.1. Although the PowerPC uses more
resources, this is largely due to the fact that the PowerPC design used 64KB of BRAM,
compared with only 8KB of local memory for the the MicroBlaze design, and includes

SystemACE loading of the initial configuration and access of partial bitstreams on

68

Table 4.1:

Resources Required to Implemented each Microprocessor
and Peripherals.

‘ PowerPC ‘ MicroBlaze ‘

Resource Available | Required | Utilized | Available | Required | Utilized
LUT 8,576 3,459 40.33% 4,922 3,204 64.18%
FF 8,576 3,078 35.89% 4,922 2,382 47.72%
SLICE 4,288 2,110 49.21% 2,492 1,954 78.29%
MULT18X18 50 0 0% 34 3 8.82%
RAMB16 50 33 66% 34 29 85.29%
TBUF 2,144 0 0% 1248 0 0%

a compact flash card. The large difference in BRAM usage is due to the difference
in operating systems and storage of the BTP, and are not inherent to the choice of
microprocessors. Figure 4.8 shows the portions of the xc2vp30ff896-7 that must be

reserved for each processor and peripherals.

Although the MicroBlaze has a smaller footprint than the PowerPC, the Pow-
erPC was chosen over the MicroBlaze due to stability problems encountered during
implementation. Additionally, the design flow for the MicroBlaze required a cus-
tom uClinux kernel be compiled for each major hardware and minor software change,
making testing cumbersome. The PowerPC design used a Xilinx standalone operating
system which could be quickly recompiled in EDK. The operating system used on the
PowerPC could also be used on the MicroBlaze, but it was not expected to improve

stability.

4.3.2 Changes to BTP for PowerPC. The BTP program requires changed
to use drivers written for the PowerPC and, to eliminate the need to load the BTP
into external memory, to place into the 64KB of BRAM used as internal memory.
To reduce the size of applications written for Xilinx embedded microprocessors, XPS
includes Xilinx versions of standard C libraries. Although they have less functionality,

they also use less memory than the standard C libraries. XPS automatically adds

libraries for standard C functions so care must be taken to avoid using common

69

PPC

(a) (b)

Figure 4.8: Footprint for each Microprocessor and Peripher-
als. The portion of the xc2vp30ff896-7 FPGA that must be ded-
icated to the PowerPC and peripherals (a) and the MicroBlaze
and peripherals (b).

functions as a printf(), which causes the stdio to be included in the compiled version

of the BTP increasing its size beyond 64KB.

On startup, the partial bitstreams are loaded from the compact flash into ex-
tended memory. To minimize the memory used to store bitstreams, BTP translates
the bitstream in memory without copying it. Therefore BTP stores the location the
bitstreams are currently targeted to and calculates new MJAs based on the desired

target.

To verify that the PowerPC version of the BTP correctly translated the bit-
streams, the CRC values are calculated are compared with those calculated for the

same bitstreams using the PC version.

4.3.8 Internal Reconfiguration using the PowerPC. To test the PowerPC
and make sure it properly applies the partial bitstreams to the ICAP, the blanking
bitstreams generated by the partial reconfiguration tools are used. Blanking bit-

streams contain all of the static routing and logic within the reconfigure module, but

70

not the logic implemented by the reconfigurable module. Since the bus lines that
pass through the results are part of the reconfigurable module, using the blanking
bitstreams removes these connections. The digits shown on the 7-segment displays
were consistent with the connections being removed and the circuit could be repaired

by reprogramming with the original bitstreams for each module.

4.4 Preventing Static Routing

To allow modules to be relocated internally using the PowerPC, static routing in
dynamically reconfigurable areas must be prevented. The PowerPC requires dozens of
I/O pin including clocks, external memory, compact flash and the UART. These 1/O
pins are located on all sides of the FPGA package so static routing in dynamic areas
can not be avoided just by placing the reconfigurable portion of the circuit in a certain
area of the FPGA. Figure 4.9 shows all the routing on the FPGA for the interconnect
module design with a PowerPC and peripherals. The NCD file was created with no

restrictions on static routing in reconfigurable areas.

Although restricting the location of the reconfigurable areas to the area below
the PowerPC ensures all of the resources available at each location are homogenous, it
limits the effectiveness of the Allow_Routing In_Dynamic_Area override. The override
is used to prevent static routing in the dynamic area, but does not prevent routing
above and below the reconfigurable area. The static routing above and below the
area will be included in the partial bitstream. To prevent static routing from being
included in the bitstream, the reconfigurable module must be frame bounded. That
is, the reconfigurable area must include entire frames. In the case of the Virtex-II

Pro, the reconfigurable modules must span the entire column.

4.4.1 Problems Caused by Restricting Routing. If static routing within re-
configurable areas is not allowed, design errors occur when unique resources utilized
by the static logic fall within the reconfigurable areas. Full column height reconfig-

urable areas in the Virtex-II Pro make it difficult to avoid including unique resources

71

. PPCJTAG
BUGFMUX Connections

!

o —

i

.3 -

i

i34

1 1

v

| -
- ———

m4|ids

Static Routing in Dynamic Areas

b
m1i12[m2]i23) m3

Figure 4.9: FPGA Editor View of Interconnect Module Design with the Power
PC. The major components and all routing used for this configuration are shown
here. When relocating a module, all of the logic and routing programmed by the
configuration bitstream in the columns it occupies will be relocated. In additional to
the routing around the righthand PowerPC, including the PPC JTAG, the routing
connection made to distribute the output of the BUGFMUXs and the static routing
crossing through the reconfigurable areas are highlighted. Also note the bus lines that
make connections above the boundaries of the reconfigurable areas.

72

in reconfigurable area and prevent some of the areas from being used. Prohibiting
static routing within the reconfigurable areas prevents the resource within the recon-
figurable area from being connected to the static logic. This problem does not exist
in non-relocatable modular partial reconfiguration since each version of the reconfig-

urable module includes the necessary static logic.

4.4.1.1 Unique Resources. In the VC2V2P30, the BUFMUXs located
at the top and bottom of the center CLB columns of the FPGA can not be accessed by
static logic if these CLB column are included in the reconfigurable region. BUFMUXs
are used to buffer clock inputs and must be in designs that include a microprocessor.
Although, if static routing is not allowed, connections to DCMs can also become
unroutable if the DCM being used is in a reconfigurable area. On the VC2V2P30 there
are 8 DCMs and only two DCMs are required for the PowerPC or the MicroBlaze
designs. Location constraints must be used to ensure that the DCMs used are in the

static area.

Using the PowerPC to perform partial reconfiguration adds additional con-
straints to the areas where static routing can safely be restricted. The VC2V2P30
has two PowerPC cores. Although only one of the PowerPCs is used for the BTP
and to reprogram the FPGA, the other PowerPC must be connected to the global
ground signal and the PowerPC JTAG. EDK does not allow the second PowerPC to
be removed from the design because, by design rules, both must be connected to the
PowerPC JTAG. The routing around the second PowerPC is clearly evident in Figure
4.9.

4.4.2 Programming of 1/0 Blocks. ~ Configuration data to program the 1/0
blocks at the top and bottom of the FPGA is included in the configuration frames
[Xil04b]. If any pin connections are made within the configuration frame, moving the
frame will presumably create new connections to the corresponding I/O blocks at that
location. Although these connections may not affect the function of the circuit, using

a translated bitstream to replace a module that makes pin connections will destroy

73

L
f

AT

TR Pl s B

s e WA

I ™ e

[|
1
H
T A

_ i 'mhnﬂmmjmmmin:mlmmnm'“

Figure 4.10: 1/0O Blocks Used by Static Logic. The PowerPC
and display logic connect to I/O blocks located throughout the
FPGA. The SystemACE Compact Flash connections are high-
light with a lighter color (yellow).

all of the connections made by the original module. Additionally, it is unknown if

permanent damage can occur from configuring 1/O blocks improperly.

On the XUPV2P, the I/O blocks for external memory are located on the left
side of the FPGA and the System ACE Compact Flash connections are on the bottom
of the FPGA. Figure 4.10 is a view from PlanAhead with only the PowerPC and
static logic placed. The I/O block connections are represented by lines radiating from
these modules. The connections on the left and right side of the FPGA do not cause

a problem in the column-based relocatable designs, but connections on the top and

74

bottom of the FPGA prohibit relocatable modules from being placed in that location.
The SystemACE connections are shown highlighted using a lighter color (yellow).

In addition to the System ACE, the DDR clock output and UART connect to the
top of bottom of the FPGA. Although it makes testing more difficult, the System ACE
can be removed and partial bitstreams can be loaded directly into memory using
the Xilinx Microprocessor Debugger (XMD). Although in a real system it would be
possible to removed the UART, it is not practical in a development system. The DDR

clock output is in the static region so it does not cause a problem.

4.5 Safe Locations for Relocatable Modules on the XUPV2P

Removing the System ACE Compact Flash decreases the number of columns that
are effected by 1/0O block placement, but the number of locations where relocatable
modules can be placed on the XUV2P is still severely limited. Figure 4.11 shows the
locations reconfigurable modules can and can not be when using a PowerPC to run

the BTP with support for the UART.

Given the minimum width of each reconfigurable region is two CLB columns,
the number of reconfigurable regions can be no greater than 6. If BRAM is required

by the relocatable modules, the number locations for the module is reduced to 3.

4.6 Errors During Bitstream Generation

By restricting the relocatable modules to the areas determined to be safe as
shown in Figure 4.11, a simple proof of concept design with only two relocatable
module can be created to demonstrate that the PowerPC can relocate the two modules
and reprogram the FPGA. The design is assembled properly when static routing is
allowed in the dynamic area but when static is prohibited, the process for creating
the partial bitstreams fails during the merge phase. In the merge phase the complete
design is built from the base design, containing the static logic, and each of the

reconfigurable modules.

75

N
ARARRARRRENRRS

727
77
77
77
7z
e
7
77

RS

|:| Usable by Reconfigurable Modules

Not Usable for Relocatable Modules

: Used by PowerPC Peripherals

N
AR

N
N

RN
R RRRRRRRRRRRY
NN

Figure 4.11: Location Suitability for Relocatable Modules.
Considering required I/O blocks, PowerPCs, and static routing
to unique resources, suitable locations are shown. Note that the
PowerPC peripherals must be placed on the FPGA and require
enough BRAM to support the 64KB of internal memory. In the
VC2V2P30, this is 3 BRAM columns. Considering the BRAM
requirements and the large number of 1/O block connections
on the left side of the FPGA, the most logical placement of
the PowerPC Peripherals is shown as rectangle surrounded by a
dashed line.

76

NCD files created for the partial bitstream by the partial reconfiguration tools
do not pass the PR _verify design stage which checks to make sure that resources
used by the static portions of the design are not used by the reconfigurable modules.
PR _verify reports that routing for a counter signal used by module that drives the
LED display and a global ground signal use “illegal arcs.” Defining the boundary
of reconfigurable module and prohibiting static routing within reconfigurable areas
should have prevented these routes from being placed in the reconfigurable modules.
The PR _verify phase of the partial bitstream generation process identifies the illegal

use of resources exists and halts the bitstream creation process.

Without valid bitstreams for relocatable modules which do not include any
static routing in the reconfigurable areas, internal relocation and reprogramming can-
not be demonstrated. To verify that this problem was not fixed in the 8.2 partial
reconfiguration toolchain, all components except the PowerPC and peripherals were
resynthesized using the ISE 8.2 SP1. The same errors occurred using the 8.2 partial

reconfiguration toolchain.

4.7 Relocatable Module Support in 8.2 Partial Reconfiguration Toolchain

Although the ISE 8.2 partial reconfiguration toolchain was not used as the
primary toolchain for evaluating relocatable of modules for the Virtex-II Pro, it has
additional support for relocatable modules. Although it still in development, Xilinx is
adding additional constraints that can be used with the partial reconfiguration design
flow to specify that a reconfigurable region is intended to be relocatable [Blo06]. The
area group for a reconfigurable module can be specified as being relocatable to other

area groups.

Assuming pblock_M1, pblock_ M2, pblock_M3 and pblock_M4 has been declared
as reconfigurable areas defined on frame boundaries and have the same size and in-

terface, relocation can be specified in the UCF as follows:

AREA _GROUP "pblock M1" RELOCATABLE=pblock M2

77

AREA _GROUP "pblock M1" RELOCATABLE=pblock M3
AREA _GROUP "pblock M1" RELOCATABLE=pblock M4

For the Virtex-II Pro defining an area on frame boundary means the reconfig-
urable area spans the full height of the FPGA. Additionally, the area groups definition
in the UCF must include all I/O blocks included in the reconfigurable areas. When
a module is declared as relocatable, the partial reconfiguration tools ensure that the
resources used to implement the logic and routing implemented in its original loca-
tion are available in all of the locations it can be relocated to. Static routing in the
relocatable areas is automatically prohibited and no changes to the partial reconfig-
uration override are needed. In applications where timing is critical, variations of
the RELOCATABLE constraint can be used to make sure that resources that effect

timing are considered.

Ideally, this constraint could allow a reconfigurable module to utilize the com-
mon resources above and below the PowerPC, but on the Virtex-II Pro this is not the
case. Attempts to implement a relocatable module which contains any portion of the
PowerPC yields an error stating that the PowerPC is in a relocatable module but is
not part of the relocatable module. Currently, the only work around is to make sure

the relocatable regions do not overlap with the PowerPC [Mas07].

4.8 Relocatable Modules in the Virtex-4

Unlike the reconfiguration frames on the Virtex-II Pro which span the full col-
umn of the FPGA, the frames on the Virtex-4 are tiled within the clock regions of
the FPGA. Configuration frames in the Virtex-4 are 1-bit wide portions of a CLB
column that spans 16 CLBs high. Just as in the Virtex-II, a column in the Virtex-4
is made up of many configuration frames. Figure 4.12 shows the basic configuration
architecture for Virtex-II and Virtex-4 devices. A graphical representation of the por-
tion of the FPGA programmed by each configuration frame in each type of device is

shown. Also note that the I/O blocks are placed in columns through the FPGA fabric

78

CLB array DSP blocks Block RAM I0Bs

d)(ﬂﬁ@\.:\l NG

g M g T

10Bs CLBs Block RAM, multipliers E Ll L E L L B

/ \ u] M I u] M M O
g/Dlﬁ]DB%DDDD\ OQg o o g

OWmoNOOooOy o0 B Al el n S
O0OW||lo00ooo)| o0 : 8 8| | 5
Ooom||loooooo||oo o v A = T 1 Bl
oDomlUoooooolUoo o | | i IR
ODOwmoooooonog o]] o | | q

OoOW||0ooooo|| o0 S] S 1 S | | O N =1
OO@||000000|| 00 LR 1 R =
oopmloooooodog e S - I 2l |8

ooWmoooooopoo g o o | £
oop||lcooooo|| ool afg dE mOB R Rl B2
ooWw||oooooo| og 28 B of | &
cotNJooooooUool T[E W B R Rl OB
DobONOODO0O000000 S : o

1 bit —J<— Configuration frame FPGA | it Configuration frame

(a) (b)

Figure 4.12: Layout of the Virtex-II and Virtex-4. The configuration frame in the
Virtex-4 spans the full height of a clock region, spanning only 16 CLB rows instead
of the entire height of the column as Virtex-1I devices [SBBT06].

and not around the perimeter of the FPGA. The Virtex-4 uses “glitchless” logic and
unlike the Virtex-II this includes the LUT RAM and SRL16 logic [SBB106].

The architecture of the Virtex-4 eliminates many of the problems encountered
in implementing relocatable modules on the Virtex-II Pro. Since the configuration
frames no longer span the entire height of the device, static routing can go around
relocatable modules. This also allows reconfigurable modules to be placed below and
above the PowerPCs. Additionally, since I/O block are are not programmed with CLB
configuration frames, reconfigurable modules can be moved without reprogramming

the I/O blocks.

4.8.1 Drawbacks of the Virtex-4. Bitstream translation for the Virtex-II Pro
is possible because the frame addressing scheme is published [Xil05b]. At this time,

the frame addressing scheme of the Virtex-4 has not been published. Presumably,

79

the addressing structure is similar to that of the Virtex II-Pro with considerations for
the architectural changes. Relocatable modules in the Virtex-4 should be able to be
translated vertically or horizontally. Relocation at run-time, in which “all of the frame
bits of the module bitstream are shifted by 16 CLBs rows”, has been demonstrated
using the Virtex-4 [SBBT06] but no details on what was done to shift the frames are

included.

4.9 Comparison with REPLICAZ2Pro

REPLICA2Pro demonstrates that a module can be relocated using hardware
MJA translation, but does not apply the technique to fault tolerance. REPLICA2Pro
translates bitstreams by changing the MJA in the partial bitstream in the same way
the BTP performs bitstream relocation. The primary difference in implementation
is that the changing of the bitstream is performed in hardware by REPLICA2Pro
instead of software. Although implementing the BTP with a PowerPC and peripherals
requires more resources than the REPLICA2Pro, the PowerPC can be used for other

functions.

Hardware MJA translation allows REPLICA2Pro to perform bitstream location
during the regular internal reconfiguration process. The BTP must translate the entire
bitstream before it can be sent to the HWICAP. In the TMR configuration, the system
is only able to tolerate one fault at a time, and although the system can continue to
produce a correct result, it is operating without redundancy. In each of the TMR
configurations developed, the location of the next replacement module is independent
of which module becomes faulty. To minimize the amount of time before redundancy
is restored, the bitstreams can be translated to the location that will be used for
the next spare before they are needed. If “pre-translated” bitstreams are used the

reconfiguration time for Replica2Pro and the BTP would be identical.

REPLICA2Pro avoids many of the problems encountered in this research by
using Virtex-IT modules which are specifically design to connect all important signals

on the right side of the FPGA eliminating the use of I/O blocks on the top and

30

bottom of the FPGA that would be reprogrammed by relocating the module. To
allow relocation, REPLICA2Pro uses custom designed tools outside of the Xilinx
partial reconfiguration toolchain. REPLICA2Pro uses a bus generation system to
create a fixed horizontal communication infrastructure that takes the place of bus
macros. REPLICA2Pro uses Xilinx ISE 6.3 and generates the partial bitstreams
using the PartialMask Bitgen feature. The PR _design and PR_verify commands used

to generated bitstreams in the 8.1 and 8.2 toolchains are not available for ISE 6.3.

4.10 Summary

This chapter presents the results of implementing each of the TMR designs on
the XUPV2P development board and using the BTP to relocate the bitstreams. The
interconnect module and direct connect designs work as expected when unique re-
sources, such as pin connections, are avoided. The LUT-based routing design could
not be tested using the 8.1 partial reconfiguration toolchain. The BTP was im-
plemented on the PowerPC and proper operation of the the BTP was verified by
comparing the resulting bitstreams with those generated using a standalone PC. Un-
fortunately, demonstrating an automatic fault recovery system was not possible due
to the limitations of the partial reconfiguration toolchain. The architectural features
that limit the use of reconfigurable modules were identified and it was determined
that the Virtex-4 resolves many of these problems. Finally, the BTP is compared
with a hardware implementation that relocated modules using a similar method. The
next chapter draws conclusions from these results and presents suggestions for future

work.

81

V. Conclusions
5.1 Introduction

r I \his chapter presents a summary of the problem, the conclusions based on the

implementation in Chapter IV and makes suggestions for future research.

5.2 Problem Summary

Partial reconfiguration has been shown to be an effective way to implement
fault tolerance in FPGAs. Reprogramming an FPGA to repair a fault requires that a
partial bitstream to implemented a replacement module be available at the time of the
fault. Since partial bitstreams target specific locations on an FPGA, most previous
fault recovery systems pre-generated and stored all of the partial bitstreams needed
to implemented a replacement module in each possible location. Upon relocation the

module must be connected to the user circuit.

5.3 Conclusion of Research

The goal of this study is to develop an efficient fault recovery system that
allows a user circuit to continue to operate through a fault without the need to store
individual bitstreams. Due to limitations in the partial reconfiguration tools used to
generate the partial bitstreams, and the placement and utilization of resources on the
target board, although the basic components of such a system are demonstrated, a

functional fault recovery system is not demonstrated.

Three TMR configurations are developed and tested that allow the user circuit
to remain operational through a fault and during reconfiguration. The configurations
provide passive redundancy and the routing techniques used allow faulty modules
to be replaced using translated partial bitstreams. The interconnect module design
provides a convenient way to change which result bus each functional module connects
to, but the area required to implement the interconnect modules does not justify

this benefit. Adding some of the functionality to the interconnect module is a way

82

to reduce the amount of resources left unused in the interconnect module, but the

viability of this approach is application dependent.

The direct connect method is straightforward and requires no dedicated space
for routing. Although bitstream relocation reduces the number of partial bitstreams
needed, the configuration still requires three partial bitstreams to implement the entire
functional module and one partial bitstream to program spare modules. Testing of
the direct connect design demonstrates that if 1/O blocks and unique resources are

avoided, modules can be relocated to any reconfigurable location.

The LUT-based design has the potential of being the most efficient method for
altering the routing in a reconfigurable module since small bitstreams can be used to
change the routing of a standard functional module. Although the principles behind
this method were demonstrated, a reconfigurable design which dynamically changes
LUT output could not be implemented due to limitations in the partial reconfiguration

tool chain which did not incorporate lower level constraints placement.

The BTP successfully translates partial bitstreams to relocate a module by
changing the frame address and CRC values in the partial bitstream, eliminating the
need to store partial bitstreams for multiple modules that perform the same function

but target different locations on the FPGA.

The hypothesis of this study is that the architecture of the Virtex-II Pro and
Xilinx partial reconfiguration toolchain allow for the development of a bitstream relo-
cation system which performs bitstream manipulation in software on an embedded mi-
croprocessor to relocate partial bitstreams on the FPGA. It was shown that although
it is theoretically possible, a usable system cannot be implemented on the XUPV2P
development board using the ISE 8.1 partial reconfiguration toolchain. Consolidat-
ing many of the steps required for partial reconfiguration into the PR_assemble and
PR _verify, Xilinx streamlined the process for the user but reduced the flexibility of

the tools. To implement more advanced designs, a higher level of control is needed.

33

Furthermore, the unique resources on the FPGA must be taken into account
when defining relocatable modules to make sure that they can be relocated without
disrupting the system. The resources used by the reconfigurable module at its initial
location must be available in all locations the module will be relocated to, and static
routing must be avoided. Additionally, since configuration data for the I/O blocks are
included in each frame, the XUPV2P is a poor target platform for relocating partial

bitstreams when using an embedded microprocessor.

5.4 Significance of Research

This research develops a more efficient method for implementing a fault tol-
erance system using software bitstream translation. Although higher levels of re-
dundancy can be achieved without the need for partial reconfiguration by using N
modular redundancy, instantiating the redundant modules before they are needed
increases the power consumption of the FPGA. Using TMR with replaceable mod-
ules, only three functional modules are instantiated on the FPGA at a time reducing
power required. Such a technique could be called “just in time redundancy” since new

modules are placed on the FPGA only when they are needed to restore redundancy.

In addition to developing three TMR-based modular designs which take advan-
tage of bitstream translation, the requirements for ensuring that a module can be
translated are clearly defined. The resources used in the original location must be
available in all of the potential destinations, no static routing can be allowed in the
reconfigurable area and the module must not prevent static logic from connecting to

unique resources.

5.5 Recommendations for Future Research

A method for relocation modules on the Virtex-II Pro was demonstrated in this
study but the target XUPV2P development board did not provide enough usable lo-
cations for relocatable modules to properly demonstrate the automatic fault recovery

system. Larger versions of Virtex-II and Virtex-II Pro FPGAs have the same archi-

84

tectural features which restrict the placement of reconfigurable modules, such as the
PowerPCs on the Virtex-II Pro, but since the FPGAs are larger the restrictions affect
a smaller portion of the FPGA. In larger FPGAs, a greater percentage of the FPGA

could be used to implement the reconfigurable design.

An alternative to storing the partial bitstreams in memory is to retrieve the
configuration data for a module from configuration memory. The retrieved configu-
ration data could be translated and used to create a partial bitstream to relocate the
module. This eliminates the need to store partial bitstreams but assumes that the
configuration memory has not been corrupted by a SEU and is not corrupting the

process reading the configuration data.

With relocatable modules, an alternative approach to using TMR is double
modular redundancy. If the system can be stopped when a fault is detected, two
modules can be used instead of three. Faults can be detected by monitoring the
output of the modules to make sure they match. When a fault occurs the outputs
will no longer match and the system halted to allow for recovery. A new module can
be created to determine which of the two modules is faulty. Once the faulty module

has been identified it can be removed from the system to save power.

The Virtex-4 is a more suitable platform for modular reconfiguration. Many
of the limitations imposed by the architecture of the Virtex-II (Pro) are not in the
Virtex-4. The fault tolerant designs developed should be adapted and evaluated for
use on the Virtex-4. The ability to specify a module as RELOCATABLE in the
8.2 toolchain will greatly reduce the complexity of defining relocatable reconfigurable

modules and provide the ability to address timing issues associated with relocation.

85

Appendiz A. Using the PowerPC for Partial Reconfiguration

r I 1his appendix describes how to create a PowerPC design using Xilinx Platform
Studio that is capable performing partial reconfiguration. This design is based
on an Xilinx University Program workshop given by Xilinx on 1 September 2006 in

Madrid, Spain.

A.1 Creating the EDK Project

A design using the PowerPC can be built quickly using the Base System Builder
(BSB). Before starting the design the board definition package must in installed on
the computer. The board definition package for the XUPV2P can be download from

https://www.xilinx.com/univ/xupv2p.html and can be placed at any location.

Create and New Project

Select Base System Builder wizard

Enter the path and filename of the new project

Check use repository paths and specify the path to the lib directory of the board

definition

Click OK

Verify “I would like to create a new design” is selected and click OK

Select Board The target developed board can be selected. Note that if the reposi-
tory path correctly points to the board definition only the correct board vendor,

name and revision will be available in the drop down menus.

e Select Board vendor: Xilinx
e Sclect Board name: XUP Virtex-II Pro Development System

e Sclect Board revision: C

36

Select Processor The FPGA selection drop down menus should be grayed out. The
next series of screens allow for customizations to the PowerPC and peripherals.
The ICAP works at the same speed at the OBP, so the bus clock frequency and

processor frequency do not need to be adjusted.

e Select PowerPC

Configure PowerPC Select the following:

Set Processor clock frequency to 100MHz

Set Bus clock frequency 100MHz

Select FPGA JTAG for the Debug I/F

Check the enable box for cache setup

Enable cache setup
e Select None for both Data and Instruction On-chip memory

Configure I/O devices as follows. All other I/O devices should not be
included (uncheck):

Universal Asynchronous Reciever/Transmitter RS232 Uartl

Peripheral: OPB UARTLITE

Baudrate: 9600

Data bits: 8

Parity: None

Use Interrupt should not be checked

SystemACE for Compact Flash SysACE_CompactFlash

e Peripheral: OPB SYSACE

87

e Use Interrupt should not be checked

Extended External Memory DDR_256MB_32MX64 rankl row13_col10_cl2_5

e Peripheral: PLB DDR
e Use Interrupt should not be checked

Note that is could be different if a difference size memory module is used.

BRAM controller pbl bram_if cntlr_1

e Peripheral: PLB BRAM IF CNTLR

e Memory size: 64KB

Cache Setup Since all instructions will be stored in the BRAM, instruction cache

is not needed for the external memory.

e DDR_256MB_32MX64_rankl_rowl3_coll0_cl2_5: Check DCache

e pbl_bram_if_cntlr_1: Check both ICache and DCache

Software Setup

STDIN: RS232_Uart_1

STDOUT: RS232_Uart_1

Check the memory test checkbox

Uncheck the Peripheral selftest

Memory Test

e Instruction: pbl_bram_if cntlr_1
e Data: pbl_bram_if cntlr_1

e Stack/Heap: pbl_bram_if cntlr_1

38

A.2 Adding Software, Exporting, and Integration

Once the base system has been generated, two additional peripherals can be
added. To allow for partial reconfiguration the obp_hwicap must be added to the
design. The opb_timer is used to measure the time it takes for the PowerPC to alter
the bitstream and reprogram the FPGA and can be accessed from the PowerPC using
Xilinx drivers. To add these components, find them in the IP catalog, right click on
them and select add IP. Both of these devices connect to the OPB. Once they are
visible in the System Assembly view, click on the hollow green circles on the OPB bus
to connect each device to the bus. To assign addresses to the HW_ICAP and timer,
select the “Address” filter and click on the “Generate Addresses” button.

The design can be tested using the memory test program. Next, software is
added using the applications tab and support for the FAT16 file system on the Com-
pact Flash is added by selecting xilfatfs in the Software Platform Setting Menu.

To prepare the design to be exported into ISE, the clock buffer for the main
system added by EDK must be removed. Right click on dem_0, select configure 1P,
select buffers and choose “False” for “Insert a BUFG for CLK0”. This buffer must
be added at the top level so that it can also be used as the clock of the reconfigurable
design. The project can now be exported into ISE. First change the setting on the
Hierarchy and Flow Tab in the Project Options menu. Check both the “Processor
Design is a sub-module” and the “Use Project Navigator Flow” boxes. Then select

“Export Project to ISE” from the Project menu.

Exporting the EDK project creates a new ISE project with a top level file sys-
tem_stub.vhd which instantiates the PowerPC system and defines the proper pin con-
nections. A system.ucf file is also created with the pin assignment. The system must
be synthesized by running XST. Using the instantiation template for the PowerPC
design from system_stub.vhd, a top level design which includes both the microproces-
sor and the reconfigurable areas can be created. The clock buffer removed from the

EDK project must be replaced with a clock buffer at the top level.

39

Appendiz B. Bitstream Translation Programs

his appendix contains the functions used to translate to the PowerPC. Unlike
riljwthe PC version, module translation distance is specified in CLBs and device
specific attributes such as the number of CLB columns in the device are hard coded
for efficiency. The translate() and supporting functions changes the frame address and
CRC values for a bitstream in memory given a pointer to the start of the bitstream in
memory, the size of the bitstream, and the distance in CLBs to translate the module.

The following definitions can be used for debugging and customization:

#define verbose

#define basic_info
#define crc_debug
#define bypass_crc

#define show_crc

o O O O O o

#define CLB_width

The translate function starts on page 97 and is preceded by the functions it
calls.
[RRAARFKAAASFHEAAAFHKAAA S KIS KAAASS ISR S AIASFH KA I KA S KA SIS KA
The update_BCC' function updates the bec value which is used to calculate
the CRC. The BCC/CRC is determined by both the word being writen and the
address being written to. This function returns the bce value.
get_CRC(bce) returns the CRC wvalue based on bec.
R
unsigned int update_BCC(unsigned int bcc, unsigned int current_word, update_BCC
int current_reg){
unsigned long sw36_32, sw31_0; // used variable from
unsigned int sw, x16, x15, x2; // XAPP151 10
int i, j, addr, word,

addr = current_reg;

90

word = current_word;
sw36_32 = addr;
sw31_0 = word;
for (i=0; i<37; i++){ // iterate over the 37 bit input to CRC function
if (i<32){ j=i; sw = ((sw31.0 >> j) & 1); } // if i<32 used sw31.0
else {j=i—32; sw = ((sw36_32 >> j) & 1);} // if i<=32 use sw36_32
x16 = (bcc >> 15)~(sw); // bee[15] XOR swij]
((bcc >> 14)~(x16)) & 1); // bec[15] XOR x16 20
(bcc >> 1)~(x16)) & 1); // bec[l] XOR x16
bee = ((x15 << 15) | ((bce & 0x3FFC) << 1)

| (x2 << 2) | ((bce & 1) << 1) | (x16));

x15 =
x2 = (

(
(
(
(

}
if (show_crc){

xil_printf(" (Data: %4X Reg: %4X BCC:%4X) \n\r ", word, addr, bcc);
}
return bcc;
}// end of update_BCC update
[RRRAFEAAASFEAAASFHEAAA I RIS EAIA S EAAASIHSAAS SIS I SIS I SIS E A 30
The getCRC' function take the value of BCC and reverses the bits to get
the current CRC value. The code to reverse the bits in CRC crc[0..15]=
bee[15..0] found at http://graphics.stanford.edu/ " seander/bithacks.html

>l<>/<>k>/<>l<>/<>k>l<>l<>l<>l<>l<>l<*******************>I<>l<>/<>k>l<>l<>l<>l<>k>l<>l<>l<>/<>/<>l<>l<>/<>/<>l<>l<>/<>/<>l<>l<>k>/<>l<>/<>k>l<>l<>/<>k>l<>l<>l<>l<>/<>/<>l<>l</

unsigned int get_CRC(unsigned int bcc){ get_CRC

inti=0;

unsigned int crc;

unsigned int rem_me = bcc;

crc = bee << 1; 40
bce >>= 1,

for (i =16 — 2; i; i——)

{

91

cre |= bee & 1;

cre <<= 1;
bee >>= 1;
}

cre |= beg;

crc = crc & OxFFFF;

bce = rem_me; 50

if (show_crc){
xil_printf(" BCC:%4X CRC:%4X ", bcc, crc);

}

return crc;
}// end of get_CRC
[RRAAFFAAAASFHAAAASHEAAAFAEAAASAEAAASAEAAAS SRS SIS S TS S A SIS AR
The change_address function changes the location of the modules
contained in the partial bitstream by changing the major address of for
the columns. It recognizes the block address of the frame address and 60
makes the appropriate changes using the global variables describing

the architecture of modular configuration. Frame Address Composition:

BA MJA MNA Byte Number
31-27 26-25 24-17 16-9 8-0

>/<>/<>/<>/<>/<>/<>/<>/<>/<>/<>/<>I<>/<>/<>/<>l<>/<>/<>/<>l<>/<>/<>/<>k>/<>/<>/<>k>/<>l<>/<>k**********>/<>/<>/<>/<>/<>/<>/<>/<***********************/
unsigned int change_address(unsigned int old_address, int dist_in_mods) change_address
{ unsigned int new_address;

unsigned int new_mja;

unsigned int new_mja_confirm; // used to verify shift worked properly 70

unsigned int block_type = ((old_address & 0x06000000) >> 25);

unsigned int mja = ((old_address & 0x01FE0000) >> 17);

e

92

Define the architecture of the modular design here
HAAAASS SRR FFFEEEEIIIEEEAAAASA S FFTE KRR IEEEAAAAAS SRR |
int n_clb = 46; // number of clb columns (device dependent)
int m_ram = 16; // number of ram columns (device dependent)
int mod_width = 4; // width in CLB colums of functional modules
int inter_width = 2; // width in CLB colums of interconnect modules 80
int CLBs_between_RAM = 6; // number of CLBs between RAM columns
JERRREEERRRKEEAAAAAA SRR FFFIIEEEIREREEAAASA SR FFIIERIIRKEEAAAAAAAA |
if (block_type==0){ // for CLB columns

if (verbose){ xil_printf("CLB Column ");}

new_mja = mja + (dist_in_mods * (mod_width + inter_width));

// calculate the new major address

new_mja = new_mja << 17;

// shift the major address into position

new_address = ((old_address & OxFEO1FFFF) + new_mja);

// put the unchanged bits back around the the new MJA 90
}
else if(block_type==1){ // for BRAM Column

if (verbose){ xil_printf("BRAM Column ");}

new_mja = mja + (dist_in_mods * (mod_width + inter_width)

/CLBs_between_RAM);

// calculate the new major address

new_mja = new_mja << 17;

// shift the major address into position

new_address = ((old_address & OxFEO1FFFF) + new_mja);

// put the unchanged bits back around the the new MJA 100
}
else if(block_type==2){ // BRAM Column Interconnect

if (verbose){ xil_printf("BRAM Interconnect Column "); }

new_mja = mja + (dist_in_mods * (mod_width + inter_width)

/CLBs_between_RAM);

93

// calculate the new major address
new_mja = new_mja << 17;
// shift the major address into position
new_address = ((old_address & OxFEO1FFFF) + new_mja);
// put the unchanged bits back around the the new MJA 110
}
else{
xil_printf("ERROR: Unknown Column Type\n\r");
// shouldn’t happen
}
new_mja_confirm = ((new_address & 0xO1FE0000) >> 17);
//extracts MJA to check
if (verbose){
xil_printf ("Frame Address: BA:%d MJA:%d => MJA:%d\n\r",
block_type, mja, new_mja_confirm); 120
}
return new_address;

} //end of change address()

//Fkokokoskosksk sk sk sk sk sk ko ok sk sk sk sk sk sk sk ok sk ok ok sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk ook sk sk sk sk sk sksk ok ok k sk sk sk sk sk sk sk ok ok ok ok

The decode_command functions allows for special actions for each of the
possible commands that are sent to the command register. Most important

is clearing the CRC register when the CRC is written to and when the

pulse GCAPTURE signal is detected signifing the end of the bitstream.

stk ok ok ok sk ok ok ok sk sk sk sk sk sk sk o ok ok sk kokok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk koo ks kokokoksk sk sk sk sk sk sk sk sk sk sk skskskskkkokok ok ok /130
unsigned int decode_command(unsigned int command_code, unsigned int bcc)

{

char command_name[30]= "no command";

bcc = update_BCC(bcc, command_code, 4); // command_reg = 4

switch(command_code) // determine type of instruction

{

94

case (1) : { strcpy(command_name, "Write Configuration Data"); break;}
case (2) : { strcpy(command_name, "Multiple Frame Write Register"); break;}
case (3) : { strcpy(command_name, "Last Frame"); break;}
case (4) : { strcpy(command_name, "Read Configuration Data"); break;} 140
case (5) : { strcpy(command_name, "Begin Startup Sequence"); break;}
case (6) : { strcpy(command_name, "Reset Capture"); break;}
case (7) : { strcpy(command_name, "Reset CRC");
bcc = 0;

if (crc_debug){ xil_printf ("*CRC RESET* ");} break;}
case (8) : { strcpy(command_name, "Assert GHIGH_B Signal"); break;}
case (9) : { strcpy(command_name, "Switch CCLK Frequency"); break;}
case (10): { strcpy(command_name, "Pulse the GRESTORE Signal"); break;}
case (11): { strcpy(command_name, "Begin Shutdown Sequence"); break;}
case (12): { strcpy(command_name, "Pulse GCAPTURE Signal"); break;} 150
case (13): {

if (verbose){

xil_printf ("Command Code : Reset DALIGN Signal \n\r");

} // this signal indicates the end of the bitstream

if (basic_info){ xil_printf ("End of bitstream found.\n\r");}

break; }
default : { strcpy(command_name, "Warning: UNKNOWN COMMAND \n\r");

xil_printf ("%s \n\r", command_name) ;
break; }

} 160
if (verbose && (command_code != 13)){
xil_printf ("Command Code : %s Returned BCC: %X \n\r",

command_name, bcc);

return bcc;

} // end of command ID

95

/KK ook sk ok ok sk ok ok s ok ok o ok sk sk ok sk sk ok ok ok ok sk o ok sk ok ok s ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok sk s ok sk sk ok ok ok ok ok ok ok

***/

unsigned int id_device(unsigned int device_id_code, unsigned int bcc)

{

The id_device identifes the device type by getting the next word after

a Type 1 instruction to write to the device id register. The word is

decoded to the device name.

char device_name[15];

bcc =

update_BCC(bcc, device_id_code, 14); // device register

//write_word(device_id_code); // never change device code

switch(device_id_code)

{

case
case
case
case
case
case
case
case
case
case

case

default :

}

(19030163)
(19128467)
(19177619)
(19292307)
(25583763)
(19390611)
(19472531)
(19521683)
(19636371)
(25927827)
(19751059)

if (basic_info)

{

R e S e e S e S

—

strcpy(device_name,
strcpy(device_name,
strcpy(device_name,
strcpy(device_name,
strcpy(device_name,
strcpy(device_name,
strcpy(device_name,
strcpy(device_name,
strcpy(device_name,

strcpy(device_name,

: { strcpy(device_name,

// determine name of the device

"XC2VP2"); break;}

"XC2VP4"); break;}

"XC2VP7"); break;}

"XC2VP20"); break;}
"XC2VPX20") ; break;}
"XC2VP30") ; break;}
"XC2VP40"); break;}
"XC2VP50"); break;}
"XC2VP70"); break;}
"XC2VPX70") ; break;}
"XC2VP100"); break;}

{ strcpy(device_name, "UNKNOWN DEVICE"); break;}

xil_printf("Bitstream Target Device: %s\n\r", device_name);

}

return bcc;

96

170

180

190

/oK sk sk sk sk sk ok ok ok ok sk sk sk ok ok o o sk o ko of ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok s sk koo ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk o ke k

The translate function determines what type of instructions each word 200
is and calls all related functions based on the type of instruction.

stk ok ok ok sk ok ok ok ok ok ok sk sk s sk o o ok sk ok koo ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok sk sk ok ke fok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk ok /
void translate(Xuint32 *bsPtr, Xuint32 bsSize, Xuint32 distance){

int i = 0; // used for master pointer

int j = 0; // used in local loops
int register_num; // holds the register being accesses
int bcc = 0; // calculated BCC
int bsCRC = 0; // CRC in bitstream
int new_address; // the new address after translation
int word_count; // the number of words listed in the instruction 210
int auto_CRC; // the auto_CRC from the original bitstream
char register_name[40]="no reg"; // decoded register name
// find the synchronization sequence
while (i < bsSize){
if (bsPtr[i]==0xAA995566) {
if (basic_info){
xil_printf ("Synchronization Sequence Found\n\r");
xil_printf("Translating Bitstream %d modules\n\r", distance);
}
. 220
break;

}

it+;
if (i >= bsSize){
xil_printf("Synchronization Failed");
exit(1);

}
}

while (i < bsSize){

97

// Use the bitstream size to determine when to stop
if (verbose){ xil_printf ("Ox%x | ", bsPtr[il);}
// displays the HEX for each command (not skipped words or addresses)
if ((bsPtr[i] & 0xF8000000) == 0x28000000) // type 1 read op
{//start type 1 read
word_count = bsPtr[i] & 0x000007FF;
for (j=0; j<word_count; j++){ // skip words
i++; // skip words in the bitstream (no CRC for read)
}
if (verbose){
xil_printf ("Type 1 read operation: reading %i words\n\r", word_count);
}
}// end type 1 read
else if ((bsPtr[i] & 0xF8000000) == 0x48000000)
{//Type 2 read operation
word_count = bsPtr[i] & OxO7FFFFFF; // extract word count
for (j=0; j<word_count; j++){ // skip words
i++; // skip words in the bitstream (no CRC for read)
}
if (verbose){
xil_printf ("Type 2 read operation: reading %i words\n\r", word_count);
}
}// end type 2 read operation
else if ((bsPtr[i] == 0x20000000))
{// Type 1 No OP
if (verbose){ xil_printf ("Type 1 NOOP word O\n\r"); }

it++;
}
else if ((bsPtr[i] & 0xFO0000000) == 0x30000000) //type 1 write
{

register_num = ((bsPtr[i] & 0xO7FFE000) >> 13);

98

230

240

250

260

// extract the register from the instruction
word_count = bsPtr[i] & 0x000007FF; // Determine word count
i++;

switch(register_num) // Determine name of register

// this greatly helps in debugging allowing the bitstream to be readable

{

case (0) : { strcpy(register_name, "CRC Register"); break;}

case (1) : { strcpy(register_name, "Frame Register Address"); break;}

case (2) : { strcpy(register_name, "Frame Data Input Register"); break;}

case (3) : { strcpy(register_name, "Frame Data Output Register"); break;} 270
case (4) : { strcpy(register_name, "Command Register"); break;}

case (5) : { strcpy(register_name, "Control Register"); break;}

case (6) : { strcpy(register_name, "Masking Register for CTL"); break;}

case (7) : { strcpy(register_name, "Status Register"); break;}

case (8) : { strcpy(register_name, "Legacy Output Register"); break;}

case (9) : { strcpy(register_name, "Configuration Option Register"); break;}

case (10) : { strcpy(register_name, "Multiple Frame Write Register"); break;}

case (11) : { strcpy(register_name, "Frame Length Register"); break;}

case (12) : { strcpy(register_name, "Initial Key Address Register"); break;}
case (13) : { strcpy(register_name, "Initial CBC Value Register"); break;} 280
case (14) : { strcpy(register_name, "Device ID Register"); break;}

}

if (verbose) { xil_printf("Type 1: Write %d word(s) to %s
register\n\r", word_count, register_name); }
switch(register_num) {
// Decode register and perform required actions
case (0) : { // CRC Register
if (crc_debug){ xil_printf("Calculated Explicit CRC: %X ", get_CRC(bcc));}
bsCRC = bsPtr[i++]; // get value of CRC in bitstream for comparison
if (bypass_crc){ 290

// do nothing

99

else {
bsPtr[i-1] = get_CRC(bcc); // write over old CRC value
b
if (crc_debug){ xil_printf("Bitstream Explicit CRC: %X\n\r", bsCRC);
// identified this as an explicit bitstream CRC write
}
break;}
case (1) : 300
{ // Frame Register Address
new_address = change_address(bsPtr[i], distance);
// calculated the new address based on old and translation distance
bcc = update_BCC(bcc, new_address, register_num);
// update BCC based on the new address
bsPtr[i] = new_address; // write new address to memory
i++; // points to the next command
break;}
case (2) : { // Frame Data Input Register
// pass through each of the configuration words 310
if (word_count > 0){// skip words with CRC update
for (j=0; j<word_count; j++){
bcc = update_BCC(bcc, bsPtr[i], register_num);
i++; // skip words in the bitstream
} // end of for
if (crc_debug){ xil_printf("Calculated CRC: %X ", get_CRC(bcc));
// prints the current value of crc
}
auto_CRC = bsPtr[i]; // get the bitstream’s auto_CRC for comparison
// during testing 320
if (bypass_crc){
//do nothing

100

} // end of if

else {

bsPtr[i++] = get_CRC(bcc); // writes new CRC value

} // end of else

if (crc_debug){xil_printf("Auto CRC: %X\n\r", auto_CRC, get_CRC(bcc));}
// Displays the crc value from the bitstream

bee = 0; // clears the bee register (therefore crc)

} // end of if word_count >0 330
break;}
case (3) : { // Frame Data Output Register case

if (word_count > 0){// skip words with CRC update
for (j=0; j<word_count; j++){
bee = update_BCC(bcee, bsPtr[i++], register_num);
// skip words in the bitstream and update CRC
}
} // end of skip words with CRC update
break;}
case (4) : { // Command Register 340 case
bee = decode_command(bsPtr[i++], bee);
break; }
case (5) : { // Control Register case
if (word_count > 0){// skip words with CRC update
for (j=0; j<word_count; j++){
bee = update_BCC(bcee, bsPtr[i++], register_num);
// skip words in the bitstream and update CRC
}
} // end of skip words with CRC update
break;} 350
case (6) : { // Masking Register for CTL case
if (word_count > 0){// skip words with CRC update

for (j=0; j<word_count; j++){

101

bee = update_BCC(bcee, bsPtr[i++], register_num);
// skip words in the bitstream and update CRC
}
} // end of skip words with CRC update
break;}
case (7) : { // Status Register
if (word_count > 0){// skip words with CRC update
for (j=0; j<word_count; j++){
bee = update_BCC(bcee, bsPtr[i++], register_num);
// skip words in the bitstream and update CRC
}
} // skip words with CRC update
break;}
case (8) : { // Legacy Output Register

if (word_count > 0){// skip words with NO CRC update

for (j=0; j<word_count; j++){
i++; // skip words in the bitstream
// legacy output does not update CRC
}
} // skip words with NO CRC update
break;}
case (9) : { // Configuration Option Register
if (word_count > 0){// skip words with CRC update
for (j=0; j<word_count; j++){
bee = update_BCC(bce, bsPtr[i4++], register_num);
// skip words in the bitstream and update CRC
}
} // end of skip words with CRC update
break;}
case (10) : { // Multiple Frame Write Register
if (word_count > 0){// skip words with CRC update

102

case

360

case

370

case

380

case

for (j=0; j<word_count; j++){
bee = update_BCC(bcee, bsPtr[i++], register_num);
// skip words in the bitstream and update CRC
}
} // skip words with CRC update
if (verbose){

xil_printf("packet data write MFMR word %i\n\r", i);

}

break;}
case (11) : { // Frame Length Register
if (word_count > 0){// skip words with CRC update
for (j=0; j<word_count; j++){
bee = update_BCC(bcee, bsPtr[i++], register_num);
// skip words in the bitstream and update CRC
}
} // skip words with CRC update
break;}
case (12) : { // Initial Key Address Register
if (word_count > 0){// skip words with CRC update
for (j=0; j<word_count; j++){
bee = update_BCC(bcee, bsPtr[i++], register_num);
// skip words in the bitstream and update CRC
}
} // skip words with CRC update
break;}
case (13) : { // Initial CBC Value Register
if (word_count > 0){// skip words with CRC update
for (j=0; j<word_count; j++){
bee = update_BCC(bcee, bsPtr[i4++], register_num);
// skip words in the bitstream and update CRC

}

103

390

case

400

case

410 case

} // skip words with CRC update
break;}

case (14) : { // Device ID Register case
bee = id_device(bsPtr[i++], bece);

break; 420
}

}

} // end of else if

else if ((bsPtr[i] & 0xE0000000) == 0x40000000) if

{ // Type 2 write
word_count = bsPtr[i++] & 0x07FFFFFF;
if (verbose){
xil_printf("Type 2: Write %d word(s) to last register\n\r", word_count);
}
for (j=0; j<word_count; j+-+){ // skip words 430
bee = update_BCC(bcee, bsPtr[i++], register_num);
// skip words in the bitstream and update CRC
} // end skip words
auto_CRC = bsPtr[i++]; // get the auto_CRC from the bitstream
if (crc_debug){xil_printf("Auto CRC: %X
Calculated CRC: %X \n\r", auto_CRC, get_CRC(bcc));}
// Displays the crc value from the bitstream
bcee=0; // reset the bee (and crc)
} //end Type 2 write else if
440
else { // catch all
xil_printf("WARNING: Unknown Type\n\r");
i+

}

} // end of while statement that searches for end of file

104

} // end of translate function

105

Appendiz C. ISE 8.1 and PlanAhead Design Flow

r I 1he design flow for partial reconfiguration continues to change as Xilinx improves
the tools available to create partially reconfigurable designs. The latest docu-

mentation is available on Xilinx’s Early Access Partial Reconfiguration web site.

C.1 ISE 8.1 Partial Reconfiguration Design Flow

The partial reconfiguration design flow for 8.1 (without using PlanAhead) is
found in [Xil06]. The user guide includes the requirements for partial configuration
designs including those with EDK components. Instruction on using PlanAhead for

partial reconfiguration can also be found at this site.

PlanAhead greatly simplifies the process of creating partial bitstreams. Once
the top level and each of the static and reconfigurable modules have been synthesized
using XST, only the .ncd, .ucf, and bus macro .nmc files are needed to create the
partial reconfiguration design. Once area group constraints and bus macros have
been placed using the graphical interface, the built-in design rule checker can be used
to verify the partial reconfiguration design rules have been met. To perform the
partial reconfiguration design flow, PlanAhead takes the .ncd, .ucf, and .nmc files
and copies them to the appropriate directories. Scripts to perform the necessary ISE
actions are automatically generated and can be run from within PlanAhead. Although
PlanAhead makes constructing a basic partial reconfiguration design easier, the scripts
generated by PlanAhead do not extend the design flow to included generation of the
ACE file or programming the microprocessor included in a partial reconfiguration

design.

For designs with microprocessor or for more flexibility, batch scripts can be tai-
lored to implement the partially reconfigurable design. Figures C.1 and C.2 illustrate

the complexity of the partial reconfiguration design.

106

Dynamic
Modules
(VHDL)

Static
Modules
(VHDL)

Synthesis
[Xillnx ISE)

Synthesis
(Xilinx |SE)

[

[1

[¥

.
Synthesized
Dynamic Modules
(*.nge)

s Sy |

Synthesized Static
Modules (* nge)

Original Design Files or Processes

Design PPC
(EDK)

Static Design
Constraints
(top.ucf)

#| areas and place

system_stub.vhd

—1

Manual FFC
Integration (VHDL)

-

Top level VHDL
design
{top.whdl)

Synthesis
(Xilirx 1SE)

Synthesized Top
Lewvel Design
(top.ngc)

Define
reconfigurable

PPC Cai

¥
nstraints
[=ystem.ucf)

Manual Constraint
Consolidation
(Wordpad)

h 4

System
Constraints
(top.ucf)

-

[y

Figure C.1:

modules.

Partial Reconfiguration Design Flow (1).
starts as individual VHDL files for each of the static and reconfigurable
The top level design (top.vhd) is created by adding top-
level logic such as bus macros, connections between static modules, pin
connects, and clock buffers to the system_stub.vhd created in EDK.
For easy module and bus macro placement, the synthesized modules,
system constraint file and bus macros can be loaded into PlanAhead

bus macros
[PlanAhead)

!

Systemn
Canstraints with
Reglons Defined

(top.ucf)

even if PlanAhead is not used to generate the scripts.

107

The design

) System)
Synthesized Bus Macro File Constralnts with Synthesized Top
".nge) (top.ucf) (*.nge)

l
|
| Dynamic Modules *.nme) Regions Defined Level Design
|
l

B I — — e — — e —— — — — — —

!

Implement Baze
Design
[NGDBuild, MAP,
PAR)

¥ ¥ ¥
L 4
Implement PR

system_base
SySlem.ngc slatic.used “rou /"ij
hModules

(NGDBuild, MAP, [
PAR) Updated for

each module

pr_mods Updated
_routed.ned static.usad

y

Merge
{PR_verfydesign,
PR_assemble)

h

Full and partial
bitstreams

"

Figure C.2: Partial Reconfiguration Design Flow (2). The synthe-
sized top level design and module are combined in this phase to im-
plement the base design and each of the PR modules. The designs
are merged together using the PR _verify and PR _assemble functions
which first verify that all partial reconfiguration rules are followed then
produce the partial, blanking and full bitstreams.

108

C.2 ISE 8.2 Partial Reconfiguration Toolchain

The Xilinx 8.2 partial reconfiguration tools chain was also experimented with to
determine it provided a greater level of support for partial reconfiguration. Although
it was not used because of the deprecated flow for exporting EDK designs to ISE, one

key changes was discovered.

Stating with the 8.2, the partial reconfiguration toolchain creates compressed
bitstreams by default. Data2mem.exe can not be used with a compressed bitstream.
To prevent the bitstreams from being compresses the "-g compress:no" option must
be used with PR _verifydesign and PR_assemble. To use the following script in 8.2,
this option must be added.

C.3 Exzample PR Implementation Script

The following script is based on an Xilinx University Program workshop given
by Xilinx on 1 September 2006 in Madrid, Spain. For brevity only two reconfigurable

modules are used.

Build top level context
echo -e " \ nStart: 1) Build top level context\n"
cd Top
rm k
cp ../Synth/Top/top.ngc .
cp ../Data/top.ucf .
cp ../Data/*.nmc .
ngdbuild -modular initial -p xc2vp30-7-f£896 top.ngc
cd ..
build static portion of the design
echo -e "\nStart: 2) Build static portion of
the design\n"
cd Static

rm *

109

cp ../Synth/display_mem/display_mem.ngc

cp ../Synth/led_driver/led_driver.ngc

cp ../Synth/static_in/static_in.ngc

next 3 lines are required for edk project

cp ../Synth/edk/implementation/*.ngc

cp ../Synth/edk/implementation/system_stub.bmm .

cp ../Synth/edk/projnav/*.ngc

cp ../Data/top.uct

cp ../Data/*.nmc

ngdbuild -p xc2vp30-7-f£896 -bm system_stub.bmm
-modular initial ../Top/top.ngo

map top.ngd

par -w top.ncd top_routed.ncd

cd ..

Build ml_mod reconfig module

echo -e "\nStart: 4a) Build ml_mod reconfig module\n"

cd ReconfigModules/m1_mod

rm *

cp ../../Synth/ml_mod/function_modl.ngc
cp ../../Data/top.uct

cp ../../Data/*.nmc

cp ../../Static/static.used arcs.exclude
ngdbuild -modular module -p xc2vp30-7-f£896
-active function_modl ../../Top/top.ngo
map top.ngd
par -w top.ncd top_routed.ncd
cd ../..
Build m2_mod reconfig module
echo -e "\nStart: 4b) Build m2_mod reconfig module\n"
cd ReconfigModules/m2_mod

rm *

110

cp ../../Synth/m2_mod/function_mod2.ngc
cp ../../Data/top.ucf
cp ../../Data/*.nmc .

cp ../../Static/static.used arcs.exclude
ngdbuild -modular module -p xc2vp30-7-f£896
-active function_mod2 ../../Top/top.ngo
map top.ngd
par -w top.ncd top_routed.ncd
cd ../..
Merge ncds and generate bitstreams
echo -e "\nStart: 7) Merge ncds and generate bitstreams\n"
cd Merges
rm *
rm -rf PRtmpdir
cp ../Static/top_routed.ncd static.ncd
cp ../ReconfigModules/ml_mod/top_routed.ncd function_modl_routed.ncd
cp ../ReconfigModules/m2_mod/top_routed.ncd function_mod2_routed.ncd
next line required for edk design
cp ../Synth/edk/implementation/system_stub.bmm .
PR_verifydesign.bat static.ncd function_modl_routed.ncd function_mod2_routed.ncd
PR_assemble.bat static.ncd function_modl_routed.ncd function_mod2_routed.ncd
cd ..
Create download.bit
cd Merges
echo -e "\nStart: 8) Create download.bit \n"
cp ../Synth/edk/TestApp_Reconfig/executable.elf
dataZmem -bm system_stub_bd.bmm -bt static_full.bit
-bd executable.elf tag plb_bram_if_cntlr_1_bram -o b download.bit
cd ..
echo -e "\nStart: 9) Copy bitstreams back to EDK project \n"

cd Merges

111

cp static_full.bit ../Synth/edk/implementation/system.bit
cp download.bit ../Synth/edk/implementation

cp system_stub_bd.bmm ../Synth/edk/implementation/system_bd.bmm
cd ..

Create system.ace

echo -e "\nStep 10) - Creating system.ace file \n"

cd Merges

rm ../CF_files/*

cp ../Data/genace.opt

cp ../Data/genace.tcl

xmd -tcl ./genace.tcl -opt genace.opt

cp system.ace ../CF_files

cp function_modl_routed_partial.bit ../CF_files/ml_mod.bit
cp function_mod2_routed_partial.bit ../CF_files/m2_mod.bit
cp pblock_ml_blank.bit ../CF_files/ml_blank.bit

cp pblock_m2_blank.bit ../CF_files/m2_blank.bit

cd ..

echo -e "\nDone!\n"

112

ALS1.

Alp9s.

BJRK'03.

Blo06.

CCMMO4.

DFR*05.

DPY4.

FHAO3.

GAFO05.

GLS99.

HLO1.

Bibliography

T. Anderson and P. Lee. Fault Tolerance Principles and Practice. Prentice
Hall, 1981.

C. J. Alpert. The ISPD98 circuit benchmark suite. In Proceedings of the
1998 international symposium on Physical design, pages 80-85, 1998.

Brandon Blodget, Philip James-Roxby, Eric Keller, Scott McMillan, and
Prasanna Sundararajan. A Self-reconfiguring Platform. In Lecture Notes
in Computer Science, volume 2778, pages 565-574, September 2003.

B. Blodget. Research Engineer, Xilinx Labs, Logmont, CO. Personal
Coorespondance. 11 December 2006.

E. Carvalho, N. Calazans, F. Moraes, and D. Mesquita. Reconfigura-
tion Control for Dynamically Reconfigurable Systems. In Proceedings of
Conference On Design of Circuits and Integrated Systems (DCIS), pages
405-410, 2004.

Alberto Donato, Fabrizo Ferrandi, Massimo Redaellii, Marco D. Santam-
brogio, and Donatella Sciuto. Caronte: a complete methodology for the
implementation of a partially dynamically self-reconfigurating systems
on FPGA platforms. Field-Programmable Custom Computing Machines,
2005. FCCM 2005. 13th Annual IEEE Symposium on, pages 321-322,
2005.

S. Durand and C. Piguet. FPGA with Self-Repair Capabilities. ACM
Int Workshop on Field-Programmable Gate Arrays (FPGA94), Berkeley,
February, pages 1-6, 1994.

R.J. Fong, S.J. Harper, and P.M. Athanas. A versatile framework for
FPGA field updates: an application of partial self-reconfiguration. In
Rapid Systems Prototyping, 2003. Proceedings. 14th IEEE International
Workshop on, pages 117-123, 2003.

M. Gericota, G. Alves, and J. Ferreira. Robust Configurable System
Design with Built-In Self-Healing. In Conference on Design of Clircuits
and Integrated Systems, 2005.

S. Guccione, D. Levi, and P. Sundararajan. JBits: A Java-based inter-
face for reconfigurable computing. 2nd Annual Military and Aerospace
Applications of Programmable Devices and Technologies Conference

(MAPLD)., 1999.

E.L. Horta and J.W. Lockwood. PARBIT: A Tool to Transform Bitfiles to
Implement Partial Reconfiguration of Field Programmable Gate Arrays.

113

HMOT1.

Ive06.

Kha02.

KJdITRO5.

KPO06.

KZJS00.

Lap85.

LMSP99.

Mas07.

Max04.

McF94.

MHS"04.

Department of Computer Science, Applied Research Lab, Washington
University, Tech Rep. WUSC-01-13 edition, July 2001.

W-J. Huang and E.J. McCluskey. Column-Based Precompiled Configura-
tion Techniques for FPGA. The 9th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’01), pages 137-146,
2001.

J. Ives. Evaluation of a Field Programmable Gate Array Circuit Recon-
figuration System. Master’s thesis, Air Force Institute of Technology,
2006.

Jamil Khatib. Introduction to Programmable Logic Devices. 2002.
http://www.geocities.com/jamilkhatib75/fpga/FPGA intro.html.

YE Krasteva, AB Jimeno, E. de la Torre, and T. Riesgo. Straight Method
for Reallocation of Complex Cores by Dynamic Reconfiguration in Virtex
IT FPGAs. The 16th IEEE International Workshop on Rapid System
Prototyping, pages 77-83, 2005.

H. Kalte and M. Porrmann. REPLICA2Pro: task relocation by bitstream
manipulation in Virtex-II/Pro FPGAs. Proceedings of the 3rd conference
on Computing frontiers, pages 403-412, 2006.

D. Keymeulen, R.S. Zebulum, Y. Jin, and A. Stoica. Fault-Tolerant
Evolvable Hardware Using Field-Programmable Transistor Arrays. IEEE
Transactions on Reliability, 49:305-316, 2000.

J. Laprie. Dependable Computing and Fault Tolerance: Concepts and
Terminology. In Digest of Papers FTCS-15: 15th International Sympo-
stum on Fault-Tolerant Computing, pages 2—11 IEEE Computer Society
Press, Los Alamitos, CA, Los Alamitos, CA, 1985.

J. Lach, W.H. Mangione-Smith, and M. Potkonjak. Algorithms for ef-
ficient runtime fault recovery on diverse FPGA architectures. In DFT

’99. International Symposium on Defect and Fault Tolerance in VLSI
Systems, pages 386-394, 1999.

Jeff Mason. Research Engineer, Xilinx Labs, Logmont, CO. Personal
Coorespondance. 3 January 2007.

C. Maxfield. The Design Warriors Guide to FPGAs. Academic Press,
Inc., Orlando, FL, 2004.

C. McFarland. Computer Subsystem. 1994.
http://www.tsge.utexas.edu/archive /subsystems/.

Subhasish Mitra, W.-J. Huang, N.R. Saxena, S.-Y. Yu, and E.J. Mc-
Cluskey. Reconfigurable architecture for autonomous self-repair. IEEE
Design & Test of Computers, 21(3):228-240, 2004.

114

MMP*03.

NASO00.

Nel90.

RS02.

SA04.

SBBT06.

Tor02.

US05.

VN56.

WB04.

WSWO6.

Xil04a.

XilO4b.

D. Mesquita, F. Moraes, J. Palma, L. Moller, and N. Calazans. Remote
and Partial Reconfiguration of FPGAs: tools and trends. Proceedings
of the 17th Parallel and Distributed Processing Symposium (IPDPS03),
pages 1-8, 2003.

NASA. Radiation Effects & Analysis: Single Event Effects. 2000.
http://radhome.gsfc.nasa.gov /radhome/see.htm.

Victor P. Nelson. Fault-Tolerant Computing: Fundamental Concepts.
IEEE Computer, pages 2025, 1990.

A.K. Raghavan and P. Sutton. JPG A Partial Bitstream Generation
Tool to Support Partial Reconfiguration in Virtex FPGAs. Proceedings

of International Parallel and Distributed Processing Symposium. IPDPS
2002, Abstracts and CD-ROM, pages 155-160, 2002.

N. Steiner and P. Athanas. An Alternate Wire Database for Xilinx FP-
GAs. In Proceedings of the Twelfth Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, FCCM 2004, pages 336—
337, 2004.

P. Sedcole, B. Blodget, T. Becker, J. Anderson, and P. Lysaght. Modular
dynamic reconfiguration in Virtex FPGAs. IEE Proceedings Computers
and Digital Techniques, 153(3):157-164, 2006.

Jim Torresen. Reconfigurable Logic Applied for Designing Adaptive
Hardware Systems. In Proc. of the International Conference on Advances
in Infrastructure for e-Business, e-Education, e-Science, and e-Medicine
on the Internet (SSGRR2002W), 2002.

Andres Upegui and Eduardo Sanchez. Evolving Hardware by Dynami-
cally Reconfiguring Xilinx FPGAs, September 2005.

J. Von Neumann. Probabilistic logics and the synthesis of reliable organ-

isms from unreliable components. Automata Studies, Annals of Math.
Studies, (34):43-98, 1956.

J. Williams and N. Bergmann. Embedded Linux as a platform for dy-
namically self-reconfiguring systems-on-chip. In Proceedings of the Inter-
national Conference on Engineering of Reconfigurable Systems and Algo-
rithms (ERSA04), 2004. Las Vegas, Nevada.

J. Wu, I. Syed, and J. Williams. Creating a
Simple uClinux ready MicroBlaze Design. 2006.
www.itee.uq.edu.au/wu/downloads/uClinux_ready_Microblaze_design.pdf.

Xilinx. Dynamic Reconfiguration of RocketlO MGT Attributes.
XAPP660 (v2.2), 2004. http://www.xilinx.com .

Xilinx. OPB HWICAP. DS 280 (v1.3), 2004. http://www xilinx.com .

115

Xil04e.

Xilo4d.

XilOba.
Xil05b.

Xil06.

Xil07a.

Xil07b.
XSHL99.

Xilinx. Two Flows for Partial Reconfiguration: Module Based or Differ-
ence Based. XAPP290, 2004. http://www xilinx.com .

Xilinx. Virtex Series Configuration Architecture User Guide. XAPP151,
2004. http://www xilinx.com .

Xilinx. Constraints Guide 8.1i. 2005. http://www.xilinx.com .

Xilinx. Virtex-II Pro and Virtex-II Pro X FPGA User Guide. UG012,
2005. http://www xilinx.com .

Xilinx. Early Access Partial Reconfiguration User Guide For ISE 8.1.01i.
UG208, (UG208), 2006. http://www.xilinx.com .

Xilinx. Partial Reconfiguration Early Access software tools. 2007.
http://www.xilinx.com /support /prealounge /protected /index.htm.

Xilinx. Virtex-5 and Virtex-4 Features. 2007. http://www.xilinx.com .

Jian Xu, Paifa Si, Weikang Huang, and F. Lombardi. A novel fault
tolerant approach for SRAM-based FPGAs. In Dependable Computing,
1999. Proceedings. 1999 Pacific Rim International Symposium on, pages
4044, 1999.

116

REPORT DOCUMENTATION PAGE OM’EWO_A’(’)%‘ZX%’I%

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD—MM—YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)
21-02-2007 Master’s Thesis Aug 2005 — Mar 2007
4. TITLE AND SUBTITLE ba. CONTRACT NUMBER

. 5b. GRANT NUMBER
Using Relocatable

Bitstreams For

Fault Tolerance 5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER
Montminy, David P., Captain, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

Air Force Institute of Technology

Graduate School of Engineering and Management

2950 Hobson Way AFIT/GCE/ENG/07-09

WPAFB OH 45433-7765

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/VSSE

Attn: Mr. Ken K. Hunt

Air Force Research Laboratory 11. SPONSOR/MONITOR’S REPORT

3550 Aberdeen Ave SE, Bldg 891 NUMBER(S)

Kirtland AFB, NM 87117-5776 DSN 246-4959

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approval for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This research develops a method for relocating reconfigurable modules on the Virtex-II (Pro) family of Field
Programmable Gate Arrays (FPGAs). A bitstream translation program is developed which correctly changes the location
of a partial bitstream that implements a module on the FPGA. To take advantage of relocatable modules, three
fault-tolerance circuit designs are developed and tested. This circuit can operate through a fault by efficiently removing
the faulty module and replacing it with a relocated module without faults. The FPGA can recover from faults at a
known location, without the need for external intervention using an embedded fault recovery system. The recovery
system uses an internal PowerPC to relocate the modules and reprogram the FPGA. Due to the limited architecture of
the target FPGA and Xilinx tool errors, an FPGA with automatic fault recovery could not be demonstrated. However,
the various components needed to do this type of recovery have been implemented and demonstrated individually.

15. SUBJECT TERMS

FPGA, partial reconfiguration, fault tolerance

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF | 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
a. REPORT | b. ABSTRACT|c. THIS PAGE| ABSTRACT OFces | Dr- Rusty Baldwin
19b. TELEPHONE NUMBER (include area code)
U U Y uu 131 | (937) 2553636 x4445, rusty.baldwin@afit.edu

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	I. Introduction
	1.1 Overview
	1.2 Motivation and Goals
	1.3 Organization

	II. Literature Review
	2.1 Introduction
	2.1.1 Applications of Fault Tolerance
	2.1.2 Motivation for using FPGA reconfiguration for Fault-Tolerance

	2.2 Fault Tolerance
	2.2.1 Methods for Fault Tolerance
	2.2.2 Reconfiguration as a Method for Fault Tolerance

	2.3 FPGAs
	2.3.1 SRAM FPGA Technology
	2.3.2 SRAM FPGA Reconfiguration

	2.4 Current Research in FPGA Reconfiguration
	2.4.1 Methods for Partial Reconfiguration
	2.4.2 Hardware Bitstream Relocation
	2.4.3 Automatic Dynamic Active Partial Reconfiguration for Fault Tolerance

	2.5 Summary

	III. Development of a Dynamic Reconfiguration System
	3.1 Introduction
	3.2 Problem Definition
	3.2.1 Goals and Hypothesis
	3.2.2 Approach

	3.3 A Column-Based Fault Tolerant Configuration
	3.3.1 Benefits
	3.3.2 Routing and Timing

	3.4 Using Relocatable Modules in TMR Designs
	3.4.1 Bitstream Storage Savings With Relocatable Modules
	3.4.2 Routing with Relocatable Interconnect Modules
	3.4.3 Rerouting Using Difference Based Reconfiguration

	3.5 The Target FPGA
	3.6 Developing the Bitstream Translation Program
	3.6.1 Virtex-II Pro Bitstream Composition
	3.6.2 Configuration Memory Addressing
	3.6.3 Bitstream Packet Type
	3.6.4 Software Emulation of the Packet Processor
	3.6.5 Virtex-II Pro Configuration Registers
	3.6.6 Calculating the New Major Address
	3.6.7 Updating the CRC Value
	3.6.8 Overall Organization of the BTP

	3.7 FPGA Design Tools
	3.8 Implementing a Relocatable Partial Reconfiguration Design
	3.8.1 Reconfigurable Modules
	3.8.2 Bus Macros
	3.8.3 Making Reconfigurable Modules Relocatable

	3.9 Internal Reconfiguration
	3.9.1 Using an Embedded Microprocessor to Run the BTP
	3.9.2 MicroBlaze and uClinux
	3.9.3 PowerPC

	3.10 Summary

	IV. Implementation
	4.1 Introduction
	4.2 Verifying Relocation of Partial Modules
	4.2.1 Testing the Interconnect Module Designs
	4.2.2 Testing the Direct Connect Modular Design
	4.2.3 Implementing the LUT-based Modular Design

	4.3 Adding a Microprocessor to the Design
	4.3.1 Resources Used By Microprocessors
	4.3.2 Changes to BTP for PowerPC
	4.3.3 Internal Reconfiguration using the PowerPC

	4.4 Preventing Static Routing
	4.4.1 Problems Caused by Restricting Routing
	4.4.2 Programming of I/O Blocks

	4.5 Safe Locations for Relocatable Modules on the XUPV2P
	4.6 Errors During Bitstream Generation
	4.7 Relocatable Module Support in 8.2 Partial Reconfiguration Toolchain
	4.8 Relocatable Modules in the Virtex-4
	4.8.1 Drawbacks of the Virtex-4

	4.9 Comparison with REPLICA2Pro
	4.10 Summary

	V. Conclusions
	5.1 Introduction
	5.2 Problem Summary
	5.3 Conclusion of Research
	5.4 Significance of Research
	5.5 Recommendations for Future Research

	Appendix A. Using the PowerPC for Partial Reconfiguration
	A.1 Creating the EDK Project
	A.2 Adding Software, Exporting, and Integration

	Appendix B. Bitstream Translation Programs
	Appendix C. ISE 8.1 and PlanAhead Design Flow
	C.1 ISE 8.1 Partial Reconfiguration Design Flow
	C.2 ISE 8.2 Partial Reconfiguration Toolchain
	C.3 Example PR Implementation Script

	Bibliography

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

