Modeling JP-8 Fuel Effects on Diesel Combustion Systems

TARDEC Propulsion Laboratory

Peter Schihl
Laura Hoogterp
Harold Pangilinan
Ernest Schwarz
Walter Bryzik

TARDEC
U.S. ARMY TANK-AUTOMOTIVE RESEARCH DEVELOPMENT AND ENGINEERING CENTER
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>30 NOV 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. REPORT TYPE</td>
<td>N/A</td>
</tr>
<tr>
<td>3. DATES COVERED</td>
<td>-</td>
</tr>
<tr>
<td>4. TITLE AND SUBTITLE</td>
<td>Modeling JP-8 Fuel Effects on Diesel Combustion Systems</td>
</tr>
<tr>
<td>5a. CONTRACT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5b. GRANT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5c. PROGRAM ELEMENT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5d. PROJECT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5e. TASK NUMBER</td>
<td></td>
</tr>
<tr>
<td>5f. WORK UNIT NUMBER</td>
<td></td>
</tr>
<tr>
<td>6. AUTHOR(S)</td>
<td>Schihl, Peter; Hoogterp, Laura; Pangilinan, Harold; Schwarz, Ernest; Bryzik, Walter</td>
</tr>
<tr>
<td>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</td>
<td>USATACOM 6501 E 11 Mile Road Warren, MI 48397-5000</td>
</tr>
<tr>
<td>8. PERFORMING ORGANIZATION REPORT NUMBER</td>
<td>16677</td>
</tr>
<tr>
<td>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</td>
<td>TACOM TARDEC</td>
</tr>
<tr>
<td>10. SPONSOR/MONITOR’S ACRONYM(S)</td>
<td>TACOM TARDEC</td>
</tr>
<tr>
<td>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</td>
<td>16677</td>
</tr>
<tr>
<td>12. DISTRIBUTION/AVAILABILITY STATEMENT</td>
<td>Approved for public release, distribution unlimited</td>
</tr>
<tr>
<td>13. SUPPLEMENTARY NOTES</td>
<td>The original document contains color images.</td>
</tr>
<tr>
<td>14. ABSTRACT</td>
<td></td>
</tr>
<tr>
<td>15. SUBJECT TERMS</td>
<td></td>
</tr>
<tr>
<td>16. SECURITY CLASSIFICATION OF:</td>
<td></td>
</tr>
<tr>
<td>a. REPORT</td>
<td>unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td>unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td>unclassified</td>
</tr>
<tr>
<td>17. LIMITATION OF ABSTRACT</td>
<td>SAR</td>
</tr>
<tr>
<td>18. NUMBER OF PAGES</td>
<td>23</td>
</tr>
<tr>
<td>19a. NAME OF RESPONSIBLE PERSON</td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Agenda

- Introduction/Background
- JP-8 Evaporation Rate Modeling
- JP-8 Ignition Modeling
- Engine Predictions Results
- Conclusions
Introduction
One Fuel Forward Initiative

- Fuel differences
 - JP-8 properties
 - < 3000 ppm sulfur; variance allowed in fuel properties including cetane number and distillation curve
 - Referee grade more specific
 - JP-8 is Jet-A1 with three additives
 - fuel system icing inhibitor (MIL-DTL-85470), corrosion inhibitor and lubricity enhancer (MIL-PRF-25017), and static dissipator additive
 - Jet-A1 has lower freeze point than Jet-A (-53 F vs. -40 F)
- Engine benchmark to assess JP-8 impact
 - power loss and lubricity issues
Historical Perspective on JP-8 Engine Impact – Executive Summary

- Engine HP range of 150 – 750 BHP
 - represents various fuel system types
- Evaluated various fuel supply temperatures ranging from ambient (86 F) to 165 and 190 F (desert conditions)
- 3/5 engines developed fuel-related durability issues
- In-line Bosch pumps or rotary pumps exhibited higher power loss
Historical Perspective on JP-8 Engine Impact - Results

1. GM, Detroit Diesel Allison (DDA) 6.2 L IDI: rotary distributor pump, (Stanadyne), heavy wear after 400 hrs with 195 F fuel, recommend use of Artic pump kit for future pumps

2. Cummins 6CTA-8.3L: (M939 – 5 ton truck); fuel pump control issue that caused power surges at 1200 RPM related to starting strategy

3. GM, DDA 8V-71T (Paladin) – none.

4. Cummins VTA-903T (Bradley) fuel shut-off valve leakage after 100 test hours and transfer pump seized three times and gear shaft bushings froze up; Cummins resolved these problems

5. Teledyne Continental Motors AVDS-1790-2C (M60A1 and M88); two distributor pumps have large internal leakage that resulted in excessive power loss; proposed elimination of spillback
Fast Forward to More Modern Times

- Continental AVDS 1790 Up-rated to 1050 BHP
- Noted substantial piston erosion
 - prevalent in engines exposed to JP-8
- Concern over possible combustion system issue
Sieber's zero-dimensional approach

\[L_b = \frac{b}{a} \sqrt{\frac{\rho f}{\rho_a}} \sqrt{\frac{C_a \cdot d}{\tan(\frac{\theta}{2})}} \left(\sqrt{\frac{2}{R_s} + 1} \right)^2 - 1 \]

Fuel to ambient gas flow rate ratio or evaporation coefficient

\[B_s = \frac{Z_a(T_a, P_a - P_s) \cdot P_a \cdot M_f}{Z_f(T_s, P_s) \cdot (P_a - P_s) \cdot M_a} = \frac{h_a(T_a, P_a) - h_a(T_s, P_a - P_s)}{h_f(T_s) - h_f(T_f, P_a)} \]

fuel to air density ratio

area contraction coefficient

spray angle

enthalpy differences - air and fuel

air and fuel compressibility
Fuel Properties

- Saturation pressure and density relationships given by API handbook
- Compressibility and enthalpies precise curve-fits of API handbook data

\[
P_{r,s} < 0.2 \quad h_f(T_s) = A \cdot T_{r,s} - B
\]
\[
P_{r,s} \geq 0.2 \quad h_f(T_s) = -C \cdot T_{r,s}^2 + D \cdot T_{r,s} - E
\]

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Critical Temperature (K)</th>
<th>Critical Pressure (bar)</th>
<th>Boiling Point (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dodecane</td>
<td>658</td>
<td>18.2</td>
<td>489</td>
</tr>
<tr>
<td>tetradecane</td>
<td>693</td>
<td>15.7</td>
<td>526</td>
</tr>
<tr>
<td>cetane</td>
<td>723</td>
<td>14.0</td>
<td>560</td>
</tr>
<tr>
<td>hopptadecane</td>
<td>736</td>
<td>13.4</td>
<td>575</td>
</tr>
<tr>
<td>HMN</td>
<td>692</td>
<td>15.7</td>
<td>513</td>
</tr>
<tr>
<td>DF-2</td>
<td>NA</td>
<td>NA</td>
<td>580*</td>
</tr>
<tr>
<td>JP-8</td>
<td>NA</td>
<td>NA</td>
<td>496*</td>
</tr>
</tbody>
</table>

\[
Z_f(T_s, P_s) = -a \cdot T_{r,s}^3 + b \cdot T_{r,s}^2 - c \cdot T_{r,s} + d
\]

<table>
<thead>
<tr>
<th>Fuel</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dodecane</td>
<td>16.85</td>
<td>36.104</td>
<td>26.425</td>
<td>7.5406</td>
</tr>
<tr>
<td>tetradecane</td>
<td>17.924</td>
<td>36.143</td>
<td>24.71</td>
<td>6.6857</td>
</tr>
<tr>
<td>cetane</td>
<td>16.587</td>
<td>34.594</td>
<td>24.531</td>
<td>6.869</td>
</tr>
</tbody>
</table>
Measured JP-8 and DF-2 Distillation Behavior

- JP-8 and DF-2 samples from CONUS supply chain
- JP-8: 90% distillation point close to dodecane
- DF-2: 80 - 90% distillation points between cetane and heptadecane
Methodology for Multi-component Fuels

- Property and boiling point issue
- Limited data for multi-component fuels
- Employ weighting scheme

- **MLL**: Mean Liquid Length

\[
L_B = \sum_{i=1}^{N} x_i L_{b,i}
\]

- **MEC**: Mean Evaporation Coefficient

\[
B_s = \sum_{i=1}^{n} x_i B_{s,i} \quad T_b = \sum_{i=1}^{n} x_i T_{b,i} \quad \sum_{i=1}^{n} x_i = 1
\]

boiling point of component \(i\)

mass fraction of component \(i\)
- HMN density close to cetane but boiling point 40 K lower
- 35% dodecane – 65% tetradecane surrogate
- MEC superior method for matching data set
Test fuel was 67% HMN – 33% cetane
Boiling point close to tetradecane
Three modeling options – tetradecane, MEC, MLL
Any of three methods are reasonable
JP-8 Predictions

- 82% dodecane – 18% tetradecane surrogate
- JP-8 can be modeled as dodecane or employ the MEC or MLL methods
Nil published data!

Predictions made based on cetane number studies conducted by GM Research Lab, U-Wisconsin, AVL, and a German University.

Assumed 30% increase in the ignition delay period with a 10 cetane number decrease.

Is this true?

- L. Hoogterp spent 30 days at SNL conducting experiments.
Engine Predictions

<table>
<thead>
<tr>
<th>Engine Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Cylinders</td>
<td>12</td>
</tr>
<tr>
<td>Bore x stroke (mm)</td>
<td>146.1 x 146.1</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>14.5</td>
</tr>
<tr>
<td>Displacement (cc)</td>
<td>2447</td>
</tr>
<tr>
<td>Coolant System Media</td>
<td>air and oil</td>
</tr>
<tr>
<td>Boost System</td>
<td>turbocharged</td>
</tr>
<tr>
<td>Charge air cooler</td>
<td>air-to-air with bypass valve</td>
</tr>
<tr>
<td>Injection System</td>
<td>pump-line-nozzle</td>
</tr>
<tr>
<td>Peak Injection Pressure (bar)</td>
<td>~ 650</td>
</tr>
<tr>
<td>Fuel Types</td>
<td>diesel or JP-8</td>
</tr>
<tr>
<td>Nozzle Geometry (mm)</td>
<td>10 x 0.282</td>
</tr>
<tr>
<td>Rated Speed (RPM)</td>
<td>2400</td>
</tr>
<tr>
<td>Maximum Power (kW)</td>
<td>780</td>
</tr>
</tbody>
</table>

1. Per cylinder
2. Fuel pump delivery schedule adjusted based on fuel type.
3. Varies as a function of fuel type.
4. Military vehicles required to operate on world-wide variant diesel and JP-8 fuels. For this test, JP-8 cetane number was 49.

TARDEC

U.S. ARMY TANK-ARMOR RESEARCH DEVELOPMENT AND ENGINEERING CENTER
Comparison of Predicted DF-2 and JP-8 Liquid Lengths

- Predictions based on measured fuel injection timing and GT-Power cycle simulation for initial in-cylinder thermodynamic conditions at SOI.
- Measured DF-2 boiling point is 85°C higher than JP-8.

- Ignition delays estimated from high speed injection/pressure data
 - JP-8 CN was 49

- Evaporated fuel mass

\[
m_{evap} = \int_{t_{SOI}}^{t_{IGN}} m_{inj} \, dt - \pi \cdot \frac{d^2}{4} \cdot L_b
\]

- Similar vapor fraction

NOTE: JP-8 predictions based on 49 CN
Effect of CN on JP-8 Liquid Length Predictions

- Projected JP-8 40 CN effect
 - Assume 30% increase in ignition delay versus 49 CN JP-8

- Lower CN JP-8 exhibited 30% to 40% increase in vapor fraction (i.e. 30% or > vaporized fuel at ignition)

- Anticipated higher pressure rise for lower CN JP-8 in comparison to higher CN JP-8 and DF-2

NOTE: JP-8 predictions based on 40 CN unless otherwise noted
Anticipated JP-8 Pressure Rise Impact

1. Hiroyasu and Arai spray penetration model

2. Predicted pressure rise based on 1st law analysis of combustion chamber

\[\frac{dP}{dt} \approx \frac{k-1}{V} \left(\frac{m_b LHV - \frac{dV}{dt} P}{1 + \frac{1}{k-1}} \right) \cdot Q_{wall} \]

- Expansion term
- Peak premixed phase fuel burning rate; time scale approach
- Wall heat transfer; small during ID period; NEGLECT
Anticipated JP-8 Pressure Rise Impact

- Premixed fuel mass is integrated evaporated fuel during the ignition delay period

- Pressure rise rate increase of 10% to 36% increase operating on lower CN JP-8 versus DF-2

- Expansion term contributes 6% to 20% in overall pressure rise

- MONDAY MORNING QUARTERBACK:
 - 2004 CONUS JP-8 procurement data sets
 - Mean CN of 43.9
 - Range: 29 to 51 !!!!!
Concluding Remarks

SUPERIOR TECHNOLOGY FOR A SUPERIOR ARMY

- Methodology developed to assess JP-8 evaporation rate (liquid length)
 - Dodecane is a good surrogate for JP-8
 - The Mean Evaporation Coefficient (MEC) method demonstrated reasonable predictive capability for multi-component fuels

- Engine simulation study exhibited potential pressure rise rate issues for certain military engine types when utilizing JP-8 and DF-2
 - JP-8 distillation and ignition quality variances could contribute to such issues

- Suggested directional design changes to combustion system
 - Larger bowl diameter
 - Reduce hole size
 - High pressure common rail fuel system
 - Redesign intake manifolds to reduce cylinder trapped mass variability
THANK YOU!

SUPERIOR TECHNOLOGY FOR A SUPERIOR ARMY

TARDEC
U.S. ARMY TANK-AVOMOTIVE RESEARCH DEVELOPMENT AND ENGINEERING CENTER