Award Number: W81XWH-06-1-0382

TITLE: The Significance of Focal Basal Cell Layer Disruption-Induced Immuno-Cell Infiltration in Prostate Cancer Invasion

PRINCIPAL INVESTIGATOR: Yang-gao Man, M.D., Ph.D.

CONTRACTING ORGANIZATION: American Registry of Pathology and Armed Forces Institute of Pathology
Washington DC 20306-6000

REPORT DATE: March 2007

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
The Significance of Focal Basal Cell Layer Disruption-Induced Immuno-Cell Infiltration in Prostate Cancer Invasion

Yang-gao, Man M.D., Ph.D.

E-Mail: man@sfip.osd.mil

American Registry of Pathology and Armed Forces Institute of Pathology
Washington DC 20306-6000

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Approved for Public Release; Distribution Unlimited

Using multidisciplinary approaches, our studies assessed the physical status of prostate basal cell layers and the impact of basal cells on the biological presentation of associated epithelial cells. Our studies showed that focally disrupted basal cell layers had the following unique features: [1] significantly lower proliferation; [2] significantly lower p63 expression; [3] significantly higher apoptosis; [4] significantly higher leukocyte infiltration and stromal reactions. In contrast, epithelial cells overlying focal basal cell layer disruptions (FBCLD) showed [1] significantly higher proliferation; [2] significantly higher expression of tumor invasion-related genes; [3] direct physical continuity with invasive lesions. Based on these and other findings, we have proposed that prostate tumor invasion is triggered by a localized degeneration of aged or injured basal cells and resultant auto-immunoreactions, and that cells overlying FBCLD represent the direct precursor of invasive lesions. Our hypothesis has been recently published in multiple peer-reviewed journals.

Parallel Synthesis: Biocatalytic Amplification; Drug Discovery; Chemotherapeutics; Lead Lead Optimization

Security Classification of:

a. Report U
b. Abstract U
c. This Page U

17. Limitation of Abstract
UU

18. Number of Pages
10

19a. Name of Responsible Person

USAMRMC

19b. Telephone Number (include area code)
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Body</td>
<td>2</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>4</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>4</td>
</tr>
<tr>
<td>Conclusion</td>
<td>5</td>
</tr>
<tr>
<td>References</td>
<td>5</td>
</tr>
<tr>
<td>Appendices</td>
<td>none</td>
</tr>
</tbody>
</table>
Introduction
The prostate luminal cells, which are the histological origin of a vast majority of prostate malignancies, are physically separated from the stroma by basal cells and the basement membrane (BM). Basal cells are joined by intercellular junctions and adhesion molecules, forming a continuous sheet that encircles ducts and acini (Fig 1) (1-2). The BM is composed of type IV collagen, laminins, and other molecules, forming a continuous lining surrounding and attaching to the basal cell layer (3-4). The epithelium is devoid of blood vessels and lymphatic ducts, and is therefore totally dependent upon the stroma for its normal functions and even survival. Due to this structural relationship, the disruption of both the basal cell layer and BM is pre-requisite for prostate tumor invasion or metastasis.

![Fig 1](image1.png)

Fig 1. The structural relationship among the epithelium (EP), basal cell layer (BCL), basement membrane (BM), and stroma (ST). Paraffin-embedded human prostate tissue sections were double immunostained for the BM (brown) and basal cells (red). 1a: 200X 1b: a higher (800X) magnification 1a.

The development of prostate cancer is believed to be a multistep process, progressing sequentially from normal, to hyperplasia, to prostatic intraepithelial neoplasia (PIN), and to invasive lesions (5-6). The progression from PIN to invasive cancer is traditionally believed to be triggered primarily, if not solely, by the overproduction of proteolytic enzymes by cancer or stromal cells, which results in the degradation of the BM (7-8). Results from recent worldwide clinical trials with a wide variety of proteolytic enzyme specific inhibitors, however, have been very disappointing, casting doubt on the validity of the proteolytic enzyme theory (9-10). Since over 90% of prostate cancer related deaths result from invasion-related illness and the incidence of PIN could be up to 16.5% to 25% in routine or ultrasound guided prostate biopsy (11-12), there is an urgent need to uncover the intrinsic mechanism of prostate tumor invasion, and to define the specific tumors or individuals at greater risk for invasive lesions. It has been well documented that early detection and interventions could significantly improve prognosis and reduce treatment-related costs (13).

Body
Promoted by the reports that: [1] basal cells are the source of several tumor suppressors, including p63 and maspin, [2] the absence of basal cell layer is the most distinct feature of invasive lesions, and [3] chronic inflammation promotes prostate cancer (14-18), our recent studies have attempted to identify the early alterations of basal cell layers and their potential impact on prostate tumor invasion. Using a double immunostaining method with antibodies to cytokeratin (CK) 34βE12 (a basal cell phenotypic marker), our initial study assessed the physical integrity of basal cell layers in paraffin-embedded tumor (n=50) prostate tissues with co-existing pre-invasive and invasive components (19). Of 2,047 ducts and acini examined, 201 were found to contain focal disruptions (the absence of basal cells resulting in a gap larger than the combined
size of at least 3 basal cells) in surrounding basal cell layers. The frequency of focal disruptions (FBCLD) varied substantially among cases (Table 1).

Table 1. Frequencies of focal basal cell layer disruptions among different cases

<table>
<thead>
<tr>
<th>Case number</th>
<th>No disruptions</th>
<th>1-10% disruptions</th>
<th>> 30% disruptions</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>22 (44%)</td>
<td>11 (22%)</td>
<td>17 (34%)</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

Compared to their non-disrupted counterparts, focally disrupted basal cell layers showed the following unique features: [1] significantly lower proliferation; [2] significantly lower p63 expression; [3] significantly higher apoptosis; [4] significantly higher leukocyte infiltration and stromal reactions.

Compared to their counterparts distant from focal disruptions or overlying the non-disrupted basal cell layers, epithelial cells overlying FBCLD showed the following unique features: [1] significantly higher proliferation; [2] significantly higher gene expression (Fig 2); [3] physical continuity with adjacent invasive lesions.

Fig 2. Comparison of gene expression between cells overlying focal BCLD and adjacent cells within the same duct. Cells were microdissected and subjected to RNA extraction, amplification, and gene expression profiling using our published protocols. Circles identify microdissected cells overlying focal BCLD & differentially expressed genes. Squares identify microdissected adjacent cells.

Among a total of 600 different genes assessed using the Pathway-focused oligo DNA micro-arrays, 23 genes were significantly and differently (at least 5-fold difference) expressed between cells overlying FBCLD and the
adjacent cells within the same duct. Of these, genes-specific for extracellular matrix proteinases, interleukins and their corresponding receptors were significantly lower in cells overlying FBCLD, which provides additional evidence that the proteolytic enzyme theory might not reflect the intrinsic mechanism of tumor invasion. In contrast, cells overlying FBCLD had significantly higher expression levels in several gene groups, including those for cell proliferation, anti-apoptosis, and stem cells (20; Fig 2). All these elevated genes have been shown to directly promote tumor progression and invasion.

Together, these findings suggest that focal basal cell layer disruptions could substantially impact the molecular profile and biological presentations of the overlying epithelial cells. Based on these and other findings, we have proposed that prostate tumor invasion is triggered by a localized degeneration of aged or injured basal cells and the resultant auto-immunoreactions. Our hypothesized steps for prostate tumor invasion include the following: [1] due to inherited or environmental factors, some patients contained cell cycle control- and renewal-related defects in the basal cell population that cause elevated basal cell degenerations; [2] the degradation products of degenerated basal cells or diffusible molecules of the overlying epithelial cells attract leukocyte infiltration; [3] leukocytes discharge their digestive enzymes upon the direct physical contact, resulting in a focal disruption in the basal cell layer, which leads to several focal alterations:

a. A localized loss of tumor suppressors and paracrine inhibitory function, which confers tumor cell growth advantages to escape the programmed cell death (21-25).

b. A localized increasing of permeability for nutrients and growth factors, and altered oxygen level, which selectively favors the proliferation of progenitor or stem cells (26-28).

c. A localized increasing of leukocyte infiltration, which directly export growth factors to tumor cells through direct physical contact (29-33).

d. The direct tumor-stromal cell contact, which augments the expression of stromal MMP or represses the expression of E-cadherin and other epithelial cell specific markers, which facilitates epithelial-mesenchymal transition (34-36).

e. The direct exposure of the overlying epithelial cells to the stromal tissue fluid, which might dilute the adhesion molecules on the surface of the epithelial cells.

These alterations could individually or collectively lead to increasing proliferation and motility in overlying epithelial cells that lead to the stromal invasion of the cells overlying FBCLD.

Our hypothesis differs from the traditional theories in six main aspects: [1] the triggering factor for the initiation of tumor invasion, [2] the stage of tumor invasion, [3] the cellular origin of invasive lesions, [4] the significance of immunoreactive cells, [5] the significance of stromal cells, and [6] potential approaches for early detection, treatment, and prevention of tumor invasion. Our hypothesis represents a novel in vivo model as to the cellular mechanism leading to prostate tumor invasion. If confirmed, it could have an immediate impact on patient care through improved pathologic evaluation of prostate tumor biopsies. More broadly, the results of our study may lead to the development of more effective and specific approaches for prostate cancer detection, treatment, and prevention.

Key research accomplishments
1. All the laboratory procedures for all Tasks listed had been completed.
2. A total of 8 manuscripts and abstracts have been published, accepted, or submitted, and two are in preparation.
3. A total of 23 significantly and differentially (at least 5-fold) expressed genes have been identified between cells overlying focally disrupted basal cell layers and adjacent cells.
4. A novel hypothesis of prostate tumor progression and invasion has been introduced.

Reportable outcomes
Three manuscripts and 5 abstracts have been published or accepted for publication, and two manuscripts
are in preparation (please see below)

a. Manuscripts:
3. Man YG and Gardner WA. Focal basal cell degeneration and the resultant auto-immunoreactions: a potential mechanism for prostate tumor progression and invasion. Submitted to Medical Hypotheses

b. Abstracts:
5. Schwartz AM, Man YG, Rezaei MK, Berg PE. BP1, a homeoprotein, is significantly expressed in prostate adenocarcinoma and concordant with prostatic intraepithelial neoplasia. Proc Am Assoc Cancer Res 48, in press.

Conclusions
The results of our current study are in total agreement with our previous hypothesis, further suggests that prostate tumor invasion is triggered by a localized degeneration of aged or injured basal cells and the resultant auto-immunoreactions.

References

Page left blank