Air Force Office of Scientific Research

Overview

USAF/Taiwan Nanoscience Initiative Workshop – Honolulu, HI

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Dr. Brendan B. Godfrey
Director
brendan.godfrey@afosr.af.mil
Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>06 DEC 2005</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Force Office of Scientific Research Overview</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Force Office of Scientific Research 875 N. Randolph St., Suite 325, Arlington, VA 22203-1768</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Approved for public release, distribution unlimited

See also ADM201995., The original document contains color images.

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>b. ABSTRACT</td>
<td>c. THIS PAGE</td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
<td></td>
</tr>
</tbody>
</table>

UU
24

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
AFOSR Mission

AFOSR Orchestrates the Air Force Basic Research Program with Universities, Industry, Other Government Organizations, and the AFRL Technical Directorates (TDs)

Creating Revolutionary Scientific Breakthroughs for the Air Force
Major AFOSR Activities

• Encourage and Support Basic Research Supporting AF Needs
 – Air Force Basic Research Grants and Contracts
 – Multidisciplinary University Research Initiatives
 – Defense University Research Instrumentation Program
 – DARPA and Other Agency Funds
• Identify and Disseminate Basic Research Discoveries
• Educate Tomorrow’s S&Es (DOD Education Programs)
 – National Defense Scientists & Engineers Fellowships
 – Undergraduate Scholarships
• Leverage Foreign Research
 – Liaison Offices in Europe and Asia
 – Window on Science – 335 Visitors in FY04
 – Personnel Exchanges

AFOSR Orchestrates the Air Force Basic Research Program with Universities, Industry, Other Government Organizations, and the AFRL Technical Directorates
AFOSR Funding Profile (FY04)

- **AFOSR Ballston**
 - ~5000 Researchers

- **AFRL Technology Directorates**
 - 240 Projects
 - ~30%

- **187 Universities**
 - 809 Grants
 - ~60%

- **Other**
 - 185 Contracts
 - ~10%

Air Force 6.1 Funding

- $204M

As of 1 Sep 04
Recent Scientific Breakthroughs Supported by AFOSR

• **Spintronics:** Studying electron spin coherence, ultrafast electronic spin polarizers, and electronic spin manipulation • Implications for all aspects of information processing technology

• **Left-Handed Materials:** Developing magnetic composites negative indices of refraction • Wide range of potential applications (antenna, microwave devices, shielding)

• **Electromagnetics:** Studying the propagation of modulated EM radiation by dispersive media • Potential new strategy to reveal hidden targets

• **Polynitrogen Chemistry:** Computational methods used to aid synthesis of new all-nitrogen compounds • First new all-nitrogen species, N_5^+, in over 100 years • Studying reactivity and compatibility of compounds

• **Biomimetics:** Examining morphology and physiology associated with infrared detection in pit vipers and pythons • Potential room-temperature IR detection

• **Nanotechnology:** Investigating novel phenomena, properties and functions that occur on the nanoscale • Invention of dip-pen nanolithography
FY06 POM Initiatives Support AFRL Nanotechnology Initiative

Nanoelectronics: Multispectral Detector Arrays: Explore techniques to control growth of self-assembled quantum structures, connections to the structures, and combinations of both, which will lead to detectors for multispectral and hyperspectral image processing.

Nanoelectronics: Chip Scale Optical Networks: Forward-looking architectural effort that seeks to develop new concepts in the design, operation, employment, and overall functioning of military platform networks.

Nanoelectronics: Compact Power for Space: Increase specific power for solar arrays, fuel cells, and power storage systems for high power space platforms.

Nanoenergetics: Enable the development of higher performance, less-sensitive nanoscale energetic materials for applications in munitions and propulsion.

Nanomaterials for Structures: Establish nanomaterial and nanocomposite systems that will enable reduced system weight or size, increased operational lifetime, and multifunctional performance of load-bearing aerospace structures.
Overview of AFRL Nanoscience and Nanotechnology Interest

• Materials Area
 – Tailorable Dielectrics
 – Reconfigurable Optical Response
 – Adaptive Structural Materials
 – Thermal Control Materials
• Energy Area
 – Energetics on the Nanoscale
 – Nano-enhanced Power Technologies
• Devices Area
 – Quantum Confined Optical Sensors
 – Nanotechnology for RF
 – Nano Signal Processors
• Bio-Nano Area
 – Bio Interactions of Nanostructures
• Cross-Cutting (foundations)
 – Self-assembly of Nanostructures
 – Nano-Micro-Macro Interfaces
 – Modeling And Simulation
Taiwan – AFOSR Nanoscience Initiative

- Natural extension of common interest
- Founded in recognition of Taiwan’s commitment to establishing itself as a world-class technical power in nanoscience and nanotechnology
- Primary goal: To establish mutually beneficial scientific interactions between researchers in Taiwan and AFRL scientists
 - Foster basic research innovation & interactions between scientists
 - Enhance future USAF capabilities through support of Air Force fundamental nanoscience research efforts
Taiwan Participants Include

- National Science Council
- Academia Sinica
- Industrial Technology Research Institute
- Chung-Shan Institute of Science and Technology
- National Central University
- National Cheng Kung University
- National Chiao Tung University
- National Chung Cheng University
- National Taiwan Normal University
- National Taiwan University
- National Tsing Hua University
Nanoscience Initiative Summary

- 24 projects total completed / funded / approved
- More than 70 white papers received over life of the program
- 19 visits + 20 proposed visits by Taiwanese researchers to AFRL scientists
- 5 visits by AFOSR to Taiwan
- 3 joint workshops

Pay-off
- Relationships established between US & Taiwan researchers
- Cost effective enhancement of USAF basic research efforts
- Acquisition of unique basic nanoscience research results

Taiwan – AFOSR Nanoscience Initiative is delivering many opportunities for interactions between Taiwan and Air Force Research Laboratory researchers
Closing Thoughts – Win-Win Future

- Nanoscience and nanotechnology Information Exchange Agreement approaching final approval
- Congratulations to Dr. Maw-Kuen Wu for his appointment to Director, National Science Council
- AFOSR initiatives with Taiwan foster and generate goodwill
- Further the scientific goals of the United States and Taiwan
Backup
EOARD Highlights

- Hypersonics: Russia
 - Leveraging Russian Expertise (Bow Shock Control, Boundary Layer Control, Plasma Fuel Injection, Heat Flux Control, etc.)
 - Technology is Transitioning
- Hall Effect Thruster (HET): Russia, Spain
 - HETs Provide Highly Efficient Spacecraft Propulsion (Increased Payload/Decreased Cost)
 - Investigating How to Cluster Multiple HETs for Increased Power
- Damping Coatings: Ukraine
 - Seeking to Overcome High Cycle Fatigue Effects on Titanium in Air Force Fighter Engines
 - Investigating Layering Materials on Titanium to Improve Damping
AOARD Highlights

- **Nanoscience Initiatives: Taiwan & Korea**
 - Leveraging Asia’s $1 Billion Nano-science Investment
 - Research Areas Include: Quantum Dots, Polymer Electronics, and Photovoltaics
- **Ionospheric Scintillation Data: Taiwan**
 - Studying Low-latitude Events that Can Interfere with Communications
- **Micro-turbine Research: Japan**
 - Developing Lunch-box Size 100 Watt Power Sources, 10 mm Rotors, High-speed Bearing Technology (1 Million RPM)
- **Hyshot In-flight Scramjet Test: Australia**
 - Leveraged Data from 1st In-flight Supersonic Scramjet Combustor Test (Mach 7.5)
 - Initiating Future Collaborative Efforts
AFOSR Organization

DIRECTOR
Dr. Brendan Godfrey

DEPUTY DIRECTOR
Col (S) Jeff Turcotte

CHIEF SCIENTIST
Dr. Herb Carlson (ST)

PHYSICS & ELECTRONICS
Dr. Jack Agee
Director

AEROSPACE & MATERIALS SCIENCES
Dr. Walter Jones
Director

CHEMISTRY & LIFE SCIENCES
Dr. Genevieve Haddad
Director

MATH & SPACE SCIENCES
Dr. Clifford Rhoades
Director

INTERNATIONAL OFFICE (IO)
Dr. Mark Maurice

ASIAN OFFICE OF AEROSPACE RESEARCH & DEV
TOKYO
Dr. Terry Lyons

EUROPEAN OFFICE OF AEROSPACE RESEARCH & DEV
LONDON
Col William McClure

RESOURCE MANAGEMENT
Ms Terry Hodges

STAFF JUDGE ADVOCATE
Maj Vicki Lund

DIRECTORATE OF POLICY & INTEGRATION
Col Thurmon Deloney

DIRECTORATE OF CONTRACTING
Ms Kathleen Miller
AFOSR FY2004 Budget Authority

AFOSR FY2004 Budget Authority

AFOSR also executes ~$85M for Other Organizations and Programs (STTR, DARPA, etc.)
AFOSR Supports
Tomorrow’s Scientists and Engineers

• Research Grants to Universities
 – 3000-4000 Graduate Students and Postdocs

• National Defense Science and Engineering Graduate
 (NDSEG) Fellowships
 – 452 PhD-track Graduate Students

• Awards to Stimulate and Support Undergraduate
 Research Experience (ASSURE)
 – 480 Undergraduate Students

• Junior Science and Humanity Symposium (JSHS)
 – 50 Scholarships for Regional and Final High School
 Student Winners

• National Research Council Resident Research
 Associateships
 – 25 Postdocs Working in AFRL
<table>
<thead>
<tr>
<th>Technology Foci</th>
<th>Relevant Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>• High Cycle Fatigue</td>
<td>• Reduce engine fatigue</td>
</tr>
<tr>
<td>• Smart Skins/Adaptive Wings</td>
<td>• Increase Lift/Drag ratio</td>
</tr>
<tr>
<td>• Structural Mechanics</td>
<td>• Reduce aerospace vehicle weight</td>
</tr>
<tr>
<td>• Metallic Materials</td>
<td>• Increase engine thrust to weight ratio</td>
</tr>
<tr>
<td>• Ceramic and Non-Metallic Materials</td>
<td>• Eliminate materials reliability issues</td>
</tr>
<tr>
<td>• Organic Matrix Composites</td>
<td>• Expand flight envelope and enhance maneuverability</td>
</tr>
<tr>
<td>• Unsteady Aerodynamics</td>
<td>• Minimize events of engine stall</td>
</tr>
<tr>
<td>• Turbulence and Rotating Flows</td>
<td>• Reduce hypersonic drag</td>
</tr>
<tr>
<td>• Space Power and Propulsion</td>
<td>• Provide low cost, more flexible space access</td>
</tr>
<tr>
<td>• Combustion and Diagnostics</td>
<td>• Streamline aircraft and rocket propulsion system design</td>
</tr>
</tbody>
</table>
Physics and Electronics

Technology Foci

- Lasers and Optical Physics
- Atomic and Molecular Physics
- Plasma Physics
- Space Electronics, Sensors and Propulsion
- Optoelectronic Information Processing
- Semiconductor Materials
- High Power Microwaves

Relevant Capability

- Processing speeds orders of magnitude faster than today
- Recovery of images through atmospheric turbulence
- Greater radiation tolerance
- 1000 times improvement in data storage
- Expanded transmission bandwidth
- Real-time adaptive signal and image processing
- Electronic warfare and non-lethal effects
Chemistry and Life Sciences

<table>
<thead>
<tr>
<th>Technology Foci</th>
<th>Relevant Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>• All-Nitrogen Propellants</td>
<td>• Energetic materials for propellants and explosives</td>
</tr>
<tr>
<td>• Theoretical Chemistry</td>
<td>• Ten times more powerful chemical lasers</td>
</tr>
<tr>
<td>• Polymer Chemistry</td>
<td>• New polymer materials</td>
</tr>
<tr>
<td>• Biomimetic Sensors</td>
<td>• Biomimetically enhanced sensors</td>
</tr>
<tr>
<td>• Chronobiology and Neural Adaptation</td>
<td>• Strategies to reduce fatigue</td>
</tr>
<tr>
<td>• Information Fusion</td>
<td>• Command & control decision making</td>
</tr>
<tr>
<td>• Perception and Cognition</td>
<td>• Better personnel training, selection, and classification</td>
</tr>
<tr>
<td>• Switchable, Tunable Optical Filters</td>
<td>• Versatile laser protection</td>
</tr>
<tr>
<td>• Adaptive Bio-Materials</td>
<td>• New class of highly functional light weight polymeric materials</td>
</tr>
<tr>
<td>Technology Foci</td>
<td>Relevant Capability</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>• Dynamics and Control</td>
<td>• Modeling of complex problems and systems</td>
</tr>
<tr>
<td>• Physical Mathematics and Applied Analysis</td>
<td>• Control of vibrations and shape of space structures</td>
</tr>
<tr>
<td>• Computational Mathematics</td>
<td>• Better vehicle performance and control</td>
</tr>
<tr>
<td>• Optimization and Discrete Mathematics</td>
<td>• New methods for target acquisition and recognition</td>
</tr>
<tr>
<td>• Systems, Software, and Reliability</td>
<td>• Detection avoidance</td>
</tr>
<tr>
<td>• Artificial Intelligence</td>
<td>• Timely management of information</td>
</tr>
<tr>
<td>• Electromagnetics</td>
<td>• Improved solar and space environment forecasting</td>
</tr>
<tr>
<td>• Space Physics and Solar Phenomena</td>
<td>• Protection of space assets</td>
</tr>
<tr>
<td>• Spectral Imaging</td>
<td>• ID Targets Under Trees</td>
</tr>
<tr>
<td>• Upper Atmosphere Laser Beam Propagation</td>
<td>• ABL targeting through turbulence</td>
</tr>
</tbody>
</table>
AFOSR Themes

Cooperative Control: Develop fundamental theory, algorithms, and software to design and analyze robust, high-performance, team-based, multi-agent cooperative control systems operating in dynamic, uncertain adversarial environments.

Plasma Dynamics: Understand, predict, and control weakly ionized flows to revolutionize the performance of aerospace vehicles.

Miniaturization Science for Space: Enable much lighter, more compact, microsatellites, nanosatellites & picosatellites.
AFOSR Themes

Biologically Inspired Concepts: Provide biologically inspired technology by exploring living systems down to molecular level
- Develop chemical models & engineering concepts

Type II Quantum Computation: Develop near-term quantum computer implementations • Develop algorithms to model physical systems • Explore architectures to scale a large array of small quantum computers

Materials Engineering Exploit computational materials science and engineering to develop techniques for coupling models of material behavior • Enable materials design to be an integral part of the global design process