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Abstract

This document constitutes the final project report for Contract # FA9550-04-1-
0187 titled Theory and Applications of Computational Time-reversal Imaging. The
report summarizes the theoretical development and implementation of time-reversal
based imaging and target detection algorithms for locating targets from multistatic
data collected from unstructured phased antenna arrays. The report summarizes the
main theoretical results obtained in the program and includes both computer simulated
examples as well as results from experimental data collected by a research team from
Carnegie Mellon University illustrating the use of the algorithms developed in the
project. The final section of the report outlines goals for follow-on research in these
general areas.
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1 Project Summary

The NU team consisted of myself as PI as well as Professors Hanoch Lev-Ari and Edwin
Marengo (NU), Professor Arye Nehorai (UI) and Drs. Sean Lehman and David Chambers
(LLNL). During this project the NU team was directed by DARPA to concentrate most of
its effort on the problem of detecting a point target embedded in heavy clutter. They have
modeled this problem ezactly using the well-known Foldy Laz equations [1] that incorporate
all multiple scattering between the targets, clutter and background and have proven [2] that
the (non-linear) detection problem can be decomposed into the two separate problems of

1. Estimating the target/clutter locations using either classical time-reversal imaging
(DORT) [11] or time reversal MUSIC [3, 4],

2. Estimating the target/clutter scattering amplitudes using a non-linear iterative algo-
rithm developed in the study [5].

It is important to emphasize that even in the presence of multiple scattering the above two
problems are independent; i.e., the target/clutter locations can be estimated using either
time reversal DORT or MUSIC without knowing their scattering amplitudes. Once the
target and clutter locations are known their scattering amplitudes are determined using a
non-linear iterative algorithm that was also developed within the course of the project [5].
The final step in the detection problem is to use the computed target/clutter amplitudes in
a maximum likelihood based detection algorithm. This time reversal based detection scheme
has been tested and evaluated in extensive Monte Carlo computer simulations against other
(linear) time reversal based detection schemes and against benchmark matched filter based
schemes [6]. In all cases tested the time reversal approaches always outperform the matched




filter based methods and the non-linear time reversal based scheme developed in the project
always came out best.

The target/clutter location estimation step is of key importance in the detection problem
and the NU team has spent a good deal of effort on developing and testing alternative time
reversal based imaging algorithms for performing this step. An important breakthrough in
this investigation has recently been achieved when it was shown that time reversal MUSIC
is only one of a large class of non-linear algorithms that allow point target/clutter locations
to be estimated from the singular vectors of the SVD of the multistatic data matrix even in
the presence of intense multiple scattering between targets and clutter. These generalized
MUSIC algorithms are now being tested and evaluated on experimental data generated by a
reserch team from Carnegie Mellon University (CMU) and a journal paper jointly authored
by NU and CMU team members on this work is in preparation [7].

Besides developing, testing and evaluating time reversal based detection algorithms the
NU team has also spent a good deal of effort developing time reversal based inverse scat-
tering algorithms that yield quantitative estimates of distributed scatterers from multistatic
scattered field data [8, 9, 10]. Thus, where time reversal DORT [11] and MUSIC |3, 4] and
similar algorithms allow sets of isolated point scatterers to be imaged, the inverse scattering
algorithms allow extended (3D) targets as well as the distributed background medium to
be quantitatively determined. The estimation of backgrounds from scattered field data is
extremely important within the context of the project since knowledge of the background
allows the background Green function to be readily computed and used in the time rever-
sal based detection algorithms developed in the study. It is important to mention that the
inverse scattering algorithms developed in the study are based on the SVD of the mapping
from the medium to the multistatic data and, hence, are extremely fast and efficient and
can thus be incorporated into near real time applications.

An important part of the NU research was the development of more conventional ap-
proaches to the target detection problem [12, 13]. In particular, a number of maximum
likelihood (ML) based detection schemes using standard signal processing techniques based
on the time reversal scattering model for the multistatic data matrix were developed and
evaluated in a Monte Carlo simulation study. One of these schemes, based on a single target
scattering model, was employed as the benchmark algorithm for evaluation of the time re-
versal based algorithms developed in the program. This work was important since it showed
that the time reversal based detection algorithms could be incorporated into the mathemat-
ical framework of conventional target detection theory and also because it laid the ground
work of the extension of the time reversal based schemes to the stochastic framework that
will be employed in Phase II of the project (see below).

2 Time reversed DORT and MUSIC Images

Much of the NU team effort was directed at imaging which is a first and crucial step in the
target detection process. In imaging the acquired multistatic data is processed in such a
way as to generate images of a set of targets from the scattered field data. We used three




schemes for generating these images:
1. Basic time reversal
2. The DORT method
3. Time reversal MUSIC

These three methods are described extensively in the literature cited at the end of the
report. Images from both simulated as well as experimental data provided by Carnegie
Mellon University (CMU) were employed in the study. In fact, the NU team were the first to
successfully image the first CMU data set which was reported in a preliminary report titled
“Basic Time Reversal Imaging of CMU Data Set,” and which was issued early in the first
year of the project. In the remainder of this section we first summarize the major results of
that report and then present results obtained from subsequent CMU data sets obtained near
the end of the project. All coding was done in Matlab and the codes with accompanying
written reports were placed on the DARPA web site during the course of the project.

2.1 Early Results from CMU experimental data

Carnegie Mellon University (CMU) provided experimental test data on which the DARPA
teams were required to apply their target imaging and detection algorithms. The experi-
mental configuration is shown in fig. 1 and consists of a number of cylindrical targets whose
radii were on the order of the EM wavelength used in the experiments. Multistatic data were
acquired and made available to the various team members for test and evaluation of their
algorithms. In the report cited above we used “basic time reversal imaging” to generate im-
ages of target sets from the first CMU data set acquired in the project. We first summarize
how basic time reversal imaging is performed and then present the imaging results obtained
in that report.

2.1.1 Basic Time Reversal Imaging

The basic method of time reversal imaging is simply to time reverse the scattered field
measurements from all array sensor locations. At any given frequency this corresponds
to the process of field back propagation in the background medium and is accomplished by
conjugating the measured field amplitudes over the sensor locations and propagating the
resulting amplitudes into the region containing the scatterers using the background Green




Experimental Setup
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Figure 1: CMU experimental configuration.




function. Mathematically, this generates the time reversed (back propagated) field

Ng N,

=3 K;uw)Go(B;, %, w)Golow, X, w) (1a)

j=1 k=1
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are the transmit and receive array point spread functions (PSF’s) , respectively!. At any
given frequency the image field ¥ formed from basic time reversal imaging from a set of
point scatterers is seen to be equal to a sum of the product of the array PSF’s weighted by
the scatterers’ reflection coeflicients all centered at the scatterer locations.

2.1.2 Time Domain Field

The product of the transmit and receive array PSF’s H4 (X, Xm, w)Hp(X, Xm,w) will peak at
the scatterer locations x = x,, so that the peaks in the magnitude of the time reversed field
1 give an estimate of the locations of the various scatterers; i.e., will peak at the various
scatterer locations x,,, m = 1,2,--- , M. The resolution of this basic scheme for estimating
target location can be improved, especially, in backscatter measurements such as is the case
for the CMU data, by integrating the field amplitude over the frequency band of the data.
In particular,

1 [ .
Hap (X, Xm, t) = 5}/ dw Ha p (X, Xm, w)e™ ™

will achieve its peak value at ¢t = 0 so that the time domain time reversed field evaluated at
t = 0 will yield optimum resolution of the various scatterer locations. This quantity is given
by

Ng N,

\I’(x) = _2%/_00 dwlp(x,w) = -21—7T/ dw ZZ -,x,w)Go(ak,x,w).

3=1 k=1

1Note that H4 only involves the background Green function while Hg involves both the background as
well as the full Green functions. It can be shown that the peaks of both Gy and G are, however, always
occur at the point x = x,,; i.e., at the target location.
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2.2 Processed Image Data from first CMU data set

We processed all of the first CMU data set using both the basic time reversal imaging
scheme described above as well as an SVD scheme described in the early report and useful
for well resolved scatterers. We present in figures 2-5 the results obtained using the basic
time reversal imaging scheme. The images were generated using the code cmul.m which we
placed on the DARPA web site.

2.3 Processed Images from later CMU data sets

We show in fig. 6 a schematic diagram of the CMU experimental configuration used in a
number of the later tests. In data set # 11 a total of 17 dielectric rods were used as targets
while in data set # 12 a conducting rod was added to the configuration. We imaged first
the dielectric rods, then the dielectric rods plus conducting rod then finally processed the
difference data to generate a final image of the conducting rod alone. The imaging results
for standard time reversal imaging are shown in fig. 7 and those obtained using time reversal
MUSIC are shown in fig. 8. The two are compared in fig. 9.




Time Rewersed Field

140

160

180

200

220

-100 -80 60 -40 -20 0 20 40 60 80 100

260

2011 N
AN

200 - (lc\iﬁ.\}\ =t
RENAN

\\-‘\\‘Ld_j)\\ \\'\,‘
=t 20
. \\k_\jj\ (CT ~oAd
i
-80 60 80 100

Figure 2: Time reversed field from eight scatterers processed at a single frequency equal to
5 MHz. The number of the scatterer is illustrated in both figures and the x,y axes are in
centimeters. Note that due to the quirks of Matlab that the contour plot is drawn on an

inverted vertical axis.
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Figure 3: Time reversed field from eight scatterers processed at ten frequencies equally
spaced between 4.5 and 5.5 MHz. The number of the scatterer is illustrated in both figures
and the x,y axes are in centimeters. Note that due to the quirks of Matlab that the contour
plot is drawn on an inverted vertical axis.
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Figure 4: Time reversed field from ten scatterers processed at ten frequencies equally spaced
between 4.5 and 5.5 MHz. The number of the scatterer is illustrated in both figures and the
X,y axes are in centimeters. Note that due to the quirks of Matlab that the contour plot is
drawn on an inverted vertical axis.

10




Time Rewersed Field

140
160
180
200
220
240

260
-100

Cortour Plot of Time Rewersed Field
(X P Vo [ T

e

260_] T T é/

240 L.

220

Figure 5: Time reversed field from fourteen scatterers processed at twenty frequencies equally
spaced between 4.5 and 5.5 MHz. The number of the scatterer is illustrated in both figures
and the x,y axes are in centimeters. Note that due to the quirks of matlab that the contour
plot is drawn on an inverted vertical axis.
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CMU 3 Data Sets 11 & 12
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Figure 6: Scatterer and Antenna configurations for CMU experimental data for CMU Set
#3 Setups 11 and 12.

12




CMU 3rd Data Sets “Setup11” and “Setup12”
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Figure 7: Total time reversed images from Experimental Set #3 Setups 11 and 12.
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CMU 3 Data Sets “Setup11” and “Setup12”
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Figure 8: Time reversal MUSIC images from Experimental Set #3 Setups 11 and 12.
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CMU 31 Data Sets “Setup11” and “Setup12”
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Figure 9: Comparison of Time reversal and Time reversal MUSIC images from Experimental
Set #3 Setups 11 and 12.
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3 DARPA Test Simulations

As mentioned earlier, one of the main objectives of this program was the detection of single
or multiple point targets embedded in heavy clutter. The NU team employed an exact
scattering model for this problem and first evaluated this model in computer simulations.
We present in this section the results of the earliest such study which was a Monte Carlo test
simulation consisting of the detection of a single point target embedded in the presence of a
number of point clutter targets. The simulation tests the performance of two time reversal
based detection algorithms; one based on the use of the distorted wave Born approximation
(DWBA) for the K matrix and a second using a full multiple scattering based model for the
K matrix [2, 5]. The details of the simulation code are reviewed and a few examples of the
ROC and other performance curves resulting from the code are presented.

3.1 Synthetic Data Generation

We wish to compute a single realization of the measurement of the K matrix for a system of
one dominant point target in the presence of M, < N —1 clutter targets within a background
whose Green function Gy is known. We, of course, want to include all multiple scattering
between the scatterers in the computation. The locations x,,,m =0,1,--- , M, of the target
and clutter are random variables uniformly distributed within a square with edge length L,
which is a free parameter in the simulation code. The scattering amplitude of the target
70 is randomly chosen to be either 0 or unity (equally probable) and the clutter scattering
amplitudes 7,,m = 1,2,--- , M, are taken to be zero mean Gaussian having a standard
deviation o, that is also a free parameter. The simulation code works at a single frequency
w which will be assumed to be fixed throughout the following discussion. The frequency is
fixed in the code by the use of a background wavelength A which is set to unity. All lengths
in the code are then given in wavelength units.

For any given realization of the scattering center locations {x,,} and scattering and target
strengths {7,} the code generates synthetic data using the Foldy Lax equations [1]

G(xXm, ok, w) = Go(Xpm, Ok, w) + Z T (W) Go(Xmy X, W) G (X, e, W) (3a)
m'#m

where the antenna element locations oy, £ = 1,2,--- , N are also free parameters in the
simulation code. The Foldy Lax equations are solved iteratively and the resulting full Green
function G(x,,, ak,w) is then used to compute the (noise free) multistatic data matrix ac-
cording to its definition

M.
Kjr(w) = ZTm(W)GO(aj,Xm,W)G(Xm,ak,CL)) (3b)

The final step in the data generation process is the addition of additive noise to the
computed multistatic data matrix according to the equation

K;1(w) = K (w) + Max |K; x| N; (0, o el (@)
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where N} x(0, ow ) is a random matrix whose elements are uncorrelated and zero mean Gaus-
sian with standard deviation equal to ow and where ¢, is an uncorrelated random matrix
whose elements are uniformly distributed between 0 and 2r. The noisy K matrix K is then
input into the time reversal based target detection algorithms described below.

3.2 Time Reversal MUSIC

Both of the time reversal based algorithms described below are assumed to have a first
step that consists of estimation of all the scattering centers {x,,} (this includes target plus
clutter). We showed previously that as long as the number of scattering centers M = M, +1
is less than the number of antenna elements N that this can be accomplished with time
reversal MUSIC using the background Green function and the singular vectors v,, o, = 0
where Kv, = opu, (3, 4, 15]. We assume here that this step is performed exactly by both of
the algorithms discussed below.

3.3 Scattering Strength Estimation

Once the scattering centers are estimated (assumed known in the current Monte Carlo sim-
ulation code) the scattering strengths 7.,,m = 0,1,--, M, are estimated. We used two
procedures for doing this: one based on the DWBA model for the multistatic data matrix
and a second based on the full multiple scattering model for this quantity. Thus, we are, in
fact, using two time reversal algorithms: one based on the DWBA and a second on the full
multiple scattering model using the Foldy Lax equations. We compared both of these algo-
rithms with a standard “benchmark” algorithm in our work with the CMU data presented
later in the report.

3.3.1 DWBA Based Algorithm

The DWBA algorithm employs the DWBA model for the multistatic data matrix for a system
of N antennas located at e, 5 = 1,2,--- , N and M = M, + 1 point scatterers located at

Xm, m=0,1,2,--- , M., where, as above, M, is the number of clutter targets:
M.
K;k = Zrm(w)Go(aj,xm,w)Go(xm,ak,w), (5)
m=0

where we have used the superscript “b” to denote the DWBA (Born) model for the K matrix.
We write the above set of equations in the form

K} = 2 Go(otj, Xm,w)Am(k) (6a)
where
A (k) = T (w)Go(Xm, g, w). (6b)

17




Eqs(6a) are a set of N2 equations for the N x M unknowns A, (k), m = 0,1,--- , M,,
k=1,2,---,N. In the code the Kj b '« 18 set equal to the computed noisy K matrix K 4k and
a least squares solution of Egs. (6a) is obtained for each value of £ = 1,2, -, N. The final step
is the estimation of the scattering coefficients which, in the DWBA model, are computed
using the algorithm

N A
.1 Am(k)
= 7
K N;GO(x‘ma ak,(.U) ( )
which is simply the an average of the N values of 7,,, given according to Eq.(6b).

3.3.2 Multiple Scattering Based Algorithm

The multiple scattering based time reversal detection algorithm uses the exact multiple
scattering model Eq.(3b) for the multistatic data matrix. This algorithm differs from the
DWBA algorithm described above only in the definition of the quantities A,,(k) and in the
computation of the scattering strengths from the least squares solution of the set Eqs.(6a)
(with, of course, K "k set equal to the noisy measured K matrix K ). In particular, in place
of Eq.(6b), the amphtudes A, (k) in the multiple scattering model are defined by

A (k) = T (W) G (X, g, w). (8a)

where G is the full Green function and must satisfy the Foldy Lax equations Eqgs.(3a). In
terms of A,,(k) these equations can be written in the form

G(%Xm, 0k, w) = Go(Xm, Ok, ) + Y Go(Km, Xt w) A (k). (8b)

m'#m

The multiple scattering based algorithm thus first uses a least squares solution of the set
Egs.(6a) which are then input into the Foldy Lax equations Egs.(8b) to compute an estimate
G of the full Green function G(Xpm, @k, w). The scattering strengths are then estimated via

the equation
—Z (9)

xma o, W )

which is seen to differ form the DWBA solution Eq.(7) only in the replacement of the
background Green function Gy with the (estimated) full Green function G.

3.4 Detection Algorithms

The first processing step for both algorithms is target location estimation via MUSIC. This
is a non-linear step which makes the remaining estimation step of the scattering strengths
itself non-linear so that it is not possible to determine an “optimum” detection algorithm.
However, if we make the simplifying assumption that this first step is exact (which is a
reasonable assumption since MUSIC does perform very well) the estimation of the scattering
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strengths for the DWBA algorithm is linear and an optimum algorithm can then be devised?.
However, the same is not true for the multiple scattering based algorithm since the Foldy
Lax equations are non-linear with the result that the estimation of the full Green function
and target scattering strengths is a non-linear process. However, for the sake of simplicity we
decided to use a simple threshold based algorithm for the detection step in both algorithms.
Such an algorithm would only be appropriate for a linear model with AWGN but is used
here for lack of anything better.

3.4.1 Threshold Test

In any given iteration (realization of random parameters) the Monte Carlo code generates
two solution vectors 7 = [7o, 71, - ,7m,] of the target scattering strengths (one using the
DWBA algorithm and one using the multiple scattering based algorithm described above).
The actual target strength is 75 and the remaining estimates are of the clutter amplitudes
Tmym = 1,2,--+ | M.. Both the DWBA as well as the multiple scattering based algorithm
make a decision by comparing the maximum value of the real part of the estimated solution
vectors J = Max R(7)with a threshold T and deciding that the target is present if J > T
and not present if J < T. The probabilities of detection F; and false alarm P; are then
computed from these results in a standard fashion by keeping track of correct and incorrect
decisions. Plots of P; and Ps as a function of the threshold value T are then generated as is
a plot of the Receiver Operation Curve (ROC) which is simply a plot of P; versus P.

3.5 Examples

To illustrate the Monte Carlo program we show a few examples that compare the performance
of the DWBA based detection algorithm with the multiple scattering based algorithm. In
these and later studies the figures are presented in the last section of the report. In all of
these examples a linear array of N = 6 unequally spaced antenna elements were employed
and M, = 4 clutter targets and one single real target were used. The target and clutter
locations were uniformly distributed within a square of length L, which is labeled on the
figures presented in the last section of the report. The center of the target/clutter support
square was 32 wavelengths from the antenna array.

In Fig. 10 we show curves of the probabilities of detection P; and false alarm Py plotted
versus threshold value T' for one set of simulation parameters. In these and the following
examples, the target has a scattering strength 7o that is equally probable to be unity (target
present) or zero (no target) and the clutter targets were independent Gaussian random
variables having zero mean and standard deviation o, that is labeled on the figures. Also
labeled on the figures are the number of Monte Carlo runs, the noise standard deviation
ow (see Eq.(4)), and the length of the side of the support square for targets and clutter in

2This is possible since both the additive noise as well as the clutter amplitudes are Gaussian. This
algorithm will, of course, be optimum only within the DWBA model and does not account for multiple
scattering effects.
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number of wavelengths. The ROC curves corresponding to the results shown in Fig. 10 are
presented in Fig. 11.

It is seen from Fig. 10 that the probability of detection differs significantly for the two
algorithms but that the false alarm probabilities are almost identical. This same trend was
found in all simulations that were performed and so we only show the ROC curves for the
later examples. It is clear from both Figs. 10 and 11 that the multiple scattering based
algorithm clearly out performs the DWBA based algorithm. This is due to the fact that the
targets and clutter are closely packed (within a square having sides of length L, = 3.2 X and
that the clutter amplitudes are relatively large (o, = 0.4).

The ROC curves for the same set of parameters as used in the first example but with
a different additive noise standard deviation are shown in Fig. 12. The increase in additive
antenna noise clearly degrades the performance of both algorithms but is most strongly felt
by the multiple scattering algorithm. This is probably due to error introduced into the
estimation of the full Green function from the set of Egs.(8b) due to error in the coefficients
Am(k). Other simulations (not shown) indicate that this trend increases; i.e., the multiple
scattering based algorithm is more sensitive to additive antenna noise than is the DWBA
based algorithm.

In the final example the additive noise is again reduced to the level of the first example
but the standard deviation of the clutter target amplitudes is increased. Again the multiple
scattering algorithm out performs the DWBA based algorithm but the performance of both
algorithms degrade relative to the performance in the first example. This is obviously due
to false estimates of target presence due to the use of a simple threshold based detection
algorithm; i.e., the maximum value of the estimated 7 vector is more likely due to a high
amplitude clutter target.

4 Monte Carlo Simulation from CMU Experimental
Data

Carnegie Mellon University (CMU) provided experimental test data on which the DARPA
teams were required to apply their target detection algorithms. The experimental configu-
ration is shown in fig. 1 and consists of a number of cylindrical targets whose radii were on
the order of the EM wavelength used in the experiments. Multistatic data were acquired
and made available to the various team members for test and evaluation of their algorithms.

4.1 Signal Model

The third CMU data set was used to generate ROC curves using a change detection based
signal model. In this study we used the experimentally obtained multistatic data matrix
K ;:c(w) corresponding to a given set of clutter targets plus a single copper target and the
experimentally obtained multistatic data matrix K7 (w) corresponding to only the clutter
targets at the single frequency of 5 Ghz. The study assumed that a noisy version of the
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Figure 10: Plots of Probabilities of detection and false alarm for the DWBA (dotted) and
multiple scattering based (solid) algorithms versus threshold value.
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Figure 11: Receiver Operating Curves for the DWBA (dotted) and multiple scattering based
(solid) algorithms.
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(solid) algorithms.
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target plus clutter K matrix is measured and that the clutter only K matrix is known and
the detection problem then reduces to making a decision whether or not target is present
from these data. The signal model for this detection problem can be expressed in the form

K;:c(wn) - K_;':,k(wn) + VVj,k(wn) H,

Wik (wn) Hy 10

Sjk(wn) = {

where K ;’,:c is the experimentally obtained target plus clutter K matrix at 5 Ghz, K7 is the
experimentally obtained clutter only K matrix at this same frequency and W;; is AWGN
that is generated synthetically. Here, H; is the hypothesis that target is present and Hy is
the hypothesis that target is not present.

4.2 Detection Schemes

We used four detection schemes. The first was a benchmark that made its decision on the
total signal energy:

(11)

choose Hy if ||Sjkl| > T
choose Hy if ||S;k|| < T

where T is a threshold that is varied to compute the ROC curves and || - || denotes the
Frobenius norm of the matrix. The benchmark is a simple energy detection scheme and does
not make use of any time reversal theory of methods.

The second scheme made its decision based on the maximum singular value of the signal
matrix; i.e.,

{choose H ifo,>T (12)

choose Hy ifo; < T

where o7 is the first (maximum) singular value of the matrix S;s. This scheme is in the
spirit of time reversal since it uses the SVD of the measured K matrix.

The third scheme used the DORT image generated from the singular vector corresponding
to the largest singular value of the Sj matrix. In particular, the DORT image was generated
and it maximum value was determined. The maximum value was normalized by the total
energy of the Green function vectors at the image point and this statistic was compared with
a detection threshold to arrive at the decision.

The final scheme was similar to the DORT scheme but used the total time reversed image
field that is generated directly from the measured matrix S; . This image field was discussed
extensively in earlier reports and briefings. The maximum value of the total time reversed
image field was normalized by the total energy of the Green function vectors at the image
point and this statistic was compared with a detection threshold to arrive at the decision.

It is important to note that the last two schemes require that the location of the target be
estimated from the data. The results of the study indicate that this is very important: the
SVD of the K matrix is not enough. It is important to use a test statistic that is tied to the
estimated value of the time reversed image fields at the target location.
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Figure 19: Real data simulation #1 from CMU experimental data.
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Figure 20: Real data simulation #2 from CMU experimental data.

32




07 i Caseb: 30 dielectric clutter plus one copper target

i 500 realizations of AWGN with -13.5 db S/
16 frequencies batwaen 4.86 and 5.14 Ghz

o
[~

=)
Y

Probability of Detection P d
o
o

Max Singular Value
— Total Energy
O DORT
* _Summed DORT

1 1 1 ! Il 1 [l 1

i 0.1 62 03 04 05 08 07 08 09 1
False Alamm Probabiity P,
4/30/2007 NU TEAM
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5 Future Research

Whereas the research performed in this grant and reported herein concentrated on the de-
tection of point targets in heavy clutter this research can be used as a basis for extended
target imaging and inverse scattering applications. In particular, the generalized MUSIC
algorithms developed in the program are readily extended to imaging of extended targets
while the inverse scattering algorithms apply with virtually no change to these more general
applications. Candidate applications for extension of the results obtained in the project
include:

1. Imaging of ground targets using multistatic data collected from sets of UAV’s,
2. Imaging in urban environments,
3. Imaging of hidden and unknown targets using acoustic data.

The above research goals are natural extensions of much of what has been performed in
the program. Moreover, many of these goals were originally called for in the original NU
DARPA proposal and much of the groundwork for completing these goals has already been
laid in research already carried out in the project. The generalized MUSIC algorithms
already developed in the project can be cast into a unified conceptual framework based on
subspace weighting which is an ideal framework for achieving goal 1. This formulation leads
naturally to a tried and true measure or performance based on the so-called Point Spread
Function (PSF) of the imaging algorithms. Indeed, this measure of performance and the use
of subspace weighting was the starting point of the famous Backus and Gilbert [14] classical
work on geophysical data inversion. The performance of the inverse scattering algorithms
can also be based on computed point spread functions as was done in [8, 9, 10]. These PSF’s
are functions of the measurement geometry, bandwidth and antenna radiation patterns and
can be used to evaluate system parameters in terms of expected performance.

While the emphasis in goals 1 and 2 is on non-stochastic or “single snap shot” data,
in Goal 3 the emphasis is on extending the theory and algorithms developed in the first
two goals to a stochastic environment. Here, the performance of the algorithms would be
based on statistical parameters such as the ensemble average PSF and the use of Cramer
Rao performance bounds. Again much of the groundwork for this goal has been established
in the project [12, 13]. Further extensions would include the development of statistically
optimum ML estimation algorithms and robust estimation and imaging algorithms that are
immune to un-certainties in the background Green function. This work would be closely
tied to background Green function estimates generated in Goal 2; i.e., uncertainties in the
computed Green function will be employed in the development of optimally immune imaging
algorithms. Some preliminary statistical and robustness analysis has been done in the the-
ses of Hanoch Lev-Ari’s students Raha Zandifar (MS, 2001) and Minhtri Ho (PhD, 2005),
including peak shape for TR-MUSIC, effect of additive noise on location estimates, and
statistics of singular values. Much more remains to be done, especially in the context of
non-ideal wave propagation and non-isotropic antenna elements.
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