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EXECUTIVE SUMMARY 
The primary goal of this effort is to bring to maturity a select set of basic 

algorithms, hardware, and approaches developed under the Integrated Sensing and 
Processing (ISP) Phase I program, implement them on representative hardware, and 
demonstrate their performance in a realistic field environment. We have identified a few 
promising research thrusts investigated in ISP Phase I where field demonstrations are cost 
prohibitive but collected data sets are available. Here, we will conduct a thorough 
performance evaluation.  
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0. Technical Abstract 

Advances in sensor technologies, computation devices, and algorithms have 
created enormous opportunities for significant performance improvements on the modern 
battlefield. Unfortunately, as information requirements grow, conventional network 
processing techniques require ever-increasing bandwidth between sensors and processors, 
as well as potentially exponentially complex methods for extracting information from the 
data To raise the quality of data and classification results, minimize computation, power 
consumption, and cost, future systems will require that the sensing and computation be 
jointly engineered. Integrated Sensing and Processing (ISP) is a philosophy/methodology 
that eliminates the traditional separation between physical and algorithmic design. By 
leveraging our experience with numerous sensing modalities, processing techniques, and 
data reduction networks, the Raytheon team will develop ISP into an extensible and 
widely applicable paradigm. The improvements we intend to demonstrate here are 
applicable in a general sense; however, this program will focus on distributed sensor 
networks and missile seeker systems. The Raytheon Company, Missile Systems 
(Raytheon) ISP II Demonstration and Evaluation program is summarized in the Quad 
Chart (c.f., Figure 1). 
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Figure 1: ISP II Quad Chart 

1.0. Management Overview and Summary 
1. A. Program Summary 

The Raytheon Company, Missile Systems (Raytheon) ISP Phase II program is a 
twenty-four month contract with an original Period of Performance (PoP) covering 1 
March 2005 to 28 February 2007. Raytheon has asked for and received a two month no-
cost extension, resulting in final completion date of 31 May 2007. Raytheon has four 
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universities and one small business as ISP Phase II subcontractors: Arizona State 
University (ASU); Fast Mathematical Algorithms and Hardware (FMAH); Georgia 
Institute of Technology (Georgia Tech); Melbourne University (UniMelb) and the 
University of Michigan (UM). 

1. B. Program Status 
The Raytheon ISP Phase II Program status can be summarized as remaining “on 

track” for a completion date of 31 May 2007. All subcontractors are expected to finish on 
budget. Two subcontractors – Georgia Tech and UniMelb – are currently significantly 
under-spent. In both cases, the under-runs are due to a time lag in billing the contract. We 
expect to complete the Prime contract on budget. We had incurred some minor schedule 
slips on both the distributed tracking and the Georgia Tech Cooperative Analog Digital 
Signal Processing (CADSP) imager demonstrations during the latest PoP. These schedule 
slip resulted in the final demonstrations being held at Raytheon on 23 April 2007. This is 
a slip of approximately two months since the last Technical Report.  

1. C. Personnel Associated/Supported 
The personnel supporting the Raytheon ISP Phase II have remained stable over the last 
several PoPs. Key personnel and their associated organizations are summarized below. 

Raytheon 
Dr. Harry A. Schmitt    Principal Investigator 
Mr. Donald E. Waagen   Co-Principal Investigator 
Dr. Sal Bellofiore    Distributed Sensing Lead 
Mr. Thomas Stevens    Distributed Sensing Support 
Dr. Robert Cramer    Mathematical Support 
Mr. Craig Savage    Waveform Design and Control Lead  
Dr. Nitesh Shah    High Dimensional Processing Data Lead 

FMAH 
Dr. Paolo Barbano 
Professor Ronald Coifman 
Dr. Nicholas Coult 

ASU 

Professor Darryl Morrell 
Professor Antonia Papandreou-Suppappola  

Georgia Tech 

Professor David Anderson  
Professor Paul Hasler 

UniMelb 
Dr. Barbara LaScala 
Professor William Moran 
Dr. Darko Musicki 
Dr. Sofia Suvorova 

UM 



ISP Phase II (Contract N00014-04-C-0437) 
Final Technical Progress Report (CDRL A004 No. 1) 

 

 7

Professor Al Hero 
Dr. Raviv Raich 

Significant Personnel Actions: There were no significant personnel changes during the 
current PoP. 

1. D. Recent Events 
The following events occurred during the current PoP: 

 The final Raytheon ISP Phase II Program Review and Demonstrations was held at 
Raytheon Missile Systems on 23 April 2007. In attendance were Sal Bellofiore, 
Bob Cramer, Harry Schmitt, Nitesh Shah, Thom Stevens and Don Waagen 
(Raytheon); Darryl Morrell (ASU); Bill Moran (UniMelb); David Anderson 
(Georgia Tech) and Jeff Farrell (Booz Allan Hamilton). Also attending were Capt. 
Matt Hyland, Eleanor Gillis and Renee Bousselaire (DARPA Intern Program) 

 Harry Schmitt, Don Waagen (Raytheon) and Bill Moran (Melbourne) visited 
DARPA MTO (Dennis Healy) and DARPA SPO (Ed Baranoski) to review 
Raytheon ISP Phase II accomplishments and discuss future research directions. 

 Don Waagen (Raytheon) met with Dr. T. J. Klausutis (AFLR/Eglin) to discuss 
recent research in manifold alignment techniques as applied to Synthetic Aperture 
Radar and LADAR. 

 Don Waagen (Raytheon), Paul Hasler and David Anderson (Georgia Tech), Al 
Hero (Michigan), and Antonia Papandreou-Suppappola (ASU) attended the 2007 
International Conference Acoustics Speech and Signal Processing (ICASSP 2007) 
conference 15 − 20 April 2007 in Honolulu, Hawaii. 

1. E. Near Term Events 

 The Raytheon ISP Phase II Final Technical Report is due on 31 May 2007. 

 One of the Georgia Tech CADSP Imagers will be delivered to Raytheon. The 
final delivery date is still to be determined. 

 Harry Schmitt (Raytheon) will visit UniMelb in May 2007. 

2. 0. Technical Progress  
In this section we provide a more detailed discussion of the technical progress that 

occurred during the current PoP broken down by subcontractor. We first provide a brief 
review for context. 

2.A. Preliminaries and Background 
As mentioned previously, the Raytheon ISP Phase II program consisted of several 

demonstrations and evaluations. The two primary demonstrations were personnel 
tracking using a distributed network of wireless sensors (MICA-2 Motes [1]) and image 
processing using the Georgia Tech CADSP imager.  

The distributed tracking demonstration required theoretical advances in three 
primary areas: (i) mote self-localization; (ii) on-mote detection; and (iii) 1-bit base station 
trackers.  
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1. Mote self-localization is a key research area and critical to the eventual 
deployment of large scale ad hoc networks (especially in GPS-denied 
environments). We have investigated two approaches: (i) the UM algorithm based 
on Received Signal Strength (RSS); and (ii) the UniMelb algorithm that is based 
on the Vanderbilt University (VU) Radio Interferometric Positioning System 
(RIPS [2]) algorithm. While mote self-localization was not considered part of the 
official demonstration, we evaluated the performance of our ISP Phase algorithms 
as follows. The VU RIPS was taken as state-of-the-art in accuracy (~5 cm), but is 
not implementable. RIPS scales exponentially in mote number, its Genetic 
Algorithm estimation approach converges poorly and it can produce multiple 
solutions. While a performance trade space is complex, our performance goal was 
scalability with accuracy comparable to the VU Acoustic Ranging algorithm (~1 
m). The MU RSS algorithm was integrated with our mote test bed (c.f., Section 
2.A.1); field performance was ~3× worse than the ~50 cm reported by MU in less 
representative test environment. In addition, scalability of the current RSS 
algorithm is limited by on-mote memory constraints. The MU RSS algorithm has 
been discuss in depth in previous Technical Reports and will not be covered here. 
The UniMelb RIPS-Based algorithm has not been integrated with our mote test 
bed, but its preliminary performance (both scalability and accuracy) are extremely 
promising based on and simulated and collected RIPS data. The UniMelb 
algorithm is discussed in depth in Section 2.A.3. 

2. ASU was responsible for developing the on-mote detection algorithms. ASU has 
developed two implementations – a 1-bit threshold detector and an 8-bit energy 
detector. The 1-bit detector has been integrated with our mote test bed, while the 
8-bit detector has been evaluated outside of the test bed. Here, we have taken the 
baseline detector as one that transmits all 8-bit to a tracker. The tracker employed 
here was an 8-bit extension to the ASU 1-bit particle filter tracker which has been 
described in detail in earlier reports. Our objective was to demonstrate an increase 
in Tracker Mean Squared Error (MSE) of less than 25% using only the 1-bit 
detector (i.e., bandwidth constrained tracking performance). The ASU work is 
discussed in more detail in Section 2.A.2. 

3. There were three 1-bit trackers developed over the course of the Raytheon ISP 
Phase II program. These include the Virtual Measurement (VM) and Unscented 
Kalman Filter (UKF) trackers developed by UniMelb and the Particle Filter 
tracker developed by ASU. All three trackers have been discussed extensively in 
previous Technical Reports. All three trackers have been integrated with our mote 
test bed and were run during the 23 April final demonstration. Our objective was 
to demonstrate an increase in Tracker MSE of less than 10% with only 50% of the 
mote sensors continuously active (i.e., power constrained tracking performance). 
Details of the trackers performance are provided in Section 2.A.1, 2.A.2 and 
2.A.3 below. 

The Georgia Tech CADSP image processing demonstration is intended to 
illustrate the mixed Analog-Digital nature of the imager – specifically, the CADSP 
imager was selected for inclusion in the DARPA ISP Phase II program because it enable 
analog processing under digital control. The CADSP imager was designed to be able to 
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perform separable 2-D linear operations of form ATPB and to have access to multiple (4) 
stored A and B matrices. The A and B matrices are to be of sufficient size to implement 
various transforms. The CADSP imager demonstration consisted of the following 
components: 

1. Perform JPEG compression and associated preprocessing an image. At one level 
this demonstration is to test the functionality of the CADSP imager. The image 
preprocessing step will verify that the pseudo non-uniformity compensation 
(NUC) that Georgia Tech implements is sufficient. The correctness of the CADSP 
JPEG compression implantation will be demonstrated by comparison to a 
standard DSP approach. The more interesting ISP application consists of a power 
constrained JPEG Compression. Here, our objective is to achieve equal 
compression performance with ≥90% reduction in power consumption. 

2. An application that is well suited for implementation on the CADSP imager is 
optical flow processing. Optical flow is one popular tracking approach being 
considered for Unmanned Aerial Vehicles; in this case the low power 
consumption of the CADSP imager is attractive. We have investigated a 
bandwidth constrained foveal tracker implementable on the CADSP imager. The 
objective is to show equivalent Tracker MSE with 80% reduction in bandwidth. 

3. To insure the utility of the CADSP imager an API will be developed that includes 
testing steps required for imager validation. 

In addition to the above mentioned demonstrations, the Raytheon ISP Phase II 
program also had the objective of evaluating some of the promising signal processing 
approaches developed under ISP Phase I. The algorithms included, but were not limited 
to, sensor scheduling, sensor allocation and manifold extraction/dimensionality reduction. 
Raytheon has been particularly successful in applying ISP-developed high dimensionality 
data processing algorithms to a wide variety of collected data sets that were collected 
with a number of different sensor modalities. We have reported in detail on a number of 
these activities in previous Quarterly Technical Reports. Here, we report in depth on 
three specific research topics considered by Raytheon personnel: (i) scheduling of 
multiple UAVs for passive geolocation; (ii) Class Cover Catch Diagraphs (CCCD) for 
feature-space partitioning; and (iii) information theoretic approaches to radar threat 
identification (TID).  

2.A.1. Use of CCCDs for Informative Feature-Space Partitioning 
2.A.1.1. Background 

2.A.1.1.1. Introduction 
In high-dimensional settings, direct estimation of class-conditioned probability 

densities is generally constrained in practice by limited class sample sizes and the 
associated curse of dimensionality. However, estimating the similarities and differences 
of feature distributions is necessary for evaluating feature utility for potential 
classification efficacy. Therefore an efficient and effective approach for partitioning 
high-dimensional spaces into “informative” regions is of interest. In this regard, we 
investigate application of the class cover catch digraph (CCCD) algorithm [3], [4]. An 
evaluation of the potential classification efficacy of the partitions produced is 
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demonstrated using spin image representations of point clouds sampled from Computer-
Aided-Design (CAD) models.  

Out dataset consists of three-dimensional (3D) surface coordinates derived from 
CAD models of three military targets. This dataset serves as a surrogate for field-
measured 3D Laser Detection and Ranging (LADAR) point-cloud data. The surface 
coordinates are processed into spin-image stacks [5], [6]. In both the training and testing 
spaces, we measure partition efficacy and statistical characteristics using distributional 
separability (divergence). For measuring distributional separation, we use the Henze-
Penrose Divergence (HPD) [7], [8]. 

For many datasets, features are not global concepts measured from an object, 
rather they are extracted from localized regions of the object of interest. For instance, 
spin images form a collection of feature vectors, each vector representing the local 
geometric structure of a part of the object of interest. Often, much of the structural 
information and content is shared between objects of interest. For example, most cars 
have four wheels. Extraction of features corresponding to wheels of equal size will be 
noninformative in aiding a user in classification of a wheeled vehicle. (Note that wheels 
might be informative for detection of the vehicle, and in recognizing the vehicle as 
wheeled rather than tracked, but those are different questions). Our application of the 
CCCD approach pertains to the partitioning of a collection of feature vectors into 
partitions that are more informative or less informative, with respect to recognition / 
classification.  

Classifier complexity can be driven by several factors, including sparse sampling 
(curse of dimensionality), complex high-dimensional data structure / decision boundary, 
and regions of ambiguity (due either to the intrinsic nature of the problem or to poor 
selection of features) [9]. When there are more than approximately 5 
dimensions/labels/features, the dataset takes on a “high-dimensional” nature [10]. 
Limited sample support in high-dimensional spaces leads to the well known curse of 
dimensionality. However one is generally given a fixed-size dataset, and it is not usually 
feasible to increase the sampling density. Given the dataset, we seek to characterize the 
representation complexity, due to both high-dimensional decision boundaries and regions 
of ambiguity. The decision boundary complexity is measured using the HPD, and as 
previously discussed the regions of class distinctiveness and class ambiguity are explored 
using the CCCD algorithm. 

Distribution-based comparisons of feature-set efficacy are prone to error, whether 
the distribution estimation is based on density-building using kernels or fitting parameters 
in a predefined model. There are some methods available for distribution-free, 
approximate measurement of feature-set divergence (or separability). In the two-class 
case, the measurement of feature-set efficacy can be recast in terms of the general 
multivariate two-sample problem. The underlying assumption is that independent of any 
classifier, feature sets that exhibit more divergence (or separability) should in general be 
of greater utility for classification than feature sets that exhibit less divergence (or 
separability). In [11] and [9], the Friedman-Rafsky statistic is suggested as a boundary-
description-based measure of separability of classes, and in [9] adhesion classes [12] are 
suggested as an interior description for the local clustering properties of the various 
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classes. We note that the adhesion-class pretopology approach is a precursor to the more 
general CCCD approach. 

2.A.1.1.2. Spin images 
Spin images provide a pose-invariant statistical encoding of the surface shape of 

objects for which measurements are available as a uniformly sampled surface mesh. A 
spin image is a two-dimensional (2D) histogram computed at an oriented vertex P located 
on the surface mesh of an object. The histogram accumulates the coordinates μ and ν 
(defined below) of all other surface mesh vertices Q that are located within the support 
region. With ŜP representing the surface normal at P and TP representing the tangent 
plane at P, the support region is defined as follows (see Error! Reference source not 
found.): 

• The coordinate μ, the distance from P to the projection of Q onto TP, obeys the 
inequality 0 ≤ μ ≤ μmax, where μmax is the user-defined support cylinder radius. 

• The coordinate ν, the distance from Q to TP, satisfies -0.5νmax ≤ ν ≤ 0.5νmax, where 
νmax is the user-defined support cylinder height. 

• The angle φ between ŜP and ŜQ (the surface normal at Q) obeys the inequality φ ≤ 
φmax, where φmax is the user-defined support angle. 

 
Figure 2: Spin Image Geometry 

Spin images formed from small support regions (local information only) provide 
more robustness to clutter and occlusion, whereas spin images formed from large support 
regions (global information included) provide greater discrimination capability. The spin 
image’s 2D histogram (see Error! Reference source not found.) can be raster-scanned 
into a spin-image vector with dimensionality equal to the number of bins in the 
histogram. For an object, the set of spin-image vectors forms a spin-image stack. 
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Figure 3: Spin Images at Various Vehicle Surface Locations 

2.A.1.1.3. Class cover catch digraphs 
In the CCCD approach, class-conditional regions are modeled with a mixture of 

d-dimensional balls. The number, location and size of the balls are determined based on 
the proximity between training samples. The balls potentially form a low-complexity 
representation of each class. Each class-cover ball contains a fixed number β of out-of-
class samples (purity factor / sensitivity to contamination) and the union of class-cover 
balls can neglect up to α in-class samples (properness factor / sensitivity to outliers). 
Setting α = β = 0 results in a proper, pure cover. In this work, we specify the parameters α 
and β as percentages of class-conditioned samples rather than as fixed integer values. 
Although the CCCD approach is extensible to an n-class case, for purposes of clarity of 
presentation we work here exclusively with two-class cases (either two similar objects, or 
two dissimilar objects). 

By careful selection of α, one can limit the cover produced to regions of feature 
space where the classes are “well separated” as measured by distributional separation 
between objects of interest, but still have enough class support coverage to maintain 
robustness. By construction via the greedy approach, one expects that the first cover balls 
selected to be the “most informative,” since the construction process starts by finding the 
ball which contains the most in-class points while admitting a fixed number of other-class 
points (as dictated by β*n1). When fewer balls are retained in the cover, fewer in-class 
samples are used to characterize the target. Therefore, one might expect a degradation in 
classification performance for values of α at both extremes (i.e. close to 1 or close to 0). 
For α close to zero, most in-class samples are retained, including those that fall in mixed-
class regions. As α increases to one (and only a few in-class samples are retained in 
regions exhibiting high class purity), one would expect an increase in the variance (due to 
limited sampling) associated with the cover selected by the CCCD process. 

2.A.1.1.4. Henze-Penrose divergence 
Assume we are given two independent Rd-valued samples X1, …, Xn0 and Y1, …, 

Yn1, with the distribution of Xi having the unknown density f(x) and the distribution of Yi 
having the unknown density g(x). The multivariate two-sample problem is to test the 
hypothesis {H0: f = g} versus the general alternative {H0: f ≠ g}. For the multivariate 
case, several approximate distribution-free methods are known. In this work we use the 
Henze-Penrose Divergence (HPD), which is an extension of the Friedman-Rafsky 
statistic. HPD is estimated using information from a minimal spanning tree (MST) 
computed over the pooled data set {X1…m U Y1…n}. From the MST, remove all edges 
whose defining nodes originate from different classes. The Friedman-Rafsky test statistic 
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Rm,n is given by the number of resulting disjoint subtrees. The HPD h(f(x), g(x), p) is 
estimated using: 
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in which p = m/(m+n). In (1), it is required that as (m → ∞) and (n → ∞), the ratio p 
remains bounded between 0 and 1. The HPD h has the convenient property that as n and 
m are increased, the statistic does not change its central value but becomes asymptotically 
more accurate. The inequality h(f,g,p) ≥ h(f,f,p) = p2 + (1-p)2 is strict for densities f and g 
that differ on a set of positive measure. For the case n = m (as we use in our analysis), h = 
0.5 implies that the densities f and g are drawn from the same underlying distribution. As 
the densities f and g are increasingly separated (less overlap), h increases from 0.5. As the 
densities f and g become completely separated (disjoint, no overlap), h attains its 
maximum value hmax = 1. 

2.A.1.2. Methodology 
Our overall goals are to investigate training and testing divergence as a function 

of α, for some values of β, for two sample sizes. This should provide a basis for better 
understanding the CCCD approach and for optimizing parameter selection for a particular 
dataset. We will do this for two two-target examples – in one case, the two targets are 
known to be dissimilar (target labels T1, T2), and in the other case the two targets are 
known to be similar (target labels T2, T2* are variants of the same target). 

For each of three training targets (T1, T2 and T2*), we generate ~ 50,000 evenly-
spaced surface vertices by applying ray-tracing-based rendering to CAD models. A spin 
map is formed for each vertex. The 10x10 spin images are formed using support cylinder 
radius = support cylinder height = 1.0 m, and support angle = 180°. Each 10x10 spin 
image is raster-scanned into a 100-dimensional spin-image vector. For training, 
subsample from ~ 50,000 spin-image vectors to n = 500 or n = 2000 spin-image vectors, 
using uniform random draw. For testing, subsample from ~ 50,000 spin-image vectors to 
n = 500 or n = 2000 spin-image vectors, using uniform random draw, having already 
excluded the n = 500/2000 spin-image vectors used for training. 

2.A.1.3. Experiments 
We apply the CCCD algorithm, with β = {0.00, 0.01, 0.05}, varying 0 ≤ α < 1, for 

n = 500 and n = 2000. Two sets of experiments are done: similar targets (T2 and T2*), and 
dissimilar targets (T1 and T2). For each value of α, we repeat the training process Ntrain = 
3 times, each time with a different n-element subsample drawn from the full spin-image 
stack. For each experimental realization of the covers C0 and C1, we form the joint cover 
C = C0 U C1. Note that for β = 0, by construction C0 ∩ C1 = {}. We estimate the pairwise 
HPDs htrain(Xtrain(C), Ytrain(C)) between the class-0 training samples Xtrain(C) that fall 
within C and the class-1 training samples Ytrain(C) that fall within C. It is expected that 
htrain is an increasing function of α, as higher values of α correspond to fewer samples 
from overlapping class-specific support. We compute the mean and standard deviation of 
the Ntrain measurements of htrain(XC, YC) at each value of α. 

Next, for each Ntrain run, we subsample the spin-image stacks (exclusive of 
samples used for training) Ntest = 3 times, and determine which test samples fall within C. 
We then estimate the HPD htest(Xtest(C), Ytest(C))  between the class-0 testing samples 
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Xtest(C) that fall within C and the class-1 testing samples Ytest(C) that fall within C. We 
also estimate the train / test cross-divergences h00(Xtrain(C), Xtest(C)), h01(Xtrain(C), 
Ytest(C)) , h10(Ytrain(C), Xtest(C)) and h11(Ytrain(C), Ytest(C)). We compute the mean and 
standard deviation of the Ntrain * Ntest = 9 measurements of htest and the four train / test 
cross-divergences at each value of α. 

2.A.1.4. Results and Discussion  
The HPD h is approximated asymptotically by a linear transformation of the 

Friedman-Rafsky test statistic Rm,n. For the two scenarios (similar targets: T2*, T2; 
dissimilar targets: T1, T2), we estimate h as a function of sample size, with sample size 
varying from 100 to 2000. The estimates are calculated 10 times using randomly selected 
sample sets, and the mean and standard deviation of the estimates for h are shown in 
Figure 3. As expected, the dissimilar targets have greater divergence than the similar 
targets:  h(T1, T2) > h(T2*, T2). It is noted that with the sample sizes used in this work, n 
= 500/2000, our estimates for the HPD h have not yet reached their asymptotic value, but 
the curves appear to be flattening at n = 2000. 
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Figure 4: Estimates over 10 runs of HPD as a function of sample sixe for dissimilar 
targets, h(T1,T2) and for similar targets, h(T2*,T2) 

In Tables 1 – 3, we show the mean and standard deviation of the number of class 
cover balls for β = {0, 0.01, 0.05}, respectively. For the similar targets, which are 
expected to have substantially greater support overlap than the dissimilar targets, more 
balls are required to form the cover. As β increases, fewer balls are required to form the 
cover. This is expected, as the cover balls need a larger radius to encompass (β*n1) 
samples. Having a larger radius, more class-0 samples are covered by each ball, so fewer 
class-cover balls are needed overall. The ratio of balls required for similar targets to balls 
required for dissimilar targets decreases as β increases.  

Table 1: Balls in class covers, mean and standard deviation over 10 runs, for n=2000. 
CCCD parameter values: α = β = 0 

 Target T1 Target T2 Target T2* Total Balls 

Dissimilar Targets 522 ± 9 371 ±   6  893 ± 12 
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Similar Targets  832 ± 10 892 ± 15 1724 ± 17 

 

Table 2: Balls in class covers, mean and standard deviation over 10 runs, for n=2000. 
CCCD parameter values: α = 0; β = 0.01 

 Target T1 Target T2 Target T2* Total Balls 

Dissimilar Targets 141 ± 4 94 ± 3  235 ± 5 

Similar Targets  143 ± 4 162 ± 4 305 ± 5 

 

Table 3: Balls in class covers, mean and standard deviation over 10 runs, for n=2000. 
CCCD parameter values: α = 0; β = 0.05 

 Target T1 Target T2 Target T2* Total Balls 

Dissimilar Targets 48 ± 3 30 ± 1  78 ± 3 

Similar Targets  42 ± 1 48 ± 2 89 ± 2 

 
In Figures 5 – 7, we show histograms and scatterplots of the ball population and 

radii, for a single random training set, for β = {0, 0.01, 0.05}, respectively. Again, since 
the similar targets (Figures 5 – 7, bottom row) have more overlapping support, the balls 
typically have smaller membership and radii than the cover balls for the similar targets 
(Figures 5 – 7, top row). 
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Figure 5: Histograms and scatterplots of population and radii of balls in class covers for 
dissimilar targets (top row) and similar targets (bottom row), with n = 2000. CCCD 
parameter values: α = β = 0 
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Figure 6: Histograms and scatterplots of population and radii of balls in class covers for 
dissimilar targets (top row) and similar targets (bottom row), with n = 2000. CCCD 
parameter values: α = 0, β = 0.01 
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Figure 7: Histograms and scatterplots of population and radii of balls in class covers for 
dissimilar targets (top row) and similar targets (bottom row), with n = 2000. CCCD 
parameter values: α = 0, β = 0.05 

In Figure 7, with β = 0.05, the plots for the dissimilar targets (top row) are similar 
to the plots for the similar targets (bottom row). This is in contrast to Figure 5: for β = 0, 
the plots for the dissimilar targets are significantly different from the plots for the similar 
targets. This is understood as follows: as β increases, each ball contains more of the non-
target class, so the distinction between dissimilar targets and similar targets is lost – in 
both cases, the class-specific covers contain an increasing amount of other-class samples. 
Note that increasing α corresponds removing balls from the cover, starting with the balls 
with the smallest population. Thus as α approaches 1, we are keeping only the ball(s) 
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having the largest population and the highest ratio of within-class samples to other-class 
samples. 
 

 
Figure 8: For different targets, estimated divergence as a function of α 

In Figure 8 and Figure 9, we show divergence estimates for a pair of different 
targets and a pair of similar targets, respectively. In each subplot, the divergence is 
measured between groups of points that fall within the joint cover. 
 

 
Figure 9: For similar targets, estimated divergence as a function of α 

In Figure 8 and Figure 9, the divergence values at α = 0 (all data used) are 
consistent with the n = 500 and n = 2000 divergence values given in Figure 4. As 
expected, the training divergence htrain is monotonically increasing with α – as fewer balls 
of higher class population are used, there should be less spatial overlap between inter-
class samples. In each of the subplots in Figure 7 and Figure 8, the two green curves 
represent the train / test cross-divergences h00(Xtrain(C), Xtest(C)) and h11(Ytrain(C), 
Ytest(C)). Since the samples are drawn from the same distribution, we expect h00 ~ h11 ~ 
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0.5. This is generally the case, except for the β = 0 subplots (left-hand column in both 
Figure 8 and Figure 9). Also in the β = 0 subplots, there is a substantial deviation between 
the training divergence htrain (black curve) and the testing divergence htest (red curve). As 
α → 1 we can achieve htrain ~ 1, but the htest values remain lower, particularly in the n = 
500 cases (upper row in Figure 8 and Figure 9). These observations imply that we are 
overfitting the data, particularly for n = 500. The overfitting problem generally worsens 
as α increases (fewer and fewer training samples used for forming cover). 

In the β = 0.05 (right-hand column) subplots in both Figure 8 and Figure 9, the 
divergence curves are fairly flat – we appear to be undertraining. There is little separation 
between the htrain and htest values, but neither increases with α. In the β = 0.01 (middle 
column) subplots in both Figure 8 and Figure 9, the divergence curves are increasing as α 
increases, with low variance until α ~ 0.9. There is substantially less separation between 
the htrain and htest curves for n = 2000, than for n = 500. These observations, taken in 
conjunction with the total number of class cover balls listed in Table 1, Table 2 and Table 
3, imply that for both the different target and similar target cases, over the parameter 
values tested, we should use α = 0.9+, β = 0.0+ and n = 2000+ for providing high class 
separability while maintaining low representation complexity. 

For two two-class cases (different targets or similar targets), we have 
demonstrated a methodology for selecting high-dimensional (d = 100) feature space 
regions (class cover balls) that strike a balance between high class separability and low 
representational complexity.  

2.A.2. Information Theoretic Approaches for Radar Threat Identification 
2.A.2.1 Introduction 

A radar system operates by radiating electromagnetic energy into space and 
detecting the echo signal reflected back to the radar from a target. The reflected energy 
not only indicates the presence of a target, but by comparing the received echo signal 
with the signal that was transmitted (matched filtering), the target location can be 
determined along with other target-related information [13]. A hostile target would 
naturally like to deny the radar system access to this information, if possible, and thus 
may employ electronic countermeasures. In particular, noise jamming is the intentional 
transmission of energy in order to mask the target return and impair the effectiveness of 
the receiving radar. The receiving, or victim, radar may then employ a counter-
countermeasure technique known as “home-on-jamming” designed to track the angle of 
the jamming signal and reveal the location of the jammer. To prevent discovery of his 
location, the jammer may employ “angle deception” or terrain-bounce jamming. This 
could be implemented, for example, by an aircraft flying at a relatively low altitude while 
transmitting energy toward the ground. This technique effectively presents a false 
targeting angle to the detecting radar, thereby rendering ineffective the home-on-jamming 
counter-countermeasure. And so it goes. 

Obviously, it is necessary to be able to distinguish between a simple direct path 
jamming signal and a composite signal consisting of the direct path and a bounce path, 
since the detecting radar must know whether or not it can believe the target angle it is 
tracking. Under ISP, we have made some small investigations into the question of 
whether an information theoretic approach, in particular dimensionality reduction, might 
be of some use in solving this problem. In the last quarterly report, we described our 
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experiences with processing simulated data that models noise jamming with the ISOMAP 
algorithm, then computing the Henze-Penrose divergence test between samples of two 
different types of signals. The results were, ultimately, disappointing. Thus we turned to a 
simpler analytical model of the received signal, in an attempt to understand what we were 
dealing with, and finally we feel that we may have gained a tiny bit of insight into the 
nature of dimensionality reduction solutions for wave phenomena. 

In this, our final installment for the ISP Phase II, we outline our meager results. 
We will begin by introducing a simple model of received signals, the well known plane 
wave. Next we compute the dimensionality reduction solution, in closed form, that would 
be obtained with the multi-dimensional scaling algorithm. We show that two combined 
signals incident from different directions, but with the same frequency, will always 
appear as a single source in the dimensionality reduction. Finally, we show that a simple, 
direct path signal cannot be statistically distinguished from a composite signal consisting 
of a direct path and a bounce path, if these signals all have the same frequency. 

2.A.2.2 The Plane Wave: A Simple but Realistic Model 
We adopt as our model of incident electromagnetic energy the well known plane 

wave solution to the wave equation, which is given by 

),exp()2exp(),( 0 xkx TiiftAtw −= π  
where 0A  is the amplitude, f is the frequency in cycles per second, and k is the wave 
number vector, which has magnitude equal to ,/2 λπ where λ is the wavelength, related 
to the frequency by ,cf =λ  where c  is the wave velocity. Additionally, the wave number 
vector points in the direction of propagation of the wave. 

2.A.2.3 The Array Manifold Vector 
We collect N  time samples at each of M spatial locations, which may be the 

separate channels of an antenna array, or perhaps a more disparate collection of sensors, 
our analysis being amenable to either circumstance. Let the positions of the sensors be 
denoted by ,mp  for .,,2,1 Mm K=  The quantity collected at the time nt  by the m th 
sensor is 
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Note that the array manifold vector is normalized so that .1=vv H  

2.A.2.4 Dimensionality Reduction 
Let us use the multi-dimensional scaling algorithm (MDS) to assign Cartesian 

coordinates to the collected samples Nntn ,,1  ),( K=s . This algorithm may be considered 
as the prototype of a dimensionality reduction procedure, and probably gives optimal 
results for linear problems. We first compute the squared pair-wise distances, which are 
given by 
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The goal of the MDS algorithm is to find a set of points in Cartesian space such 
that the pair-wise distances among these points are equal to the distances that were given 
to the algorithm. It turns out that, in this simple case, we can explicitly provide just such a 
set of points. 

Define the points ,),( 2ℜ∈= nnn yxx  for ,,,1 Nn K=  such that 
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which clearly agrees with (1), and proves that (2) is the dimensionality reduction for this 
data. This solution is unique only up to a translation and rotation, hence to see perfect 
agreement between a computed solution and our hand-derived solution would most likely 
require “centering” the hand solution to have zero mean then computing a rotation matrix 
that maps one solution onto the other. 

Note that (2) correctly captures the amplitude and frequency of the incident wave, 
but all information about the direction of the source in relation to the sensor array is lost. 
The direction information was contained in the array manifold vector and, perhaps 
unfortunately, by converting the measurements to distances we have effectively removed 
it. Interestingly, this also implies that the result is independent of the number of sensors; 
we would expect to obtain the same result with one sensor as with one hundred. Finally 
note that the dimension for a single (complex) plane wave source is two. 

2.A.2.5 The Case of Two Plane Wave Sources 
Now let us consider the case of a composite signal, consisting of two plane waves, 

with differing angles of incidence. We assume different amplitudes, and a time lag in one 
of the signals with respect to the other, since it is not reasonable to expect that the two 
signals will arrive at the sensors exactly in phase with each other, or with the same 



ISP Phase II (Contract N00014-04-C-0437) 
Final Technical Progress Report (CDRL A004 No. 1) 

 

 21

amplitudes. However we assume the same frequencies in both waves. Since it is our 
intention to model the contrast between a direct and a reflected path, and since the 
reflection may change amplitude, or polarization, but not the frequency, unless the 
surface off which the wave was reflected was moving, but ours is not moving, therefore 
we assume that the direct path and reflected wave have the same frequency. This is also 
convenient in that, under the assumption of same frequency, we can give an explicit 
solution to the dimensionality reduction in this case also. 

Let the time samples collected at the sensors have the following form, 

(3)                                  ,))(2exp()2exp()( 20211 vvs τππ ++= nnn tifAiftAt  

where 1v and 2v  are two different array manifold vectors. Expression (3) is our model of a 
“composite” signal, consisting of one plane wave with wave number vector 1k , and a 
second one with a different wave number vector 2k , which has the same magnitude but a 
different direction than 1k , i.e. the second wave is incident from a different direction. 
The second plane wave in (3) also has different amplitude and is time-delayed with 
respect to the first although, as explained above, the two waves have identical frequency. 

We will not reproduce the tedious calculations here, but ask the gentle reader to take our 
word, that the dimensionality reduction of samples in (3) is given by 
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where the amplitude of the solution is given by 
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Note that the time lag 0τ  appears in the amplitude term (5), as do the two individual 
amplitudes, also the array manifold vectors make their influence felt through the terms in 
(6), though note it is only the difference between the two vectors that appears. It seems 
clear that any information which we may or may not be able to extract from the 
dimensionality reduction (4) is contained in the amplitude term (5). At least, the situation 
does not seem to be entirely hopeless, since the amplitude is a function of the various 
parameters. 

Now the following question arises. Could we, with the aid of dimensionality 
reduction followed by statistical discrimination, distinguish between the expressions (2) 
and (4)?  We will give the results of attempting this experiment in the following section. 

2.A.2.6 Numerical Validation of these Results 
Let us first demonstrate the veracity of our closed-form solution in equation (2). 

We chose parameters convenient for plotting. Throughout these experiments we used 
,1=c  ,2/1=λ  and .2=f   In order that we may not be accused of choosing sampling 

times which are too regular, we drew sampling times at random from a uniform 
distribution, stretched over many periods of the incoming signal, then sorted into 
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ascending order. We used one hundred time samples. There were five sensors in a planar 
configuration. 

On the left-hand of Figure 10 we show a plot of the singular values of the double-
centered matrix of squared pair-wise distances, the singular value decomposition of 
which provides the embedding coordinates computed by the MDS algorithm. For this 
plot we set .10 =A  We see clearly that the dimension is two, as predicted by our formula. 
The singular values are not of equal magnitude, but it is unlikely they will ever be so, and 
it is a fact they are not equal to the amplitudes of the closed form solution in (2), i.e. they 
are not equal to .0A   Rather, it is the product of the singular value and the singular vector 
that is “equivalent” (up to translation and rotation) to the closed form solution in (2). 

On the right-hand of Figure 10, we show the differences between embedding 
coordinates computed with the MDS algorithm and embedding coordinates computed 
with our closed-form expression (2), after rotation of the latter onto the former. The 
rotation matrix can be obtained via a simple least squares procedure, but is of course data 
dependent. As can be seen in the figure, we have perfect agreement up to the numerical 
precision in sixty-four bit arithmetic. This gives numerical confirmation that expression 
(2) is correct. 
 

0 5 1 0
0

1 0

2 0

3 0

4 0

5 0

6 0

0 5 0 1 0 0
0

0 .2

0 .4

0 .6

0 .8

1

1 .2
x  1 0

-1 5

 
Figure 10: Singular values on the left, and differences between computed and hand 
solution on the right, for a simple wave. 

Let us now turn our attention toward the closed-form expression (4) for a “composite” 
signal, i.e. consisting of two components from two different directions but with identical 
frequency. For this experiment we chose ,11 =A  ,5.02 =A  and .05.00 =τ   Figure 11 is 
the analogue of Figure 10. Note especially that, again, the dimension is two as predicted 
by our closed-form solution, in spite of the fact that the signal consists of two incident 
waves arriving simultaneously at the sensors. We might expect that each wave would 
produce two embedding coordinates, for a total dimension of four, but this is not the case. 
The right-hand side of Figure 11 is numerical confirmation of the correctness of the 
results given above in equations (4), (5), and (6). 
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Figure 11: Singular values on the left, and differences between computed and hand 
solution on the right, for a simple wave 

2.A.2.6 Discrimination between Simple and Composite Models 
Finally we attempt to see statistically significant differences between our simple 

model in (1) and our composite model in (3). The procedure is to pack time samples 
collected with both models into a single array and compute embedding coordinates with 
MDS. Then we examine the singular values and the embedding coordinates to see what 
we can see. We will confess at the outset that we do not understand these results 
particularly well, so we will merely show a couple of examples, then move on to the 
wrap-up. 

For the first experiment, we set 10 =A  in the expression (1), and set 
0 ,1 21 == AA  in the expression (3). Thus this experiment compared two simple signals 

against each other. We used different sequences of randomly generated sample times for 
the two models. The results are shown in Figure 12. In the left window, we show the 
singular values. The embedding dimension now is four. Clearly the dimensionality 
reduction has “seen” two components in the signal.  

We show the embedding coordinates for the first two dimensions in the middle 
window, in blue and red. We apologize for making the plot so small that it is difficult to 
distinguish the two, but it is easy enough to see that both embedding coordinates are 
sinusoids, as in expressions (2) and (4), and moreover that these first two have, at least 
roughly, the same amplitude. The first 100 are the embedding coordinates for the 
expression (1) and the second 100 are the embedding coordinates for the expression (3). 

The embedding coordinates for dimensions three and four are shown in the right 
window. Judging by the nearness of the first two singular values to each other, and the 
third and fourth singular values to each other, it seems natural to assume that the first two 
dimensions belong with the first of the two components, and the third and fourth 
dimensions with the second of the two components. But let us be careful to avoid saying 
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“components of the signal,” since it is not entirely clear what these components represent, 
although they are certainly similar to our expressions in (2) and (4). In fact, from our 
expressions (2) and (4) we would expect to see the graphs of two sinusoids with the same 
frequency and amplitude, and that is what we see in the middle and right windows of the 
plot. 
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Figure 12: Comparison of two simple signals 

We performed a second experiment, setting 10 =A  in the expression (1), and 
5.0 ,1 21 == AA  in the expression (3). This experiment compared a simple signal against 

a composite signal. The results are shown in Figure 13. Note that the singular values are 
very nearly the same as in Figure 12, but the embedding coordinates have taken on a 
rather different character. Could this be used as a discriminator?  Perhaps, but at the 
moment we do not know, and there is no more time. This investigation is finished. 
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Figure 13: comparison of a simple signal and a composite signal. 



ISP Phase II (Contract N00014-04-C-0437) 
Final Technical Progress Report (CDRL A004 No. 1) 

 

 25

2.A.2.7 Analysis of our Composite Model via the Covariance Matrix 
A more traditional approach to such problems is to form the covariance matrix of 

the received signal vectors and compute its eigendecomposition. It is possible to write 
down an explicit expression for the covariance matrix obtained with our composite model 
(4). Let us denote the covariance matrix byC . Then we have 

{ }HHHH ififAAAA 1202102122
2
211

2
1 )2exp()2exp( vvvvvvvvC τπτπ +−++= . 

From this expression it can easily be shown that, for any choice of the array 
manifold vectors 1v and 2v , the rank of C is one. That is, the dimension of the signal 
subspace is one, not two, as we might have hoped. One way of understanding this is to 
realize that the two components of the composite signal are almost perfectly correlated. 
We believe this feature of our model is consistent with the true nature of the problem, 
since the second component of our composite signal is modeled as a reflection of the first 
component, thus it is not surprising they are correlated. The same observation probably 
also explains why the embedding dimension of our composite model was two not four. 

2.A.2.8 Conclusions 
We have little to add to the foregoing. However, we will make one observation 

from the viewpoint of computational efficiency. We used a number of sensors equal 
to M and collected a number of time samples equal to N . Traditional array processing 
techniques compute the eigendecomposition of a covariance matrix, which has 
size MM × . Our experiments with dimensionality reduction required us to decompose a 
distance matrix of size .NN ×    Since M is usually much smaller than N it follows that 
nobody in their right mind would choose to compute the eigendecomposition of the 
distance matrix over the covariance matrix unless the dimensionality reduction offered a 
significant benefit over the more traditional techniques. So far, we have not seen that it 
does. However, we cannot positively assert that it doesn’t, either. 

2.A.3 ASU Technical Progress 
2.A.3.1. Introduction  
In this section, we summarize the work done at ASU since the last ISP Phase II progress 
report. This work includes:  

• Support of the Raytheon effort to develop the mote-based tracker.  
• The integration of the Georgia Tech imager API into the ASU person tracker. 
• Application of integer non-linear programming for a constrained non-myopic 

sensor scheduling problem. 
2.A.3.2. Mote-based Tracker 
The ASU mote effort included the following components: 

• Tracker characterization using one bit detection and energy data, 
• Refining the on-mote footstep detector, 
• Tuning the particle-filter based tracker. 

Tracker Characterization Using One-Bit Detection and Energy Data 
As part of the ISP Phase II demo, we compared the performance of target trackers 

using one-bit detections and received energy measurements; both are collected by a grid 
of motes with acoustics sensors. The purpose of this comparison was to determine the 
effect of data reduction at the motes on track accuracy. Particle filter trackers were used, 
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since they are simple to implement and provide asymptotic optimality as the number of 
particles grows large. The performance of the two trackers was evaluated using Monte 
Carlo simulations. Simulation models for the detection and energy data were developed 
from mote characterization data obtained during the development of the on-mote footstep 
detector. The motes measure the received acoustic energy from footsteps using the on-
board microphone. During the development of the on-mote footstep detector described in 
previous progress reports, the acoustic sensor was characterized by obtaining received 
energy values from the motes at target distances varying from 2 to 15 feet. The plot of 
measured footstep energy as a function of distance with means and confidence intervals 
is shown in Figure 14. 

 
Figure 14: Footstep energy as function of distance: means & confidence intervals 

A curve was fit to the energy-distance data; this curve is given by 
 
 
 
where the fixed constants were found to be a  = 291.34 and c  = 61.45; d  is the distance 
from the sensor measured in feet. 

The detection performance of the footstep in the presence of interfering speech 
was characterized in previously reported work. Some resulting probability of detection 
and probability of false alarm curves are shown in Figure 15. For the purpose of this 
investigation, we developed a simple piecewise linear approximation to the probability of 
detection curve with no interfering speech. This approximation was used to simulate 
target detections. 

E =
a
d
+ c
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Figure 15: PD and PFA in the presence of interference 

Both the 1 bit (detection-based) and energy trackers were implemented, and each 
tracker’s performance was evaluated. In the simulation, 36 motes were placed in a 6x6 
grid with 2 m spacing. The target moved across the mote grid as shown in Figure 16. 
Target observations are obtained once each second. Both trackers used 4,000 particles. A 
constant velocity target model is used. Average mean squared error (MSE) was computed 
for both the trackers over 100 Monte Carlo simulation runs. The tracked trajectory and 
the tracker MSE over time for the 1 bit tracker and energy tracker is shown in Figures 17 
and 18, respectively. 
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Figure 16: Sensor grid with target trajectory; the grid spacing is in meters. 

It can be observed that the MSE for the 1-bit tracker is typically 2-3 times larger 
than the MSE for the energy tracker. This is because there is significant variation in 
received energy for footsteps at a given distance, so the relationship between distance and 
energy is not strongly informative. The probability of detection decreases rapidly at 14-
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18 feet, so a dense grid of detectors can localize a target fairly well as long as several 
sensors are used.  
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Figure 17: 1-Bit Tracker Performance 
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Figure 18: Energy Tracker Performance 

Refining the On-Mote Footstep Detector 
Occasionally, the footstep detector would give multiple detections in a single 

footstep. This is due to multiple peaks in the received acoustic energy which may be due 
to the following reasons: 

a) Heel strikes first, then toe 
b) Reverberation in enclosed space.  
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Such a situation is demonstrated in Figures 19 and 20. The segment marked in red in 
Figure 19 is shown zoomed in Figure 20 to show how a single footstep can have multiple 
peaks and can thereby cause multiple detections. 
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Figure 19: Footstep data at 2 feet from sensor 

The footstep detection logic was extended to not record a second detection when 
two threshold exceedances occur quickly in succession. Instead, a check is performed on 
whether the energy value remains below a threshold for a certain number of times. This 
extension reduces the false alarm due to multiple detections. 
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Figure 20: Zoomed version of a single footstep 

Tuning the Particle-Filter Based Tracker  
For the demonstration, Raytheon has developed a graphical user interface that 

allows data to be collected from the motes and processed by one of several different 
trackers. One of the trackers is a particle filter tracker, developed by extending an 
algorithm originally developed at ASU in 2003. It was observed that this tracker did not 
give good performance, and so some time was invested in tuning this algorithm for the 
motes. The complex model for the probability that a detection is returned (i.e., the 
observation is one) as a function of the target/sensor distance in the original algorithm 
was replaced by a piece-wise linear function that is parameterized by the following four 
values as shown in Figure 21:  
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pd The probability that a target close to the sensor is detected. 
pfa The probability that the sensor gives a detection and no target is close to 

the sensor. 
pd_dist The maximum target distance at which the probability of detection is pd. 
pfa_dist The minimum target distance at which the probability of detection is pfa 

(i.e., minimum distance at which the target is not likely to be detected). 

 
Figure 21: Probability of a detection as a function of sensor/target distance. 

In the original tracker, particles that fell outside of the sensor field were not 
eliminated. If they are not eliminated, then fairly early in the simulation, most of the 
particles become located outside the sensor field, which makes it impossible for the filter 
to track the target. The reason this happens is that particles outside the sensor field are 
neither confirmed nor denied by sensor observations, so most of them survive 
resampling. The simulation was modified so that particles that fall outside the sensor field 
were given a weight of zero, which means that they are never resampled. 

In the original tracker, the velocities of initial particles were too large; they could 
have magnitudes up to 60 m/s. The maximum initial velocity was limited to 1 m/s. The 
process noise matrix did not account for the variable time between observations; when 
the time between observations is large, the entries in process noise matrix should be 
larger. It was updated to use the process noise matrix structure for a nearly constant 
velocity model. 

The sensor activation algorithm was modified to use the error variance of the 
predicted particles, so the sensors are activated at the locations where the target is 
predicted to be, not at the estimated target location at the time of the last observation. 
This allowed the factor that is used to compute the radius of the circle inside which 
sensors are turned on to be decreased. 

2.A.3.3. Application Programming Interface Development 
In previously reported work, we have developed a particle filter based tracking 

algorithm for tracking varying number of people from video sequences obtained from an 
imager. In the current work, we have interfaced this tracker with the ST imager using the 
image hardware/emulator API supplied by Georgia Tech. The tracking code requires the 
computation of a weighted sum of pixels from a specified block of the image; the 
weighting function is either Gaussian or Mexican hat. We have formulated this operation 
for the matrix operations of the Georgia Tech imager. Computing the sum of the Mexican 
hat weight requires some post processing of the values read from the imager. On the other 
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hand, computing the sum of the Gaussian weight can be done entirely by the imager 
because the Gaussian weight matrix can be expressed as an element wise product of two 
vectors. The tracker using the imager API was evaluated using several test video 
sequences to verify that the API integration was correct. 

2.A.3.4. Non-myopic Sensor Scheduling 
In previously reported work, we have developed myopic sensor scheduling 

policies for a network of bearing sensors consisting of the regular measurement acquiring 
sensor nodes and multiple measurement fusing leader nodes (which also hold the target 
state belief) as shown in Figure 22. In this reporting period, we have extended this work 
to non-myopic scheduling for the problem that we call the Leader Node Scheduling 
(LNS) problem. This problem is tracking a target in a distributed sensor network 
consisting of bearing sensors nodes and leader nodes that fuse the target originated 
measurements acquired by the sensor nodes. The scheduling problem was formulated as a 
constrained optimization problem where the sensor usage and communications cost over 
the planning horizon are optimized subject to tracking error constraints for each planning 
step. The search for a sensor schedule that obtained a leader node and a subset of sensor 
nodes at each planning step was then obtained using efficient search strategies. We 
structure this entire constrained problem as an Integer Non-linear Programming (INLP) 
and solve it using outer approximation (OA). 

 
Figure 22: Leader node scheduling problem scenario 

The plot of running average energy in Figure 23 for planning horizon lengths 
M=1 and M=3 clearly shows the superior performance of the NMSS policies over 
myopic policies. This superior performance is achieved by transferring the target state 
belief to another leader node if doing so results in accrual of better sensor energy usage. 
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Figure 23: Running average energy (RAE) as a function of time 

We have also applied integer non-linear programming to the problem of sensor 
scheduling for a dense sensor network that consists of acoustic sensor nodes that have a 
usage and start-up cost; this network has a single fusion center. We call this problem the 
Central Node Scheduling (CNS) problem. Here we minimize the total predicted tracking 
error over the M step planning horizon subject to sensor cost constraints. The sensor costs 
stem from sensor usage and activation costs, where the activation costs are greater than 
usage costs. We again formulate the problem as an INLP problem and solve it using OA. 
Figure 24 shows the MSE plot and Figure 25 shows the sensor cost for different 
scenarios. In these figures, SCC denotes strong cost constraints that incorporate sensor 
activation costs and WCC denotes weak cost constraints for which the sensor activation 
cost is set to zero. T denotes the execution horizon length. These plots clearly illustrate 
the advantage of achieving cost efficient strategies for sensors having start up costs at the 
expense of only a slightly poorer MSE performance as is seen for M=10, T=3 for SCC 
and WCC cases.  

 
Figure 24: MSE plot for the central node scheduling problem 
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Figure 25: Sensor cost for different scenarios in the central node scheduling problem 

 
2.A.4. Distributed Mote Tracker Support 
2.A.4.1. Tracker Test Bed and Test Site 

One of the goals of ISP II was to complete a multi-sensor test bed to test on-mote 
detection algorithms and on-processing-station tracking algorithms. Our test bed (show in 
operation in Figure 26) is also capable of running multiple tracking algorithms on several 
processing stations.  

 
Figure 26: Raytheon Distributed Tracking Test Site 

In terms of the hardware, the test bed consists of MICA2 Motes equipped with a 
multi-sensor board, and a Mobile PC as a Processing Station. The software used for the 
test bed is TinyOS for programming the motes, java for handling the interface between 
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the serial data of the RS-232 and MATLAB, and MATLAB scripts for the trackers. 
Referring to Figure 27, each mote has its flash memory partitioned by Deluge in 6 
different partitions. Deluge is a UC Berkeley application that formats the flash and 
programs the remote sensors by epidemic propagation. For our demo four partitions or 
applications were used:  Golden Image, Distributed Weighted Multi-Dimensional Scaling 
(DWMDS) localization, Beeper Detector, and Footstep Detector. The Golden Image is a 
safety application so that in the event an application fails to execute, one can always gain 
control of the remote sensor or mote. The DWMDS is the algorithm used for self-
localization provided originally by the University of Michigan; for data this algorithm 
uses the Receiver Signal Strength (RSS) from each mote. The Beeper Detector and 
Footstep Detector detect a beeping signal of approximately 4 KHz, and a footstep like 
signal, respectively. The Beeper Detector was provided by Vanderbilt University, and the 
Footstep Detector was provided by Arizona State University. Each MICA2 mote 
transmits its radio signal to a Base Station mote which is connected to a Processing 
Station via a serial buss (i.e., RS-232). The received data packets from the RS-232 are 
handled by the Gateway.  
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Figure 27: Raytheon ISP Test Bed 

The Gateway consists of a SerialForwarder, a Listen application in java, and a 
RemoteControl application also in java (c.f., Figure 28). The SerialForwarder forwards 
the packets from the serial port to a server port connection so that other programs can 
communicate with the sensor network via a Base Station. The Listen application captures 
the messages arriving at the Base Station and prints them on the Processing Station (i.e., 
laptop) screen, and the RemoteControl sends commands to the motes to reboot into a 
different partition or application, or change application parameters. 

The parsed data from the Gateway is collected into Buffers or Files where they 
are read real-time by the MATLAB Graphical User Interface (GUI) (c.f., Figure 29). The 
GUI is launched at the MATLAB command prompt by typing ISPgui. The user using this 
GUI can control the functionality of the ISP Multi-Sensor Test bed. 
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Figure 28: Gateway Overview 

The user through the GUI can give a descriptive name to his/her experiment 
which become part of filenames for the movie and playback file. Furthermore, in Live 
Mode the user can either the Beeper Detector or the Footstep Detector.  
 

 
Figure 29: ISP Phase II Test Bed MATLAB GUI 
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Also, the user has four choices for the trackers: Virtual Measurements (VM), Unscented 
Kalman Filter (UKF), Particle Filter (PF), and None. The VM and the UKF were both 
provided by the University of Melbourne, and the PF was provided by ASU. The None 
option is used if the user wants only to collect the data from the detectors, and then run 
the tracker offline through the playback files. The Create Movie option can be chosen if 
one desires to save the results of the trackers in a movie file (i.e., AVI file). The Test 
Mode has two mutually exclusive options:  Live or Playback. The Live option can only 
be selected in the presence of the MICA2 motes. Also, this option reads the incoming 
detections real-time, time stamps the detections and saves them into a Playback file. 
Furthermore, when the Live option is selected, the user can enter the amount of Runtime 
in seconds that he/she wishes to run the tracker and/or collect data. The Playback option 
is chosen for playing back offline the detections through the tracker. The Browse button 
is used so one can choose the detection file or the playback file depending if Live Mode 
or Playback Mode was chosen. 

As for the Sensor Location, one can select either Actual or Estimated. The Actual 
option refers to the true location of each sensor, while the Estimated option refers to the 
estimated location of each sensor from localization algorithms such as the DWMDS, 
RIPS, or the Acoustic Ranging. The Browse button is used to select the file containing 
the location of the remote sensors. The area at the bottom of the GUI entitled Filed to be 
used (c.f., Figure 29) summarizes the selections that the user has selected. Once the OK 
button is clicked, the GUI executes a tracker with all the desired user’s selections. 

2.A.4.2. Mote Localization Evaluation and Results 
The localization of the sensors was accomplished using the DWMDS provided by 

the University of Michigan in conjunction with Neal Patwari. The DWMDS is applied 
onto the Received Signal Strength data from each mote. Basically, each mote transmits a 
signal in a particular power in 16 different frequencies; every receiving mote records the 
RSS. Because the signal strength decreases as 1/r2 where r is the distance between the 
transmitting and receiving motes, one can calculate the distance using this propagation 
model. Once all the data is collected and its dimensionality is reduced using the 
DWMDS, the locations of all the motes are estimated. The disadvantage of this technique 
is that it doesn’t scale well because each mote keeps a table of all the RSS of every mote 
and every frequency. Many experiments were conducted by Neal Patwari and Raytheon, 
and it was found that this technique estimates the location of each sensor with an 
approximately 0.5 meter MSE. A representative experiment is show in Figure 30 where 
16 MICA2 motes were placed at 3 meters apart, and the anchor motes (nodes with known 
locations) are nodes 1 through node 4. 
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Figure 30: Sensor Localization using DWMDS 

2.A.4.3. Tracker Evaluation and Results 
In this section, the results of all three trackers are presented with two different 

targets. The trackers used in our demo are the PF, VM, and UKF, while the targets are the 
Beeper and the Footstep. The Beeper target is a human walking through the motes field 
with a Beeper in his hands which emits a beep every three seconds. The Footstep target is 
also a human walking through the motes field except that the detector on the individual 
mote is tuned to detect footstep-like sounds (i.e., impulsive sounds of a certain duration). 

The Particle Filter Tracker 
Particle Filters are usually used to estimate Bayesian models and are analogue to 

the Markov chain Monte Carlo (MCMC) batch methods. With sufficient particles or 
samples, they approach the Bayesian optimal estimate. Because they need a large number 
of particles, they tend to be computationally intensive hence slow. A representative 
experiment using the PF for a beeping target is shown in Figure 31. In this experiment, 36 
motes were used, and they were 10 meters apart in the x and y direction. The color tracks 
of Figure 31 are as follows. The magenta track represents the true track of the target 
while the blue and the red track are the PF estimated track. Furthermore, the blue track 
was estimated using all sensors (i.e., all sensors were active), while the red track was 
estimated using fewer sensors. The number of active sensors for the red track was 
determined by the quality of the estimated track during the run. This means that a high 
quality estimate conserves resources, thus, fewer motes are needed to be active, and a low 
quality estimate consumes more resources needing more active motes. Therefore, the 
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objective is to maintain the overall performance of the tracker with fewer resources. This 
feedback or control mechanism between the tracker and the sensors represents the 
philosophy of the ISP Program. Figure 31 shows that the red track and the blue track 
perform similarly. We would like to point out that the actual sensors of our demo were 
never turned off (deactivated), but the detections of the sensors marked deactivated were 
discarded. This is similar to deactivating a sensor without the extra TinyOS code needed. 
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Figure 31: Particle Filter tracker tracking a beeping target 

The next experiment is similar to the previous one except that the target is a 
footstep rather than a beeping target (c.f. Figure 32). The performance of the red (with 
feedback) and blue track (without feedback) is similar, once again demonstrating that 
similar performance can be achieved with fewer resources. However, the estimated tracks 
differ a lot from the true track (magenta). This is due to the footstep detector. This 
detector doesn’t perform as well as the beeper detector due to the higher false alarm rate. 
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Figure 32: Particle Filter tracker tracking a footstep target. 

The Virtual Measurement Tracker 
The VM tracker is based on the Kalman Filter. The results are similar to the PF 

tracker; however, it seems to be more sensitive to false alarms. Once again, 36 motes 
were used for this experiment, and they were 10 meters apart in the x and y direction. The 
color tracks of Figure 33 are as follows. The cyan track is the estimated track using the 
VM tracker, and the magenta track is the true track of the target. The cyan track was 
computed using all sensors. Due to the lack of time, the feedback mechanism between the 
tracker and the sensor in order to use fewer resources was not implemented. The VM 
tracker performed well in tracking the beeping target. On the other hand, the performance 
of this tracker degraded more than the PF tracker when the footstep detectors were used. 
The reason is because the footstep detector filters out less false alarms and the VM 
tracker appears to be more sensitive when many false alarms are present. The 
performance of the VM tracker in the presence of a footstep target is shown in Figure 34. 
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Figure 33: Virtual Measurement tracker tracking a beeping target 
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Figure 34: Virtual Measurement tracker tracking a footstep target 
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The Unscented Kalman Filter Tracker 
The UKF tracker is also based on the Kalman Filter. It uses a deterministic 

sampling technique to pick a minimal set of sample points around the mean. It is a very 
fast algorithm, and it performs well. Once again, 36 motes were used for this experiment, 
and they were 10 meters apart in the x and y direction. The color tracks of Figure 35 are 
as follows. The green track is the estimated track using the UKF tracker, and the magenta 
track is the true track of the target. The green track was computed using all sensors. Due 
to the lack of time, the feedback mechanism between the tracker and the sensor in order 
to use fewer resources was not implemented. The UKF tracker performed well in tracking 
the beeping target. This tracker didn’t perform as well with the footstep target. The 
reason is because the footstep detector filters out fewer false alarms. The performance of 
the UKF tracker in the presence of a footstep target is shown in Figure 36. 
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Figure 35: UKF tracker tracking a beeping target 
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Figure 36: UKF tracker tracking a footstep target 

Conclusion 
The ISP Multi-Sensor Testbed proved to be a very useful tool in testing some of 

these ISP algorithms. Our challenge was mostly with the motes as they are difficult to 
program. However, we were successful in integrating all the parts for the testbed. 
Unfortunately, due to the lack of time, only the PF tracker had the ability to deactivate 
sensors. However, it was enough to show that performance didn’t degrade with fewer 
active sensors, and resources were conserved. This was the objective of the ISP Program. 

2.A.5. Scheduling of Multiple UAV Platforms for Passive Geolocation 
2.A.5.1 Introduction 

The late Professor George Dantzig [15] of Stanford “is generally regarded as one 
of the three founders of linear programming, along with von Neumann and Kantorovich.” 
As Dantzig reminisced in [16]: “In retrospect, it is interesting to note that the original 
problem that started my research is still outstanding---namely the problem of planning or 
scheduling dynamically over time, particularly planning dynamically under uncertainty.” 
His statement remains an accurate depiction of the difficulty of our scheduling problem, 
particularly in its most general manifestations. 

For this reason, we proceed in a step-by-step fashion, considering first some 
simpler problems and then gradually increasing the level of difficulty to more realistic, 
militarily significant problems whose solutions have practical applications. This 
progression to greater complexity occurs along several paths, e.g., (1) from 2D to 3D 
spatial geometries, (2) from problems with static targets to constant velocity targets and 
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ultimately to arbitrarily maneuvering targets, and (3) from single target to multiple target 
scenarios. As the problems grow in difficulty, the algorithmic solution procedures trend 
in these directions: from analytic to numerical solutions, from closed form to 
approximate solutions, and from polynomial time solutions of complexity class P type 
problems to heuristic solutions of NP-complete type problems.  

2.A.5.2 The TDOA Problem 
Much previous work has already been done on this problem, c.f., references [17] 

[18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32]. This set of 
papers covers a wide spectrum of variations in this problem area, ranging from geometric 
setting (2D or 3D), to solution techniques (e.g., direct, closed form, linearized or 
iterative), to physical assumptions (e.g., number of emitters, etc.), and even the 
possibility of transforming a TDOA problem (with hyperbolic constraint equations) to a 
TOA problem (with easier-to-solve spherical constraint equations). This latter possibility 
occurs when the sensor constellation is numerous enough. Invariably, however, despite 
their overall high quality, some misconceptions have crept into these works. One such 
example is the stated number of sensor measurements that are required to compute a 
unique target location in certain geometric scenarios. This just emphasizes the need for 
‘always active’ critical thinking on the part of the reader. 

The simplest scenario examined below is the 2D planar problem of using four 
sensors, with known locations, to determine the location of a single target emitter. 
Although simple, it is an important building block for more complicated modeling 
scenarios. Arrival times of an emitted target signal pulse are recorded by the four sensors 
and differences of these measurements are recorded as TDOAs. These TDOAs form 
constraint equations and determine hyperbolas in the plane. The site where these 
hyperbolas intersect marks the target’s location. As can readily be seen from the example 
scenario portrayed in Figure 37, the usage of only three sensors is, in general, insufficient 
to uniquely specify a target’s location; hence our basic problem of target position 
estimation is formulated with four sensors, to remove the possibility of ambiguous 
solutions. 

Our basic “four sensor plus target” analysis scenario includes four sensors located 
at the corners of a square while the target is presumed to be somewhere in the square’s 
interior (Figure 38). This latter presumption, however, is not an absolute requirement; 
useful target locations outside of the square are also very computable, with the caveat of 
larger error bars. Similarly, the requirement of a square pattern of sensor locations may 
be significantly relaxed; the software handles general coordinate inputs. Time of Arrival 
(TOA) measurements are recorded at each sensor; from these four timing data points, a 
variety of TDOA measurements associated with pairs of sensors may be calculated by 
simple subtraction. In passive geolocation problems, it is the latter (more indirect) 
quantities that one must work with to derive the estimated target location. 
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Figure 37: Target location ambiguities arise when using only three sensors (the black 
squares labeled by: F1, F2 and F3). Three colored hyperbolic envelopes are shown, 
corresponding to the three pairs of focal points. Two solution regions are shown; these 
intersection regions are located near the points: (x~160,y~120) and (x~280,y~80) 
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Figure 38: Four sensors (S1 through S4) plus a target (T) in a square geometry 

Figure 39 shows the choices made in a commonly used approach for solving the 
hyperbolic constraint equations. In this approach, a common baseline time point is chosen 
(in this case, the measurement time at sensor S1) and time differences are only calculated 
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between this ‘base’ time and the corresponding time measurements obtained at all of the 
other sensors: S2, S3 and S4. 
 S3 S4

S1 S2
 

Figure 39: Green lines indicate three TDOA hyperbolic constraint pairs 

Figure 40 shows the choices made in our better approach to solving the 
hyperbolic constraint equations. Here, all possible time differences are calculated 
(between all possible pairs selected from the four sensors). There are six such pairs, 
portrayed as three red and three blue lines in the figure. 

 S3 S4

S1 S2
 

Figure 40: Red and blue lines (three each) indicate a total of six TDOA hyperbolic 
constraint pairs. 

In our analysis several novel features are involved, so a discussion with relevant 
details is provided here. It starts with a generic description of the hyperbolic constraint 
equation.  
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The hyperbolic constraint equation is completely described by the following 
quantities: 

Sensor (focal) points F1 and F2 with coordinates (x1,y1) and (x2,y2), together with 
arrival times t1 and t2, respectively. The target point T has coordinates (x,y). The 
hyperbolic constraint equation is then given by: 

)(),2(),1( 21 ttcTFdistTFdist −=− . 

The locus of points T satisfying this equation lies along one branch of a 
hyperbola. The target lies somewhere along this curve. To obtain a closed-form solution 
to a pair of such hyperbolic constraint equations, the following manipulations are 
performed individually, on each of the distinct hyperbolic constraint equations. 
(Auxiliary parameters are introduced as needed, by context.) 

Rewriting the above hyperbolic constraint equation, one has: 
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After squaring both sides of the above equation, one obtains: 
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After defining new auxiliary parameters: 
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Squaring both sides of the equation again yields: 

 

)22(

222
2

2
2

2
2

2
2

2
2

12

2
1212121212

22
121212

22
12

yyyyxxxxd

cycbxcaybxybaxa

+−++−

=+++++
 

 
Collecting like terms, one finally obtains this second degree polynomial in x and y: 
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where the upper case parameters are defined by: 
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Thus, each hyperbolic constraint equation is ultimately reducible to the following form: 
 

022 =+++++ FEyDxCyBxyAx . 
 

With two such equations, obtained from two different constraint hyperbolas, 
linear combinations of them may be taken so as to remove either the x2 term or the y2 
term. Then, after appropriate back substitutions into the original equations, two quartic 
(i.e., 4th degree) polynomial equations in x alone and in y alone are obtained. These 
equations are solvable in closed form. Because multiple squarings of equations have 
occurred in this algorithmic procedure, however, extraneous false solutions (roots) may 
have been introduced; these must be eliminated. 

The false root removal procedure is a simple one: eliminate all but the best 
solution. The sixteen pairs of (x,y) target location solutions (the Cartesian product derived 
from all four roots of the quartic equation in x, in combination with all four roots of the 
quartic equation in y) are substituted in all six of the hyperbolic constraint equations: 
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Then, a combined figure of merit Qk is computed for each of the 16 potential 

target locations Tk: 
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The best estimate for the target location is the one that best fits all six (or only 

three) of the original TDOA equations (in a least squares sense). 

Find the k value where the figure of merit Qk is smallest. Then the best estimate 
for the target location is given by the (x,y) coordinates corresponding to Tk. 
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How are the second degree polynomial equations in x and y narrowed down to 
only two? These are the polynomial equations of the form: 

022 =+++++ FEyDxCyBxyAx . 
 
One way uses all six of the hyperbolic constraint equations. 

From Figure 37, the following three “red” hyperbola equations are added together: 
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and the following three “blue” hyperbola equations are added together: 
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Note that in Figure 40, the zigzag patterns were chosen so that the combined three 
“red” hyperbolas and the combined three “blue” hyperbolas would minimize the 
probability of degenerate situations occurring. (For example, if the four focal points (of 
two independent hyperbolas) were “parallel”, and the time delays were “just so”, then it 
is possible that a degeneracy occurs and coincident asymptotic lines could be valid 
solution sets. This is not good, and would require special handling.) 

As a second option (a poorer choice, as will be shown in Figure 41) one may 
combine only three of the hyperbolic constraint equations. 

From Figure 39, the following two hyperbola equations are added together: 
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In both of the two optional approaches above, the resulting two summed 
equations are then processed via the above algorithm to obtain an excellent initial guess 
for the target location. 

Two or three root “polishing” iterative steps are the last ones required to improve 
the target location estimate. As a byproduct of this analysis procedure, one also obtains 
information about the target position covariance matrix. The figure of merit parameter, Q, 
is minimized with respect to changes in the (x,y) coord-inates of target location T; the 
summation runs over the number of hyperbolas (6 or 3): 
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Newton-Raphson iterations are used to drive Q to its minimum value (by 

definition, at this extremum point: ∂Q/∂x=0 and ∂Q/∂y=0). The iterative equation for 
updating the (x,y) solution points is: 
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Although the problem is nonlinear, only two or three iterations are typically 
needed before machine precision convergence is achieved. This behavior is typical for 
elliptical paraboloid quadric surfaces, such as z = Q(x,y), especially when the initial 
solution guess is close to the true solution. 

The Hessian matrix is the symmetric 2-by-2 matrix appearing in the above 
iterative equation. By computing its inverse, one obtains (up to a constant scale factor) 
the covariance matrix of the measurement errors in the target location coordinates x and 
y. 

Results for this algorithmic approach are given Figure 41. It shows the relative 
performance of the two ways of computing target locations in this simple scenario. 

The four sensors that collect the TOA information are located at the corners of the 
blue unit square. The ellipses are centered on the ‘decile’ grid points of the target 
locations---the 121 ‘decile’ points of the unit square, minus the four corner points. The 
distances of the ellipses from their central target points have all been scaled downward 
for uncluttered plotting purposes. Note that the blue ellipses always lie within the red 
ellipses, and they localize the target locations much better than the red ellipses, especially 
in the lower left corner. Finally, the blue ‘error bars’ obtained from using all 6 TDOA 
constraints are quite consistent in both size and shape (nearly circular) throughout the 
interior of the region defined by the four sensors. This is quite useful when processing 
time-evolving scenarios with the unscented Kalman filter (UKF). 
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Figure 41: Plot of target position covariance ellipses for the basic scenario, obtained in 
two ways. The blue ellipses are computed from all 6 hyperbolic TDOA constraints, while 
the red ellipses are computed from only 3 such constraints (i.e., TDOAs between sensors 
located at 0,0 and 1,0; 0,0 and 0,1; and 0,0 and 1,1) 

In summary, Figure 41 is a dramatic confirmation of the benefits of fully using 
the information contained in the four TOA measurements, i.e., fitting all 6 hyperbolic 
equations containing the TDOA information. Reducing the size of the covariance ellipses 
for estimated target positions is important because the covariance matrix elements are 
input parameters to the filtering algorithm and, in general, the smaller they are, the less 
noisy the estimation process for target location will be. An additional side benefit is that, 
for the same error budget, measurements and analysis will potentially need to be 
performed less frequently. 

2.A.5.3 The Sensor Scheduling Problem 
Using computational tools such as the unscented Kalman filter and its various 

aliases ([33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45]) and approaches 
such as Partially Observable Markov Decision Processes ([46] [47] [48] [49] [50]), 
enables analysts to try out novel ideas for solving the sensor scheduling problem of 
efficiently directing multiple UAVs for passive geolocation ([51] [52] [53] [54] [55] [56] 
[57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67]). More exotic methods and some 
survey papers are found in ([68] [69] [70] [71] [72] [73] [74]); these include such topics 
as coverage in sensor networks via homology concepts. 
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2.A.6 UniMelb Technical Progress 
2.A.6.1 Passive Geolocation Resource Allocation 
Introduction 

This research investigates resource allocation with geolocation of stationary 
emitters, using passive sensors located on airborne vehicles (UAVs or manned aircraft, in 
further text the generic term UAVs is being used). Emitters may be surveillance radars, 
where the UAVs receive radar pulses either when they are in the main antenna beam, or 
in the antenna sidelobes; they may also include mobile communication devices.  

The chosen method of geolocation is the time difference of arrival (TDOA) of 
emitter pulses to individual sensors. Possible resources to allocate include: number of 
UAVs, communication resources, computational resources, choice of received pulses to 
process (data association), UAV trajectories, etc. The resource allocation problems 
increase dramatically with the number of UAVs, especially in the usual situation of 
limited communication bandwidth and limited computational resources available onboard 
the vehicles, against a background of high frequency of pulses emitted. A large number 
of emitter pulses arrive to each sensor, with a certain probability of detection. The 
number of possible combinations of received pulses, one per sensor, which need to be 
investigated to determine a correct combination, grows combinatorially with the number 
of the sensors. Required communication resource (transmission bandwidth) grows 
linearly with the number of sensors. 

A previous report investigated proof of concept of achieving TDOA emitter 
geolocation using only two UAVs. Use of two UAVs greatly reduces the communication 
and computation burden. Instead of all UAVs broadcasting information of all their 
received pulses to a data fusion center, with considerable computational facilities, only 
one UAV can broadcast information to surrounding UAVs. Tracking and geolocation can 
be performed using relatively simple algorithms onboard one of the receiving UAVs. In 
the work reported, the problem was simplified by assuming no data association problem. 
We have optimized one resource – number of required UAVs, and also minimized the 
communication and computational resources necessary.  

In this report, we further this approach by assuming Data Association issues, and 
the resource to be optimized is the choice of received pulses to process. In a common 
situation, one emitter pulse received on UAV number 1 (UAV#1) can be associated with 
multiple pulses on UAV#2. Using advanced target tracking techniques, the probability of 
each received pulse is calculated, and its contribution incorporated in the emitter location 
estimate. In effect, the pulse probability becomes the cost function. Once that emitter 
location uncertainty has been reduced, UAV#3 can be chosen to further (dramatically) 
reduce the emitter location estimation error.  

Problem Statement 
Emitter location uncertainty when using TDOA measurement from two UAVs, 

and with one pulse from UAV#2 being associated with four pulses from UAV#1 (c.f., 
Figure 42). The emitter position uncertainty is shown to be four hyperbolae depicted 
[75].When using three UAVs, assume that the central UAV, UAV#2 does the tracking, 
and that UAV#1 and UAV#3 broadcast their measurements towards UAV#2. Further 
assume that each received pulse of UAV#2 can be associated with 4 pulses received by 
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UAV#1 and 4 pulses received by UAV#3, assuming of course that they are able to obtain 
measurements simultaneously. 

 

 
Figure 42: Emitter position uncertainty. Two UAVs, four pulse uncertainty 

In that case (c.f., Figure 43) the emitter measurement uncertainty is at the intersections of 
the four uncertainty hyperbolae obtained using TDOA measurements between UAV#1 
and UAV#2 (red hyperbolae) and the four uncertainty hyperbolae obtained using TDOA 
measurements between UAV#2 and UAV#3 (blue hyperbolae). Even without 
measurement noise, we have multiple candidates for emitter location (7 in this case), and 
further UAVs are usually required [76] [77]. 

 

 
Figure 43: Emitter position uncertainty. Three UAVs, four pulse uncertainty 
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Solution 
To get rid of emitter location uncertainty, we integrate the measurement 

uncertainty over a number of emitter pulses. A small number of emitter pulses are used 
by UAV#1 and UAV#2 to reduce emitter location uncertainty to a relatively small region, 
resolving the Data Association problem. Then the UAV#3 can be chosen to best decrease 
the emitter location estimation error by using TDOA measurements between UAV#2 and 
UAV#3. 

We first represent the measurement uncertainty, as depicted in Figure 43, by a 
Gaussian sum [78, 75]. Each hyperbola shown in Figure 43 is not a line, but, due to the 
time errors or TDOA measurement noise, has width which increases almost linearly with 
the distance from the center of the two UAVs – Figure 44. This hyperbola area is divided 
into segments, and each segment is approximated by one Gaussian pdf. Thus the 
measurement in each scan is a sum of (Gaussian) components.  

  

 
Figure 44: One hyperbola, measurement uncertainty presentation 

These measurements are used to initialize and update track, which is an estimate 
of the emitter location. The track is a simplified version of Integrated Track Splitting 
(ITS) filter [79, 78, 75], and consists of a number of components. Each track component 
is a Gaussian pdf which represents the emitter location uncertainty, given a sequence of 
measurement components. Each track component is defined by Gaussian pdf parameters 
(mean and covariance), as well as by a relative probability that the component 
measurement history is correct.  

The number of track components grows exponentially in time, and they must be 
maintained to an acceptable level. A number of sophisticated approaches to track 
component number reduction have been published [80], however we here use only simple 
track component pruning, whereas only the components with highest relative 
probabilities are retained [81]. 

Numerical Results 
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We consider the situation depicted in Figure 44, with 3 UAVs. The emitter (radar) 
is located at coordinates (20km, 20km), and the starting position of the three UAVs are 
(80,57)km, (96,55)km and (112,50)km. The UAVs travel at the constant speed of 
300km/h in the southerly direction. The emitter is a surveillance radar operating in a high 
PRF mode of 37.5 kHz, which translates to wavefronts 8 km apart. Thus each pulse 
received by UAV#2 can associate to 4 pulses received by UAV#1 and 4 pulses received 
by UAV#3. Time measurement errors between two UAVs are assumed to be Gaussian 
distributed with rms error of 5m, independent from measurement to measurement. 

Not every TDOA measurement set is processed; the TDOA measurements which 
are used are separated 5.5 ms each, to allow for computational delays. Better results will 
be obtained by integrating all available TDOA measurements. First 5 TDOA 
measurements are taken from UAV#1 and UAV#2, and Figure 45 depicts the estimated 
emitter location uncertainty region of the highest probability track components after 
integrating the 5th TDOA measurement. 

 

 
Figure 45: Highest probability track component uncertainty after 5 TDOA measurements. 
Units are in km. 

We assume that at that point TDOA measurements taken from UAV#2 and 
UAV#3 become available. The ITS tracking filter successfully integrates this additional 
information, which decreases the estimated emitter location uncertainty region 
dramatically, as shown in Figure 46. RMS estimation errors are shown in Figure 47, also 
showing emitter location estimation error decrease at point k=6, when the first TDOA 
measurement from UAV#2 and UAV#3 is integrated. 
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Figure 46: Highest probability track component uncertainty after 6 TDOA measurements. 
Units are in km 

 

 
Figure 47: RMS estimation errors over number of TDOA measurements. 
Ordinate units are in km 

Conclusions 
In this report, passive emitter geolocation using TDOA measurements, with UAV 

based sensors has been investigated, with a view to minimize and / or optimize resources. 
Both communication and computation resources have been minimized by using time 
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measurements from only two UAVs at a time. Data Association (pulse allocation) has 
been achieved by using Data Association probabilities obtained by sophisticated track 
updates. This scheme can easily integrate additional time measurements from the third 
UAV to significantly reduce emitter location estimation errors.  

A further work may include uncertain detection of individual pulses by individual 
sensors (probability of detection) and/or clutter measurements. It is anticipated that using 
more complete version of the ITS target tracking filter, as described in [78] will take care 
of both of these issues in a straightforward manner. An effort into establishing the 
robustness and the probability of track convergence of the proposed scheme is also 
advised.  

2.A.6.2 Unscented Kalman Filter 
The results of applying the UKF detection and tracking algorithm to real data are 

shown in Figure 48. The true target trajectory is indicated by the red solid line and the 
green dotted line is the filter’s estimate of the position of confirmed detected targets. It 
can be seen that the UKF quickly detects the target and accurately tracks it. No false 
detections are made. 
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Figure 48: Detection and tracking using the UKF with real data: (a) data file 
20070422205553_10m_test1, (b) data file 20070422205553_10m_test2. The red solid 
line is the true target trajectory. The green dotted line is the estimated trajectory of any 
confirmed targets. 

To obtain the results shown in Figure 48 the returns from all sensors were used in 
the tracking algorithm. In fact it is not necessary to use all sensor returns. Accurate 
tracking can be achieved using returns from a subset of returns located about the 
estimated target position. Let yk = [yk,1,…,yk,m] denote a collection of sensor returns, 
where m is the total number of sensors, and let ya:b denote the sensor returns collected at 
times a,…,b. Here we select the set 

{ } ( ){ }Λ>=∈= −1:1, |1:,1 kjk yymjD PK    (1) 
where Λ is a pre-defined threshold. The probability of a sensor returning a detection 
cannot be computed exactly but can be approximated with reasonable accuracy using the 
unscented transformation. The size of the set D will tend to increase as the uncertainty in 
the target position increases. Thus the algorithm will adaptively select an appropriate 
number of motes as the accuracy of the state estimate varies. Figure 49 shows the results 
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of applying the criterion for Λ = k Pfa, where Pfa is the false alarm probability, with k = 
25, 210, 215 and 220. Note that the results of Figure 48 correspond to Λ = Pfa. The average 
number of sensors used in the various cases are 12.0 for k=25, 10.0 for k=210, 7.6 for 
k=215 and 4.1 for k=220. It can be seen that the tracking algorithm responds well to 
decreases in the number of sensor returns used. There is no discernible difference in 
performance for values of k<=215. For k=220 the algorithm initially loses track of the 
target but then recovers and tracks with the similar accuracy to that achieved for the 
smaller values of k.  
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Figure 49: Tracking results with a restricted number of sensors. The criterion of equation 
(1) is used with Λ = k Pfa where (a) k=25, (b) k=210, (c) k=215 and (d) k=220 
 

2.A.6.2 Virtual Measurement Tracker 
The Virtual Measurement (VM) multitarget tracker has been integrated into 

Raytheon tracker testbed software package. The package comes up with some real data 
obtained by using two types of sensors on board of a mote. By playing with the data 
available we may see:  

• With a high SNR threshold, sensor detection sequence is just a sequence of single 
activated (including null activated) mote index. In this case, the VM tracker acts 
just like an activated mote follower of natural choice.  



ISP Phase II (Contract N00014-04-C-0437) 
Final Technical Progress Report (CDRL A004 No. 1) 

 

 58

• In the case of low SNR or higher detection sensitivity, multiple motes can be 
activated from a single scan. However, higher false detection rate can be observed 
such as those data from the detection of footsteps. 

• As no ground truth is available, we cannot make a reasonable performance 
comparison rather than see how smooth and close the estimated position 
trajectory is to the true trajectory. 

In this report, we compare the tracker performance by using different parameters which 
can be modified via the set track.m or the input of GUI. 

Choice of Sensing Range 
The choice of sensing range can be made through the GUI input dialog box. In 

VM tracker, for a fixed mote distribution and known sensing range, a larger sensing 
range will result in a lower virtual measurement noise and therefore can achieve a better 
tracking performance. However, this is definitely not the case with the data at hand, as 
the actual detection (sensing) range is changing from time to time. We compared the 
estimated trajectories when using three different sensing ranges (3, 5, 7 meters). 
Intuitively, when sensing range = 7 m is chosen the trajectory looks more close to the true 
one on average. 

Choice of Process Noise Factor 
The underlying target motion model for the data is unknown. The current version 

of VM tracker assumes a target motion on a constant velocity model with a Gaussian 
zero-mean noise controlled by the system process noise factor tracker.w1 in set track.m. 
We repeated the scenario test using different values of tracker.w1. Our test result 
indicates that a smaller value of tracker.w1 = 0.01 can result in a smoother trajectory. 

Choice of TPM for Track Quality Measure 
In the VM tracker, there is an underlying Markov chain model for track existence. 

The track life is monitored from the probability of target existence calculated by the 
tracker based on the underlying Markov transition probability matrix (TPM). The default 
value for the TPM is [0:98 0:02; 0 1] and it may be changed by modifying set track.m. 
Two cases were considered here: Case 1: default and Case 2: [0:8 0:2; 0 1]. 

Conclusion 
From experiment, we found that the VM tracker is sensitive to the choice of 

sensing range, and process noise factor while it is insensitive to the detection probability 
choice. A recommend parameter set for this scenario is 

sensingrange = 7m and  w1 = 0.01 

The VM tracker is a multitarget tracking algorithm which can pick up a dead track or 
initiate new track by splitting a track due to multiple target measurements. Such an 
example can be found in playing data file 20070329095827 footstep.pbd, where sensing 
range = 7 m, w1 = 0.01. 

To obtain a better tracking performance with respect to such unstable (noisy) target 
movement, we should design a better system model for the VM tracker by using IMM 
structure. 
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2.A.7 University of Michigan Technical Progress 
The last reporting period ended on 2/19/07 and the ISP subcontract terminated on 

3/31/07. Thus this report covers work only a six week period. We have wrapped up our 
research in classification constrained dimensionality reduction; self localization; and 
geometric entropy minimization (GEM). Our principal activities were: 

• Completion a report on the out-of-sample extension of CCDR that includes 
simultaneous updates for both unlabeled and labelled data.  

• This report is attached. A summary of the findings are included below. Al Hero 
visited Neal Patwari at the University of Utah in late February 2007. During this 
visit we discussed the issues that Raytheon was running into with implementation 
of the dwMDS algorithm for self localization of their wireless sensor test bed. The 
dwMDS algorithm was designed to work with RSS measurements but, if some 
sort of time synchronization is feasible, it is also applicable to time delay 
measurements which may be more reliable for the scenario (larger inter-sensor 
distances) that Raytheon is using. We believe that the issues of convergence 
encountered by Raytheon are due to a software bug. 

OSE for Classification constrained dimensionality reduction 
At the November 2006 ISP Phase II PI meeting we presented results for the out-

of-sample extension (OSE) of our classification constrained dimensionality reduction 
(CCDR) that can only be applied to unlabeled data, e.g. test samples to be classified. This 
period we have concentrated on extension of CCDR to labelled as well as unlabeled data. 
An outline of the extension is given below. 

Let {x1, …, xn} be high-dimensional samples, and {y1, … , yn} be their lower-dimensional 
(d-dimensional) embedding found by SVD. As usual, define Λ as the d×d diagonal 
matrix of the first d eigenvalues of the Graph Laplacian. For a new unlabeled data point 
xn+1, the out-of-sample-extension for an unlabeled point is 
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For a new labelled data point xn+1 which belongs to class k we can show the modified 
out-of-sample-extension 
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where zk is the centroid for class k, given by the SVD performed for the first n points, and 
β is the regularization parameter applied to the centroid points. A Matlab program has 
been provided to Raytheon. 

2.A.8 Georgia Tech Technical Progress 
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2. B. Refereed Publications 
There were three refereed publications during the current PoP. 

1. S. Sira, A. Papandreou-Suppappola and D. Morrell, ``Dynamic Configuration of 
Time-varying Waveforms for Agile Sensing and Tracking in Clutter,'' IEEE 
Transactions on Signal Processing, in print, 2007.  

2. A. Chhetri, D. Morrell and A. Papandreou-Suppappola, ``On The Use of Binary 
Programming for Sensor Scheduling,'' IEEE Transactions on Signal Processing, in 
print, 2007.  

3. A. Chhetri, D. Morrell and A. Papandreou-Suppappola, ``Non-myopic Sensor 
Scheduling and its Efficient Implementation for Target Tracking Applications,'' 
EURASIP Journal on Applied Signal Processing, vol. 2006, Article ID 31520, 18 
pages, 2006. 

4. S. Chhetri, D. Morrell and A. Papandreou-Suppappola, “Sensor Resource Allocation 
for Tracking Using Outer Approximation”, IEEE Signal Processing Letters, vol. 14, 
no. 3, pp. 213-216, 2007.  

5. I. Kyriakides, D. Morrell and A. Papandreou-Suppappola, ``Sequential Monte Carlo 
Methods for Tracking Multiple Targets with Deterministic and Stochastic 
Constraints,'' IEEE Transactions on Signal Processing, under second revision, May 
2007.  

2. C. Conference Proceedings 
There were four publications in conference proceedings during the current PoP. 
1.  “Sparse Manifold Learning with Applications to SAR Image Classification,” V. Berisha, N. 

Shah, D. Waagen, H. Schmitt, S. Bellofiore, A. Spanias, and D. Cochran, 32nd International 
Conference on Acoustics, Speech, and Signal Processing (ICASSP), Honolulu, HI, April 15-
20, 2007. 

2. N. Okello and D. Musicki, “Measurement Association for Emitter Geolocation with 
Two UAVs,” 10th International Conference on Information Fusion, Québec City, 
Canada, 9-12 July 2007, accepted.  

3. X. Wang and D. Musicki, “Target Tracking Using Energy Based Detections,” 10th 
International Conference on Information Fusion, Québec City, Canada, 9-12 July 
2007, accepted.  

4. D. Musicki, “Target Existence Based Resource Allocation,” 10th International 
Conference on Information Fusion, Québec City, Canada, 9-12 July 2007, accepted. 

2. D. Consultative and Advisor Functions 
There were no consultative or advisory functions that occurred during the current PoP. 
However, over the course of the Raytheon ISP Phase II program, we have developed a 
significant relationship with Raytheon Shooter Localization demonstration using the 
MICA-2/Z sensor nodes. This work is being funded under the DARPA IXO NEST Phase 
II program. The Phase I shooter localization algorithms were developed by VU. 
Preliminary results indicated that the shooter localization algorithm has significant 
potential. The program was subsequently classified and was ultimately transitioned to 
Raytheon for demonstration and refinement under Phase II. The DARPA IXO Program 
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Manager has given permission for several of these algorithms to be used in our program. 
The Raytheon NEST program has identified a critical need for the development of an 
accurate sensor localization algorithm that is scalable to hundreds or thousands of nodes. 
We have kept the Raytheon NEST program informed as to the progress of our sensor 
localization research. 

2. E. New Discoveries, Inventions or Patent Disclosures 
There were no patent disclosures filed during the current PoP nor, unfortunately, over the 
course of the program. 

2. F. Honors/Awards  
There were no honors or awards received during the current PoP nor, unfortunately, over 
the course of the program. 

2. G. Transitions.  
There were no specific technology transitions achieved during the current PoP. 

Raytheon ISP Phase II personnel also support the AFRL Small Diameter Bomb (SDB) 
program and have managed to transition ISP methodology. Finally, the Raytheon ISP 
Phase II program has transitioned a number of manifold extraction ideas into the 
Raytheon ATR Enterprise Campaign. 

2. I. Acronyms 
ADTS    Advanced Detection Technology Sensor 
ASU    Arizona State University 
ATA    Automatic Target Acquisition  
AVU     Algorithms Verification Units  
CAD    Computer-Aided-Design  
CADSP    Cooperative Analog Digital Signal Processor 
CCCD    Class Cover Catch Diagraphs 
CCDR    Classification Constrained Dimensionality Reduction 
CPI    Coherent Processing Interval 
CRB    Cramér–Rao Bound 
CROPS   Classification Reduction Optimal Policy Search 
DARPA   Defense Advanced Research Projects Agency 
DS    Danzig Selector 
DSA    Distinct Sensing Area 
dwMDS    Distributed, weighted, multi-dimensional scaling 
FPA    Focal Plane Array 
FMAH    Fast Mathematical Algorithms and Hardware  
GEM    Geometric Entropy Maps 
Georgia Tech    Georgia Institute of Technology  
GMS    Gauss-Markov Systems  
GPS    Global Positioning System 
IASG    Independently Activated Sensor Group 
ISP     Integrated Sensing and Processing 
IXO    Information Exploitation Office 
kNN    k-Nearest Neighbor  
LEAN    Laplacian Eigenmap Adaptive Neighbor 
LIP     Linear Integer Programming 
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M2M     Multipoint-to-multipoint  
MC    Monte-Carlo 
MTT    Multi-target tracking 
NEST    Networked Embedded System Technology 
NDA    Non-disclosure Agreement 
NLIP    Nonlinear Integer Programming 
NLOS     NetFires Non-Line of Sight  
NUC    Non-Uniformity Compensation 
ONR     Office of Naval Research 
OSE    Out-of-sample extension 
PAM     Precision Attack Munition 
PDA    Probabilistic Data Association  
PRI    Pulse Repetition Intervals 
PWF    Polarization Whitening Filter 
PoP     Period of Performance 
RIM    Radio Interferometric Measurements 
RIPS    Radio Interferometric Positioning 
RISCO    Raytheon International Support Company  
RSS    Received Signal Strength 
TAA     Technical Assistance Agreement 
TDOA    Time Difference of Arrival 
TIM     Technical Interchange Meeting 
TID    Threat Identification 
UAV     Unmanned Aerial Vehicle 
UCIR     Uncooled infrared imaging 
UKF    Unscented Kalman filter 
UM    University of Michigan 
UniMelb    Melbourne University 
VM    Virtual Measurement 
VU    Vanderbilt University 
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