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Hamiltonian analysis of charged particle gyromotion in 
cylindrical coordinates 

 

W. E. Amatucci, P. W. Schuck, and G. Ganguli 

Plasma Physics Division, Naval Research Laboratory, Washington, DC  20375   

 

D. N. Walker 

SFA, Inc., Crofton, MD  21114 

 

A Hamiltonian approach in cylindrical coordinates is applied to the motion of charged 

particles in a uniform axial magnetic field.  The method is compared to the traditional 

approaches of uniform circular motion and Newtonian mechanics.  Cylindrical 

coordinates are preferred in many practical situations such as application to laboratory 

experiments.  The advantage cylindrical coordinates offer is the ability to form a one-

dimensional effective potential, which can be used to determine a number of spatial and 

temporal characteristics of the resulting cyclotron motion without an explicit solution of 

the equations of motion.  This approach provides a different perspective into the 

dynamics of Larmor motion to compliment the traditional approaches. 

 

PACS:  01.55.+b, 45.20.Jj, 51.60.+a, 52.20.Dq, 52.65.Cc  

 

I.  INTRODUCTION 

The force acting on moving charges in a magnetic field and the resulting 

cyclotron motion are familiar concepts to students.  In undergraduate introductory 
_______________
Manuscript approved February 20, 2007. 
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physics courses, the magnetic force is introduced along with the electric force in a 

description of the Lorentz force, BvqEqF
rrrr

×+= , which shows that the magnetic force 

acts at right angles to both the magnetic field and the velocity vector.  Here, F
r

 is the 

force, q is the particle charge, vr  is the particle velocity, and E
r

 and B
r

 are the electric 

and magnetic fields.  At the introductory level, by setting E = 0, cyclotron motion is often 

introduced with a uniform circular motion treatment.1  By equating the magnetic force 

qvB to the centripetal force 
r

mv 2

, one can quickly solve for r and define it to be the 

particle gyroradius 
qB
mv

≡ρ .  The angular velocity is then defined as the particle 

cyclotron frequency, which is given by the relation 
m
qBv

=
ρ

≡Ω .  Effectively, this treats 

the motion in cylindrical coordinates, placing the origin of the coordinate system at the 

center of the particle gyro orbit.   

In later courses, such as undergraduate level introductory plasma physics courses, 

cyclotron motion is frequently described by single-particle motion in a plasma by 

application of Newton’s 2nd Law,2 Bvq
dt
vdm

rr
r

×=  in Cartesian coordinates.  With 

uniform magnetic field taken in the ẑ  direction, the components of this equation yield 

the coupled differential equations 

 

 y
x qBv

dt
dv

m =   and  x
y qBv

dt
dv

m −= . 
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Differentiating each with respect to time and substituting, we have a description of simple 

harmonic motion at the cyclotron frequency, 

 

 xx
x vv

m
qB

dt
vd 2

2

2

2

Ω−=⎟
⎠
⎞

⎜
⎝
⎛−=     and    yy

y vv
m
qB

dt
vd 2

2

2

2

Ω−=⎟
⎠
⎞

⎜
⎝
⎛−= . 

 

One advantage of this treatment in Cartesian coordinates over the earlier uniform circular 

motion treatment is that the particle orbit does not have to be centered on the origin.  This 

is a better description for practical applications in the sense that it yields uniform circular 

motion about some gyro center position that does not have to coincide with the origin of 

the coordinate system.   

These approaches provide a basic foundation for understanding cyclotron motion 

and can be used as a starting point for analysis of more complicated motions, such as 

drifts superimposed on gyromotion in the presence of forces or gradients transverse to the 

magnetic field.  The cross-magnetic-field drift motion of charged particles is important in 

space and laboratory plasmas, particularly when the drift is inhomogeneous.  In such 

cases, nonuniformities in the cross-field flow can give rise to a variety of plasma 

instabilities,3 which in turn can cause particle heating and transport.  However, in the 

analysis of particle dynamics in these realistic situations, the use of Cartesian coordinates 

can be awkward.  For example, most laboratory plasma experiments are best described by 

cylindrical geometry.   

As an initial step in a broader investigation of the dynamics of plasma ions in an 

experimental configuration containing an axial magnetic field, and a cylindrically 

symmetric, but radially inhomogeneous, electric field,4 we have performed a Hamiltonian 
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analysis in cylindrical coordinates of particle gyromotion in a uniform magnetic field.  

The intent is to develop solutions for particle orbits in the more experimentally 

convenient cylindrical geometry while allowing the center of the orbit to be located at 

arbitrary positions.  While the Hamiltonian approach is equivalent to a Newtonian or 

Lagrangian analysis, it can provide some advantages.  In cases where the multi-

dimensional dynamics can be reduced to one dimension with an effective potential, much 

useful information regarding the orbit can be obtained, even if an explicit solution 

describing the orbit cannot.  For example, a Hamiltonian treatment of charged particle 

motion in a magnetic mirror configuration with a radial electric field has been described 

by Schmidt.5   

 

II.  HAMILTONIAN APPROACH 

The Lagrangian describing the motion of a charged particle in the presence of a 

time-independent magnetic field is given by 

 

 ( )vAqmvL rr
⋅+= 2

2
1 , (1) 

 

where A
r

 is the magnetic vector potential, and m, q, and vv  are the particle mass, 

charge, and velocity, respectively.  The Hamiltonian for the system is given by 

∑ −=
i

ii LQPH & , where iQ&  and Pi are the time derivatives of the canonical coordinates 

and conjugate momenta, respectively.  In cylindrical geometry with uniform axial 

magnetic field, the z coordinate can be ignored and only the 2-dimensional motion (r, θ) 
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of the particles need be considered.  Under these conditions, the Lagrangian can be 

expressed in terms of the radial and azimuthal coordinates as 

 

 ( ) θ+θ+= θ
&&& rqArrmL 222

2
. (2) 

 

In cylindrical coordinates, the magnetic vector potential for a uniform axial magnetic 

field is θ= ˆ
2

0rB
A
r

, which satisfies zBAB ˆ0=×∇=
rrr

.  Thus, the Lagrangian can be 

expressed as 

 

 ( )θΩ+θ+= &&& 2222

2
rrrmL . (3) 

 

Since the canonical momenta are defined as 
i

i Q
LP &∂

∂
= , we have that 

 
m
Prrm

r
LP r

r =⇒=
∂
∂

= &&
&

,  and that (4) 

 
22 2

2 Ω
−=θ⇒⎟

⎠
⎞

⎜
⎝
⎛ Ω

+θ=
θ∂

∂
= θ

θ mr
P

mrLP &&
&

. (5) 

 

Substituting these expressions into the Lagrangian, the Hamiltonian for the system 

becomes 

 
2

2
2

2

22
1

2
⎟
⎠
⎞

⎜
⎝
⎛ Ω

−+= θ rmP
mrm

P
H r . (6) 

 

The time derivative of H is 
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 θ
θ∂

∂
+

∂
∂

+
∂
∂

+
∂
∂

+
∂

∂
= θ

θ

&&&& Hr
r
HP

P
HP

P
H

t
H

dt
dH

r
r

. (7) 

 

Using Hamilton’s Equations, Equation 7 reduces to6 

 

 
t

HPrPPPr
t

H
dt

dH
rr ∂

∂
=θ−−θ++

∂
∂

= θθ
&&&&&&&& . (8) 

 

Therefore, since the Hamiltonian does not depend explicitly on time, H is a constant of 

the motion and represents the total energy of the particle.  Furthermore, since H does not 

explicitly depend on θ, 0=
θ∂

∂
−=θ

HP& , indicating that Pθ is also a constant of the motion.  

This fact can be utilized by treating the second term on the right of Equation 6 as an 

effective potential  

 

 
2

2
2 22

1)( ⎟
⎠
⎞

⎜
⎝
⎛ Ω

−≡ψ θ rmP
mr

r , (9) 

 

which constrains the motion of the charged particle.  Therefore, the two-dimensional (r,θ) 

dynamics have been reduced to one dimension, r, with an effective potential ψ(r).  The 

usefulness of an effective potential in the analysis of charged particle orbits in magnetic 

fields has been described by Stern.7  Here, ψ(r) describes a cylindrically symmetric 

potential well within which the particle motion is bound.  Important orbital details such 

as the radial and azimuthal turning point positions, the orbital radius, and the gyroperiod 
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can be determined from ψ(r), without an explicit solution to the radial and azimuthal 

equations of motion, r(t) and θ(t).   

The radial location of the minimum of the effective potential well determined 

from 0=
∂
ψ∂
r

 is given by the equation 

 0221
2

22

=
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ Ω
+

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ Ω
−

−=
∂
ψ∂ θθ

r

rmP

r

rmP

mr
. (10) 

 

Thus, two categories of solutions exist, Type I corresponding to 0
2

2 =⎟
⎠
⎞

⎜
⎝
⎛ Ω

−θ rmP  and 

Type II corresponding to 0
2

2 =⎟
⎠
⎞

⎜
⎝
⎛ Ω

+θ rmP .  Of course, in a uniform magnetic field, 

identical circular orbits result for identical particles with the same initial velocity vector, 

independent of the initial radial position of the particle.  However, even though the actual 

orbits are identical, the categories are distinguished by the effective potential, as 

determined by the initial position and velocity of the charged particle.   

Type I orbits correspond to those which do not encompass the origin of the 

coordinate system.  For this motion, the gyro orbit of the particle is entirely off-axis.  

Solving 0
2

2 =⎟
⎠
⎞

⎜
⎝
⎛ Ω

−θ rmP  for r, we find that 

 

 
2
1

2
⎟
⎠

⎞
⎜
⎝

⎛
Ω

= θ

m
P

rm , (11) 
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which represents the radial position of the minimum of the effective potential.  Here 

constant
22 0

2
0

2 =⎟
⎠
⎞

⎜
⎝
⎛ Ω

+θ=⎟
⎠
⎞

⎜
⎝
⎛ Ω

+θ=θ
&& mrmrP , and 0r and 0θ&  are the initial values of the 

particle position and the angular velocity about the origin, respectively.  One might 

anticipate that the minimum of the effective potential yields the position of the guiding 

center of the orbit.  However, since the effective potential is not symmetric about the 

minimum, rm does not, in general, give the guiding center of the gyromotion.  (In 

contrast, the constants of integration in a Hamiltonian analysis in Cartesian coordinates 

do give the guiding center position, 00 sin ϑρ+= xxgc  and 00 cosϑρ−= yygc , where 

0ϑ  is the initial angle of the velocity vector.)  For Type I orbits, both the radial and 

azimuthal velocities change sign at points along the path since there are turning points in 

both the radial and azimuthal directions.  By comparison with Equation 5, we see that the 

value of rm gives the radius at the locations where 0=θ&  (the azimuthal turning points).  

Since the velocity is purely radial at those two locations, another way of looking at rm is 

that it is the radius of a circle centered on the origin that intersects the orbit normal to the 

particle trajectory.   

In the radial direction, the turning points are determined from the solution of the 

equation ( ) 0E=ψ r , where 2
00 2

1 mv=E  is the initial energy (and the total energy) of the 

particle.  Therefore, 

 2
0

2
2

2 2
1

22
1 mvrmP

mr
=⎟

⎠
⎞

⎜
⎝
⎛ Ω

−θ , (12) 

 

which reduces to 
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 ( ) 022 42224 =+ρ+− mm rrrr , (13) 

 

where 
Ω

≡ρ 0v
 is the particle gyroradius.  The solution to the Equation 13 is 

 

 ( )
2
1

2

2

2
22

,
21112

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ρ
+−±ρ+=

−

−+
m

mTP r
rr , (14) 

 

where rTP+ and rTP- represent the outer and inner radial turning point positions, 

respectively.  For Type I orbits, the two roots of this expression give the innermost and 

outermost radial position of the particle trajectory.  Figure 1 shows a plot of the effective 

potential for a positively charged ion as a function of radius.  The potential is normalized 

to the initial energy of the ion and the radial position is normalized to the ion gyroradius.  

For this plot, the initial position of the ion was chosen to be r = 2.5ρ and the initial 

velocity was chosen to be at an angle of 43π−  with respect to the horizontal ( x̂ ) 

direction.  For these initial conditions, the entire orbit of the ion remains off axis.  Since 

the azimuthal velocity goes to zero at distinct points in the orbit (when r = rm), we see 

that the effective potential also goes to zero at r = rm.  Half of the separation distance 

between the two turning points, ( ) ρ=− −+ 2TPTP rr , showing that the radius of the orbit is 

equal to the gyroradius as expected.  The vertical black dashed-dotted line marks the 

radial location of the center of the orbit, rgc, which is distinct from the radial position of 

the minimum in the potential.  Figure 2 shows a schematic representation of an off-axis 
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ion gyro orbit, identifying the radial and azimuthal turning points, the gyroradius, and the 

guiding center position. 

Figure 3 shows an intensity plot of the effective potential in the x-y plane with the 

ion gyro orbit corresponding to the initial conditions for Figure 1.  For the intensity plot, 

black represents a value of 0, with white representing the largest magnitude of ψ(r).  The 

ion gyro orbit is indicated by the yellow line, which clearly does not encompass the 

origin.  The inner and outer turning point radii are indicated by the white dashed circles 

and the circle with radius equal to rm is shown as the red dashed line centered on the 

deepest part of the effective potential trough.  From this plot, we can see that the inner 

and outer turning point radii define circles which are tangent to the particle gyro orbit.   

Type II orbits correspond to those which do encompass the origin.  Similar to 

Type I, the radial position of the effective potential minimum is 
2
1

2
Ω

= θ

m
P

rm .  Unlike 

Type I, however, the angular velocity for Type II orbits never goes to zero.  

Consequently, while there is still a clear minimum in the potential, the value of ψ(rm) is 

never equal to zero for Type II orbits.  Figure 4 is a plot of the effective potential for such 

a case.  In this example, a positively charged ion is started from an initial radial position 

of 0.5ρ, again with the initial velocity at an angle of 43π−  with respect to the x̂  

direction.  The magnetic field strength, ion mass, and initial velocity are the same as 

those for Figure 1, so the corresponding gyro orbits are the same size.  Another 

distinguishing characteristic between Type I and Type II orbits is that the angular 

separation between the radial turning points for a Type I orbit is always 0 while for Type 

II orbits the angular separation is equal to π.  Thus, in this example, since the inner and 



 

 11

outer radial turning points occur on ‘opposite sides’ of the origin, their separation is 

properly given by ρ=+ −+ 2TPTP rr , again giving the diameter of the gyro orbit as 

expected.  Consequently, for Type II orbits, the average of value of the two turning point 

radii is always equal to the gyroradius ρ.  In the case where the center of the orbit 

coincides with the origin of the coordinate system, the value of both radial turning points 

is equal to ρ. 

Figure 5 shows an intensity plot of the effective potential for the initial conditions 

corresponding to those used for Figure 4.  Inspection of the figure shows that the 

diameter of the orbit is the same as that for Figure 3, which is expected because the 

magnetic field strength, particle mass and initial velocity are the same.   

With knowledge of the turning points, other orbital details such as the equation of 

motion and the effective orbital frequency can be investigated.  Beginning from the 

Hamiltonian, which represents the total energy of the particle, we have 

 

 0

2
2

2

2

22
1

2
E=⎟

⎠
⎞

⎜
⎝
⎛ Ω

−+= θ rmP
mrm

P
H r , (15) 

 

where 2
00 2

1 mv=E .  Substituting for Pr in terms of r&  from Equation 4 and solving for r&  

we have  

 
2
1

2
2

2

2

0

2
1

822
2

⎥
⎦

⎤
⎢
⎣

⎡ Ω
−−⎟

⎠
⎞

⎜
⎝
⎛ Ω

+⎟
⎠
⎞

⎜
⎝
⎛= θθ rm

mr
PP

mdt
dr E ,  (16) 

 

which can be rearranged to form 
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2
1

2
2

2

2
2
0

2
1

8222
1

2
⎥
⎦

⎤
⎢
⎣

⎡ Ω
−−⎟

⎠
⎞

⎜
⎝
⎛ Ω

+

⎟
⎠
⎞

⎜
⎝
⎛=

θθ rm
mr
PP

mv

drmdt . (17) 

 

Factoring out 
2
1

2

2

8 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Ω
r

m  from the denominator, yields 

 
2
1

4
2

2
22

02 2
8

22
18

2

⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛

Ω
−⎟

⎠
⎞

⎜
⎝
⎛ Ω

+⎟
⎠
⎞

⎜
⎝
⎛

Ω

⎟
⎠
⎞

⎜
⎝
⎛

Ω=

θθ r
m

P
m

r
P

mv
m

drr
dt . (18) 

 

Recognizing 2
2

2
0 4

4
ρ=

Ω
v

, 22
4

mr
m

P
=

Ω
θ , and 4

22

24
mr

m
P

=
Ω
θ , Equation 18 reduces to 

 

 
( )[ ]2

1
44222 22

2

rrrr

drr
dt

mm −−ρ+

⎟
⎠
⎞

⎜
⎝
⎛

Ω= . (19) 

 

Finally, making the substitution λ = r2 and integrating, we have 

 

 
( )[ ]∫∫

+

−

λ

λ λ−λ−λλ+λ

λ
⎟
⎠
⎞

⎜
⎝
⎛

Ω
==

TP

TP
mLm

dTdt
2
1

2222

1
2

, (20) 
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where 2
mm r=λ , 2ρ=λ L , and 2

,, −+−+ =λ TPTP r .  This integral represents the time required 

for a particle to travel from the first turning point to the second turning point, which is 

one-half of the orbital period, T.  The solution yields 

 

 ( )
Ω
π

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

λ+λλ

λ+λ−λ
Ω

=
+

−

λ

λ

2
2

2arcsin2
2

TP

TP
LmL

LmT . (21) 

 

Converting the solution to the indefinite integral back to the r coordinate, the result can 

be inverted to obtain an expression for the radial position of the particle as a function of 

time, 

 

 ( ) ( ) ( ) 2
1

22
0

2
1

22 2sin2)( ⎥
⎦

⎤
⎢
⎣

⎡
ρ++ϕ+Ωρ+ρ= mm rtrtr , (22) 

 

where 
( )

( ) ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ρ+ρ

ρ+−
=ϕ

2
1

22

222
0

0

2

2
arcsin

m

m

r

rr
 is the constant of integration.  Defining 

( )22
1 2ρ+≡ mrK , ( )2

1
22

2 2 ρ+ρ≡ mrK  and using the expression in Equation 22 for r, the 

time dependence of the azimuthal position θ can be determined with the aid of 

Equation 5, 

 

 ( ) t
tKK

dt
m
Pd

2sin 021

Ω
−

ϕ+Ω+
=θ∫ ∫θ . (23) 
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The solution of this integral yields 

 

( ) 0
0

2

1

0

2

1

0

2

1

0

2

1

2 2
2

tan1

2
tan1

ln

2
tan1

2
tan1

ln
2

θ+
Ω

−

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+⎟
⎠
⎞

⎜
⎝
⎛ ϕ

+

−⎟
⎠
⎞

⎜
⎝
⎛ ϕ

+
−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+⎟
⎠
⎞

⎜
⎝
⎛ ϕ+Ω

+

−⎟
⎠
⎞

⎜
⎝
⎛ ϕ+Ω

+

Ω
=θ θ t

K
K
K

K
K
K

K
t

K
K

K
t

K
K

KKm
P

t ,     (24) 

 

where the constant
2
1

2
2

2
11 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−≡

K
KK  and θ0 is the initial angular position of the particle.  

The value of K1/K2 > 1, therefore the expression for θ(t) in Equation 24 is complex, with 

the real part giving the angular position.  Taken together, Equations 22 and 24 give a 

parametric representation of the particle position as a function of time.   

The thick black line in Figure 6a shows a plot of an ion orbit calculated using 

Equations 22 and 24 for the same initial conditions as those used for Figure 1.  Overlaid 

as a white dashed line in Figure 6a is a solution from a test particle calculation, which 

gives a numerical solution to Newton’s 2nd Law for the particle.  Figures 6b and 6c show 

the radial and azimuthal positions as a function of time for 3 cycles of the orbit compared 

to the values from the test particle calculation.   

 

III  CONCLUSIONS 

Hamiltonian analysis is a useful tool in the investigation of charged particle 

dynamics in configurations where a one-dimensional effective potential can be 

constructed.  We have presented the example of charged particle cyclotron motion in 

cylindrical coordinates with a uniform axial magnetic field.  This analysis was carried out 
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as the first step in an investigation of the more complicated dynamics of ion motion in an 

experimental configuration containing a uniform background magnetic field and a 

radially inhomogeneous, cylindrically symmetric electric field.  The treatment 

demonstrates the utility of the effective potential for obtaining orbital details without the 

explicit solution of the full equation of motion.  
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Figure 1.  Effective potential ψ(r) (thick black curve) for an ion in a uniform axial 
magnetic field. The initial ion position is 2.5ρ and the orbit is completely off 
axis. The horizontal dashed line at ψ(r) = E0 indicates the total energy of the 
ion.  The light grey vertical dashed lines and diamond symbols indicate the 
inner and outer radial turning points.  The dashed-dotted line indicates the 
radial position of the orbital guiding center.  The distance between the two 
turning points is equal to 2ρ. 
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Figure 2.  Schematic diagram of an off-axis ion gyro orbit in a uniform axial magnetic 
field.  The positions of the radial and azimuthal turning points, the gyroradius, 
and the guiding center position are shown. 
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Figure 3.  Intensity plot of the effective potential ψ(r) in the x-y plane for an ion gyro 
orbit corresponding to the initial conditions for Figure 1.  Black represents a 
value of 0, with white representing the largest magnitude of ψ(r).  The ion 
gyro orbit is indicated by the yellow line. The inner and outer turning point 
radii are indicated by the white dashed circles and the circle with radius equal 
to rm is shown as the red dashed line.  
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Figure 4.  Effective potential ψ(r) (thick black curve) for an ion in a uniform axial 
magnetic field.  The initial ion position is 0.5ρ and the orbit encompasses the 
origin.  The horizontal dashed line at ψ(r) = E0 indicates the total energy of the 
ion.  The light grey vertical dashed lines and diamond symbols indicate the 
inner and outer radial turning points.  The dashed-dotted line indicates the 
radial position of the orbital guiding center.  For orbits encompassing the 
origin, the distance between the two turning points is equal to 2ρ since the 
turning points are located on opposite ‘sides’ of the origin. 
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Figure 5.  Intensity plot of the effective potential ψ(r) in the x-y plane for an ion gyro 
orbit that encompasses the origin.  This example corresponds to the initial 
conditions for Figure 4. The ion gyro orbit is indicated by the yellow line. The 
inner and outer turning point radii are indicated by the white dashed circles 
and the circle with radius equal to rm is shown as the red dashed line.  The 
radial turning points are seen to have an azimuthal separation of 180º.
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Figure 6.  Comparison of the analytical solutions to the radial and azimuthal equations of 
motion with a numerical solution for a positively charged ion beginning from x
= 2.5ρ with an initial velocity in the –y direction. (a) Plot of the gyro orbit.  
The thick black line shows the analytic results while the numerical solution is 
shown as the dashed white line.  The inner and outer radial turning point radii 
are shown as the gray dashed lines. Radial (b) and azimuthal (c) components 
of the position as a function of time for 3 orbits.  The black line shows the 
analytic solution while the open circles show every 50th point from the 
numerical solution.
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