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Section 1
Introduction

1.1 Motivation.

Micro-Doppler refers to Doppler scattering returns produced by non rigid-body motion.
Micro-Doppler gives rise to many detailed radar image features in addition to those
associated with bulk target motion. Targets of different classes often create micro-Doppler
images readily distinguishable even by untrained observers. Micro-Doppler features can be
implemented in new target classification algorithms or used to enhance existing algorithms.
The target classification potential of micro-Doppler attracts researchers in both the
personnel detection and basic research communities. The basic research community also
uses micro-Doppler to study the complex scattering from dynamic targets.

1.2 Objectives.

The goals for this project are mainly influenced by the needs of both the personnel detection
and basic research communities. The main objective is to collect and process an extensive
radar signature database to study micro-Doppler and design a robust classification
algorithm. To accomplish this objective, radar hardware must be designed and built that is
capable of acquiring high resolution micro-Doppler signatures. The radar hardware should
be relatively low cost and have the ability to detect and process targets at useful ranges to
interest the personnel detection community. The micro-Doppler signature database should
be as large and diverse as possible, including a variety of signatures from different target
types. In summary, the primary goals are to design hardware, develop signal processing
algorithms, and collect a database to support micro-Doppler and target classification
research.

1.3 Organization of the Report.

Section 2 introduces the main concepts of joint time-frequency processing. The Short-Time
Fourier transform (STFT) is discussed since it is used extensively throughout the Report.
Section 3 serves as an introduction to the micro-Doppler phenomenon. Both theoretical and
empirical micro-Doppler signatures are included in this chapter.

The radar design begins in Section 4 with a discussion of system specifications and
potential hardware architectures. An investigation of the Multiple Frequency Continuous
Wave (MFCW) radar architecture follows the design specifications.
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Section 4 concludes with the theory of target ranging using MFCW radars. Section 5
develops the theory of target detection and ranging. First, important results from classical
detection theory are thoroughly reviewed. The following section covers joint time-
frequency detection. The remaining sections involve specific procedures for target
detection and ranging in the joint time-frequency domain, including an introduction to the
Time Frequency Range Diagram (TFRgram).

The design of MFCW radar hardware to meet system specifications is covered in Section 6.
The discussion is focused on receiver front-end noise figure reduction. Section 7 begins
with an overview of the data collection setup. The chapter then details the contents of the
collected radar signature database. Section 7 ends with a discussion of signal processing
prior to joint time-frequency detection.

The results of radar ranging and detection testing and database processing are contained in
Section 8. The first two sections cover ranging and detection performance. A wide variety
of micro-Doppler signatures are displayed and analyzed in Section 8. The section also
includes an analysis of system cost.

Section 9 presents aspects of target classification theory relevant to this work. Feature
extraction and refinement, feature space, and confusion matrices comprise most of the
theoretical discussion. Section 9 also includes a discussion of the classification features,
training method, and testing algorithm used for this project.

Target classification results are presented and evaluated in Section 10. Section 11
concludes the report with an overview of system performance and a discussion of potential
system improvements.
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Section 2
Joint Time-Frequency Signal Processing

2.1 Motivation for Joint Time-Frequency Processing.

This section reviews important concepts from joint time-frequency processing of baseband

signals. Consider the complex signal xbb (t) = i(t) + jq(t) v where is the received signal in-

phase component and is the quadrature component. The signal i(t) q(t) Xbb (t) is an
(approximately) band-limited continuous-time waveform modulated in both amplitude and

phase. An analog to digital converter samples the baseband signal at the rate of , Hz.
Thus, the digitized waveform is

n]== xb(,,) n =T /T, . (1)

where 7, is the sampling period and is an integer discrete time index. For stationary
signals, the Discrete Fourier Transform (DFT) is employed to analyze spectral content. The

DFT of a discrete time signal n4n] " is defined as

N-1

X[k] = x[]e-k2; , & =0,1,..-, N-I
n=O (2)

where k is the discrete frequency index and N is the length of the DFT. Similarly, the
Inverse Discrete Fourier Transform (IDFT) is defined as

x[n] = - Z •-'nO,
(3)

Figure 1 (a) on the next page shows the real part of a simulated stepped-frequency waveform
that goes through three frequency steps: 200Hz, 400Hz, and then -100Hz.
The results after computing the DFT of this signal are shown in Figure2.1 (b).
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Figure 1. Simulated time series (a) and DFT (b) of three-frequency waveform.

The DFT reveals signal energy at the correct frequencies of 200Hz, 400Hz, and -100Hz.
However, all information on when a certain frequency occurred within the signal is lost in
this display. We would like to know that the signal of Figure 1(a) was 200 Hz from 0 to 5
seconds, 400 Hz from 5 to 10 seconds, and -100 Hz from 10 to 15 seconds. Similarly,
Doppler radar signal processing seeks to estimate the frequency, strength, and time-location
of multi-component received signals. Due to the non-stationary (time-varying statistics)
nature of radar waveforms, the DFT alone is unsuitable for Doppler processing.

2.2 Introduction to Joint Time-Frequency Processing.

Joint Time-Frequency (JTF) techniques have recently received considerable attention in the
signal processing literature due to their ability to process non-stationary signals [1], [2].
Most time-frequency transforms fall into either the linear or quadratic classification. Some
well known linear time-frequency transforms are the Short-Time Fourier Transform (STFT)
and the Continuous Wavelet Transform (CWT). The Wigner-Ville Distribution (WVD) and
the Time-Frequency Distribution Series (TFDS) are two common examples of quadratic
time-frequency transforms.

In this work, we use the Short-Time Fourier Transform (STFT) for joint time-frequency
processing. The STFT was chosen despite its two primary drawbacks. The first drawback
is the time-frequency resolution limit imposed by the STFT window function (to be
discussed). Another disadvantage of the STFT is that it does not fully satisfy the
mathematical properties of a time-frequency distribution. However, the STFT also has
many advantages such as fast execution and intuitive interpretation that justify its use.
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2.3 The Short Time Fourier Transform.

The discrete short-time Fourier transform of a signal 4"] i is defined as

STFT, [k, n] = • x[r]w[n - r]e-j2 r&1N, k = O, 1,---, N- 1
r=-co (4)

where n is the discrete time index, k is the discrete frequency index, and is a window
function. The STFT can be viewed as the Fourier transform of a signal multiplied by a
window function that slides in time. The duration of the window is typically chosen such
that the signal of interest is approximately stationary over the duration of the window. A
shorter duration window provides better time resolution at the cost of reduced frequency
resolution. Similarly, a longer duration window offers better frequency resolution at the
cost of degraded time resolution. This is the well-known time-frequency resolution tradeoff

inherent in the STFT. w[n]

In order to extract useful signal parameters such as instantaneous frequency or bandwidth,

we introduce the spectrogram. The spectrogram of x[n] is defined as the magnitude-
squared of the STFT

Spectrogram,[k, n] 4 jSTFT [k, n] 2 (

Two important features of the spectrogram are that its values are (by definition) both real
and nonnegative. To be classified as a time-frequency distribution, a function of time and
frequency must be everywhere nonnegative and satisfy the corresponding marginals [1].
The time and frequency marginals are, respectively

ZSpectrogramx[k, n] = x[n]1'
k (6)

I Spectrogramj[k, n] = X[k]l'
"n (7)

One of the primary disadvantages of the spectrogram is that it does not satisfy the time and
frequency marginals. The impact of this disadvantage shows up when attempting to
estimate a signal's instantaneous frequency. Despite the fact that the spectrogram is not a
true time-frequency distribution, it is still quite useful in radar signal processing. Figure 2
below shows a spectrogram image of the stepped-frequency waveform in Figure 1 (a).

5
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Figure 2. Spectrogram of stepped-frequency waveform.

The sample rate of the original time-domain waveform was 5 kHz, and the spectrogram
window duration is 256 points. The type of window used was the Kaiser window with beta
equal to 7 and the size of each FFT was 1024 points. These are typical values used for the
spectrograms in this report. Along the horizontal axis is time in seconds while frequency in
Hertz is along the vertical axis. The grayscale color shows the power (in dBm) of each
signal component. As expected, the spectrogram reveals a 200 Hz signal from 0 seconds to
5 seconds, followed by a 400 Hz signal from 5 seconds to 10 seconds, and finally a -100 Hz
component.
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Section 3
The Micro-Doppler Phenomenon

3.1 Instantaneous Frequency.

Consider the scenario of Figure 3 below. A transmitted radar pulse of frequency STx (t) fc

travels a distance R(t) to a target. The target scatters the pulse and the receiver processes a

signal that is proportional to the time-delayed transmit pulse. s (t) ti

sTX(t)

Radar %%@xt)Tre

f=?

R(t)

Figure 3. Radar configuration.

For a single target moving relative to the radar, the round-trip time delay T(t) becomes

distance traveled 2R(t)
speed c (8)

where c is the speed of electromagnetic waves in the transmission medium and

R(t) = Ro - vRt - 1 aRt -- jRt + higher order terms
2 3 (9)

Here Ro, vR, aR, and jR are the position, velocity, acceleration, and jerk of the target relative

to the radar (at the time of demodulation).

7



The signal present at the receiver input is

sx (t) = F(t) exp{j[2n'fo (t- r(t)) +V/,]}

= F(t) exp {j[2n'fot - 4;rf°R(t) + V]}
C

= F(t) exp {jU (t)} (10)

where Yc is a constant phase offset at time, iF(t) is the received signal amplitude, and is
the phase. The instantaneous frequency of the received signal is proportional to the time

derivative of the phase q(t) I

f,• (t) = dF(t)- 2f, dR(t) f2fovr• •2fOaRt 2fojRt22)r dt c dt c c c (11)

where we have neglected the higher order terms. The first term is the radar transmit
frequency and the second term we recognize as the classical Doppler frequency. The third
term results in linear frequency variation over time, while the fourth term results in
quadratic frequency variation over time.

In a fully coherent radar system, the Doppler frequency is extracted by mixing the receive

signal with both an in-phase and a quadrature local oscillator of frequency fl. Thus, the
sign of the Doppler frequency is preserved which distinguishes approaching from receding
targets. The instantaneous frequency of the baseband signal is then

fbb ~ 2 W f oVR 2foaRt+ 2foJ Rt
2

C C C (12)

Figure 4 on the next page illustrates the effect of various simulated target motions. The
SNR in each spectrogram is 15dB and the noise floor is -74 dBm.

8
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Figure 4. Constant velocity (a), constant acceleration (b), and constant jerk (c).

In Figure 4(a), a simulated target approaches the radar at 3.72 m/s (8.32 mph). This

constant velocity results in a constant instantaneous frequency of 250 Hz. Figure 4(b)
2

shows a target approaching the radar with a constant acceleration of 6.0 m/s . Hence,

quadratic phase terms result in linear instantaneous frequency terms. In Figure 4(c), a target
3

approaches the radar with a constant jerk of 1.2 m/s . As expected, cubic phase terms
produce quadratic instantaneous frequency terms. These results will be crucial in

interpreting the spectrograms of complex targets.
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3.2 Point Scatterer Model and Example Spectrogram.

In order to gain intuition on the spectrograms of advanced targets, we use the point scatterer
model. The point scatterer model is a widely used electromagnetic signal model.

In essence, the point scatterer model takes a target with a continuum of scattering sites and
reduces them to a small number of point scattering centers. Figure 5 below illustrates a
human walking toward a radar.

[Radar 41m
z, f~ff+ff

fo

f0+foeg1 f0+fleg 2

Figure 5. Human point scatterer model with five scattering centers.

One possible point scatterer model would consolidate the scattering from a human target
into five scattering centers. One scattering center would correspond to the returns from the
torso, and each arm and leg would have its own scattering center. Every point scatterer in
this model articulates with its own velocity, and thus we associate individual Doppler
frequency returns for each point scatterer. All Doppler returns not originating from the
torso (non rigid-body motion) are defined as micro-Doppler. Adding more scattering
centers would result in a more accurate target representation [3], but the five scattering
center model for a human is a good tradeoff between accuracy, complexity, and intuition.

10



Figure 6 below displays actual radar data of a human running toward the radar.

/Leg

nwindow = 256, NFFT = 1024, OVERLAP = 75%, Fs = 5000 Hz800 •¢
700 ., Arm-a

600 ,-40
I. 500 ., -45

S400 -50
C" 300 -55

200 -O0
LL 100~,4 -65

0 " -70
-100o To rso-T

-200
4 4.5 5 5.5

Time (s)

Figure 6. Micro-Doppler features of a running human.

The strong, approximately linear return near the center of the spectrogram is due to the
torso. The large looping returns come from leg motion. The smaller returns closer to the
torso are from the arms. We see in Figure 6 that actual human radar data can be described
quite well with a five scattering centers approximation. We will discuss this further in
Section 8.
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Section 4
System Requirements and the MFCW Radar

4.1 System Requirements.

A primary goal for this project was to build a relatively low cost radar that can produce
high-resolution micro-Doppler signatures for target classification. The two major
application areas for this research are personnel detection and basic research. The
personnel detection community would be interested in exploiting micro-Doppler features
for target classifying systems. Investigation of the complex electromagnetic scattering that
gives rise to various micro-Doppler features is of interest to the basic research community.
The system specifications for this project address the needs of both basic research and
personnel detection applications. Table 1 below lists the sensor system requirements.

Table 1. Sensor system requirements.

Requirement Name Value

90% detection range for all TOI 65 m (213 fi)

Average system false alarm rate 7 days
Range accuracy (90% detection) 1 m (3.28 ft)
Maximum unambiguous range 125 m (410 ft)

Azimuth angular coverage 200, minimum

Per-unit production cost less than $1000

The first requirement is the detection range for all Targets Of Interest (TOI) given a 90%
probability of detection and a fixed probability of false alarm. This probability of false
alarm is set by the minimum acceptable average system false alarm time. The range
accuracy specification of Im is fairly coarse relative to the expected target dimensions.
However, it is expected that range accuracies of this order will be sufficient for use in target
recognition algorithms while not significantly increasing system costs. The specified
minimum azimuth angular coverage is 200. Several sensors (or a single sensor with wider
azimuth beamwidth antennas) could be used to provide wider coverage areas in personnel
detection applications. The target system per-unit cost is under $1,000.

Several radar architectures were investigated to potentially meet these system
specifications. The goal to study micro-Doppler narrowed the scope to Continuous Wave
(CW) radars that provide good Doppler resolution.
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The radar comparison included basic Doppler, Multiple Frequency Continuous Wave
(MFCW), and Frequency-Modulated Continuous Wave (FMCW) radars. The FMCW radar
was eliminated due to its marginal Doppler resolution and higher cost relative to other CW
radars. A basic Doppler radar offers both low cost and high Doppler resolution, but the
inability to acquire range would most likely affect its classification performance. As a good
tradeoff between cost and performance, the Multiple Frequency Continuous Wave (MFCW)
radar was chosen. The MFCW radar is the subject of the next section.

4.2 Multiple Frequency Continuous Wave Radar Architecture.

Figure 7 on the next page shows a simplified block diagram of one possible MFCW radar
architecture.

f2 T2 D

flQ P ••D PAf

Figure 7. MFCW radar block diagram.

We will refer to the MFCW radar architecture of Figure 7 as a three Frequency Continuous
Wave (3 FCW) radar. As the name suggests, the 3FCW radar simultaneously transmits
three different frequency tones. Three microwave frequency sources of frequency f1 ' f', and

f provide the required tones. Although not shown in Figure 7, the three frequency sources
3

are all phase-locked to the same crystal reference oscillator. Phase-locked oscillators
provide excellent phase noise along with extremely precise frequency spacing between the
oscillators. Since all of the oscillators are locked to the same reference source, the
oscillators' frequency tends to drift together which maintains the precise frequency
separation. The three tones are joined together in a Wilkinson power combiner (shown as a
junction in Figure 7) and then passed through a power amplifier before transmission by the
antenna. Since the radar is Continuous Wave (CW), one transmit and one receive antenna
is used to provide enhanced isolation between the transmitter and receiver.

13



The 3FCW receiver is a direct-conversion receiver architecture. Thus, the incoming
received signal is demodulated directly to baseband without an intermediate frequency. For
illustration purposes, let us assume a received signal of the form

s x(t) = cos(2r(fA + fD,)t)+ cos(2;r(f 2 + fD2)t) + cos(2r(f 3 + fD3)t) (13)

where fDI , fD2, and fD3 are the Doppler frequencies modulated onto tone one, two, and
three respectively. After passing through a low noise amplifier, the received signal power is
split equally among the mixers. The signals at the mixers are then demodulated by Local

Oscillators (LO) of frequency f, f2, and f3. Neglecting the amplitude factors, the output of
the mixer that demodulates with LO frequency fl is

cos(2n'ft)sx (t) = cos(2n7ft) cos(22r(f1 + fD1 )t) + cos(2'Arft) cos(27r(f 2 + fD 2 )t)
+ cos(21rft)cos(2rr(f 3 + fD 3 )t)

= lcos(2,rf0 1 t) + cos(2zr(2Jf + fDI )t)
2 121
+ -cos(2zr(f3 -f, +f,)t)+ -cos(2,r(f 2 +fA +f,)t)

2 2
1 1+ - cos(27r(f, - f, + fD3 )t) + - cos(2n7(f, + f, + ft 3 )t)2 2 (14)

The mixer outputs six different frequencies along with possibly some other unwanted

spurious signals. Low-pass filtering the mixer output isolates the cos( 2 y'fDlt) term. The
maximum expected Doppler frequency controls the choice of filter cutoff frequency. We

assume that fDl,fD2,fD3 << (f2A - 4),(f3A -- f) << A, f2,f3 so that i so that the sum and

difference frequency terms are rejected while the cos(2 1rfD1 t) term is retained. A similar
derivation reveals that the output of the other two mixer/low-pass filter combinations is
cos(27rfD2t) and cos(2)rf' 3 t) The receiver outputs three separate Doppler frequency

channels.

Although neglected for clarity in Figure 7 and in the previous derivation, the three output
channels are actually complex. Each of the three complex output signals contain an inphase
(I) and quadrature (Q) component. The resulting complex baseband signal from the first

mixer is Ybbl (t) = 11 + ' Figure 8 on the next page shows how the I and Q channels are
created by what is known as a quadrature demodulator.
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Figure 8. Quadrature demodulator.

Figure 8 reveals that ideally the I and Q channels have the same frequency and amplitude
but are 900 out of phase. I/Q error occurs when the I and Q channels are not of equal
amplitude or are not exactly 900 out of phase. Correction of I/Q error can be performed
either in hardware or software. Software correction will be discussed in a later section of
this report. The motivation behind quadrature demodulation is that it preserves the sign of
the Doppler frequency. The Doppler frequency shift is positive for targets moving toward
the radar and negative for targets moving away from the radar.

4.3 MFCW Radar Target Range Calculation.

As a tradeoff for the best possible Doppler resolution, standard Continuous Wave (CW)
radars offer no useful range information. The CW radar's inability to offer useful range
information stems from the unambiguous range problem. Let us reconsider Equation (10)
which gives the phase of a scattered target pulse at the receiver

s•.(t) = F(t)exp{j[2rfott-41rfR(t) +-Y/o]}
C (15)

In principle, the range could be extracted from the return signal by phase comparing the
transmit and receive signals [4]. The resulting signal phase is

(t) = 41rf°R(t) +-Y/0
C (16)
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After removal of the constant phase offset 'PO (by calibration), the range becomes

R(t) - cO(t)
41rfo (17)

Since the phase is modulo 2,r , the range becomes ambiguous when 0(t) 2ff,, where m is
a positive integer. Thus the range becomes

c21rm cm
R- = m = 1,-2,3,

47fo 2fo (18)

The maximum unambiguous range, , occurs when m equals 1Rnad

C

22f0 (19)

For single-frequency CW radars operating at 10 GHz, is 1.5cm. This radar cannot
distinguish (for example) whether a target is at 0.5cm, 2cm, 3.5cm, or 150.5cm. For most
applications, a maximum unambiguous range of 1.5cm is unacceptable. The Multiple
Frequency Continuous Wave (MFCW) radar reduces the unambiguous range problem by

simultaneously transmitting multiple tones of slightly different frequencies. nam

Let us now derive the target range for an MFCW radar. For the MFCW radar where M is
the number of tones, the received signal will be

M

sa,(t) = jFj(t)exp{j[21fft-4rfR(t) +q]}
C=, C (20)

where f, and F, (t • are the frequency, amplitude factor, and constant phase offset of theth th

tone, respectively. After complex demodulation, the phase O (t) of the i tone is

(= 41 fR(t) .~ z
c (21)

The phase difference between tones p and q is then

A9P (t) = 4ffAfqR(t) _ AV'pq
C (22)
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w here q = - f ? A~~ t pW -07( ) i
where . is the absolute frequency difference and A~bpq(t)= bp(t)-@q(t) is
is the phase difference modulo 2T between tones P and q. The constant phase offset

between tones p and q is A/fp'q = /IP - WIq. I Removal of the phase offset from A0bp'q(t)

by calibration is necessary to ensure proper range results. One calibrates the radar by
comparing the estimated target range with the true range, thus calculating A yp,• in

Equation (22). After initial calibration, recalibration is typically not required unless the

hardware configuration changes. Following calibration, the range calculated from tones P

and is q

Rpq (t) = cAc ', ,(t)
4 irAfp,q (23)

where Al•'pq(t) i: is the phase difference after calibration. The range Rpq(t) becomes

ambiguous when A'p'q (t) = 2/Tm NA where m is a positive integer. Hence the maximum

unambiguous range due to tones P and is q

Runamb;p,q =

2Afpq (24)

The theoretical root mean square (rms) range error due to tones P and is [5] q

S~~pq = amb;p ,q

PIq =2r(2SNR)'/2  
(25)

where is the signal to noise ratio. SNR

Equations (24) and (25) show that both the maximum unambiguous range and range
accuracy are inversely proportional to the frequency difference. A tradeoff between
maximum unambiguous range and range accuracy occurs if only two transmit frequencies
are used. Longer maximum unambiguous range requirements impose coarse range
accuracy. This motivates the use of three or more frequencies in MFCW radars. An
MFCW radar with more than two tones offers improved unambiguous range and range
accuracy. The MFCW radar unambiguous range becomes the maximum of the
unambiguous ranges between any two frequency pairs

Ranamb;MFCW = max Ru.namb;p,q (6P1q (26)
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After resolving ambiguities [4], the theoretical MFCW rms range error is the minimum
error of any two frequency pairs

9RMFCW = min 8Rp,q
p,q (27)

For MFCW radars with three or more tones, the tradeoff for performance enhancement is
added system complexity and cost.

For clarification, we will compute the range parameters for the radar design used in this

project (three transmit frequencies). Let tone one with frequency f and tone two with

frequency f be two tones closely spaced in frequency. Tone three with frequencyf3 is

spaced farther apart from tone one than tone two as illustrated in Figure 9 below.

16 MHz

1 MHz

f I "2 frequency f3

Figure 9. Three tone frequency separation.

Tones one and two provide a long unambiguous range while tones one and three offer an
accurate but ambiguous range. Table 2 on the next page lists the parameters for this
example.
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Table 2. Ranging parameters.

Parameter Value Parameter Value

AI,2  1 MHz 1 150 m (492 fi)

1,3 16 MHz R'•;1,3 9.375 m (30.76 ft)

f, 10 GHz f5R , 3.568 m (11.71 ft)

SNR 13.5 dB 6PR,3 0.223 m (0.732 ft)

The tones separated by 1MHz give an unambiguous range of 150m while the 16MHz
separated tones provide 0.223m range accuracy. The range accuracy calculations used
13.5dB as the SNR.
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Section 5
Target Detection and Ranging

5.1 Radar Range Equation.

The calculation of fundamental radar design parameters from system requirements typically
starts with the use of the radar range equation. One of many forms of the radar range
equation is

= GtGp

(4;r')3kT°BFSNP•jL (28)

where = transmitting antenna gain = receiving antenna gain GA

P, = transmit power 2 = wavelength of transmit signal

= target radar cross section = Boltzmann's constant (1.38xl 0k3 J/K)

TO = room temperature (290K) = receiver bandwidth B

F = receiver noise figure = system loss factor L

SNR. = minimum signal to noise ratio required for detection

Equation (28) calculates the maximum detectable range to a target of Radar Cross Section
(RCS). The radar range equation is an over-simplification of a complex problem, but it
gives the system designer a good starting point. One notable simplification is that the RCS
value is a constant. A target's RCS varies with aspect angle, frequency, and polarization.
This form of the radar range equation also neglects received signal fluctuation due to
dynamic propagation effects such as multipath.

Equation (28) in its current form gives no direct information as to the reliability of
detection. The parameters that describe detection reliability (probability of detection and

false alarm) are contained in the term. In the next section, we will review the SNt•,
important concepts of classical detection theory to explicitly express in terms of probability

of detection and false alarm. SNRmi-
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5.2 Classical Detection Theory.

Signal detection is a classical problem of binary statistical hypothesis testing. Under the

null hypothesis , the complex baseband received signal is composed of noise alone. HOY(t)

Ho: y(t)=n(t) where n(t)=n,(t)+jnQ(t) (29)

We assume the predominant noise source is thermal, so both the inphase and quadrature
noise components are Gaussian. Under hypothesis , the received signal is the sum of the

transmitted signal and noise. Hy(t) s(t)

H1: y(t)=s(t)+n(t) where s(t)=s,(t)+jsQ(t) (30)

Let I and Q be the inphase and quadrature components of, respectively. For this

development, we assume the received signal is processed by a linear detector y(t)A

V= ,1 2 +Q2  (31)

where is the complex envelope of the baseband signal. I/1 and Q are independent Gaussian
random variables under hypothesis, so we arrive at the well-known result that the envelope

V is Rayleigh distributed H0

[ -vs7
PvIH0 (vH)-exp

[vH) 2 2,2 (32)

where 0" is the conditional variance and Pv, (v I H0 ) is the conditional probability

density function of V given that the received signal is only noise (). Equation H (32)

depends on the single parameter "2 . Estimation of 0,2 is facilitated by the following
relation

u=J/ E[VIHo]

where E [V I H0 ] is the conditional expected (mean) value of V given. H

S.O. Rice showed that under hypothesis , the envelope V takes on the Ricean distribution

[6] H,
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PVIH, (vlHl)- v expH ) - 1 vIo 2;H 2 1 2'VIH" 1 ' '11) (34)

where is the modified Bessel function of zero order. Here is the conditional variance and
is the conditional probability density function of V given that the received signal is a

sinusoidal signal of amplitude 1 0 (°) °'1rH,2(v I H11) is tA plus noise. Figure 10 below

shows the probability density functions under and. HOH1

0.015 H0: Rayleigh

Threshold

SNR=6dB
0.01

H1:Ricean

0.005 Pd

P f

0
0 0.5 1 1.5

envelope voltage (rnV)

Figure 10. Probability density functions of noise and signal plus noise.

Two types of errors can occur in the detection problem. A type I error, commonly known
as a false alarm, happens when no signal is present but the noise level exceeds the detection
threshold. A type 2 error, known as a missed detection, occurs when a signal is present but
the signal level is not high enough to cross the detection threshold. Intuition would tell us
that we want to simultaneously minimize both types of errors. The total error is minimized
in the ideal observer detection criterion [5]. This detection methodology often works well
in communications systems where the cost of making either type of error is typically equal.
However, in radar systems the ideal observer criterion results in high false alarm rates. The
Neyman-Pearson detection criterion provides a method of detection that is well suited to the
radar problem.
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In the Neyman-Pearson detector, the probability of false alarm Pf- is fixed, while the
probability of missed detection is minimized. Equivalently, the probability of detection is

maximized since PVnJd = 1 -1 The probability of false alarm is typically fixed by system
requirements on the minimum tolerable time between false alarms. For continuous-time
detection, it can be shown [5] that the probability of false alarm is related to the average
time between false alarms by

1

S7T:oB (35)

where Tfa is the average time between false alarms and is the receiver noise bandwidth
(roughly approximated by the 3dB bandwidth of the pre-detection filters). Once the system
designer determines the noise bandwidth, the probability of false alarm is fixed by the

required average time between false alarms. B

The detection threshold is easily obtained once the probability of false alarm is set. As seen
in Figure 10, the probability of false alarm is the area under the noise-only curve above the

threshold level 7

Po f p,, v IHo( [ )dv = f-L exp - dv e YY 2 L 2  c' (36)

Solving for Y yields

7= c/2 1n PfI J (37)

If the noise statistics are not time-varying, the threshold 7 maintains the specified
probability of false alarm while maximizing the probability of detection. In order to
maintain a constant probability of false alarm in the presence of non-stationary noise, an
adaptive threshold method such as the Constant False Alarm Rate (CFAR) detector is
required.

As shown in Figure 10, the probability of detection is the area under the signal-plus-noise
curve above the detection threshold

co M vF (V 2+ A2)]10 ( vAPd= fnp~ju,(vIH,)dv=f--2exp 2 I- ) (v

Y 23 (38)
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The integral of Equation (38) cannot be solved by traditional analytical techniques. The
numerical solution of Equation (38) is [7]

Pd = Iefc In -l(I%)- ýSNR±J
(39)

where is the complimentary error function. Solving for SNR gives erfc(s)

2

SNR= -ierfc-1(2Pd
f2

(40)

where is the inverse complimentary error function. Figure 11 on the next page plots the

Receiver Operating Curve (ROC), a family of solutions to Equation erf-(°) (39).
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Figure 11. Probability of detection versus SNR (a) and receiver operating curve (b).

Figure 11 (a) provides a quick view of the impact of varying system requirements on the
required SNR. Lowering the false alarm rate (increasing the average time between false
alarms) results in higher required SNRs for the same probability of detection. Also, if the
required probability of detection is reduced while maintaining the same false alarm rate,
lower SNRs are required.
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Equation (40) can now be substituted into Equation (28) to get a radar range equation which
explicitly includes detection reliability terms

where Rmax;,P-P,6 is the maximum range to a target of radar cross section "

(41)

given that the required probability of detection is and the required probability of false

alarm is pep'f. It is important to remember that Equation (41) is still an approximation to
the maximum range because of received signal and noise statistical fluctuations. The
effects of fluctuations can be reduced by averaging (integrating) the received signal over a
short time window.

5.3 Detection in the Joint Time-Frequency Domain.

The detection method described in the previous section historically has been performed in
either the time or frequency domains. Recently, joint time-frequency domain detection has
received increasing attention [2], [8], [9]. The reason for the peak in interest is attributed to
the fact that uncorrelated noise spreads out over the time-frequency domain, while
frequency-modulated signals tend to localize. With a suitably defined SNR [2], the joint
time-frequency domain SNR will be greater than (or equal to in certain cases [9]) the SNR
in either the time or frequency domains. Since Doppler radar signatures primarily consist
of frequency-modulated components, performance is likely to improve by detecting in the
joint time-frequency domain.
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The detection theory developed in Section 5.2 is still valid in the time-frequency domain if
we make some adjustments. Equation (31) for the received signal envelope should be
changed to

Vk,, = V(Re[Ck,,])2 +(Im[Ck,,]) 2  (42)

where and are the real and imaginary parts of time-frequency coefficient. In the time-

frequency domain, the probability of false alarm Re[C•,,]Im[Ck,,]Ckf Pfi and the

probability of detection are now specified per spectrogram "pixel." In other words, PTA
should be interpreted as the probability that a single time-frequency bin false alarms. To

reduce the overall system false alarm probability Pf.,, , a radar system would likely not
report an alarm unless more than a single time-frequency bin was detected. We will refer to
Pfa as the probability of pixel false alarm and Pfa,v. as the probability of system false alarm.

Let us now derive the probability of system false alarm.

Each column of a spectrogram corresponds to an -point Fast Fourier Transform (FFT) of a
windowed segment of data. One method of reducing the overall system false alarm rate is
to require a minimum number of detected pixels within a given FFT before signaling a

system alarm. If we require at least Nz pixels to set a system alarm, the probability of
system false alarm is the probability that or more pixels cross the detection threshold when
no target is present.

Let M be one of N FFT points following pixel-level detection. If no target is present, A

takes on a Bernoulli distribution of parameter PA

fM(m)=Pf m (1-PI•)m  where me{0,1} and Pf e[0,1] (43)

where fM(m) is the Bernoulli probability mass function of M. Hence, with probability Pf",
M is a false alarm, and with probability (1 F-fP), " is not a false alarm. Suppose we want

to find the probability that exactly (independent) pixels false alarm in trials. The binomial

distribution gives this probability for fixed rANN

P(R = r) = fRN(Fr N)= (N)P; (1-Pf)N-r
r (44)

where is a suitable probability measure and P(.) (r) is a binomial coefficient. To

determine the probability of system false alarm Pfv, , we need to know the probability that
or more pixels false alarm.
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We then have

Pj. =P(RŽzIN)=; ( fj(1-PlPa)M-] =IA (z,N-z-1)
(45)

where I_(a, b) is the regularized incomplete beta function [10].

In a system design, the designer calculates the probability of system false alarm from the
specified minimum average time between false alarms. If is the time in seconds between

1

consecutive FFTs, the number of system-level detection decisions per second is TFFT"

The minimum average time between false alarms, Tf.y , is then

Tfa,sy -Y7 TFFT

T fa 'SY (46)

After calculating PfT.sy, from Tf•.•, , the designer obtains fa from

Pf• =I-P•, (z,N-z +l)= I-r, (z,N- z+ l)

TA , (47)

where is the inverse regularized incomplete beta function [11]. The probability of pixel
false alarm is then used to find the minimum required signal to noise ratio. Table 3 on the

1-1 (z,N-z+l)
next page lists the parameters for the radar system used in this project. f(,N-+
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Table 3. Detection parameters.

Name Symbol Value
mean time between false alarms Tfa,,y 7 days

time between each FFT TFF7  38.5ms

required number of pixels for alarm

probability of system false alarm Pf,,,,y, 6.37 x 108

probability of pixel false alarm Pf 3.49 x 10'

probability of detection Po 0.9

minimum SNR required for detection SNRn -,, 13.5dB

Starting with a specification of 7 days between system false alarms, we calculate that. For
a requirement of 0.9 probability of detection, the minimum SNR for detection is 13.5dB

P =-3.49 x10-'.(see Section 5.2). Jf -

Requiring z or more pixels for detection to reduce the false alarm rate does not go without

penalty. Suppose that z equals 2 and equals 0.9. If target signal energy appears in only

one frequency bin, the radar has no chance of detecting the target. If at I least two
frequency bins contain target energy (at the minimum SNR), the probability of system-level
detection increases to approximately 0.81 (assuming independent samples). When there are
at least three frequency bins, the system-level detection probability increases to
approximately 0.97. In general, if Q independent frequency bins contain target energy at

the minimum required SNR, the system-level probability of detection is pd)•- = Ip (z

J=, •J/°(48)

Although probability of detection loss occurs for narrowband targets (targets whose
frequency spread is on the order of the frequency resolution), the benefits of reduced
probability of system false alarm far outweigh this loss (primarily since the targets of
interest to this project are moderately wideband due to micro-Doppler).
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5.4 Procedure for Joint Time-Frequency Domain Detection.

Figure 12(a) on the next page shows the spectrogram of a human target. The target jogs
toward the radar going from a range of 1 00ft to 50ft and then turns around and jogs back to
100ft.

nwindow = 256, NFFT = 1024, OVERLAP = 25%, Fs = 5000 Hz
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Figure 12. Complete spectrogram (a), extracted frame (b), and detected frame (c).

The detection procedure starts by extracting a frame (typically 1,250Hz by 2.46s) centered
on the largest spectrogram return within a given time frame (see Section 5.5 for target
tracking). An extracted frame is shown in Figure 12(b). Each pixel within the frame is
compared with a threshold to determine if noise or target energy is present within that pixel.
Figure 12(c) displays the detected frame for a threshold of -61 dBm. The detected frame
shows good detection of the target torso along with the micro-Doppler produced by the legs
and arms.
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Figure 13 on the next page illustrates the effect of varying the detection threshold on pixel
false alarms and missed detections.
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Figure 13. Spectrogram frame for human target (a), detection results for threshold level: -
55dBm (b), -61dBm (c), and -76dBm (d).

Figure 13(a) is a spectrogram frame of a human target walking toward the radar at a range
of approximately 225ft. In Figure 13(b) the detection threshold is set to -55dBm. No pixels
false alarm within this detection frame, but numerous missed detections occur. In Figure
13(d), a much higher threshold of-76dBm is used. This threshold dramatically increases
the number of false alarm pixels but considerably decreases the number of missed
detections. The threshold of -6ldBm used in Figure 13(c) makes a good compromise
between false alarm and missed detection pixels.
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5.5 Ranging in the Joint Time-Frequency Domain.

In Section 4.3, we calculated the MFCW radar target range from the phase difference
between any pair of tones. An analog phase comparator could be used to extract the phase
difference between two Doppler channels.However, if we wanted to resolve multiple targets
by their Doppler frequencies, a phase comparator would need to be placed on each output of
a Doppler filter bank (unless one time-shared filter is to be used). The expense and
complexity of such a system grows rapidly as the requirement for finer Doppler resolution
tightens. Another option is to calculate the phase difference digitally in software. One
could perform a phase estimate in the time domain, but the ability to resolve multiple
targets by Doppler would be lost. In this project, the phase difference estimate is performed
in the joint time-frequency domain.

Since we are already using the STFT magnitude (spectrogram) to perform detection and
signature extraction, the STFT phase provides the phase difference estimate with little extra
computation. The STFT can be split up into magnitude and phase components

STFT [k,n] = ISTFT, [k, nI1ZSTFT[k, n] (49)

If we let and be the real and imaginary parts of time-frequency coefficient , we get

Re[Cfl ]Im[ C.,, ]Cý,,

ISTFT.[k, n]l= V(Re [C,,, )2 + (IMr[Ckf]) 2

ZSTFT [k, n] = tan-1 Rim[Ckf,] 1
L Re[C k,, 1 (50)

where the inverse tangent must be a four quadrant operation for proper results. The phase

difference between tones P and at frequency index and time index is qkn

A pq[k, n] ZS TFTP [k, nl- ZS TFTQ[k,n] where AOpq [k, n] E [0,2r (51)

In order to ensure that Ap~q[k, n] e [0, 2ff], 1, the arithmetic for the phase calculation must

be modulo 27r
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The phase difference between tones P and gives q

Rpq[k,fn] =
4hrAfp,q (52)

where Rpq [k, n] is the range estimate at frequency index and time index. To prevent

adding bias to knRp,q [k, n], , it is important to remove any constant phase offset from
A0pq [Jk, n] ( (by range calibration) prior to calculating Rp,q [k, n].

We introduce the Time-Frequency-Range Diagram (TFRgram) as the time-frequency-range

image of Rp'q [k, n]. Figure 14 below plots the TFRgram and spectrogram of a human
target jogging from 292 feet to 15 feet.
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Figure 14. Spectrogram (a) and TFRgram (b) of human jogging from 292ft to 15ft.

The TFRgram is similar to a spectrogram in that the target is located in the same time-
frequency bins, however the color axis plots range instead of power. As expected, the range
appears random in regions of the time-frequency plane where no target is present. Valid

estimates of target range only come from regions of Rpq[k, n] with target signal energy.
Further processing is required to extract the target range from the TFRgram.

In order to acquire useful range estimates from the TFRgram, the frequency coordinates of
the target must be found. The frequency coordinates select the proper region of the
TFRgram to extract range information. Note that due to the Doppler effect, the frequency
coordinates are proportional to the target velocity relative to the radar.
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One possible extraction method calculates the frequency location of the maximum value of
the spectrogram at each time instant

ktae [n] nn0= argmax [STFT. [k, n]1 2 ]
where is the frequency coordinate of the target at time . A scaled version of is plotted

below in Figure 15(a) for the human target of Figure 14. k, [n] is nk,,,e,[n] is 1
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Figure 15. Centroid frequency (a) and target range (b).

The target frequency coordinate is tracked reasonably well until the target stops moving at
about the 25 second mark. The frequency coordinate should be zero here, but instead the
value fluctuates rapidly due to signal loss. This discrepancy can be corrected by zeroing the
frequency coordinate at any time instant that no signal is detected.

Figure 15(b) shows the target range extracted from the TFRgram using the frequency
coordinates of Figure 15(a). Two tones separated in frequency by 1MHz were used for this
calculation. Since rms range accuracy improves with increasing SNR, the range estimate
fluctuates less as the target approaches the radar. In Figure 15(b), the range estimate varies
wildly after the target stops moving. This problem can be alleviated by keeping the range
estimate constant over time intervals with no signal detections.
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Section 6
Radar Hardware Design

6.1 Radar System Design.

Most radar system designs begin with a list of specifications such as those of Table 1. A
radar designer then typically consults an appropriate range equation to determine which
parameters are fixed by specifications and which parameters the designer can manipulate.
The range equation we will use for our analysis will be Equation (41) of Section 5.2
repeated below.

1/4

(41r)3kTBF fc-'(2Pd) L

The radar range equation in this form contains 11 variables. Two of the 11 variables are
strictly fixed by system specifications: the probability of detection and the maximum range

to a target of RCS , o- (given Pfi and ) PdRmax;PdPzr . As discussed in Section 5.3, the

probability of pixel false alarm Pf, is determined by the specification of minimum average

time between system false alarms. The average RCS o- is typically set by the choice of
transmit frequency and the radar targets of interest. Among the remaining variable
parameters are the antenna gains , the transmit power , the transmit wavelength
Gt and GPL' , the receiver bandwidth, the receiver noise figure , and the aggregate system

losses. BFL

An important stage of the radar design cycle is to enumerate the primary factors that
influence parameter selection. Table 4 below lists the main inter-dependencies among the
parameters.
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Table 4. Factors influencing design parameter selection.

Design Parameter Symbol Primary Influential Factors

transmit wavelength A cost, Doppler resolution, FCC, size

baseband bandwidth transmit wavelength, max target speed

transmit power Pt cost, power consumption, FCC, size

antenna gain G, C cost, angular coverage, size

receiver noise figure cost, power consumption, size

system losses cost, power consumption, size

For a specific design, several of the influencing factors of Table 4 may not be of high
importance. Size and power consumption constraints were of minor concern to the radar
design in this project, while Doppler resolution and cost heavily influenced the design. In
the next section, we further discuss Table 4 and MFCW radar system design.

6.2 MFCW Radar Design.

In this section, we narrow the design focus to an MFCW radar used for collection of high
Doppler resolution target signatures. Since Doppler resolution improves with increasing
frequency, shorter transmit wavelengths are favored. However, obtaining inexpensive radar
components past X-band (8-12GHz) is difficult. Since cost is a significant factor to this
project, a 3cm operating wavelength (10GHz frequency) was chosen as a tradeoff of cost
and Doppler resolution. After selecting a transmit frequency, the receiver bandwidth is
determined by the maximum expected target speed. If the maximum expected target speed
is 35 meters per second (78 mph), the maximum Doppler frequency received (for a 10GHz
transmit frequency) is approximately 2.35kHz. The chosen sampling rate is 5kHz, which is
slightly higher than the Nyquist rate. The sampling rate then sets the baseband bandwidth
to be roughly equal to twice the 3dB bandwidth of the anti-aliasing filters. For this project,
the complex baseband bandwidth is approximately 5kHz.

Cost, power, and size constraints typically dictate the selection of transmit power. In
addition, the Federal Communications Commission (FCC) sets limits on the maximum
radiated power density which factors into some high power budget designs. Cost is the
main limitation on transmit power for this project. Low cost power amplifiers from Hittite
Microwave Corporation (HMC) offer moderate output power from a small, low power
package. The power amps from HMC achieved excellent linearity at 16dBm (40mW)
transmit power.
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For aperture-type antennas, the antenna size and gain are inversely proportional to the
beamwidth. Thus, antenna selection is often dominated by angular coverage requirements
and size (and/or weight) limits. Inexpensive, compact 17dB gain horn antennas were
selected for this design. The antenna beamwidth is 250 in both the azimuth and elevation
planes. Optimization of system noise figure and overall system losses within system
requirements is a significant design challenge. In the next section, we discuss system
design for reduced noise figure.

6.3 System Design For Reduced Noise Figure.

Noise figure refers to the reduction of signal to noise ratio from the input to the output of a
device. One then defines the noise figure as

F- sNR

SNRL (55)

where and are the input and output signal to noise ratios, respectively. Implicit in the
definition of noise figure is that the input noise to the device results from a matched (to the
system characteristic impedance) resistor at a temperature of 290K. Receiver design relies
heavily on noise figure optimization. To use noise figure in receiver design, one must
determine the overall noise figure of the cascaded devices within the receiver. Cascading N

devices results in an overall noise figure of SNPSNR-o

F-i E7-1 FN- NF1F=F+ - +•
G, G1G2  GlG2 --GV =2 HJG,

J=l (56)

.Gth
where is the noise figure and is the gain of the i1 ,t device. Since the gain of previous
stages reduces the effective noise figure of a device, the first few components of a receiver
chain typically contribute the most to the overall system noise figure. Therefore, judicious
placement of receiver front-end components can dramatically affect system noise levels.
The noise figures and gains of the front-end components used in this project' design are

listed in Table 5 on the next page.
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Table 5. Front-end component noise figures and gains.

Low Noise Amp Power Divider Balanced Mixer

Noise Figure 2.5 dB 3.7dB 8.5dB
Gain 15dB -3.7dB -8.5dB

In addition to the components of Table 5, we assume a coaxial cable and connector loss at
the input to the receiver of 0.5dB. This input loss constrains the first stage noise figure to
be 0.5dB. For a 3FCW radar using quadrature demodulation, the received signal must be
power-divided three times before reaching the mixers. The three power splits combine to
give a rather large 11 dB power splitter loss. In practice, power splitter loss limits the
number of tones used in an MFCW radar. Figure 16 below shows one possible receiver

Ffront end configuration. 1

Power
Input Loss LNA1 LNA2 Dividers Mixer

F,= 0.5dB F2 =2.5dB F3=2.5dB F4 = 11dB F5 = 8.5dB
G1 =-0.5dB G2 =15dB G3 =15dB G4 =-11dB G5 =-8.5dB

Figure 16. Receiver front end with two LNAs before the power dividers.

The receiver front end of Figure 16 provides 10dB overall gain and 3.3dB noise figure.
Other noise figures can be achieved by varying the position and number of Low Noise
Amplifiers (LNAs) as seen in Table 6 on the next page.
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Table 6. Varying receiver specifications by changing number and position of LNAs.

# of LNAs LNA Position Noise Figure Gain

0 n/a 20 dB -20 dB

I after dividers 14.4 dB -5 dB

1 before dividers 7.1 dB -5 dB
2 after dividers 14.1 dB 10 dB

2 before dividers 3.3 dB 10 dB

Table 6 clearly shows the benefit of positioning the LNAs before the power dividers.
Adding more LNAs improves the noise figure, but too many LNAs will deteriorate the
receiver dynamic range along with cost and power budgets.

6.3 Analog to Digital Converter Limitations On Noise Floor.

The receiver noise floor referenced to the receiver input is defined as

PN kToBF (57)

where is Boltzmann's constant, is 290K, is the detection bandwidth, and is the receiver
noise figure. An n-bit Analog to Digital Converter (ADC) with a full-scale voltage range of

kToBFVlf will have a resolution of

VAV = -
(58)

AV AV

Quantization noise takes on a uniform probability density between 2 and 2 , so the
noise variance becomes [12]

2 AV2
12 (59)
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For a system with characteristic impedance Z0, the ADC noise power is

P N2

V Z O (60)

The ADC noise power referenced to the input of a receiver of gain G becomes

PAAC -- PA, = 1 AV2

G G 12Z0  (61)

For a receiver with -3.3dB, = 5kHz, and G = 36dB (gain including baseband
amplification) the noise floor is (-134dBm). However, the noise power of a volt range 16-
bit ADC referred to this receiver's input is much higher at (-10 OdBm). Therefore, the 16-
bit ADC sets the noise-floor in this project' design. A 16-bit ADCs was chosen because
they are inexpensive and are common on DSPs and microcontrollers.
FB4.28 x 10-'7W±59.75 x 10- 5"PP
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Section 7
Database Collection and Processing

7.1 Experimental Setup.

Following the completion of the last radar hardware revision, an extensive database of radar
signatures was collected over an eight month period in 2004. Most of the radar tests were
performed in an urban environment as seen in Figure 17 below.

Figure 17. Urban testing environment.

Several buildings, a concrete driveway, and parked vehicles all contributed to the complex
multipath propagation environment. Testing in this environment offered a more rigorous
test than in an open field. However, a few of the animal datasets were taken in rural
agricultural fields to minimize the required human-animal interaction.

Figure 18 on the next page shows the mobile data collection platform built to facilitate the
data collection process.
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(a) (b)

Figure 18. Mobile data collection platform (a) and close-up view (b).

As seen in Figure 18(b), the transmit and receive horn antennas on the radar cart are
mounted to a metal plate for rigidity and can be manually rotated on-axis. The metal plate's
machined preset rotation stops accommodate any combination of linear polarizations. The
radar hardware is encased in a metal enclosure directly behind the antenna fixture. The
digital camcorder to the left of the radar unit provides audiovisual documentation of each
data file collected. The computer to the right of the radar hardware stores the large amount
of data acquired from simultaneous acquisition of radar signatures and digital video. The
monitor behind the computer provides a real-time display of target spectrogram signatures
and radar parameters (target range, velocity, etc.). The mobile data collection platform
transports easily to the testing location of choice.

7.2 Database Collection.

The goal to thoroughly study the micro-Doppler phenomenon required the collection of an
expansive radar signature database. Well over 1,000 MFCW radar signatures were
collected during the course of this project. In addition, over 300 basic CW radar signatures
were acquired during earlier development stages.

The goal throughout the project was to obtain a wide variety of data files that represent
operational conditions as much as possible. For example, targets approached the radar at
numerous angles of approach, not simply directly toward the radar. Data files were also
taken of targets roaming randomly in the radar range. The acquired data included three
target classes: human, vehicle, and animal. Each target sub-dataset contains data from
targets with varying speeds, approach angles, ranges, and postures. The human dataset
includes files where the individual crawls toward the radar.
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The animal dataset contains data from deer, dogs, and goats. The database also includes
files with multiple targets of different classes simultaneously moving within the range of
the radar.

7.3 Database Processing.

Figure 19 below illustrates the software processing steps prior to joint time-frequency
detection for a 3FCW radar.

Ilj~ 'SF1 Spectrogram

O /STFT

< 12 +J F Q'I " ' " ""-'"'" -STFT TFRgram
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•'j -/STFT,,
I HP STFT
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Figure 19. 3FCW radar processing prior to joint time-frequency detection.

For the MFCW radar, analog to digital conversion produces M complex baseband digital
signals where M is the number of transmitted tones. A high-pass filter processes each
complex channel to remove clutter and 1/f noise around DC. The filter stopband must be
narrow to minimize unwanted attenuation of target signal energy near DC.
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The high-pass filter magnitude response is shown in Figure 20 below.
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Figure 20. Magnitude of fourth-order elliptic high-pass filter transfer function.

The filter is a fourth-order elliptic high-pass filter with a 31.5Hz cutoff frequency, 60dB
stopband attenuation, and 0.5dB ripple in the passband. The phase response is non-linear
(the elliptic filter is IIR), but using the same filter on all complex channels maintains the
proper phase difference between channels.

Following filtering, each inphase/quadrature signal pair undergoes I/Q error correction. I/Q
error results from amplitude or phase imbalance in the quadrature demodulator and/or
mismatched receiver channels following quadrature demodulation. I/Q error creates an
"image target" in the spectrogram at the negative of the true target frequency. Providing
that the image target is strong enough, a target tracking algorithm may report two targets
present when there is actually only one. Figure 21 (a) below shows a spectrogram of a
human walking toward the radar and then turning around and walking away.
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Figure 21. Spectrogram with strong image target (a) and corrected spectrogram (b)

An amplitude imbalance of 0.5mV and a phase imbalance of 140 produced an image target

approximately 18dB below the true target power. Applying an I/Q error correction
algorithm [ 13] reduced the image target power as seen in Figure 2 1(b).

After I/Q error correction, the Short-Time Fourier Transform (STFT) converts each

complex channel into the joint time-frequency domain. The magnitude squared of one
complex channel's STFT forms the spectrogram for target detection and tracking as
developed in Section 5.3. The phase of the STFT of each channel is used to calculate the
TFRgram as described in Section 5.4.
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Section 8
Results from Ranging, Detection,

and Micro-Doppler Feathre Evaluation

8.1 Ranging Performance.

System specifications called for im (3.28ft) rms range accuracy (at the minimum required
SNR of 13.5dB). To test the system's ranging performance, a person positioned at different
ranges waved a trihedral comer reflector in one hand. The comer reflector provided a
consistent target of known radar cross section. A laser range-finder with sub-inch accuracy
positioned the person at a known range. Direct-conversion MFCW radars rely on target
motion to obtain range data. Some error is introduced into the range accuracy calculation
just by moving the target.

Figure 22 below displays the spectrogram and TFRgram of a person at 200ft waving a
comer reflector in their left hand.
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Figure 22. Spectrogram (a) and TFRgram (b) of comer reflector at 200ft

Using the methods of Section 5.5, the target range is extracted from the TFRgram. This
calculation was performed for the radar's two frequency separations: 1MHz and 16MHz.
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Example plots of range versus time for a comer reflector at 200ft are shown in Figure 23
below.
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Figure 23. Comer reflector range results at 200ft with I = 1MHz (a) and 16MHz (b)

The rms range accuracy for the comer reflector at 200ft range is 3.Oft for 1MHz frequency
difference and 0.37ft for 16MHz frequency difference. The time-averaged range
calculation is 198.1ft for 1MHz frequency separation and 199.3ft for 16MHz frequency
separation. Table 7 below lists range calculations for different target ranges.

Table 7. Empirical range accuracy results.

Actual range I00ft 101ft 103ft 200ft 201ft 203ft

Mean range; 1MHz 99.1ft 102.3ft 104.6ft 198.1ft 199.6ft 200.9ft

Mean range; 16MHz 100.1ft 101.2ft 103.3ft 199.3ft 200.5ft 202.6ft

RMS accuracy; 1MHz 1.82ft 2.68ft 4.97ft 3.00ft 3.93ft 3.25ft

RMS accuracy; 16MHz 0.23ft 0.29ft 0.59ft 0.37ft 0.36ft O.40ft
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For 1MHz frequency separation, the rms range accuracy does not meet the 3.28ft system
requirement for all the ranges listed. However, the radar achieves the requirement for
16MHz frequency separation. To compare the results, the theoretical rms range accuracy
calculated from Equation (25) is 11 .7ft for 1MHz frequency separation and 0.73ft for
16MHz frequency separation at 13.5dB SNR.

Figure 24 below plots range versus time for a human target jogging from 292ft to 15ft.
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Figure 24. Range results for a human jogging from 292ft to 15ft with 4/ = 1MHz (a) and
16MHz (b).

Changing from 1 MHz to 16MHz frequency separation significantly improves the range
results. A few moderate spikes still exist in the 16MHz range data. Most of these
anomalies result from multipath signal loss or errors in target velocity tracking.

8.2 Detection Performance.

A rigorous analysis of a system's detection performance is often difficult to obtain for
several reasons. Predicting performance under operational conditions adds additional
complexity due to wide variations in target and noise statistics. Some of the difficulty
arises due to RCS and multipath-induced signal fluctuation. The theory developed in
Section 5 provides acceptable results for targets of constant or slowly varying amplitude.
Both multipath and RCS variations often produce rapidly varying target amplitudes which
result in brief periods of target loss. Another difficult task is calculating an accurate system
false alarm rate. With average false alarm times specified in days, large amounts of data are
required to determine the false alarm rate.
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If automated methods of data collection are used, verifying a true false alarm also becomes
challenging. We will focus on predicted maximum target range for a given (theoretical)
probability of false alarm and detection and compare results to experimental data.

Using Equation (54), the predicted maximum range for various targets is tabulated in Table
8 below.

Table 8. Maximum detectable target ranges for Pd = 0.9 and Pf, = 3.3x10-7

Target Average RCS Maximum detectable range
2

Human 0.75m 73.8m (242ft)
2

Vehicle 1Oim 141m (463ft)
2

Animal 0.1m 44.5m (146ft)

Table 8 reveals that both human and vehicle targets meet the maximum detectable range
requirements while animals do not. The small radar cross section of many animals causes
reduced detection range. Note that Table 8 uses a single value for the RCS of each target
class. The RCS values in Table 8 are fairly good approximations for the targets of interest
to this project. However, the results of Table 8 would vary dramatically if (for example) the
RCS of an elephant was used for the animal class.

Let us compare the predicted results of Table 8 to the results from experimental data. As
discussed in Section 5.3, we define a system-level detection as an event when two or more
pixel detections occur within a single FFT. We seek the empirical maximum detectable
range to a target for a specified system-level probability of false alarm and detection. We
use the approximation to the maximum detectable range that follows. If, for example, the
time between spectrogram FFTs is 38.5ms, the number of FFTs per second is
approximately 26. For a one second observation period and a probability of system-level
detection of 0.9, the average number of missed detections is approximately three at the

maximum detectable range (26 x 0.1 x 1 = 2.6 • 3 ). The maximum detectable range is then
the shortest range where the number of missed detections over a one second interval is three
or more.
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More generally, for an FFT time interval and a system-level probability of detection

TFFZPd ,~s

N,,•, •[ T•rr(1 - Pd,,y )At]

ITFFT (62)

where is the ceiling operation and is the average number of missed detections over the

interval. F-l NV.At

Figure 25 on the next page shows the spectrogram of a human jogging from 292ft to 15ft
before and after detection (see Figure 24 for the range). We note that in the post-detection
spectrogram, system-level detections (two or more detections per FFT) are achieved out to
292ft. However, there are many time intervals where no system-level detections occur.
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Figure 25. Spectrogram of jogging human before (a) and after (b) detection

The number of detections per FFT from Figure 25 is calculated and displayed in Figure 26
(a) below. Figure 26 (b) plots the received power versus time for the jogging human.
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Figure 26. Number of detections per FFT (a) and received power (b) for jogging human.

The fast, deep signal fades that occur in typical datasets are readily seen. These signal fades
result in higher numbers of missed detections in regions of low SNR.

Analysis of the data of Figure 26 (a) results in three missed detections per second occurring
around 8.7 seconds. Consulting Figure 24(b), the target's range at 8.7 seconds was 232.8ft.
Thus, the approximate maximum detectable range for this target is 232.8ft. The results of
further detection range testing are listed in Table 9 below.

Table 9. Empirical maximum detectable range.

Target Class Average maximum detectable range # of files averaged

Human 66.5m (218.3ft) 5
Vehicle 105.2m (345.1 ft) 5

Animal 40.1m (131.6ft) 5

Five files in each target grouping were averaged to obtain these results. Comparing Table 9
to Table 8, we see that the empirical maximum ranges were less than the predicted
maximum ranges in all target classes. A primary cause of this discrepancy is the deep
signal fading shown in Figure 26(b).
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8.3 Spectrograms of Various Targets.

Figure 27 on the next page shows spectrograms of a human target running, jogging, and
walking from a range of 150ft to 100ft and then back to 150ft.
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Figure 27. Spectrogram of human running (a), jogging (c), and walking (d). Expanded
views are (b), (d), and (f), respectively.
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Figure 27 (a), (c), and (e) reveal the coarse differences in micro-Doppler over varying target
speed. As expected, maximum micro-Doppler frequency and legswing rate increase as the
target reaches faster speeds. The expanded views in Figure 27 (b), (d), and (f) expose fine
micro-Doppler features. Returns from all target scattering centers that move at nearly the same
speed as the torso, "torso returns," appear as the darkened line running through the
spectrograms. The large arches over the torso return result from legswing motion. When one
leg is planted on the ground (foot not moving relative to the radar), that leg's return appears at
DC [3]. Armswing can be seen as the smaller arches around the torso return. As seen in
Figure 27 (b), (d), and (f), the armswing becomes more pronounced with higher speed.

The targets in Figure 27 all move along a radial path from the radar that is centered on the
radar antennas. This zero degree approach angle makes the relative velocity calculated
from the Doppler return (approximately) the true target velocity. Data files were acquired
from targets moving at various approach angles to observe its effect on the radar signatures.
Figure 28(a) below shows the spectrogram of a human walking at a 450 approach angle
from a range of about 100ft to 5Oft.
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Figure 28. Human target walking at 450 (a) and 900 (b) relative to radar.

The spectrogram of a target approaching at 450 does not drastically differ from that of a
target approaching at 00. However, the received signal strength appears to drop off near the
end of the file, even though the target is approaching the radar. This effect is explained by
the fact that the target is passing through the antenna beamwidth. Figure 28(b) shows a
human walking at (approximately) a 900 angle relative to the radar at 50ft range. The radar
still receives a strong return from the target, but the spectrogram looks quite different from
the 00 approach angle case. The target signature is now centered on DC and the returns
from leg and arm motion extend in both positive and negative frequency directions. In
addition, the leg and arm returns are of much shorter time duration.
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Crawling human targets illustrate the effects of varying posture on target signatures. Figure
29 (a) below shows a human crawling toward the radar from a range of 10Oft to 85ft.
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Figure 29. Human crawling (a). Transition from walking to crawling (b).

The crawling target's torso return concentrates close to DC. In contrast to a walking
human, the crawler's micro-Doppler energy from leg and arm motion is highly skewed to
one side of the torso return. In addition, the period between micro-Doppler peaks from the
limbs is typically longer for a crawler than for a walker. This effect is illustrated in Figure
29 (b) which shows a human transitioning from walking to crawling.

In addition to humans, data was collected from vehicular targets. Most of the vehicle data
came from either a Jeep Cherokee or a Ford Taurus station wagon, but random passing
vehicles also became part of the datasets. Major differences exist between human and
automobile Doppler signatures. As seen in Figure 30 below, a typical automobile radar
signature is strongly concentrated on a single line in the time-frequency plane. Figure 30
displays the spectrograms of an automobile driving from a range of 250ft to 1O ft with
various accelerations and velocities.

53



nwlndow = 256, NFFT 1024, OVERLAP = 75%. Fs 5000 Hz nwindow 256, NFFT = 1024, OVERLAP 75%, Fs 5000 Hz
1400 14001200 -35 1200 -35

1000 -40 1000- -40

B 800 -45 • 800. -45
600 -50 600-' ". ,, -50S• 6o0 -65 ,-65

400 -55 400*
200- . , -6- 200 -60

0- -65 U. - -65
-200- 200 -

-400/ -70 -400 . -70

-600. -75 -600 -75

2 3 4 5 6 7 6 9 10 11 12 13 2 3 4 5 6 7 8 9 10 11 12 13
Time (s) Time (s)

(a) (b)

Figure 30. Vehicle driving at different velocities and accelerations.

Most vehicles contain several predominant scattering centers, but all of these scattering
sites move at roughly the same speed relative to the radar. A notable exception is a
helicopter where the rotor blades cause large sinusoidal micro-Doppler around the
helicopter body return [14]. Since most automobiles are rigid scatterers, one would not
expect to see (in theory) the Doppler returns in Figure 30(a) other than the main return. An
image signal can be seen at the negative frequency of the main return. This signal is not a
physical phenomenon of the target but an artifact of receiver inphase/quadrature error (as
discussed in Section 7.3). An I/Q error correction algorithm was applied to this data, but
complete error correction was not achieved. In addition to the I/Q error signal, another
artifact signal occurs at twice the frequency of the main return. This artifact signal results
from harmonic distortion in the receiver at high input signal levels. Figure 30(a) also
contains artifacts from the phase noise of the local oscillators. Phase noise artifacts can be
seen close-in on either side of the main return. Artifact signals are present in human data
also, but the signal strength of vehicular targets raise the artifact signal levels well above the
system noise floor.

As with the human targets, the vehicles' approach angle was varied to observe its effect on
the Doppler signatures. Figure 31 (a) below shows the spectrogram of a vehicle driving
from a range of 250ft to 150ft at an angle of approximately 45'.
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Figure 31. Vehicle driving at 450 (a) and 900 (b) relative to radar.

The vehicle's Doppler signature does not change significantly by varying the approach
angle from 00 to 45'. However, when the approach angle is approximately 90' the vehicle
Doppler signature differs markedly as seen in Figure 31 (b). The primary difference is that
the main return energy is spread out much more in frequency for the 900 approach angle
case. Comparing Figure 31 (b) to Figure 28(b), we see that at a 900 approach angle,
distinguishing between vehicle and human spectrograms becomes more difficult.

Figure 32 on the next page displays an interesting spectrogram of a vehicle turning a corner
at close range to the radar.

nwlndow 256, NFFT = 1024, OVERLAP = 75%, Fs = 5000 Hz

600 -35

400- -40

200. -45
-50

( 0 -55
. -200 -,60"LL 

-65
-400-70

-600 -75

2 3 4 5 6 7 8 9 10 11 12 13
Time (s)

Figure 32. Vehicle turning in front of radar at close range.

55



Referring back to Figure 17, the vehicle begins by driving behind and to the left of the radar
unit. The vehicle then takes a right turn in front of the radar and continues to drive until the
vehicle is well beyond the antenna beamwidth. One interesting feature of Figure 32 is the
positive frequency return that starts at around 2 seconds and ends at 6 seconds. This return
is not an artifact but a multipath return from the building in the upper right-hand corner of
Figure 17. The multipath return shows up almost 2 seconds before the main return, and a
tracking algorithm would likely report the multipath signal as another target.

Figure 33 on the next page shows the spectrogram of a vehicle driving toward the radar at a
0' approach angle and coming to a complete stop 50ft in front of the radar.
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Figure 33. Micro-Doppler produced by engine is visible at close range

Although the vehicle is at a complete stop, the spectrogram contains numerous micro-
Doppler lines. A combination of vibrating and rotating parts in the vehicle's idling engine
produce the various micro-Doppler features of Figure 33.

In addition to humans and vehicles, the micro-Doppler features of animals were also
studied. The animal datasets included dog, goat, and deer. Figure 34 on the next page
displays spectrograms from each animal type.
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Figure 34. Spectrogram of dog (a), goat (c), and deer (d). Expanded views are (b), (d),
and (f), respectively.

A dog approaching the radar produced the spectrogram. of Figure 34 (a). Approximately
four goats running toward the radar contributed to the Doppler signature of Figure 34 (c).
In Figure 34 (e), a deer casually wanders around until it leaps into the air and bolts off after
being startled.
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Animal leg motion produces micro-Doppler of short time duration compared to a human
approaching the radar at the same speed.

This effect is due to the observation that most quadruped animals' stride rate is considerably
faster than for biped animals. The overall micro-Doppler signature due to dogs and goats
appears fairly similar. The deer micro-Doppler (other than a faster stride rate) closely
resembles the micro-Doppler of a crawling human as seen in Figure 29. Before the deer
bolts off, the main return from the deer is near DC, with the leg micro-Doppler skewed to
one side, similar to the return from a crawling human.

All of the previously displayed datasets contain only one target in each data file. Numerous
data files were collected with multiple targets in motion at the same time. Two examples of
multi-target data files are shown in Figure 35 below.
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Figure 35. Multiple targets moving in opposite directions (a) and the same direction (b).

Figure 35 (a) displays the spectrogram of a vehicle driving from 250ft to 150ft while a
human walks from 50ft to 150ft. With the targets moving in opposite directions, little
Doppler overlap occurs. The individual targets can be isolated by their Doppler separation
only. In Figure 35 (b), a human walks from 150ft to 50ft while a vehicle drives from 250ft
to 150ft. Since the two targets move in the same direction and at roughly the same speed,
significant Doppler overlap occurs. Some target separation could be achieved through
range tracking.
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A limited amount of data was acquired during adverse weather conditions. The
spectrogram of ambient conditions during heavy rain appears in Figure 36(a) below.
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Figure 36. Spectrogram of ambient conditions (a) and human target (b) during heavy rain.

A significant clutter region forms around DC due to the rainfall. The rest of the
spectrogram is relatively unaffected by the rain. Figure 36 (b) shows a human walking
away from and then toward the radar during heavy rain. The target is still easy to detect
visually, but a fixed-threshold automatic detection algorithm would likely report a high
number of false alarms due to the rain. Further study of this issue and an investigation into
the use of Constant False Alarm Rate (CFAR) detectors is planned.

8.4 Radar Cost Analysis.

The system cost specification requires a per-unit cost of under $1,000. This cost point
demanded significant design tradeoffs. For example, a single X-band power amplifier
packaged in a shielded box with moderate performance can cost over $2,000. To reduce
cost, a surface-mount power amplifier was chosen (with lower gain and output power) that
costs under $30 per unit in small quantities.
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Table 10 below lists the costs of various components of the radar design for small
production quantities.

Table 10. Small quantity radar cost analysis.

Cost Category Aggregate Cost

Receiver front-end devices $410
Cables and connectors $100

Antennas $40

Waveguide to coax converters $200
Shielded chasis $70

Microwave PCB fabrication $180

Baseband PCB fabrication $80

Baseband components $165
Total $1,245

Table 10 includes the cost of adding Digital Signal Processor (DSP) hardware to perform
the radar calculations instead of the personal computer currently being used. The radar cost
of $1,245 nearly reaches the specified goal of less than $1,000 per unit even in small
quantity production. The specified price point will likely be achieved for moderate to large
production quantities. If a lower cost for small quantity production is desired, further
design refinements can be made.
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Section 9
Theory and Design of Target Classification Systems

9.1 Introduction.

Classification is the process of separating objects into groups by comparing their attributes.
The human body is an example of a complex classification system. Our eyes, skin, tongue,
ears and nose constantly deliver raw information to our brains about the world around us.
The brain is tasked with sorting through all of the raw signals and extracting important
features for a given classification task. For example, while driving our brains use our sense
of sight to estimate the size and shape (among other features) of road obstacles. If a child
were to walk into the middle of the road, the brain would use the extracted features to
(hopefully) classify the object in the road as a child and stop the vehicle. The massive
parallelism of the brain allows us to perform complex classification tasks with ease.

Due to the ability of the human brain to excel at classification under widely varying
conditions, many classification systems today still incorporate a human operator at some
point in the system. In fully-automatic classification systems, a computer performs all steps
of the classification procedure with no assistance from a human operator. This project
involves the design of a fully-automatic target classifier. Figure 37 on the next page
illustrates the procedural block diagram of a typical classification system.

(Data Acquisition

Tag tDetection? N
Yes

CFeature Extrato

ZTraining

Thresholds ! -• Classificato

Figure 37. Block diagram of a typical real-time classification system.
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The classification procedure begins with the acquisition of a frame of raw data. The data
are then fed into a target detection algorithm. If the detection algorithm decides that a target
is present, the target features are extracted from the data. In the feature extraction stage, the
data frame is processed to quantify the various target features used for classification. The
classification stage then compares the extracted feature values to thresholds previously
determined by a training procedure. The classification step produces the estimated target
class, and then the cycle repeats for subsequent data frames.

Data acquisition and target detection were discussed in earlier sections of this report.
Feature extraction, classifier training, and classification stages will be the topics of the
remainder of this section.

9.2 Feature Extraction.

Feature extraction begins with the estimation of basic target parameters such as received
signal power, range, and velocity. The received signal power is calculated simply by
extracting the target power from the spectrogram using the velocity estimate (and scaling by
the receiver gain). Section 5.5 of this report developed target range and velocity estimation
as applied to this project. Target features used for classification are derived from the basic
target parameters. Estimates of a target's radar cross section, "normalized bandwidth," and
legswing period provide the basis for this project's target recognition algorithm.

The Radar Cross Section (RCS) can be roughly thought of as the ratio of scattered power
(per unit solid angle) to incident power density. The mathematical definition of RCS is

2

a =r lim 4;rR 2

E, (63)

where o" is the RCS, is the range to the target, is the reflected field strength, and is the

incident field strength. In practice, the limit in Equation RE,EA (63) means that a target's
RCS should be measured in the far-field region of the radar. The RCS is a random variable
that depends on frequency, aspect angle, antenna polarization, target geometry, and target
material. The random nature of RCS causes fluctuations in target signal strength that often
significantly affect the detection process.

Although random, an estimate of radar cross section is a natural feature for target
classification. Small targets tend to have smaller RCS values on average than larger targets.
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Equation (28) in terms of received power is

"R=GtGrI1t22G ]1V4

R=[(4;r) L V4 (64)

where is the received signal power referenced to the receiver input. Solving for P,7 yields
the RCS estimate

d" (4;r)3R 4PrL

qGtr2JF (65)

After designing the radar, the variables L,GG' ,2, and ]" 1 become (approximately)
constants. The only remaining variables in Equation (65) are the target range and the
received signal power. An important fact to note is that Equation (65) neglects the effects
of multipath on the RCS estimate. To counteract the effects of multipath, the RCS estimate
is averaged over the detection frame.

A target's radar cross section alone does not provide robust target classification. Another
target feature we will refer to as the "normalized bandwidth" further aids classification.
The first step in calculating the normalized bandwidth is to estimate instantaneous
bandwidth. Figure 38 below illustrates the instantaneous bandwidth.
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Figure 38. Instantaneous bandwidth.
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The instantaneous bandwidth essentially calculates the frequency width of the target
spectrogram at each time instant. Normalizing the instantaneous bandwidth by the total
frequency width of the detection frame and dividing out the target speed determines the
normalized bandwidth.

BPý

speed + 1 (66)

where Afft- is the frequency width of the detection frame, BW,,_ is the instantaneous
bandwidth, is the normalized bandwidth, and is the magnitude of the target velocity.
Please note that the units of are not frequency units. The normalized bandwidth feature
helps distinguish between humans and vehicles since the frequency spread of a human

target is typically much larger than that of a vehicle. BW'•,speedBWo'•

Although RCS and normalized bandwidth are good classification features, the legswing
period feature is required to reliably distinguish crawling humans from animals.
Calculating the legswing period begins by accumulating the target energy above (or below,
depending on the direction of motion) the average target velocity

SY ISTFT[k,n]l2

k >kg (67)

where is the frequency bin of the average target velocity, and k~gx[n] is the accumulated

target energy. The discrete autocovariance function c (r) provides a measure of the

periodicity of a discrete-time sequence x[n]. . The autocovariance function is defined as

1M-r I M
() -(x[i-)(x[i+r]--) where= e-jx[i]and r=0,1,...,M

Al l= (68)

where M is the number of samples in x[n] and r is the lag variable. The autocovariance
function is typically normalized so that the autocovariance at zero lag is equal to unity.
Peaks in the autocovariance function reveal periodicities in the input sequence. The
legswing period estimate is then the time difference between the peak at zero lag and the

next closest peak of TLgc (r). Figure 39 on the next page shows calculation of the
legswing period for a human target.
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Figure 39. Calculating legswing period: spectrogram (a), x[n] (b), and autocovariance (c).

We see in Figure 39 that the autocovariance provides a good estimate of average legswing
period.

9.3 Feature Space.

To develop the geometric interpretation of target classification, we begin by introducing the

feature vector. The feature vector groups M target features into an M-dimensional vector X

. The M-dimensional space created by • is called feature space. Each frame of data gets
mapped into a single point in feature space. This work uses three target features, so feature
space is three-dimensional.
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The feature vector is structured as

I-I
L.g (69)

Figure 40 below displays the first two dimensions of feature space with test data from
humans, vehicles, and animals.
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Figure 40. Two-dimensional view of feature space (testing set).

As expected, most of the vehicle data frames are located at high RCS values while the
animal data frames are concentrated in regions of low RCS. In only two dimensions,
significant overlap occurs between the classes. The legswing period feature further
separates the classes.

9.4 Classifier Training and Testing.

In order to calculate decision regions (regions of feature space assigned to a certain class),
one must first separate the experimental database into a training set and a testing set. The
training set is used to calculate the decision regions. The testing set uses the decision
regions to evaluate the performance of the classifier.
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The sequence performed to train the classifier is illustrated in Figure 41 below.
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Figure 4 1. Offline training sequence.

The offline training sequence extracts features from all of the files in the training dataset.
The decision regions are then calculated from the feature space of training data frames.
Figure 42 below illustrates the offline testing sequence.
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Figure 42. Offline testing sequence.
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The testing sequence classifies each data file in the testing dataset using the decision
regions calculated from the training set. The testing set is labeled with the correct
classification for each file. The estimated target class is then compared to the true target
class. The overall performance of the classifier is quantified in the confusion matrix which
is the subject of the next section.

9.5 Quantifying Classifier Performance With Confusion Matrices.

Confusion matrices are often used to evaluate the performance of classifiers. We will
motivate the use of confusion matrices by a few straightforward examples. Consider the
scenario of a worker sorting produce on an assembly line. Two types of fruit pass along the
assembly line: apples and oranges. The worker's goal is to throw away (alarm on) all
apples while leaving all oranges on the assembly line. The plant manager decides to test the
worker's performance. A total of 10 apples and 15 oranges are placed on the assembly line.
The worker sorts the fruit and then the plant manager evaluates the worker's performance
with a confusion matrix. The results of the test are shown in Table 11 below.

Table 11. Two-class confusion matrix.

Chosen Class
Actual Class Apple Orange

Apple 7 3
Orange 2 13

In the first row and first column of numbers, we see that when the actual piece of fruit on
the assembly line was an apple, the worker correctly chose an apple 7 times. In the first
row and second column, when the actual piece of fruit on the assembly line was an apple,
the worker incorrectly chose an apple 3 times. Moving on to the second row and first
column, when the actual piece of fruit on the assembly line was an orange, the worker
incorrectly chose an apple 2 times. Finally, when the actual piece of fruit on the assembly
line was an orange, the worker correctly chose an orange 13 times. The correct
classification decisions are along the diagonal of the matrix.
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Since there are only two classes in this problem, we can calculate a probability of detection
and false-alarm for classification. We consider a classification detection as an event when
the worker (correctly) throws away an apple when an apple is present. The probability of
classification detection is then

pl•f=# of apples chosen as apples = 7 = 0.70
total # of apples 7+3 (70)

A classification false alarm occurs when the worker (incorrectly) throws away an orange.
The probability of classification false alarm becomes

Pf. CI= =# of oranges chosen as apples = 2 = 0.13
total # of oranges 2+13 (71)

Now suppose the test is repeated with the same number of apples and oranges, except now
20 bananas are placed on the assembly line. The worker must now sort the fruit into three
separate bins for each type of fruit. Since this is a three class problem, the confusion matrix
becomes a 3x3 matrix. Table 12 on the next page shows the worker's performance in this
task.

Table 12. Three-class confusion matrix.

Chosen Class

Apples Oranges Bananas

Apples 6 3 1

SOranges 1 12 2

Bananas 2 3 15
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Since this is a three-class problem, simple probabilities of detection and false alarm cannot
be determined (unless two classes are grouped together as one). Two common performance
measures are average percent correct and accuracy. The percent correct per class is
calculated for each class and then averaged.

The average percent correct is then

- -(PCappt,) + (Pforages ) + (PCbfl,,,a)PC=
3 (72)

where PC is the average percent correct and is the percentage correct of the apples class
(the others are similarly defined). The average percent correct weighs each class equally.
PC•;

Accuracy is similar to average percent correct, except that accuracy weighs classes with
more members more heavily in the calculation. The accuracy of the three-class problem is

Acc - (NvapplesPCapp') + (NOepor~gePC z )+ (Nlka"'PCh"J)
"Jg toll (73)

where Acc is the accuracy, is the number of apples (the others are similarly defined), and
is the total number of fruit pieces. A modified confusion matrix including average percent

correct and accuracy is shown in Table 13 on the next page. NaPPI'?V".
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Table 13. Modified three-class confusion matrix.

Chosen Class
Apples Oranges Bananas % Error % Correct

Apples 6 3 1 40 60

SOranges 1 12 2 20 80

"Z Bananas 2 3 15 25 75

Average 28.3 71.7
_ Accuracy 73.3

The modified confusion matrix will be used throughout the remainder of this report to
analyze classification performance.
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Section 10
Classification Performance

10.1 Introduction.

This section uses the confusion matrix to quantify and analyze the radar's classification
performance. We warn the reader to be cautious in interpreting the classification results of
any classifier. The performance of all classifiers depends on the amount and type of data
collected. Classification results can be skewed by too little data or an abundance of overly
simple test cases. Special attention was paid to this issue during the course of this project.
An extensive database of radar signatures was collected with widely varying speeds,
approach angles, ranges, and postures. We attempted to simulate potential operational
conditions as much as possible. However, the radar should be tested in actual operational
conditions over a long time period to provide the most accurate estimate of classification
performance.

10.2 Classifier Performance.

A total of 1,508 frames of data where used to test the performance of the classifier. The
classifier testing database contained 1,183 human data frames, 176 vehicle data frames, and
149 animal data frames. The overall performance of the classifier using the entire testing
database is shown in Table 14.

Table 14. Three-class confusion matrix of combined database.

Chosen Class
Human Vehicle Animal % Error % Correct

Human 1113 16 54 5.92 94.08
Ln

- Vehicle 34 137 5 22.16 77.84
Z

< Animal 12 0 137 8.05 91.95

Average 12.04 87.96

Accuracy 91.98
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The classifier is seen to perform quite well with an overall average percent correct of
87.96% and an accuracy of 91.98%. A good portion of the overall error is introduced from
vehicles being misclassified as humans. The vehicle dataset contains several files where the
vehicle's aspect angle with respect to the radar is near 900. These near-perpendicular aspect
angles both reduce the received signal power and increase the vehicle target's spectrogram
bandwidth. These two influences can cause the classifier to misclassify a vehicle as a
human.

In most physical security applications, distinguishing a human target from a vehicular target
is unnecessary since both are considered threats. To demonstrate the classifier's
performance in physical security applications, humans and vehicles will be grouped as the
"threat" class while animals will be considered to be the "non-threat" class. Table 15 shows
the results of the threat/non-threat grouping.

Table 15. Two-class confusion matrix of combined database.

Chosen Class

Threat Non-threat % Error % Correct

Actual Threat 1300 59 4.34 95.66
Class Non-threat 12 137 8.05 91.95

Pfass 8.05% Average 6.20 93.81

,P.ciass 95.66%

The probability of false alarm (for classification) is 8.05%. This means that when an
animal is actually present in the radar coverage area, 8.05% of the time (on average) it will
be misclassified as either a human or a vehicle. The probability of detection (for
classification) is 95.66%. When a human or vehicle is actually present in the radar
coverage area, 95.66% of the time (on average) it will be correctly classified as either a
human or a vehicle.

It is important to split the complete testing database into smaller subsets to investigate if the
classifier has weaknesses against a particular target type or target maneuver. To further
investigate the probability of false alarm for detection, the animal class was split into goat,
dog, and deer subsets. Tables 16, 17, and 18 display the classifier's performance against
each individual animal grouping. The results show that the classifier performed best on the
dog subset. Of the three animal types tested, the deer subset was the most difficult for the
classifier.

73



Table 16. Two-class confusion matrix with only goats in the animal class.

Chosen Class

Threat Non-threat % Error % Correct

Actual Threat 1300 59 4.34 95.66
Class Non-threat 8 87 8.42 91.58

Pfa,Cl 8.42% Average 6.38 93.62

Pd,cl= 95.66%

Table 17. Two-class confusion matrix with only dogs in the animal class.

Chosen Class

Threat Non-threat % Error % Correct

Actual Threat 1300 59 4.34 95.66
Class Non-threat 1 29 3.33 96.67

pf 3.33% Average 3.84 96.17

Pd,cla 95.66%
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Table 18. Two-class confusion matrix with only deer in the animal class.

Chosen Class
Threat Non-threat % Error % Correct

-t Threat 1300 59 4.34 95.66

, Non-threat 3 21 12.50 87.50

Pf•,c•,, 12.50% Average 8.42 91.58

Pd.cla= 95.66%

The ability to detect and correctly classify crawling humans is of vital importance to
physical security applications. The human dataset was split into a subset of crawling and
non-crawling data to evaluate the classifier's performance against crawlers. Table 19 and
Table 20 shows the three-class and two-class confusion matrices of the crawler data,
respectively.

Table 19. Three-class confusion matrix with only crawlers in the human class.

Chosen Class

Human Vehicle Animal % Error % Correct
Human 337 3 20 6.39 93.61

Vehicle 34 137 5 22.16 77.84
Animal 12 0 137 8.05 91.95

Average 12.20 87.80
Accuracy 89.20
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Table 20. Two-class confusion matrix with only crawlers in the human subset.

Chosen Class

Threat Non-threat % Error % Correct

-• Threat
511 25 4.66 95.34,< U Non-threat

_ _N o n -h re at 12 13 7 8 .0 5 9 1 .9 5
Pfs•,a 8.05% Average 6.36 93.65

"Pdc/a 95.34%

The classifier is seen to perform quite well on crawling human targets. The good
performance against crawlers is largely due to- the legswing period feature. Even fast-
moving crawlers produce long limb motion periods relative to most animal targets of
interest.

The current target tracking algorithm does not simultaneously track multiple targets. This
issue naturally raises concerns about classifier performance when multiple targets are
present. To evaluate classification performance under multiple target scenarios, the human
and vehicle data was split into multiple target and single target subsets. A classification
was judged as correct if the target of highest received signal power was classified correctly.
Tables 21 and 22 show the three-class and two-class confusion matrices of the multiple-
target subset, respectively.
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Table 21. Three-class confusion matrix with only multiple-target files in the human and
vehicle classes.

Chosen Class

Human Vehicle Animal % Error % Correct
Human 278 3 14 5.76 94.24

S Vehicle 4 43 1 10.42 89.58
Animal 12 0 137 8.05 91.95

Average 8.08 91.92

Accuracy 93.09

Table 22. Two-class confusion matrix with only multiple-target files in the threat class.

Chosen Class

Threat Non-threat % Error % Correct

- • Threat
S 328 15 4.3766 95.63

SU Non-threat

12 137 8.05 91.95
f 8.05% Average 6.21 93.79

Pcla= 95.63%

The classifier is seen to perform well even with multiple targets present. Potential future
improvements to the classifier will include simultaneous multiple target classification.
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Section 11
Conclusion

11.1 Accomplishments and Future Work.

This project achieved its main objectives to design hardware, develop target detection and
classification algorithms, and collect an extensive radar signature database. Most of the
radar design requirements were met or exceeded including range accuracy, maximum
unambiguous range, azimuth angular coverage, and per-unit cost. The radar achieved the
maximum detectable range requirement for human and vehicle targets. However, small
radar cross section animal subjects did not meet this requirement. Joint time-frequency
detection and ranging algorithms were successfully designed. In addition, a diverse micro-
Doppler signature database was collected and analyzed. The classifier was shown to
perform well on an extensive radar signature database.

Although the results of this research are encouraging, more work can be done. One of the
main issues to be addressed is detection in widely varying noise environments.
Specifically, we plan to investigate the use of Constant False Alarm Rate (CFAR) detectors
to improve detection performance in varying weather conditions such as heavy rain or
snow. We intend to further improve overall classification performance and design
algorithms to simultaneously track and classify multiple targets. Another future goal is to
find better methods of analyzing system performance. Finally, we intend to expand the
current radar signature database.
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Appendix A
Glossary of Terms

Autocovariance Function - a signal processing tool that calculates the similarity of a signal to a time-
delayed copy of itself. The autocovariance function can be used to quantify a signal's periodicity.

Average System False Alarm Time - the average time between system-level false alarms which sets the
probability of false alarm.

Confusion Matrix - a method of quantifying classifier performance which lists the decisions made by
the classifier.

Constant False Alarm Rate (CFAR) Detector - a detection method that varies the threshold level in
order to maintain a constant false alarm rate under different noise conditions. The noise level is
repeatedly estimated and used to vary the threshold.
dBm - a unit of measuring power which translates to "dB relative to one milliwatt." Power in dBm is

Power in dBm is related to pow15Power(n Wartso)
related to power in watts by: Power(in dBm) = 101lop- ( r a .

Discrete Fourier Transform (DFT) - a linear transformation that transforms a signal in the time domain
into the frequency domain. The DFT is a widely used signal processing tool often applied to frequency
analysis of stationary signals.

Doppler Frequency - the difference between transmitted and received signal frequencies which is
proportional to a target's velocity relative to the observer.

Fast Fourier Transform (FFT) - a computationally fast implementation of the Discrete Fourier
transform (DFT). If N is the length of the transform, the DFT is of order while the FFT is of order.
ere If N is the le

Feature Extraction - the process of quantifying target features for potential use in classification

algorithms.

Feature Space - a multi-dimensional structure which offers a geometrical view of classification.

Feature Vector - a vector of classification features which maps each data frame into a single point in
feature space.

Inphase/Quadrature (I/Q) Channels - two channels within a receiver that ideally are equal amplitude
and 900 out of phase. I/Q channels are required to preserve the direction of target motion in a direct-
conversion receiver.
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Joint Time-Frequency (JTF) - signal processing techniques which analyze the time-varying frequency
content of a signal.

Maximum Target Range - the estimated maximum range at which a target of a specified radar cross
section is detectable, given a required probability of detection and false alarm.

Maximum Unambiguous Range - the maximum range to any target when the range calculation
becomes ambiguous.

Micro-Doppler - Doppler frequency returns produced by target features that do not move at the same
velocity as the bulk target. Micro-Doppler can be used to assist target detection and classification.

Multipath - distortion that occurs when a transmitted signal reaches a receiver from multiple
propagation paths (often the result of reflections off of the ground or a building). The multiple received
signals interfere (due to differing signal phase) which distorts the transmitted signal.

Multiple Frequency Continuous Wave (MFCW) Radar - a radar that provides both target range and
Doppler frequency (velocity) information by simultaneously transmitting a (finite) set of tones.

Neyman-Pearson Detector - a detection criterion which fixes the probability of false alarm while
maximizing the probability of detection (subject to a constant threshold).

Noise Figure - refers to the reduction of signal to noise ratio from the input to the output of a device.

Point Scatterer Model - a target model extensively used in radar signal analysis that represents a target
as a compilation of a discrete number of scattering points.

Probability of Detection - the probability that a detector correctly decides that a signal in noise is
present when a signal in noise is actually present.

Probability of False Alarm - the probability that a detector incorrectly decides that a signal in noise is
present when only noise is actually present.

Radar Cross Section (RCS) - (roughly) the ratio of scattered power (per unit solid angle) to incident
power density.

Range Accuracy - the root mean square (rms) error in calculating the range to a target.

Short Time Fourier Transform (STFT) - a linear transformation that transforms a signal in the time
domain into the time-frequency domain. The STFT is useful for target detection, ranging, and
classification of non-stationary (non time-varying statistics) signals.
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Signal to Noise Ratio (SNR) - the ratio of average signal power to average noise power. The SNR is

often expressed in decibel form. ierage signal power to av

Spectrogram - the magnitude-squared of the short time Fourier transform

Time-Frequency-Range Diagram (TFR gram) - a representation of MFCW radar signals that displays
the range to a target versus time and frequency.

Testing Database - a set of data files used to test a classifier.

Training Database - a set of data files used to train a classifier.
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